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Abstract Internal tides in the Middle Atlantic Bight region are found to be noticeably influenced by the
presence of the shelfbreak front and the Gulf Stream, using a combination of observations, equations, and
data-driven model simulations. To identify the dominant interactions of these waves with subtidal flows,
vertical-mode momentum and energy partial differential equations are derived for small-amplitude waves
in a horizontally and vertically sheared mean flow and in a horizontally and vertically variable density field.
First, the energy balances are examined in idealized simulations with mode-1 internal tides propagating
across and along the Gulf Stream. Next, the fully nonlinear dynamics of regional tide-mean-flow interactions
are simulated with a primitive-equation model, which incorporates realistic summer-mesoscale features and
atmospheric forcing. The shelfbreak front, which has horizontally variable stratification, decreases topo-
graphic internal-tide generation by about 10% and alters the wavelengths and arrival times of locally
generated mode-1 internal tides on the shelf and in the abyss. The (sub)mesoscale variability at the front
and on the shelf, as well as the summer stratification itself, also alter internal-tide propagation. The Gulf
Stream produces anomalous regions of O(20 mW m22) mode-1 internal-tide energy-flux divergence, which
are explained by tide-mean-flow terms in the mode-1 energy balance. Advection explains most
tide-mean-flow interaction, suggesting that geometric wave theory explains mode-1 reflection and
refraction at the Gulf Stream. Geometric theory predicts that offshore-propagating mode-1 internal tides
that strike the Gulf Stream at oblique angles (more than thirty degrees from normal) are reflected back to
the coastal ocean, preventing their radiation into the central North Atlantic.

1. Introduction

Internal tides (baroclinic tides) are generated where surface tides (barotropic tides) heave stratified water
vertically at sloped topography [e.g., continental slopes and mid-ocean ridges; Garrett and Kunze, 2007].
Globally, this process drains surface tides of their energy; internal tides are generated at a rate of about 1
TW [Egbert and Ray, 2003] and additional energy is lost through turbulent dissipation. Most deep-ocean
internal-tide energy is contained within low vertical modes [e.g., Hendry, 1977; Nash et al., 2006; Alford et al.,
2007], which typically propagate as linear waves because their particle speeds are smaller than their wave
speeds [e.g., St. Laurent and Garrett, 2002; Klymak et al., 2013]. However, internal-tide generation [e.g.,
Chuang and Wang, 1981] and propagation [e.g., Park and Watts, 2006; Rainville and Pinkel, 2006; Zaron and
Egbert, 2014] can be significantly altered by interactions with slowly varying (or steady) mean-flow currents
and with a horizontally variable density field. Therefore, accurate predictions of internal tides in regions
with strong subtidal flows, such as the coastal ocean, require proper handling of these interactions.
Improved internal-tide predictions in the coastal ocean can increase our understanding of nonlinear
internal-wave generation [Nash et al., 2012], ecological productivity [Sharples et al., 2009], and sound propa-
gation [Tang et al., 2007; Lermusiaux et al., 2010; Duda et al., 2014a].

Here we examine internal-tide dynamics in the Middle Atlantic Bight region during the 2006 Shallow Water
and Autonomous Wide Aperture Cluster for Surveillance experiments (SW06) [Tang et al., 2007; Newhall
et al., 2007; Chapman and Lynch, 2010]. During July to September 2006, a large set of oceanographic and
acoustic measurements were collected in the Middle Atlantic Bight region. Ocean primitive-equation fore-
casts with data assimilation, reanalyses, and adaptive sampling recommendations were also issued in real-
time in support of the experiment [Lermusiaux et al., 2006; Haley and Lermusiaux, 2010; Lin et al., 2010].
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Further studies of ocean reanalyses called attention to interactions of large-scale internal tides with two
energetic and persistent mean flows: the summer shelfbreak front and the Gulf Stream (Figure 1). The pur-
pose of this paper is to (i) describe the magnitude and character of the effects of these flows and their den-
sity fields on the stationary (i.e., coherent) internal tide and (ii) identify the dominant momentum and
energy pathways of the tide-mean-flow interactions.

Numerous studies of internal tides and waves at the continental margins have emphasized simplified
geometries and/or cross-slope dynamics, with well established results, e.g., see the reviews of theoretical,
numerical, and laboratory studies by Huthnance [1995], Holloway et al. [2002], Helfrich and Melville [2006],
Klymak et al. [2011], Ivey [2011], Lamb [2014], and references therein. However, only a few studies have
examined tide-shelfbreak-front interactions under realistic conditions with complex geometries. One study
of tide-shelfbreak-front dynamics is the linearized two-dimensional modeling study of Chuang and Wang
[1981], which concluded that internal-tide generation is suppressed where the topography and shelfbreak-
front isopycnals slope in the same direction. Chen et al. [2003] examined the influence of a shelfbreak front
on internal-tide generation using idealized two-dimensional numerical simulations, but this work does not
match well with SW06 conditions, in part because the authors did not include vertical stratification on the
shelf. Here we utilize fully nonlinear three-dimensional primitive-equation simulations, which incorporate
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Figure 1. (a) The MSEAS data-driven primitive-equation simulations for the 2006 summer conditions include realistic topography and
(b) salinity fronts due to the shelfbreak and Gulf Stream. (c) The surface tide is approximately 0.5 m, (d) has nearly uniform phase, and
contains a significant cross-slope component (excursion ellipses 330). The box indicates the main site of the SW06 experiment. The
MSEAS grid is rotated, following the coastline, with horizontal velocities and gradients defined along this grid.
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realistic topography and an observation-based shelfbreak front. This allows us to reassess these previous
results in regard to summer conditions in the Middle Atlantic Bight region. Examining momentum and ener-
gy balances, we identify internal-tide interactions with the mean-flow current and density fields in the
region.

Theoretical studies indicate that mean flows can refract low-mode internal tides [e.g., Rainville and Pinkel,
2006]. Observations [Rainville and Pinkel, 2004] and numerical models [Pereira et al., 2007] even suggest that
refraction by western-boundary currents, such as the Kuroshio and Brazil current, respectively, may be
strong enough to reflect internal-tides that are generated at the coast as they propagate offshore, effective-
ly blocking their radiation into the open ocean. In addition, Kunze [1985] used ray tracing to show that geo-
strophic vorticity can increase the frequency of the low-frequency bound of the internal-wave continuum,
creating a barrier to internal-wave propagation that is analogous to a turning latitude. Here we assess low-
mode internal-tide refraction and reflection in the Gulf Stream, starting again from primitive-equation
momentum and energy conservation, and keeping the relevant interaction terms.

In the following analysis, we use realistic data-driven numerical simulations to quantify the momentum and
energy pathways of internal-tide interactions with the shelfbreak front and the Gulf Stream. In section 2, we
derive modal momentum and energy balances for small-amplitude internal tides in the presence of vertical-
ly and horizontally sheared mean-flow currents and a vertically and horizontally variable mean-density field.
Section 3 describes our methods of simulating and analyzing internal tides. Section 4 analyzes idealized
simulations of tide-mesoscale interactions. Section 5 analyzes the general effects of mesoscale circulation
on internal tides in the Middle Atlantic Bight region. Sections 6 and 7 describe specific aspects of internal-
tide interactions with the shelfbreak front and Gulf Stream, respectively. Section 8 presents our conclusions.

