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ABSTRACT: Water vapor condensation is commonly observed in nature and routinely used as 

an effective means of transferring heat, with dropwise condensation on non-wetting surfaces 

exhibiting heat transfer improvement compared to filmwise condensation on wetting surfaces. 

However, state-of-the-art techniques to promote dropwise condensation rely on functional 

hydrophobic coatings which either have challenges with chemical stability or are so thick that 

any potential heat transfer improvement is negated due to the added thermal resistance of the 

coating.  In this work, we show the effectiveness of ultra-thin scalable chemical vapor deposited 

(CVD) graphene coatings to promote dropwise condensation while offering robust chemical 

stability and maintaining low thermal resistance.  Heat transfer enhancements of 4x were 

demonstrated compared to filmwise condensation, and the robustness of these CVD coatings was 

superior to typical hydrophobic monolayer coatings.  Our results indicate that graphene is a 

promising surface coating to promote dropwise condensation of water in industrial conditions, 

with the potential for scalable application via CVD.  
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Graphene is a two-dimensional material composed of carbon atoms arranged in a hexagonal 

lattice which has received significant attention since 2004 due to its unique and remarkable 

physical properties.1  Prominent examples of the applicability of graphene include electronic 

device interconnects due to high charge carrier mobility,2 transparent electrodes for solar cell 

devices,3 and membranes for water desalination.4  Graphene has also been used in thermal 

management applications due to its ability to improve device thermal conductivity and spread 

heat.5   However, with graphene being a relatively new material, many applications have not yet 

been thoroughly explored. 

One such application is the promotion of dropwise condensation.  In typical industrial systems, 

condensed vapor forms a thin liquid film on the condenser surface due to the high surface energy 

associated with the majority of industrial heat exchanger materials (i.e., clean metals and metal 

oxides). This mode, known as filmwise condensation, is not desired due to the large thermal 

resistance to heat transfer.6  Conversely, on low surface energy materials, the condensed vapor 

forms discrete liquid droplets. During this dropwise mode of condensation, droplets roll off at 

sizes approaching the capillary length (≈ 2 mm for water) and clear the surface for re-nucleation, 

commonly resulting in 5–7x higher heat transfer performance compared to filmwise 

condensation.7 

Dropwise condensation is typically achieved by functionalizing the condenser surface with a 

hydrophobic coating, for example, a fluorocarbon monolayer, wax, or polymer.7a, 8 Monolayer 

coatings (≈ 1 nm thick) of long-chain fluorocarbons or fatty acids can induce hydrophobicity 

with negligible added thermal resistance, but are often not robust, i.e., chemically stable, over 

extended periods of time and therefore unsuitable in industrial applications.7a, 9  Thicker polymer 

coatings (> 1 µm) such as PTFE have shown the potential to maintain robust hydrophobicity, but 
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typically have a large thermal resistance that can negate the heat transfer enhancement gained by 

promoting dropwise condensation.7a  More recently developed methods such as initiated 

chemical vapor deposition (iCVD) and plasma enhanced chemical vapor deposition (PECVD) 

have been used to grow ultra-thin (<40 nm) conformal polymer coatings with success in 

achieving dropwise condensation.9b, 10  However, the durability of iCVD and PECVD coatings 

requires further characterization due to limited extended testing to assess mechanical wear and 

chemical stability for long term condensing applications. 

Meanwhile, graphene displays hydrophobic behavior11, and its inert chemical nature and 

demonstrated mechanical strength suggest that it will resist degradation under typical condenser 

conditions.3, 12  Furthermore, the thermal resistance of a graphene coating is well-characterized13 

and is negligible in condensation applications (see Supporting Information, section S2), and it 

can be applied relatively scalably via CVD.14  Although graphene was initially suggested to have 

complete wetting transparency15, its hydrophobic nature has since been elucidated through 

careful experimental, numerical, and theoretical analysis.11, 16  Past work15 also proposed 

graphene coatings to promote dropwise condensation, but the results of the experimental analysis 

did not show the expected improvement in heat transfer compared to filmwise condensation.  

