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Abstract 

Adhesion and friction during physical contact of solid components in 

microelectromechanical systems (MEMS) often lead to device failure.  Translational stages that 

are fabricated with traditional silicon MEMS typically face these tribological concerns. This 

work addresses these concerns by developing a MEMS vertical translation, or focusing, stage 

that uses electrowetting-on-dielectric (EWOD) as the actuating mechanism.  EWOD has the 

potential to eliminate solid-solid contact by actuating through deformation of liquid droplets 

placed between the stage and base to achieve stage displacement. Our EWOD stage is capable of 

linear spatial manipulation with resolution of 10 μm over a maximum range of 130 μm and 

angular deflection of approximately ±1°, comparable to piezoelectric actuators. We also 

developed a model that suggests a higher intrinsic contact angle on the EWOD surface can 

further improve the translational range, which was validated experimentally by comparing 

different surface coatings.  The capability to operate the stage without solid-solid contact offers 

potential improvements for applications in micro-optics, actuators, and other MEMS devices. 
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The efficacy and longevity of actuation-based microelectromechanical systems (MEMS) 

are limited by tribological issues such as friction and adhesion.
1
 Adhesion typically occurs 

between small asperities when nominally smooth solid surfaces come into contact, and friction is 

the result of this adhesion during motion of the surfaces relative to each other.  In some cases, the 

forces from adhesion and friction are comparable to the forces actuating the device, rendering it 

unusable. In the presence of water vapor, these concerns are amplified; formation of a thin liquid 

film on solid surfaces and the corresponding capillary and viscous effects that come into play 

when these surfaces interact lead to stiction, a phenomenon that increases the adhesion between 

solid asperities and causes small features to stick together due to exceptionally high friction.
1-3

  

These reactive forces at the physical contact of solid components lead to wear and removal of 

material, reducing device lifetime.
1,4,5

 This is of particular importance for traditional MEMS 

devices fabricated with silicon, a brittle hydrophilic material that is known to have poor 

tribological properties.
6,7

 It follows that elimination of solid-solid contact during actuation, for 

example by designing MEMS devices where the actuator plates do not come in to contact, eases 

tribological and stiction concerns.  This work offers a solution for MEMS that eliminates solid-

solid contact by using electrowetting to actuate a vertical translation stage. 

Electrowetting, a phenomenon whereby the contact angle of a fluid is altered with an 

applied voltage, allows control of droplet shape.
8
 Recent research has focused on electrowetting 

on a dielectric, or EWOD, in which an insulating layer is placed between a conductive surface 

and a droplet which rests on the surface; EWOD can provide much greater droplet deformation 

than electrowetting on conductive surfaces, and as such is the primary mode of electrowetting 

used in practical applications.
9-12

 EWOD has played a diverse role in MEMS applications to 

date,
13-17

 ranging from fluid lenses for optical manipulation
18-21

 to switches for electrical
22,23

 and 
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thermal control
24,25

 and thermal management.
26   EWOD has also been implemented extensively 

in lab-on-a-chip applications, where arrays of electrodes are activated in sequence to control 

droplet motion on a surface.
27-30

  With EWOD, controlled droplet vibration and water droplet 

“jumping,”
31

 or departure, from hydrophobic surfaces have been demonstrated.
31-33

  EWOD has 

also been proposed as a method to depin droplets that have been impaled on superhydrophobic 

surface structures
34

, which is relevant to recent work on superhydrophobicity.
35-37

  However, 

many opportunities remain to implement EWOD, particularly in the context of MEMS.  In this 

work, we investigated the use of EWOD for its ability to control a MEMS vertical translation, or 

focusing, stage, thereby providing an alternative to methods which suffer from tribological 

failure at solid-solid contacts. 