2. Theory

Most previous studies of internal tide-mesoscale interactions have used two-dimensional or three-
dimensional ray tracing. Rainville and Pinkel [2006] decomposed tides into independent vertical modes and
tracked their propagation using horizontal ray tracing. Their method is attractive because most internal-tide
energy flux is carried by the lowest few modes. However, Chavanne et al. [2010] reverted to full three-
dimensional ray tracing, because Rainville and Pinkel’s [2006] model did not incorporate modal coupling
due to vertically sheared mean flows and sloping topography. Here we combine these approaches, and
also build upon the analyses of Zaron and Egbert [2014]. We derive momentum and energy balances for
small-amplitude waves in subtidal (or steady) spatially variable shear flow and density fields, keeping the
corresponding nonlinear interaction terms. The resulting equations describe the horizontal propagation of
individual tidal modes through spatially variable background/mean fields, incorporating the effects of verti-
cal variability through intermodal coupling.

The inviscid hydrostatic nonlinear momentum, buoyancy (internal energy with a linearized equation of
state), and continuity equations are:

Dutot

Dt
1f3utot52rptot; (1a)

052
@ptot

@z
1btot; (1b)

Dbtot

Dt
50; (1c)

r � utot1
@wtot

@z
50 ; (1d)

respectively, where D/Dt is the total material derivative, r the horizontal gradient, utot the horizontal veloci-
ty, wtot the vertical velocity, b52g q2q0ð Þ=q0 the buoyancy perturbation scaled by q0, q the density, q0 the
reference density, and ptot the reduced pressure (pressure divided by density). The surface and bottom
are located at z 5 0 and z 5 2H, respectively. Next, we first assume a flat bottom and employ a rigid-lid
approximation to simplify the derivations, but the effects of a sloping bottom are discussed and added in
section 2.3.
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2.1. Hydrostatic Tidal Waves Interacting With a Background Ocean
Consider a tidal wave with single frequency x superimposed on a sufficiently slowly varying (or steady)
mean flow and buoyancy fields,

utot � uðx; z; tÞ1Uðx; z; tÞ; (2a)

wtot � wðx; z; tÞ1 �W ðx; z; tÞ; (2b)

ptot � pðx; z; tÞ1�Pðx; z; tÞ; (2c)

btot � bðx; z; tÞ1�Bðx; z; tÞ ; (2d)

where lower-case letters are monochromatic wave components and upper-case letters with overbars are
the slowly varying fields (background/mean currents, pressure, and buoyancy).

Substituting (2) into (1), we first average the inviscid primitive equations (1a) over sufficient tidal periods
such that all terms linear in the monochromatic wave components average out, e.g., utot 5U, etc. The result
is the slowly varying nonlinear mean-flow and buoyancy equations (a more formal analysis consists of a
two time scales decomposition for the mean and wave scales),

@U
@t

1 U � r
� �

U1 u � rð Þu1 �W
@U
@z

1w
@u
@z

1f3U52r�P; (3a)

052
@�P
@z

1�B; (3b)

@�B
@t

1U � r�B1u � rb1 �W
@�B
@z

1w
@b
@z

50; (3c)

r � U1
@ �W
@z

50 : (3d)

We then subtract the slowly varying fields equations (3a) from the primitive equations (1a) to obtain the tid-
al wave equations,

@u
@t

1 U � r
� �

u1 u � rð ÞU1 u � rð Þu2 u � rð Þu1 �W
@u
@z

1w
@U
@z

1w
@u
@z

2w
@u
@z

1f3u52rp; (4a)

052
@p
@z

1b; (4b)

@b
@t

1U � rb1u � r�B1u � rb2u � rb1 �W
@b
@z

1w
@�B
@z

1w
@b
@z

2w
@b
@z

50; (4c)

r � u1
@w
@z

50 : (4d)

We next assume that wave amplitudes are small enough such that we can drop the wave-wave advection
terms when compared to the other terms. This produces the following system of equations describing
small-amplitude hydrostatic waves that nonlinearly interact with the background ocean,

@u
@t

1 U � r
� �

u1 u � rð ÞU1 �W
@u
@z

1w
@U
@z

1f3u52rp; (5a)

052
@p
@z

1b; (5b)

@b
@t

1U � rb1u � r�B1 �W
@b
@z

1wN250; (5c)

r � u1
@w
@z

50 ; (5d)

where N2ðx; z; tÞ � @�B=@z is the slowly varying buoyancy frequency squared. The wave-mean advection
terms in (5a) and (5c) are the sources of nonlinear interactions between waves and the slowly varying,
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spatially variable, mean flow and buoyancy fields [see e.g., Kunze, 1985]. They are often neglected but will
play a critical role in our analysis.

The tidally averaged depth-integrated total (barotropic and baroclinic) tidal-energy equation is now
obtained. First, we take the dot product of (5a)–(5b) with velocity (u,w) and use (5d). The buoyancy work
quantity wb in the vertical momentum equation (5b) is then eliminated by substituting the product of (5c)
with b/N2 (leading to the potential energy terms). Finally, the resulting energy equation is averaged over a
tidal period and depth integrated, again for now assuming a flat bottom and rigid lid. The result is,

r � hFi1hAi5hPSi1hPBi ; (6)

where h�i denotes the average over a wave period. In (6), the energy tendency is null because the waves
are assumed to be perfectly harmonic. The remaining terms are the averages of the energy flux (F), wave
energy advection by the mean flow (A), shear production (PS), and horizontal buoyancy production (PB),
which are, respectively:

F5

ð0

2H
up dz; (7a)

A5

ð0

2H
U � r u � u

2

� �
1

U
N2 � r

b2

2

� �
1 �W

@

@z
u � u

2

� �
1

�W
N2

@

@z
b2

2

� �� 	
dz; (7b)

PS52

ð0

2H
u � u � rð ÞU1wu � @U

@z

� 	
dz; (7c)

PB52

ð0

2H

b
N2

u � r�Bdz : (7d)

Note that we can approximate A as
Ð 0
2H U � r u�u

2 1 b2

2N2

� �
1 �W @

@z
u�u

2 1 b2

2N2

� �h i
dz if we neglect terms involving

second derivatives of �B (i.e., rN22 and @N22

@z ). The advection term quantifies the transport of tidal energy by

the mean flow, but does not convert mean-flow energy to tidal energy. The shear-production and
buoyancy-production terms quantify energy conversion between the mean flow and the tide, and appear
with opposite signs in the mean-flow energy equations (not shown). They show that energy conversion
only occurs where the mean flow has horizontal or vertical shear, or the background-density field has a hor-
izontal shear. PS and PB are analogous to the production terms appearing in the turbulent-kinetic-energy
equation [e.g., Tennekes and Lumley, 1972], although the balance here accounts for total (kinetic plus poten-
tial) wave energy and the ‘‘fluctuation’’ terms here are coherent monochromatic wave components with
governing equations (5).