The presence of non-condensible gases in the experimental setup not only reduced the 

improvement gained by promoting dropwise condensation to 30–40% as opposed to 500–700%, 

but also resulted in reported condensation heat transfer coefficients three orders of magnitude 

lower than typical values without noncondensible gases.7a   Furthermore, the mechanism for the 

dropwise condensation behavior was attributed to the “transparent” graphene layer protecting the 

copper from oxidation and preserving the intrinsic hydrophobic behavior of copper, while it has 
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been demonstrated that copper is actually intrinsically hydrophilic17 like other high-surface-

energy materials.18 

In this work, we demonstrate the uniform coating of high-purity (> 99.99%) copper with 

graphene by both low and atmospheric pressure CVD.  Both the low-pressure CVD (LPCVD) 

and the atmospheric pressure CVD (APCVD) graphene were single-layer.  Subsequently, we 

experimentally demonstrated a 4x higher heat transfer coefficient for dropwise condensation of 

water on copper coated by graphene (both LPCVD and APCVD) compared to filmwise 

condensation on bare copper, in good agreement with theoretical models used for each case.  The 

robustness of these graphene coatings was compared to a long-chain fluorocarbon monolayer 

commonly used to promote dropwise condensation, where 100°C steam was condensed on both 

samples continuously.  The fluorocarbon monolayer coating degraded completely in under 12 

hours, while for the graphene coatings, dropwise condensation was observed over a two-week 

span without showing signs of degradation.  These results suggest that graphene is a robust and 

nonreactive coating material which enhances condensation heat transfer by promoting dropwise 

condensation. 

The copper samples used as substrates for graphene CVD were high purity tubes (>99.99%, 

OD = 1/4 inch, McMaster-Carr) and sections of sheet metal (>99.99%, thickness = 0.032 inch, 

McMaster-Carr).  Prior to the CVD process, the copper samples were sonicated in acetone, 

triple-rinsed with deionized water, submersed in 2.0 M hydrochloric acid, again triple-rinsed 

with deionized water, and finally treated for 10 minutes with argon plasma (Harrick PDC-001), 

which removes hydrocarbons via physical bombardment.19 This process was also used to clean 

the bare copper samples for characterization of filmwise condensation under ideal conditions 
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since past work has shown that bare copper exhibits filmwise condensation during continuous 

condensation.20 

The CVD process was then performed on the copper samples at both low and atmospheric 

pressure in a 1-inch quartz tube furnace.  For both processes, the furnace was heated to 1000 °C, 

and hydrogen gas (with a flow rate of 10sccm) for the LPCVD process and argon gas (with a 

flow rate of 500 sccm) for APCVD process flowed over the samples for 30 min prior to graphene 

growth.  Methane gas was then introduced, and the synthesis of graphene was performed over 30 

min at 1.9 Torr and atmospheric pressure for the LPCVD (with a flow rate of H2/CH4 = 70/4 

sccm) and APCVD (with a flow rate of Ar/CH4 = 500/3 sccm) coatings, respectively.21 Finally, 

the samples were cooled to room temperature under hydrogen (10 sccm)/argon gas (500 sccm) 

for LPCVD/APCVD and then exposed to laboratory air (i.e., non-filtered).  While exposure to air 

leaves the possibility for contamination, the difference in wettability is expected to be negligible 

across different laboratory environments as indicated in past work18b (Further characterization 

specifically for graphene contamination under several different environments is an important 

topic and should be investigated in future research).  

We characterized the samples using field-emission scanning electron microscopy (Zeiss Ultra-

Plus) to determine the surface morphology, shown in Figure 1.  Copper grains are visible on both 

the LPCVD and APCVD surfaces, and it was observed that the graphene covered the entire 

surface of the copper. (The absence of visible copper grains on the bare copper surface is 

attributed to not heating the bare copper to 1000 °C as is required during graphene CVD.) 

Further characterization of the samples was conducted with Raman spectroscopy using a 

confocal Raman microscope with a 532 nm laser.  Representative Raman spectra for the CVD 

graphene coatings after transfer onto a silicon substrate are shown in Figure 1(e), where the ratio 
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of 2D:G peaks (4–5x) and the full width at half maximum of the 2D peak (25–30 cm-1) 

demonstrate the presence of single-layer graphene for both CVD methods.  Optical 

characterization of the CVD graphene after transfer onto a transparent substrate (see Supporting 

Information) was also performed to study the graphene thickness over a larger area than the 