EWOD can alter the contact angle of a fluid on a surface and, accordingly, can change 

the geometry of droplets resting on an EWOD surface when voltage is applied through the 

droplets.  By sandwiching droplets between an electrically conducting stage on one side and an 

EWOD surface on the other side, a vertical translation stage can be fabricated at the micro-scale 

as shown schematically in Figure 1a.  The stage translates when a voltage is applied across the 

drops and their contact angle with the EWOD surface decreases.  For example, an applied 

voltage causing a decrease in contact angle on the dielectric layer at the base will result in a 

broadening and flattening of the droplets and corresponding downward translation of the stage 

towards the base.  This operational mechanism is similar to the capillary force actuator, a class of 

actuator that relies on deformation of a liquid droplet between two solid surfaces and offers 

distinct advantages compared to other MEMS actuators.
38

  While the actuation
39

 and 

dynamics
40,41

 of such devices have been explored theoretically, an experimental device without 

solid-solid contact has not yet been demonstrated, nor has angular deflection been considered.
42

 



4 
 

We developed an axisymmetric iterative numerical model for the four identical droplets 

in our device, outlined in Figure 1b for one of the droplets and later used for comparison with 

experimental results obtained from a working device, to determine the stage height as a function 

of the applied voltage.  First, the contact angle at the EWOD base was determined with the 

Lippman-Young equation as a function of the intrinsic contact angle and applied voltage.  Then, 

the droplet curvature in the system was calculated as a function of the internal Laplace pressure, 

which was determined at the top of the droplet (underside of the stage) by summing one quarter 

of the stage weight and the surface tension force pulling downwards at the sides of the droplet, 

γLVsin(θtop), and then dividing that quantity by the fixed top contact area.  Note that the curvature 

relies on the initially unknown droplet contact angle at the underside of the stage, θtop, which is 

why an iterative solution was implemented.  Finally, the complete droplet profile was determined 

numerically under the constant curvature constraint by iterating until convergence, described in 

detail in the supplementary information.
43

  The model was used to determine the profiles of 

droplets under different applied voltages, shown in Figure 1c.  The flat region at the top of each 

profile is the contact with a pinning site on the bottom of the stage, where the constant radius 

over different applied voltages is consistent with the physical picture.  The contact angle at this 

pinned region varies, as does the radius of the base on the EWOD surface, both of which are 

expected. 

We fabricated the stage by first growing rough copper oxide (CuO) nanoblades on copper 

foil following a common procedure detailed in the literature
35-37

 and then functionalizing the 

CuO with a monolayer of trichloro(1H,1H,2H,2H-perfluorooctyl)silane (Sigma-Aldrich) to form 

a superhydrophobic surface.  The advancing and receding contact angles of the 

superhydrophobic CuO were θA = 172° ± 3° and θR = 168° ± 3°, respectively, as measured with a 
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microgoniometer (MCA-3, Kyowa). The pinning sites were subsequently formed on the 

underside of the stage by milling away the CuO to a negligible depth using an end mill with a 

diameter of approximately 1.5 mm, thereby exposing the hydrophilic
44-46

 copper and forming a 

liquid pinning site at the junction of the hydrophilic and superhydrophobic regions to fix the top 

radius of the droplets.  Finally, to establish a non-constraining electrical connection with the 

stage, a copper wire was soldered in a vertical orientation to a tab at the corner of the stage in 

order to attach to a sliding attachment mounted above the stage.  The total stage mass was 0.080 

g, and the load mass (paper with MIT logo shown in Figure 2) was 0.010 g. 

Indium-tin-oxide-coated glass slides with resistivity of 10 Ω/sq were used as the 

conductive substrate for the EWOD base.  The slides were solvent cleaned and plasma cleaned, 

then coated with a 4 µm thick parylene-C layer (VSI Parylene, precision ± 1 µm, θY ≈ 100°) with 

dielectric strength of 22,000 V/m and relative permittivity of εr ≈ 3.  Several slides were 

additionally coated with a sub-micron coating of Teflon aqueous fluoropolymer (AF) as detailed 

in past work
32

 in order to study the device performance with a higher Young angle at the EWOD 

base (θY ≈ 116°).  The water contact angles on the two different EWOD bases at varying applied 

voltages were characterized by applying voltage through a copper wire electrode inserted into a 

single 2 μL droplet of 0.1 mM KCl solution in water resting on the EWOD base.  The EWOD 

base was electrically grounded with copper alligator clips penetrating through the dielectric 

coating to the ITO and subsequently mounted on the stage in front of the high-speed camera.  