2.2. Projection onto Vertical Modes
The tidal-energy balance above is useful for quantifying net tide-mean-flow interactions, but does not pro-
vide information about the energy and momentum balances of individual vertical modes. Analyzing tides in
terms of local vertical modes is convenient because the modes form a complete local orthogonal basis that
separates barotropic motions and efficiently captures the vertical variability of the baroclinic motions.
Hence, we consider local vertical modes and define the associated decomposition of velocity and pressure
fields,

wðx; z; tÞ5
X1
n50

wnðx; tÞUnðx; zÞ; (8a)

uðx; z; tÞ; pðx; z; tÞ½ �5
X1
n50

unðx; tÞ; pnðx; tÞ½ �/nðx; zÞ ; (8b)

where n is the mode number and /n5@Un=@z. Note that if /n is defined to be unitless, then Un has units of
m. Therefore, un and pn have conventional units, while wn has units s21 instead of m s21. The vertical modes
are local: they are determined for each horizontal location by solving the hydrostatic eigenvalue problem:
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@2Un

@z2
1

N2

c2
n

Un50 ; (9)

where cn are eigenspeeds. The modes obey rigid-lid and flat bottom conditions, which require Un50 at the
upper and lower boundaries. The eigenfunctions are normalized to obey the local orthogonality conditions:

ð0

2H
UmUnN2dz5c2

nHdmn; (10a)

ð0

2H
/m/ndz5Hdmn : (10b)

Note that because Un are orthogonal with weighting function N2(z), the normalization factor c2
n is only rele-

vant when m 5 n; i.e., it is equivalent to cmcn or c2
m.

In what follows, we will assume that the terms involving mean-flow vertical velocities �W can be neglected.
This is appropriate in many situations, but if it is not, it is straightforward to retain these terms in the
derivations.

The momentum and continuity balances for mode-n coefficients are obtained by Galerkin projections, i.e.,
multiplying (5a) by /n and (5c) by Un, then using (5b) and (5d), and depth integrating,

@Un

@t
1
X1
m50

Umn � r
� �

Um1 Um � rð ÞUmn2 r � Umð ÞUz;mn

 �

1f3Un52Hrpn; (11a)

an

g
@pn

@t
1
X1
m50

an

g
Up;mn � rpm2

Um

c2
n
� Bmn

� 	
52r � Un ; (11b)

where we defined the local variables an � gH=c2
n [a dimensionless scale factor that relates the speeds of sur-

face (mode-0) and internal (mode-n) waves] and Un5Hun (the equivalent modal transport). These defini-
tions emphasize that the modal momentum equations (11) are a set of ‘‘coupled shallow water equations,’’
here associated with vertical modes that are local, i.e., vary in the horizontal. During the derivation of (11),
the vertical momentum equation (5b) was used to eliminate b in terms of pressure and, after vertical inte-
gration, modal pressure pn. The continuity equation (5d), also after vertical integration and projection onto
modes, was itself used to eliminate the modal vertical velocity in terms of the divergence of the modal
transports, i.e.,

Hwm52r � Um m s21

 �

: (12)

Finally, in (11a)–(11b), we defined the ‘‘effective mean flow’’ and ‘‘effective mean buoyancy’’ modal quanti-
ties as:

Umn5
1
H

ð0

2H
U/m/ndz m s21


 �
; (13a)

Up;mn5
1
H

ð0

2H
U

N2

c2
m

UmUndz m s21

 �

; (13b)

Uz;mn5
1
H

ð0

2H

@U
@z

Um/ndz m s21

 �

; (13c)

Bmn5
1
H

ð0

2H
r�B/mUndz m s22


 �
: (13d)

These quantities correspond to modal interactions and are in general horizontally variable.

From the above results, we remark that the modal internal-tide amplitudes Un and pn are uncoupled when
the effective mean flows (13a–13c) and buoyancy (13d) are diagonal. For example, this occurs when U and
r�B are uniform with depth. However, in general, depth-dependent mean flows or mean buoyancy gra-
dients disrupt the orthogonality of the modes, leading to nondiagonal effective mean flows and buoyancy
that produce intermodal coupling. For example, a depth-varying mean flow may cause U21 6¼ 0, indicating
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that mode-2 velocity amplitudes partially determine the mode-1 velocity amplitude. This latter type of cou-
pling can lead to internal-tide scattering (exchange of tidal energy between different vertical modes) by
mesoscale features [e.g., Dunphy and Lamb, 2014]. Here more general cases are considered, e.g., we allow
depth-dependent N2 and thus nonsinusoidal vertical modes (9).

The tidally averaged depth-integrated modal energy balances are produced by multiplying (11a) by un and
(11b) by pn, averaging over a tidal period, and summing (this amounts to a dot product, but with the modal
pressure and the continuity equation replacing the vertical velocity and vertical-momentum equation,
respectively):

r � hFni1
X1
m50

hAmni5
X1
m50

hPS
mn1PB

mni : (14)

These modal equations (14) can also be obtained by substituting (8) for the total quantities in (7) and then
using the result in the full energy equation (6), again for now assuming a flat bottom and rigid lid. In equa-
tions (14), the modal-energy flux (Fn), advection of the modal tidal-kinetic-energy by the mean flow (Amn),
shear production (PS

mn), and horizontal buoyancy production (PB
mn) are, respectively,

Fn5Hun pn5Un pn; (15a)

Amn5 Umn � r
� �

Um

 �

� Un

H
1

an

g
Up;mn � rpm

� �
pn; (15b)

PS
mn5 r � Umð ÞUz;mn2 Um � rð ÞUmn


 �
� Un

H
; (15c)

PB
mn5

Um

c2
n
� Bmn

� �
pn : (15d)

They are analogous to the quantities in (7), but here for each internal-tide mode. Once again, the advection
term quantifies the transport of tidal energy by the mean flow and the shear-production and buoyancy-
production terms quantify energy conversion between the mean flow and the internal tide. However, these
advection and production terms also contain modal cross terms (i.e., terms involving combinations of
modes n and m), which produce inter-modal energy conversion (i.e., scattering).

2.3. Limitations and Validity
In the derivation of (11) and (14), we assumed sufficiently small-amplitude waves such that we could
neglect the instantaneous wave-wave advection terms and their slowly varying averages over a few tidal
periods. In doing so, we neglect the fast variability of the nonlinear wave-wave interactions and self-
advection, which transfer energy to other frequencies (e.g., tidal harmonics), see for example the studies of
Lamb [2004], Legg and Huijts [2006], Venayagamoorthy and Fringer [2006], and Zhang and Duda [2013].
Relaxing this assumption would invalidate the monochromatic wavefield solution assumed in (2). The
small-amplitude approximation is invalid in regions with large tidal amplitudes, in particular in regions with
strong waves and weak mean flows (e.g., shallow shelf with strong tides). Although, deep-ocean internal
tides produce much smaller velocities than the those associated with the Gulf Stream. Similarly, in the shelf-
break front, the magnitude of the wave-wave advection terms is usually smaller than other terms in (5) and
(6)–(7), particularly the mean-flow advection terms. Also, neglecting advection by mean-flow vertical veloci-
ties in (11) and (14) limits the theory to hydrostatic dynamics, e.g., to locations where mean flows do not
flow up or down steep topographic slopes.

A further limitation of (11) and (14) is that, for a simpler presentation, they were derived assuming a flat bot-
tom. We now discuss how the derivation of these equations can be extended to the case of sloping topog-
raphies and how their local interpretation and numerical implementation allows for a zeroth-order
treatment of a variable bottom.