Raman laser spot size (Raman spot size is ~1m while the transmittance measurement spot size 

is ~5mm).  The optical characterization indicated that both the LPCVD and APCVD graphene 

were predominately single-layer.22 

We determined the surface wetting properties for water by goniometric characterization, where 

the advancing and receding contact angles in Figure 2 describe the surface wettability.23  Both 

the advancing and receding contact angles need to be considered to determine the force which 

holds a droplet stationary on an inclined condensing surface against the force of gravity, which 

directly affects droplet departure size and condensation heat transfer.24  The average 

advancing/receding contact angles were 87±5°/64±5° for the LPCVD graphene and 93±5°/56±5° 

for the APCVD graphene, determined from six points on each sample using a piezoelectric 

picoliter-scale droplet dispenser microgoniometer (Kyowa MCA-3) with the receding contact 

angle obtained during droplet evaporation and observed to exhibit constant receding contact 

angle behavior.25  The contact angle hysteresis was attributed to sporadic defects on the surface, 

possibly at graphene grain boundaries.  The droplet departure size during water vapor 

condensation, defined as the diameter at which droplets begin to slide down the condenser wall, 

is shown in Figure 2(c,f).  The average droplet departure diameters were 2.4 ± 0.1 mm on 

LPCVD graphene compared to 2.8 ± 0.1 mm on APCVD graphene, suggesting that the 

condensation heat transfer coefficient on LPCVD graphene will be slightly higher than on 

APCVD graphene as droplets shed at smaller sizes and refresh the surface for re-nucleation.  The 
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contact angle on the clean bare copper surface was ≈ 0°, with no distinction between advancing 

and receding. 

We experimentally obtained the overall heat transfer performance of the graphene-coated 

copper tubes in a controlled vacuum chamber.  Prior to condensation experiments, the vacuum 

chamber was evacuated to a pressure of P < 1.0 Pa to eliminate the presence of noncondensable 

gases, which have been shown to severely degrade condensation heat transfer performance.26  

Water vapor was then introduced from a canister of degassed, deionized water attached to the 

vacuum chamber.  The copper tube temperature was regulated by an internal chiller water flow 

loop which was isolated from the interior of the vacuum chamber, and the heat transfer through 

the tube wall was determined as a function of the chiller water flow rate and chiller water 

temperature at the tube inlet and outlet.  As the copper tube was chilled internally, water vapor 

within the chamber condensed on the outer tube surface.  The water vapor pressure within the 

chamber was maintained at values ranging from 2 to 5 kPa (corresponding to saturated water 

temperatures of 17 to 33 ̊C), which are typical for industrial condenser applications.27   

Photographs of condensation on the exterior tube surfaces are shown in Figure 3.  The bare 

copper tube underwent filmwise condensation of water vapor regardless of the temperature 

difference between the tube and the surrounding water vapor due to the spreading nature of water 

on clean copper (Figure 3(a,b)).  The LPCVD (Figure 3(c,d)) and APCVD (Figure 3(e,f)) 

graphene coated tubes have visible graphene layers when dry (Figure 3(c,e)), and these coated 

tubes exhibited dropwise condensation over the full range of experimental conditions. 

The overall heat flux, determined by the change in sensible heat of the chiller water, was 

obtained along with the log mean temperature difference (LMTD) between the chiller water and 

the temperature corresponding to the pressure of the surrounding water vapor for the bare copper 
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(diamonds), LPCVD graphene (squares), and APCVD graphene (circles) (Figure 4(a)).  The 

overall heat flux increased monotonically with the LMTD, where the local slope of this curve 

represents the overall heat transfer coefficient.  Figure 4(b) shows the condensation heat transfer 

coefficient extracted from the overall heat transfer coefficient (see Supporting Information) as a 

function of vapor pressure while holding the supersaturation S = Pvapor/Psat(Twall) constant (S = 

1.2). The theoretical predictions (dashed curves) were obtained from the droplet growth and 

distribution model for the graphene-coated condenser and from the Nusselt model for filmwise 

condensation on the bare copper condenser, and were in good agreement with the experimental 

data (for model derivation and parameters, see Supporting Information).  The assumption of 

uniform wall temperature for the models was justified because the temperature variation in the 

chiller water from the inlet to outlet of the sample was over an order of magnitude less than the 

temperature difference from the sample to the surrounding vapor.  The condensation heat transfer 

coefficient for the LPCVD and APCVD graphene coated copper tubes (≈ 60 ± 20 kW/m2K) was 

4x greater than that measured for filmwise condensation on bare copper (≈ 15 ± 9 kW/m2K).  