The voltage was varied up to 150 V, and the contact angle was in excellent agreement with the 

Lippmann-Young prediction (Equation 1) until the saturation voltage for each sample, which 

occurred at contact angles of 65° and 74° for the parylene-C and Teflon AF coatings, 

respectively. 
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The experimental setup consisted of a function generator (AFG 3101, Tektronix) passed 

through a 400x voltage amplifier (A800, FLC Electronics) with the positive lead wired to the 

EWOD base and the negative lead attached to the stage via the sliding electrical connection to 

allow free translation in the vertical z-direction.  The stage provided direct electrical connection 

to the droplets through the conductive hydrophilic copper circles on its underside.  The device 

was both front- and back-lit for high-speed video capture (Phantom v7.1, Vision Research) from 

500 to 10,000 frames per second as the experiment was conducted.  Four droplets of 0.1 mM 

KCl solution in water with a volume of 2 μL were carefully pipetted onto the pinning sites on the 

underside of the stage, which was then inverted and placed onto the EWOD base (the pinned 

droplets did not fall from the stage). Finally, the stage sliding electrical connection was attached.  

Figure 2 shows the device with a load on the stage, and the foremost two of the four droplets 

beneath the stage can be seen.   

Images of a typical experiment were captured in Figure 2 (see video in supplementary 

information
43

).  At an applied voltage of 150 V, the contact angle decreased from 100° to 65° on 

the parylene-C coated EWOD base and from 116° to 74° on the Teflon AF coated EWOD base.  

This caused the droplets to spread while the volume remained constant and thus resulted in a 

decrease in stage height as predicted by the model.  Tests at intermediate voltages in Figure 3c 

show good agreement with the model prediction, which is a combination of the Lippman-Young 

equation shown in Figure 3a (including saturation) and the stage height as a function of base 

contact angle for a 2 μL droplet generated by the iterative solution (plotted in supplementary 

material
43

). 

To eliminate solid-solid contact and the accompanying stiction and tribological concerns, 

the stage was reconfigured to remove the requirement for the sliding electrical connection.   This 
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was achieved by separating the Teflon AF coated EWOD base into two electrically insulated 

components, each holding two droplets (Figure 4a).  Then, voltage was applied from one 

insulated section of the EWOD base to the other, forming a circuit comprised of two capacitors 

(the dielectric regions at the base of the droplets on each of the insulated EWOD base sections).  

Since each of these series capacitors carry half of the applied voltage, twice the voltage required 

in the previous configuration is required for the same stage deflection.  The stage deflection in 

this configuration was experimentally demonstrated to be equivalent to the previous (wired) 

configuration and in good agreement with the model, as shown in Figure 4b.   

Additionally, the stage can provide angular deflection.  The configuration was further 

modified to keep the electrically separated EWOD base but once again include the stage sliding 

electrical connection, which was grounded (Figure 4c).  When a voltage is applied to either 

insulated section of the EWOD base, that side of the stage is displaced downwards while the 

other side remains unperturbed, resulting in angular deflection.  To test this configuration, we 

constructed a varying voltage that first actuated one side of the stage, and then actuated the other 

side of the stage.  The function generator/amplifier output was set to increase from 0 V to 150 V 

and then decrease back to 0 V repeatedly as a sine wave with amplitude 75 V, offset +75 V, and 

period 2 sec.  This signal was followed by a microcontroller (UNO R3, Arduino) which used a 

motor shield (L298P, Arduino) to switch relays (7266K64, McMaster-Carr) that alternated the 

applied voltage between the two sides of the EWOD base each time the signal bottomed out at 0 

V, leaving the non-active side of the EWOD base at 0 V.  The result of the signal applied to this 

configuration is shown in Figure 4d, where each side of the stage deflected by approximately 130 

μm when the voltage was applied (diamond and square symbols), in agreement with the uniform 
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vertical stage displacement demonstrated previously, and the stage angular displacement varied 

from approximately –1° to +1° (hollow circular symbols).  

Combining the two modified configurations above could yield an angular deflection stage 

that does not require any solid-solid contact (no stage electrode connection).  This is possible by 

separating the EWOD base into four electrically isolated sections, one for each droplet, and then 

essentially controlling the deflection of two adjacent droplets by applying a voltage across the 

EWOD base beneath those droplets.  Such a configuration would also allow angular deflection 

along any axis of rotation within the plane of the stage.  A further expansion of this concept 

could build on past work in which the EWOD surface was separated into an array of isolated 

electrodes which were actuated separately such that lateral droplet motion was induced.
47-50

  

Operation of the stage described in the present work on such an array of electrodes could allow 

for lateral as well as vertical translation. 