First, in the absence of a mean flow, the momentum equations can be corrected by including the topo-
graphic coupling coefficients derived by Griffiths and Grimshaw [2007]. The coefficients lead to topographic
inter-modal energy conversion:
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Cn5
X1
m50

umpnð Þ �
ð0

2H
/mr/ndz2 unpmð Þ �

ð0

2H
/nr/mdz

� 	
; (16)

which quantifies energy conversion into mode n. The tidally averaged energy balance (6) but with topo-
graphic conversion included is then

r � hFni1
X1
m50

hAmni5hCni1
X1
m50

hPS
mn1PB

mni : (17)

In the absence of a mean flow, topographic conversion has been shown to balance modal energy-flux
divergence over arbitrary topography [Kelly et al., 2012, 2013]. Here we show that Cn explains almost all
mode-1 and mode-2 energy-flux divergence along the steep continental slope (sections 5 and 6).

In the presence of a mean flow, topographic effects should, strictly speaking, also be extended to the
mean-flow coupling terms themselves. Extending the modal momentum and energy equations to include
terms that describe combined mean-flow and topographic coupling is tedious, but straightforward. Howev-
er, sample calculations of the additional terms in the simulations presented here (not shown) indicate that
these additional terms are negligible with respect to the residuals in the momentum and energy balances
(i.e., they are less important than viscous and wave-wave terms that are excluded from the balances). There-
fore, hereafter we neglect terms that describe the effects of joint topographic and mean-flow coupling, i.e.,
we only keep all terms in (17).

The sample calculations above also confirm that (11) and (14) can be directly interpreted as a local approxi-
mation in the horizontal, i.e., they are utilized column-by-column assuming locally constant depth H and
local vertical modes (9). These local equations are then connected in the horizontal through the modal
fluxes at the edges of these columns, i.e., through the horizontal gradients in (11a) and (11b), such that all
fluxes are conserved as depth and density vary horizontally. The modal-momentum and energy transfers
that occur between columns then account for staircase depth variations. In a numerical sense, within a col-
umn, a zeroth-order polynomial (a constant) represents the local depth and the vertical modes (9) represent
the local vertical variability. When the columns are connected through the tidal equations (11a) and (11b),
the result is analogous to a spectral-method representation of the spatially variable bathymetry and tides.
When variable topographic terms are added to these local equations as in (17), with or without a mean flow
as described above, the result, in the numerical sense, is a higher-order representation of bathymetric
effects (e.g., higher-order numerics can then be used for the bathymetric gradients [Ueckermann and Lermu-
siaux, 2010, 2016]).

Next, we discuss how we estimate and postprocess realistic data-driven ocean fields that will be utilized to
compute the terms in (11) and (14). This computation later allows the extraction and diagnosis of realistic
internal-tide dynamics and interactions.

3. Computation and Implementation

3.1. Data-Driven Numerical Ocean Simulations
Two fully nonlinear numerical models were used to investigate tide-mesoscale interactions. First, the hydro-
static version of the MIT general circulation model (MITgcm) [Marshall et al., 1997] was used to simulate a
mode-1 internal tide propagating along and across a realistic two-dimensional cross section of the Gulf
Stream. The simulations employ a 2000 km long by 4000 m deep numerical domain with horizontal and
vertical grid spacings of 2 km and 20 m, respectively. The incoming internal tide is initiated at the left
boundary and has amplitude u1 5 0.1 m s21. Dynamical adjustments at the boundary also produce a mode-
2 internal tide that is an order of magnitude weaker.

Next, realistic simulations of tide-mesoscale interaction in the Middle Atlantic Bight region were conducted
with the Multidisciplinary Simulation, Estimation, and Assimilation System (MSEAS) [Haley and Lermusiaux,
2010; Haley et al., 2015]. Presently, the nonlinear free-surface hydrostatic primitive-equation model of
MSEAS is used, in a generalized-level vertical-coordinate configuration. The full domain (shown in Figure 1)
is resolved with a 3 km horizontal grid and 100 vertical levels optimized to the thermocline structure. An
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implicit two-way nested domain is used over the SW06 shelfbreak with a 1 km horizontal grid. Horizontal
velocities are defined along the rotated grid (u is positive to the northeast and v to the northwest).

A ‘‘realistic’’ simulation was initialized with horizontally and vertically variable objectively analyzed meso-
scale temperature, salinity, and velocity fields. The objective analyses combine separate analyses inshore
and offshore of the expected shelfbreak front using a shelfbreak-front feature model [Lermusiaux, 1999;
Gangopadhyay et al., 2003], and are multiscale in space [Lermusiaux, 2002]. They combine varied in situ syn-
optic SW06 data (from gliders, conductivity-temperature-depth profiles, autonomous underwater vehicles,
etc.) and historical data (from the National Marine Fisheries Service, World Ocean Database, Gulf Stream
Feature analyses, Buoy data, etc.). The Gulf Stream was initialized based on in situ and historical CTD profiles
and from estimates of its position based on SST and NAVOCEANO feature analyses. Transport-feature mod-
els were also used for the Gulf Stream and slope-recirculation gyre. Subgrid-scale parameters were tuned
for the region by comparison of hindcasts with independent in situ SW06 measurements. Atmospheric-
forcing fluxes were obtained by optimally merging the Weather Research and Forecasting (WRF) fields into
the larger Navy Operational Global Atmospheric Prediction System (NOGAPS) fields and applied at the
ocean free surface. High-resolution TPXO7.2 surface-tide velocities and elevation, based on [Egbert, 1997]
but processed for our higher-resolution bathymetry and specific dynamics [Logutov and Lermusiaux, 2008;
Haley, et al., 2015], were imposed as forcing at the open boundaries. The simulation was initiated on 21
August 2006 and integrated for 42 days, with and without data assimilation. During integration, a novel
mixed sponge-open-boundary condition, which relaxes the solution to an exponentially weighted running
average, was applied at the lateral boundaries to prevent the reflection of outward-propagating internal
tides by absorbing them in a sponge layer, but to allow the free radiation of subtidal fields such as fronts
and eddies (P. Haley, personal communication). All of these developments including data processing, exter-
nal forcing, initialization procedures, data assimilation, and model tuning, as well as the simulated (sub)me-
soscale and tidal hindcast and reanalysis fields themselves, will be analyzed in detail and compared with
observations in a future manuscript (Kelly et al., personal communication).

To also examine tides without mesoscale variability, a ‘‘uniform’’ MSEAS simulation was initiated with zero
mesoscale velocity and horizontally uniform temperature and salinity, which were derived from objectively
analyzed offshore observations. The uniform simulation received surface-tide forcing, but not atmospheric
forcing.

3.2. Postprocessing of Ocean Fields for Internal-Tide Extraction
To assess the balances in section 2, especially to estimate the terms in (11) and (14), the velocity and pres-
sure fields are first projected onto the local vertical modes obtained from (9) and then Fourier filtered. For
the projection step, pressure is determined by (i) calculating density from temperature and salinity, (ii) sub-
tracting the 40 day average density and multiplying by gravity to estimate the buoyancy force, and (iii) ver-
tically integrating the buoyancy force to obtain the pressure field (the constant of integration is determined
from the free surface). Hourly time series of three-dimensional horizontal velocity and pressure are then
projected onto the local vertical modes to obtain amplitudes for modes n 5 0 to n 5 10. The modes and
eigenspeeds at each horizontal location are obtained by numerically solving the relevant eigenvalue prob-
lem (9) using second-order-accurate finite differences. Mode-0 is approximated as: /051 and c05

ffiffiffiffiffiffi
gH
p

.