Note that the dropwise condensation heat transfer coefficient decreases at low subcooling 

because the interfacial heat transfer coefficient becomes a major resistance to heat transfer,7a, 8e, 28 

while the filmwise condensation heat transfer coefficient increases at low subcooling as the film 

becomes thinner;6 consequently, while a 4x enhancement was expected for the subcooling range 

used to characterize the heat transfer coefficient in the present work (3.5-5 K), the typically 

reported 5-7x heat transfer coefficient enhancement7a would be realized at higher subcooling 

(over ≈ 10 K, see Supporting Information, Section S9).   

The error for the condensation heat transfer coefficient was determined by propagating 

uncertainties associated with the chiller water thermocouples and mass flow meter, the pressure 
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sensor inside the chamber, the sample surface area, and the Gnielinski correlation for heat 

transfer from the chiller water bulk to the internal surface of the sample.  Since the condensation 

heat transfer coefficient, hc, is not simply a function of a product of powers, the error must be 

determined from the first partial derivatives of hc with respect to its components along with the 

uncertainties of its components (described in detail in the Supporting Information, Section S5). 

In addition to improved condensation heat transfer by promoting dropwise condensation, 

graphene coatings also exhibit inert chemical behavior and excellent mechanical strength, which 

are expected to result in improved resistance to routine wear during condensation and provide a 

robust alternative to current state-of-the-art dropwise functionalization coatings.  For direct 

comparison, a monolayer coating of trichloro(1H,1H,2H,2H-perfluorooctyl)silane (TFTS) was 

applied to a clean copper sample and, along with the graphene-coated samples, underwent an 

accelerated endurance test which consisted of continuous condensation of 100 °C steam.  The 

TFTS coating was applied via vapor-phase deposition, where the copper substrate was cleaned as 

described for the graphene CVD, but oxygen plasma was substituted for argon plasma.  The 

copper substrate was then placed in a dessicator immediately following the oxygen plasma 

treatment along with a vial containing 2 mL of TFTS.  The dessicator was evacuated with a 

vacuum pump for 90 seconds, after which the sample was left in the TFTS vapor for 10 minutes.  

The sample was then removed from the dessicator, solvent rinsed, and dried with a clean 

nitrogen stream.  The advancing/receding contact angles were 120±5/82±5° on the TFTS-coated 

copper sample as fabricated. 

The endurance test was performed in a controlled positive-pressure continuous condensation 

chamber (see Supporting Information, section S7).  The samples were cooled to a surface 

temperature of 95±1 °C and exposed to a continuous supply of 100 °C steam provided from a 
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reservoir of degassed, deionized water.  Initially, dropwise condensation was observed on both 

the LPCVD and APCVD graphene coated samples and the TFTS coated sample (first column of 

Figure 5).  However, the TFTS coating degraded noticeably within the first 30 min of testing, 

with decreased advancing and receding contact angles observed, and completely transitioned to 

filmwise condensation within 12 hours (Figure 5(c)), likely due to stripping of the coating by 

oxidation (X-ray photoelectron spectroscopy (K-Alpha) revealed that only 3% of the originally 

observed atomic percent of fluorine, a primary component of TFTS, remained on the surface 

after the continuous condensation experiment).9c, 29  Conversely, the LPCVD and APCVD 

graphene coated samples both sustained dropwise condensation for over two weeks with no signs 

of degradation when the experiments were discontinued (Figure 5(a,b)).  Additionally, these 

graphene coatings can be altered to multi-layer graphene or even single-/multi-layer graphene 

composites30 without drastic effect on the heat transfer (since the added thermal resistance is 

negligible, see Supporting Information Section S2) and can thus potentially be tailored to better 

prevent oxidation if it poses a problem.  Further discussion on graphene’s chemical robustness is 

presented in the Supporting Information, Section S8.  

While graphene offers a robust coating material to promote dropwise condensation on 

industrial metals, it is not a likely candidate to induce superhydrophobic behavior on micro- and 

nanostructured materials due to its relatively low advancing and receding contact angles 

compared to fluoropolymer coatings typically used for this application.  While this eliminates the 

ability of graphene-coated surfaces to promote jumping droplet condensation,31 the improvement 

in heat transfer coefficient of 4x provided by dropwise-promoting graphene coatings compared 

to filmwise condensation outweighs the marginal additional increase of 30-40% gained by 

jumping droplet condensation compared to dropwise condensation.  Another potential limitation 
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of these graphene coatings is their inability to induce dropwise condensation in systems which 

use low-surface-tension working fluids such as pentane; these fluids are expected to exhibit low 

contact angles and spread on graphene-coated surfaces, resulting in filmwise condensation. 