This work shows a MEMS vertical translation stage that uses EWOD as the actuating 

mechanism.  The EWOD stage was capable of linear spatial manipulation with resolution of 10 

μm over a maximum range of 130 μm, which can be readily improved and tailored to specific 

applications in future device generations with guidance from the validated model developed in 

the present work.  Specifically, both model and experiment show that a higher intrinsic contact 

angle on the EWOD base improves absolute range, and reduction of contact angle hysteresis,
51

 

possibly by addition of a lubricant to the surface
52-54

 or careful control of contaminants,
45

 will 

increase resolution. In addition, angular deflection of approximately ±1° was demonstrated, and 

the maximum range and angular deflection are comparable to another MEMS alternative, 

piezoelectric actuators. The capability to operate the stage without any solid-solid contact makes 
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this a desirable potential solution to stiction and tribology concerns for improvement of 

applications in micro-optics, actuators, and other MEMS. 
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Figures and Tables 

  
Figure 1. (Single Column, AR = 1.35) (a) The electrowetting-actuated stage is shown 

schematically.  The tops of the water droplets contact the underside of the stage at electrically 

conducting hydrophilic copper pinning sites surrounded by a superhydrophobic surface, and the 

bottoms of the droplets rest on the insulated electrowetting on dielectric base. (b) The device 

actuation can be modeled through a droplet of fixed volume, V, where the droplet-stage interface 

has fixed radius but variable contact angle at the pinned radius, Rt, between the hydrophilic and 

superhydrophobic regions on the stage underside, and the droplet-base interface has a contact 

angle, θb, set by the applied voltage using the Lippmann-Young equation but a variable radius.  

(c) The expected stage height can be determined by the axisymmetric model, as shown in the 

droplet profiles as a function of applied voltage for a 2 μL droplet on a surface with a Young 

contact angle of 110°.  The flat regions at the top of the droplet profiles indicate contact with the 

region of fixed radius on the stage. 

0

200

400

600

800

0 500 1,000 1,500

H
e
ig

h
t 

(μ
m

)

Radius (μm)

V = 0 V
V = 50 V
V = 100 V
V = 150 V

Pinning Site

(Fixed Radius)

Dielectric Layer

Stage

Conductive Layer

Droplets

+V

Superhydrophobic 

Surface

Hydrophilic Surface

0.25(Wstage)

Fixed Volume, V

Curvature, C

Stage 

Height 

H

Fixed Top Radius, Rt

Bottom Radius, Rb

Top C.A., θt

Set Bottom C.A., θb

Surface Tension, σ

a)

b) c)



16 
 

  

 
Figure 2. (Single Column, AR = 1.43) Experimental images of the initial neutral state (0 V) and 

the stage vertical translation at an applied voltage of 150 V, which resulted in a stage deflection 

of (a) 90 μm with the bare parylene-C surface and (b) 130 μm with the Teflon AF-coated surface 

(zoomed in to one droplet in this case) compared to the initial position.  The images at 150 V 

represent the maximum stage translation for each surface using the 2 μL droplets because the 

electrowetting effect reached saturation and an increase in voltage did not result in further stage 

deflection. 
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Figure 3. (Single Column, AR = 1.01) (a) Experimental measurements for a single droplet on 

both parylene-C (red) and Teflon AF-coated (blue) surfaces as a function of applied voltage, 

with the corresponding Lipmann-Young theory shown as solid lines (for Teflon AF-coated 

surface, the dashed line represents the upper bound (UB) and the solid line the lower bound (LB) 

in dielectric layer thickness due to uncertainty arising from the coating procedure). The droplet 

contact angle behavior agrees with the Lipmann-Young theory until saturation.  (b) When the 

Lippman-Young equation is combined with the numerical droplet profile solution for stage 

displacement as a function of bottom surface contact angle, the model can predict the stage 

height as a function of applied voltage, which is in good agreement with the experimental results 

for stage deflection. 
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Figure 4. (Double Column, AR = 2.43) The electrical connections of the device can be 

configured to eliminate the top surface sliding electrode and to induce angular deflection.  The 

elimination of the top electrode, achieved by applying the voltage to two droplets in series from a 

base with a dielectric separator between two pairs of droplets (a), provides the same stage 

deflection as a function of voltage as the wired version (b).   Keeping the base separated by a 

dielectric barrier at the center allows for angular deflection of the stage when the top of the stage 

is grounded by applying differing voltages to the two sections of the base (c), which reached 

approximately one degree in the current configuration (d).  These two approaches can be 

combined for angular deflection without a direct electrical connection to the stage by dividing 

the base into four electrically insulated regions, one to control each droplet. 
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Supplementary Material 