For the Fourier step, the hourly time series of modal velocities are broken into fifteen 62 h segments (i.e.,
five M2 tidal periods; the first 62 h during spin-up are discarded) and Fourier transformed. The resulting Fou-
rier coefficients have a spectral resolution of about 0.4 cycles per day (cpd). The semidiurnal (1.93 6 0.2 cpd)
Fourier coefficients vary between segments because of (i) changes in surface-tide forcing (i.e., the spring-
neap cycle) and (ii) modulation by rapidly evolving mesoscale features. Variability due to (i) and (ii) are sepa-
rable by their coherence and noncoherence [Munk and Cartwright, 1966; Kelly et al., 2015], respectively, with
TPXO surface-tide elevations. Here coherent and noncoherent motions are defined as the average of the
coherent Fourier coefficients from all of the 62 h segments (i.e., the ensemble average) and their residuals,
respectively. Coherent energy is computed from the coherent Fourier coefficients and noncoherent energy
is defined as total energy minus coherent energy [e.g., Munk and Cartwright, 1966; Kelly et al., 2015]. Because
tide-mean-flow interactions are often weak and their numerical computation can be noisy, here we analyze
the dynamics of the coherent (‘‘stationary’’) internal tide, which are much more accurately computed than
those of the noncoherent internal tide.
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Coupling coefficients (13a) and (13d) are also obtained from the three-dimensional flow and buoyancy
fields of the realistic MSEAS primitive-equation simulations, along the rotated grid. Mean flows are defined
as the time averages over each 62 h period. The ‘‘effective mean flows’’ are then numerically computed for
each time period at each location using the local modes. Horizontal gradients are computed using a cen-
tered difference at the model grid scale. Topographic conversion is calculated following Kelly et al. [2012].
The mean-flow vertical shear terms are computed using the integral

ð0

2H

@U
@z

Um/ndz5

ð0

2H
U UmUn

N2

c2
n

2/m/n

� �
dz ; (18)

which is derived using integration by parts. Summations of the energy-conversion terms in (14) are truncat-
ed at m 5 10. Check-calculations indicate that contributions from higher modes are negligible. The tide-
mean-flow interaction terms for the coherent tide are computed using the coherent tidal amplitudes (i.e.,
ensemble-averaged amplitudes over all 62 h periods) and the mean flows from each 62 h period.

4. Idealized Simulations

MITgcm simulations of a mode-1 internal tide propagating across and along the Gulf Stream (section 3.1)
are used to examine the energy balance (14; Figure 2). In the simulation of across-stream propagation, the
inertial frequency is consistent with 408N and the idealized Gulf Stream is in geostrophic balance. When the
incoming mode-1 internal tide hits the Gulf Stream it encounters a deeper pycnocline and obtains a longer
wavelength and deeper zero crossing (Figure 2a). It also gains energy though shear production and loses
energy through buoyancy production (Figure 2c), producing approximately zero net energy conversion and
energy-flux divergence (Figure 2e).

In the simulation of along-stream propagation, the inertial frequency is set to zero and the Gulf Stream is
driven by inflow/outflow conditions at the boundaries. Neglecting the Coriolis force allows the flow to be
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Figure 2. (a) Horizontal internal-tide velocity in idealized MITgcm simulation (section 3.1) of a mode-1 tide propagating from left to right
across and (b) along a cross section of a steady Gulf Stream. Contours indicate 0.5, 1, and 1.5 m s21 mean-flow velocities (into the page or
to the right). Mode-1 energy advection, shear production, and buoyancy production terms are shown in Figures 2c and 2d. The total
mode-1 energy-flux divergence and mean-flow conversion are shown in Figures 2e and 2f. Advection was moved to the right-hand-side of
(14) when calculating total mean-flow conversion.
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represented in two dimensions (along-stream and vertical). In this simulation, the incoming mode-1 internal
tide periodically gains and loses energy due to advection by the mean flow (Figure 2d), which balances
mode-1 energy-flux divergence (Figure 2f). Energy advection (15b) depends on spatial gradients of wave
velocity and pressure; however, the background conditions in this simulation do not introduce any stream-
wise variability in the internal tide. Instead, the advection term arises because imperfect boundary condi-
tions generate a small mode-2 internal tide, which facilitates three-way interactions between the mean flow
and the mode-1 and mode-2 tides. The horizontal periodicity in the energy advection term arises because
of the phasing of the mode-1 and mode-2 internal tides. Inspection of the mode-2 energy balance (not
shown) reveals much smaller advection effects (i.e., A21 � A12), suggesting that in this simulation the modal
interaction primarily mediates energy advection, not energy transfer between modes.

5. Internal-Tide Coherence and Generation in the Middle Atlantic Bight Region

We now study the effects of mean flows and horizontally variable stratification on internal tides in the
MSEAS primitive-equation numerical simulations (section 3.1). The realistic simulation has energy at a con-
tinuum of frequencies between x 5 0–2 cpd (Figures 3a–3c). The shelfbreak front and Gulf Stream, which
are permanent baroclinic features, produce an energy peak at x 5 0 cpd, which extends over all vertical
modes. Wind-driven inertial oscillations produce an energy peak at x 5 1.2 cpd (19 h period), which
extends over modes 1–8. The semidiurnal tide produces an energy peak at x 5 2 cpd, which is dominated
by modes 0 and 1 (i.e., the surface tide and mode-1 internal tide).

Coherent-energy peaks in the MSEAS simulations are associated with the surface tides (vertical mode-0)
and the mode-1 semidiurnal internal tide. Noncoherent-energy peaks are associated with variable mean
flows, intermittent wind-driven oscillations, and nonstationary semidiurnal internal tides. These noncoher-
ent features are largely absent in the ‘‘uniform’’ MSEAS simulation (Figures 3d–3f), which has much weaker
mean flows, no near-inertial oscillations, and primarily stationary internal tides.
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Figure 3. Total energy in two MSEAS primitive-equation simulations (section 3.1) decomposed by frequency and vertical mode. The realistic MSEAS simulation (a–c) has energy at a con-
tinuum of frequencies, which is both coherent and noncoherent with the surface tide. The ‘‘uniform’’ MSEAS simulation (d–f) has mostly coherent tidal energy.
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Maps of mode-1 eigenspeed and mean surface currents in the uniform and realistic simulations illustrate
the effect of the summer shelf, shelfbreak front and Gulf Stream on the internal-tide waveguide (Figures 4a
and 4d). Although eigenspeeds are similar in both simulations because eigenspeed is primarily a function
of depth, eigenspeeds increase in the strong stratification associated with the Gulf Stream and, to a lesser
extent, on the shelf due to the presence of a shelfbreak front and strong summer shelf stratification.