This study demonstrates that graphene CVD coatings are a viable method to promote dropwise 

condensation of water in industrial conditions, with a demonstrated improvement in heat transfer 

performance of 4x compared to clean industrial metals and superior robustness compared to 

state-of-the-art dropwise-promoting monolayer coatings as demonstrated under continuous 

condensation of 100 °C steam.  This result promises significant energy savings in applications 

such as water harvesting, thermal management, industrial power generation, and building heating 

and cooling. 
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Figure 1. Field emission scanning electron microscopy images for (a, b) the low-pressure CVD 

graphene coating and (c, d) the atmospheric pressure CVD graphene coating on high-purity (> 

99.99%) copper substrates.  During growth, the native copper oxide layer is reduced by H2 gas at 

high temperature, and the underlying copper forms pronounced grains.  Upon exposure to a CH4 

at 1000 °C, graphene islands nucleate and grow over the surface until colliding with other 

islands.  The copper grains remain visible. (e) Representative Raman spectra for the CVD 

graphene layers after transfer to a silicon substrate, obtained with a confocal Raman microscope 

using a 532 nm laser, demonstrate the presence of single-layer graphene for both CVD methods.  

(f) Optical characterization of the graphene transferred onto a transparent substrate indicated that 

both the LPCVD and APCVD graphene were predominately single-layer.22 
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Figure 2. Representative images of (a) advancing and (b) receding contact angles of water on 

LPCVD graphene grown on a high-purity copper substrate, obtained by goniometric 

measurement.  A histogram of droplet departure size during water condensation on LPCVD 

graphene is shown in (c).  The advancing and receding contact angle for water on APCVD 

graphene are shown in (d) and (e), respectively, and a histogram of droplet departure size during 

water condensation on APCVD graphene is shown in (f).  The average droplet departure 

diameter during water condensation on APCVD graphene is 2.8 ± 0.1 mm compared to 2.4 ± 0.1 

mm on LPCVD graphene, suggesting a slightly higher expected condensation heat transfer 

coefficient on LPCVD graphene than on APCVD graphene. 
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Figure 3. Photographs of a clean high-purity copper condenser tube (a) under vacuum and (b) 

undergoing filmwise condensation of deionized and degassed water vapor in the experimental 

vacuum chamber.  Similarly, photographs of the graphene-coated high-purity copper condenser 

tubes are shown under vacuum and undergoing dropwise condensation of water, with the 

LPCVD graphene coating in (c) and (d) and the APCVD graphene coating in (e) and (f). 
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Figure 4. Water condensation heat transfer performance for the copper tubes with and without 

graphene coatings.  The graphene-coated condensers exhibit dropwise condensation, while the 

bare copper undergoes filmwise condensation.  Overall surface heat flux (q”) is shown as a 

function of the steady state experimental chiller-water-to-vapor log mean temperature difference 

(ΔTLMTD) in (a), where the slope of the data trend represents the overall heat transfer coefficient, 

that is, the combination of the chiller water flow, copper tube, graphene coating (for coated 

tubes), and condensation heat transfer coefficients.  (b) Experimental (points) and theoretical 

(dashed curves) steady-state condensation heat transfer coefficient (hc), which includes graphene 

coatings where applicable, as a function of surrounding saturated vapor pressure (Pv).  Error bars 
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indicate the propagation of error associated with the fluid inlet and outlet temperature differential 

(±0.2 K) and pressure measurement (±2.5%). Theoretical predictions were obtained from the 

droplet growth and distribution model for the graphene-coated condensers with droplet departure 

size as an input parameter (for model derivation and parameters, see Supporting Information) 

and from the Nusselt model for filmwise condensation on the bare copper condenser. 
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Figure 5. Time-lapse images of continuous condensation of 100 °C steam on (a) LPCVD, (b) 

APCVD, and (c) TFTS coatings on high-purity copper samples.  The robust promotion of 

dropwise condensation by the graphene coatings is investigated over two weeks without showing 

signs of degradation, in contrast with the TFTS coating, which degraded and transitioned to 

filmwise condensation in less than 12 hours. 
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