In both simulations, snapshots of coherent semidiurnal mode-1 and mode-2 sea-surface displacements [i.e.,
gn5pn/nðz50Þ=g] display internal-tide fronts radiating from the shelfbreak (Figures 4b, 4c and 4e, 4f). The
mode-1 tide has significantly larger amplitude than the mode-2 tide (although mode-2 tides are slightly
more energetic in the uniform simulation than the realistic simulation due to enhanced shelfbreak genera-
tion; see section 6.1). In the realistic simulation, the shape and amplitude of the wave fronts in the southern
portion of the domain are distorted due to interactions with the Gulf Stream. In addition, mode-1 wave-
lengths on the shelf are slightly longer in the realistic simulation than the uniform simulation because the
shelfbreak front and realistic summer shelf correspond to an increased stratification on the shelf. Also, in
the realistic simulation, the detailed internal-wave patterns on the shelf are clearly modified, e.g., by (sub)-
mesoscale features at the front and also by wind-driven upwelling, currents and eddies within the inner-
shelf and at the coast.

Mode-1 and mode-2 energy balances in the realistic simulation reveal that most energy-flux divergence is
balanced by topographic internal-tide generation at the shelfbreak (Figure 5). Throughout much of the
domain, the traditional residuals (i.e., Cn2r � Fn) are small and positive, consistent with weak numerical dis-
sipation. However, residuals are larger in some regions, mainly because wave-mean-field interaction terms
are needed to close the local energy budget. Energy balances in the realistic and uniform simulations are
almost identical, except at the shelfbreak front and certainly at the Gulf Stream (on the shelf, relative differ-
ences are significant but absolute differences are much smaller). At the Gulf Stream, the mean flow
produces a pattern of mode-1 energy-flux convergence and divergence that cannot be explained by
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topographic generation or by viscous dissipa-
tion. Because offshore mode-1 surface displace-
ments and energy-flux divergences are much
larger than those associated with mode-2, we
primarily focus on mode-1 dynamics in the Gulf
Stream. Because abrupt topography generates
high-mode internal tides, we examine total
internal-tide energy flux F and conversion C (i.e.,
Fn and Cn summed over modes n 5 1–10) at the
shelfbreak.

6. Tidal Interactions With the
Shelfbreak Front

6.1. Energy Balance
The presence of the realistic shelfbreak front
reduces total energy-flux divergence r � F at the
SW06 study site by about 10% in the realistic
simulation with respect to the uniform simula-
tion on 27 August (Figure 6). To test whether
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this trend extends to stronger fronts, we conducted eight additional MSEAS simulations, where shelf water
in the realistic simulation was uniformly warmed by 28, 26, 24, 22, 2, 4, 6, and 88C, a range of tempera-
tures that is larger than commonly observed [the observed temperature difference across the front, which
varies with season, is �2–68C; Linder and Gawarkiewicz, 1998]. Warming the shelf water enhances southward
flow, which is normally observed at the front, while cooling the shelf water produces northward flow. Cool-
ing the shelf water, which tilts the isopycnals more towards the same direction as the bathymetric slope,
decreases r � F and, to a lesser extent, total topographic internal-tide conversion, C, as qualitatively pre-
dicted by Chuang and Wang [1981]. The difference in energy-flux divergence between the extreme cold
and warm-shelf anomaly simulations is about 40%, indicating the shelfbreak front can produce significant
changes in internal-tide generation.

In the anomaly simulations, C overall decreases as the shelf water is cooled, explaining roughly 2/3 of the
decrease in r � F. Even in the extreme cold and warm-shelf anomaly simulations, C and r � F maintain a
rough balance (Figure 7). In many of the simulations C is slightly less than r � F, indicating a small unidenti-
fied source of internal-tide energy, potentially due to nonlinear topographic generation and/or combined
topographic-mean-flow coupling (section 2.3). Overall, in the shelfbreak region, the mean-flow terms
derived here (15b–15d) are relatively small (not shown) at the larger along-front scales. For the buoyancy
production, this is in part because the local modal transport and modal buoyancy gradient are close to
being orthogonal at the front. At these larger shelfbreak front scales, the dominant balance between topo-
graphic conversion and energy-flux divergence implies that the overall effect of the shelfbreak front is
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largely captured by the effect of stratification on topographic coupling; stratification alters the horizontal
gradients of the modes, /n, that are used to compute Cn (16). Kurapov et al. [2010] described a similar situa-
tion on the Oregon Slope, where wind-driven upwelling altered stratification and hence topographic cou-
pling and internal-tide generation. In both locations, the effect of stratification on generation may be
qualitatively explained by stratification altering slope criticality.

Considering now the local (sub)mesoscales in the shelfbreak region, the mean-flow terms derived here
(15b–15d) are not everywhere negligible (not shown), as indicated by residuals in Figure 5 and imbalances
in Figure 7. Hence, mean-flow and buoyancy variability are important at smaller internal-frontal scales, e.g.,
involving frontal meanders, eddying, or variations in the tilt of the front [Lermusiaux, 1999; Colosi et al.,
2001; Gawarkiewicz et al., 2001; Kelly et al., personal communication]. For detailed wave studies and fore-
casts at the front, the effects of mean-flow advection, shear, and horizontal buoyancy gradients would need
to be simulated explicitly. We note that nonlinear wave-wave advection could then also become significant,
e.g., where internal waves steepen.

6.2. Horizontally Varying Stratification
The shelfbreak front arises because of large horizontal variations in density, which alters stratification and
internal-tide propagation. During SW06, the summer stratification produced a shallow pycnocline on the
shelf, leading to stronger stratification, higher eigenspeeds, and longer-wavelength internal tides (Figure 8).
Hence, the realistic simulation has both longer-wavelength internal tides on the shelf and shorter-
wavelength internal tides in the abyss than the uniform simulation. A simulation with horizontally uniform
stratification cannot simultaneously produce the correct wavelengths over both the shelf and abyss. A prac-
tical implication of this result is that mode-1 internal tides that are generated at the shelfbreak arrive at a
point 40 km onshore of the shelfbreak about 4 h later in the uniform simulation than the realistic simula-
tion. Such variability is thus critical for internal-tide forecasting [e.g., Duda et al., 2014b] (Kelly et al., personal
communication).

7. Tidal Interactions With the Gulf Stream

7.1. Momentum Balances
Mode-1 internal tides propagate as a linear shallow-water inertia-gravity waves; therefore, in equation (11a),
their momentum tendency (which also includes the Coriolis force) is primarily balanced by their pressure-
gradient force (Figures 9 and 10). For example, the v-momentum balance (Figure 10) reveals alternating
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(bars) determined from 42 day average eigenspeeds. The bathymetry is shown in Figure 8c.

Journal of Geophysical Research: Oceans 10.1002/2016JC011639

KELLY AND LERMUSIAUX INTERNAL-TIDE INTERACTIONS 6285



bands of positive and negative pressure-gradient forcing that correspond to the back and front of
southeast-propagating internal-wave crests (note that v is positive to the northwest). Each region of strong
pressure-gradient forcing produces a fluid acceleration (i.e., momentum tendency).

Likewise, in equation (11b), the evolution of their surface displacement (i.e., pressure tendency) is primarily
determined by wave-induced horizontal-velocity convergence (Figure 11). Specifically, horizontal velocities
converge and pressure increases prior to the passage of a wave crest. Together, the v-momentum and pres-
sure balances (Figures 10 and 11) are consistent with freely propagating waves, where surface displacement
and velocity in the direction of wave propagation (and their tendencies) are in phase (again, note that v is
positive to the northwest).

However, in the Gulf Stream, where the slowly varying mean flows exceed 1 m s21, tide-mean-flow interac-
tions (e.g., advection, shear, and buoyancy terms) are found to explain Oð10%Þ of the momentum and pres-
sure tendencies. For example, u-momentum (which is positive to the northeast; Figure 9c) and pressure
(Figure 11c) are noticeably advected by the Gulf Stream. Although the wave-mean-flow terms are small
compared to the pressure-gradient force and velocity convergence, they explain the largest deviations from
the typical shallow-water-wave momentum balances (Figure 12), indicating that background-flow effects
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od. The terms are then ensemble averaged over all 62 h periods and plotted at an arbitrary phase. Clockwise: the wave-momentum ten-
dency (a) includes the Coriolis force, q0ð@U1=@t2fV1Þ; the wave-pressure-gradient force (b) is 2q0H@p1=@x; the advection of wave

momentum by the mean flow (c) is q0

X
m
ðUm1 � rÞU1; and, the interactions of waves with background shear (d) are

q0

X
m
½ðUm � rÞ�U m12ðr � UmÞ�U z;m1�.
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have a larger impact on local deep-ocean simulated mode-1 tidal dynamics than topographic, dissipative,
or wave-wave interactions.

7.2. Energy Balance
The Gulf Stream is associated with regions of O(20 mW m22) anomalous mode-1 internal-tide energy-flux
convergence and divergence (Figure 5). These anomalies are explained by tide-mean-flow terms in the
mode-1 energy balance, which indicate that mode-1 energy is advected by the mean flow and, to a lesser
extent, transformed by mean-flow shear and buoyancy production (Figure 13). The spatial distribution of
total mean-flow energy conversion closely matches that of mode-1 energy-flux divergence (Figure 14), indi-
cating the local importance of tide-mean-flow interactions.

The spatial patterns of the individual energy terms in the realistic simulation are also similar to those in the
two-dimensional idealized simulations; e.g., shear production is balanced by buoyancy production where
the mode-1 tide crosses the Gulf Stream (c.f. Figures 2c and 13c, 13d), and advection is large and horizontal-
ly periodic where the mode-1 tide propagates against the Gulf Stream (Figure 15).

7.3. Refraction and Reflection
The energy balances derived in section 2 allow for internal-tide scattering by the mean flow and internal-
tide interactions with horizontal and vertical mean-flow shear. However, the dominant source of mode-1
energy-flux divergence in the Gulf Stream is mostly advection by the mean flow (Figures 13 and 14). This
finding may seem surprising because the mode-1 internal tide and Gulf Stream do not have a clear
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Figure 10. As Figure 9, but for the mode-1 v-momentum balance [see equation (11a)], where v is positive to the northwest along the rotat-
ed MSEAS-model grid (i.e., v � acrosshelf).
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horizontal-scale or vertical-scale separation. However, the result attests to strong and slowly varying advec-
tion of the tide by the Gulf Stream (within its core, the advection is relatively uniform). Next, we exploit this
empirical finding by using geometric wave theory to predict how internal-tide propagation is altered by
advection in the Gulf Stream. Further analysis [S. M. Kelly, A coupled-mode shallow water model for tidal
analysis: Internal-tide reflection and refraction by the Gulf Stream, submitted to Journal of Physical Oceanog-
raphy, 2016; hereafter Kelly et al., 2016] confirms these first-order predictions using a linearized internal-tide
model that incorporates mean-flow shear, horizontal-buoyancy gradients, and advection (i.e., their simula-
tions confirm that mean-flow shear does not significantly alter mode-1 internal-tide propagation in the Gulf
Stream). Of course, accurate and detailed tidal predictions require direct primitive-equation simulations of
all the instantaneous nonlinear interactions described in section 2.
7.3.1. Geometric Wave Theory for Refraction and Reflection
A plane wave that propagates from a quiescent fluid into a mean flow in the y direction, V(x), will conserve
absolute frequency (the frequency measured from a fixed instrument), x, and its along-stream wave num-
ber, l, provided the flow is invariant in the y direction. By linearizing the material derivative (i.e., applying
geometric wave theory, which neglects mean-flow shear), the phase speed of the wave can be written
cp5ðx2VlÞ=j, where j5

ffiffiffiffiffiffiffiffiffiffiffiffi
k21l2
p

is the magnitude of the wave number and phase speed is related to
eigenspeed by cp5cn=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12f 2=x2

p
[see e.g., Alford and Zhao, 2007]. This expression for phase speed is

equivalent to the equation describing Doppler shifting x̂5x2Vl, where x̂ is the intrinsic frequency [the fre-
quency measured by an instrument moving with the mean flow; B€uhler, 2009].
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Figure 11. As Figure 9, but for the mode-1 pressure balance [see equation (11b)]. Clockwise: the wave-pressure tendency (a) is q0@p1=@t;
the wave-velocity convergence (b) is 2q0c2

1r � u1; the advection of wave pressure by the mean flow (c) is q0

X
m

Up;m1 � rpm ; and, the

interaction of waves with horizontal-gradients in the mean buoyancy (d) is 2q0

X
m

um � Bm1.
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To predict refraction, we solve for changes in the across-stream wave number k, for given x, V, cp, and initial
wave vector ki; lð Þ. Setting the initial and final absolute frequencies equal to each other produces:

cpiji5cpf jf 1Vl ; (19)

which simplifies to

cpi

cpf
2

V
cpf

cos h5
jf

ji
; (20)

where i and f subscripts denote initial and final values, respectively, and h is the angle of the incident wave
with respect to the mean flow (i.e., when h590	, the wave propagates directly across the flow). Since l is
fixed, any increase in jf=ji implies refraction due to changes in across-stream wave number. For example,
when V 5 0, a wave propagating into a coastal region with cpf< cpi increases across-stream wave number
and turns towards shore. Conversely, when phase speed is constant (cpf 5 cpi) and 0 < V < cpf , a wave prop-
agating into a following current (0 < h < 90	) will turn to propagate with the current. A wave propagating
into an opposing current (90 < h < 180	) will turn to propagate across the current. A wave propagating
perpendicular to a current (h590	) does not refract.

In some flows, the final along-stream wave number must be imaginary to satisfy (20), indicating that the
incident wave is reflected. The condition for reflection is:

cpi

cpf
2

V
cpf

cos h

� �2

< cos 2h : (21)

Without a mean flow (V 5 0), reflection is possible when a wave propagates from shallow to deep water
(cpi< cpf) at a nonnormal angle (h 6¼ 90	), as shown by Chapman and Hendershott [1981]. When phase speed
is constant (cpf 5 cpi) and 0 < V < cpf , waves propagating into a following current (cos h > 0) are more likely
to reflect than those propagating into an opposing current (cos h < 0).
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Figure 12. (top row) Residuals of the (a) ‘‘traditional’’ u-momentum, (b) v-momentum, and (c) pressure balances, defined as the
u/v-momentum tendency minus the pressure-gradient force and the pressure tendency minus the velocity convergence, respectively.
Bottom row: the sums of all tide-mean-flow interaction terms in the (d and e) momentum and (f) pressure balances (see Figures 9–11).
(top row) Clearly, these sums of the new ‘‘effective mean flow’’ and ‘‘effective mean buoyancy’’ terms [equation (13)] closely resemble the
residuals of the traditional balances. They are the leading-order missing terms and a key result of our derivations. Note that velocities and
gradients are still defined for the rotated MSEAS-model grid.

Journal of Geophysical Research: Oceans 10.1002/2016JC011639

KELLY AND LERMUSIAUX INTERNAL-TIDE INTERACTIONS 6289



(a) Mode−1 advection   [mW m−2]

La
tit

ud
e

−72.5 −72 −71.5 −71 −70.5

37

37.5

38

38.5

(b) Horizontal shear production

−72.5 −72 −71.5 −71 −70.5

37

37.5

38

38.5

−15

0

15

(c) Vertical shear production

Longitude

La
tit

ud
e

−72.5 −72 −71.5 −71 −70.5

37

37.5

38

38.5

(d) Buoyancy production

Longitude
−72.5 −72 −71.5 −71 −70.5

37

37.5

38

38.5

Figure 13. Mode-1 energy balance [see equation (17)]. The terms that are all enhanced in the Gulf Stream are [see equation (15)]: the

modal tidal-energy advection by the mean flow (a),
X10

m50
hAm1i; vertical-shear production (c),

X10

m50
h r � Umð ÞUz;m1

 �

� U1

H
i; and buoyan-

cy production (d),
X10

m50
hPB

m1i. The horizontal-shear production (b), 2
X10

m50
h Um � rð ÞUm1

 �

� U1

H
i, is a bit weaker than the other terms.
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Figure 14. In the Gulf Stream, the pattern of mode-1 energy-flux divergence (a), r � hFni, is explained by the sum of all tide-mean-flow
energy conversion terms (b),
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m12Am1i. (c) Their difference, i.e., the residual of the energy-flux divergence and tide-mean-

flow energy-conversion terms, is an order of magnitude smaller. (a) Vectors represent surface mean-flow velocities associated with the
Gulf Stream.
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7.3.2. Application to Gulf Stream
Equations (20) and (21) are evaluated using
the semidiurnal mode-1 phase speed and
effective mean flow (V5�U11) from a two-
dimensional cross section of the Gulf Stream
taken from the realistic simulation. The phase
speed and mean flow vary across the Gulf
Stream, altering the maximum and minimum
angles of incidence for semidiurnal internal-
tide transmission [based on (21); Figure 16].
In general, mode-1 internal tides with angles
of incidence h < 60	 or h > 120	 are
reflected at some point within the Gulf
Stream. However, incident tides with small
angles of incidence are reflected on the
shoreward edge of the Gulf Stream, by the
following mean flow, while incident tides
with large angles of incidence are reflected
on the seaward edge of the Gulf Stream, by
the change in phase speed (Figure 16b).
Mode-1 internal tides that propagate through
the entire Gulf Stream without reflection,
propagate more obliquely after transmission
[based on (20); Figure 16c].

The realistic simulation of the Middle Atlantic
Bight region includes a variety of internal-tide
sources and a curved Gulf Stream, making it
difficult to identify a precise angle of inci-
dence to compare with the simplified theory.
However, the altered pattern of mode-1 sea-
surface elevations in the presence of the Gulf
Stream (Figure 4) and deflection of energy
flux (Figure 15) are consistent with the predic-
tion that the Gulf Stream significantly refracts
and/or reflects mode-1 internal tides.

8. Summary and Implications

We have derived vertical-mode momentum
and energy balances for small-amplitude
internal tides in a slowly varying horizontally
and vertically variable flow and density fields.
The balances accurately describe tide-mean-
flow interactions in a realistic data-assimilative
primitive-equation simulation of the Middle
Atlantic Bight region, which includes both a
shelfbreak front and the Gulf Stream. The
applicability of our novel internal-tide/back-
ground-ocean momentum and energy balan-
ces suggests that simple linear internal-tide
models may be improved by incorporating
horizontally and vertically variable slowly vary-
ing density and subtidal flows, which could be
obtained from observations or from a
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Figure 16. (a) The cross-stream profile of the Gulf Stream has velocities
�U 11 > 1 m s21 and phase speeds that increase by 50%. (b) Together,
background velocity and stratification limit the transmission of mode-1
semidiurnal internal tides at different angles of incidence (shaded
regions indicate transmission. Waves propagating parallel to the Gulf
Stream have a transmission angle of zero. (c) Transmitted waves are sig-
nificantly refracted. Incident waves that oppose the flow (h > 90

	
) can

turn almost directly upstream (h � 180
	
). In Figure 16c, transmission

angles are omitted for incident angles that lead to reflection.

Journal of Geophysical Research: Oceans 10.1002/2016JC011639

KELLY AND LERMUSIAUX INTERNAL-TIDE INTERACTIONS 6291



regional/general-circulation model. Further development of this approach and its application is the subject of
Kelly et al. [2016].

The shelfbreak front both alters topographic internal-tide generation and, with the corresponding shelf
stratification, contributes to horizontally variable eigenspeeds. The former effect decreases topographic
internal-tide generation by O(10%) (additional simulations indicate that very strong fronts, which were not
observed during the summer of 2006, may alter generation by about 620%). The latter effect alters internal-
tide wavelength and propagation speed on the shelf, producingO(4 h) changes in internal-tide arrival time at
a location 40 km onshore of the shelfbreak (although, the spatial distribution of these errors depends on the
complicated 2-D interference pattern produced as internal tides propagate away from different generation
regions along the shelfbreak). These results suggest that internal-tide predictions near the shelfbreak can par-
ticularly benefit from the inclusion of horizontally variable stratification and its (sub)-mesoscale variability,
even if the accompanying dynamically balanced subtidal flows are neglected.

The Gulf Stream can (i) produce local patches of mode-1 energy-flux divergence that are comparable in
magnitude to topographic internal-tide generation at the shelfbreak and (ii) cause mode-1 tides with an
angle of incidence h < 60	 or h > 120	 to reflect back to the coast, preventing their radiation into the cen-
ter of the North Atlantic. The former effect is largely due to mode-1 energy advection by the mean flow,
which complicates local energy balances but does not produce a net source or sink of internal-tide energy.
The latter effect can be explained using geometric wave theory. These results have broad implications for
internal-tide predictions and tidally driven mixing in the Middle Atlantic Bight region. First, a significant frac-
tion of internal-tide energy may be trapped between the coast and the Gulf Stream, leaving more tidal
energy available for coastal and slope-region mixing. Second, the precise amplitude, phase, and location of
internal tides along the coast may depend heavily on the exact state of the Gulf Stream and its accompany-
ing eddies and meanders.

Other future work would include nonhydrostatic dynamics, nonlinear wave-wave interactions, and nonline-
ar free-surface in the theory and analysis. The use of higher-order numerics for the modal momentum and
energy equations would also allow phase-resolved forecasts and analysis of internal-tide interactions at
longer-range. More detailed studies of the effects of internal tides on the subtidal features themselves, from
(sub)mesoscales to large-scales, are also needed. Finally, even though the present study focuses on the Mid-
dle Atlantic Bight region, similar shelfbreak front and larger-scale currents occur elsewhere in the world’s
oceans. Applying the present approach to such locations is likely to be revealing.
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