 

Supplementary Video S1 

 

This video shows vertical deflection of the stage as a square wave with a peak-to-peak amplitude 

of 150 V and an offset of 75 V (applied voltage alternating between 0 and +150 V) and a 

frequency of 50 Hz is applied to the device.  The video has been slowed 100x and illustrates both 

spatial and temporal control of the stage height. 

 

Experimental Setup 

 

The experimental setup is shown schematically here: 

 

 
Figure S1. Schematic of the experimental setup used to characterize the performance of the 

EWOD z-stage both statically and dynamically.  Images were captured from the side of the 

device to enable quantification of droplet contact angle and stage height as the voltage was 

applied to the device and the drops deformed. 

 

 

Derivation of the Lippmann-Young Equation 

 

For a liquid at rest on a flat and chemically homogeneous solid surface, the differential energy 

required to advance the three-phase contact line (i.e., where the fluid, solid, and surrounding air 

or vapor meet) by a differential distance is: 

 

 𝑑𝐸 = (𝜎𝑆𝑉 − 𝜎𝑆𝐿 − 𝜎𝐿𝑉cos⁡(𝜃𝑌))𝑑𝑥 (S1) 

where σSV and σSL are the surface energies of the solid/vapor and solid/liquid interfaces, 

respectively, σLV is the surface tension of the liquid/vapor interface, and θY is the equilibrium 

contact angle.  The equilibrium contact angle between these three phases, measured within the 

liquid, is determined by taking dE/dx = 0.  The result, first defined in 1805 by Young 
1
, is: 
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 𝑐𝑜𝑠(𝜃𝑌) =
𝜎𝑆𝑉−𝜎𝑆𝐿

𝜎𝐿𝑉
  (S2) 

Equation S2 is central to wetting science, and electrowetting is not an exception.  A typical 

EWOD experimental setup consists of a conductive substrate covered by a thin dielectric layer of 

thickness t as the flat solid surface.  An electrode is placed into the liquid phase, and a voltage is 

applied across the electrode and the conductive substrate.  This applied voltage results in a 

capacitive storage of energy across the thin dielectric layer as charge separates within the     

liquid.
2
  The energy stored in a flat plate capacitor is: 

 

 
𝐸𝑐 =

1

2

𝜀𝑟𝜀0𝐴

𝑡
⁡𝑉2 

 

(S3) 

where εr and ε0 are the relative and vacuum permittivities, respectively, A is the area of the 

capacitor plate, t is the distance between plates, and V is the applied voltage.  Reformulating 

Equation S3 on a per-unit-area basis to match the dimensions of the other surface energies 

involved and following the differential energy method used previously, the relationship: 

 

 𝑐𝑜𝑠(𝜃𝐿𝑌) =
1

𝜎𝐿𝑉
(𝜎𝑆𝑉 − 𝜎𝑆𝐿 +

𝜀𝑟𝜀0𝑉
2

2𝑡
) 

 

(S4) 

for the Lippmann-Young contact angle, θLY, is obtained, which can be rearranged in terms of the 

equilibrium contact angle: 

 𝑐𝑜𝑠(𝜃𝐿𝑌) = 𝑐𝑜𝑠⁡(𝜃𝑌) +
𝜀𝑟𝜀0𝑉

2

2𝜎𝐿𝑉𝑡
  

 

(S5) 

Note that the dimensionless electrowetting parameter in this equation can only be positive; 

therefore, an applied voltage can only serve to decrease the Lippmann-Young contact angle 

relative to the equilibrium contact angle.   

 

An important aspect of wetting not mentioned to this point is the effect of roughness and 

chemical inhomogeneity on a surface.  These deviations from an ideal surface are local energy 

barriers that cause a difference between the contact angle observed during advancing of the 

three-phase contact line over the surface and receding of the contact line.  The difference in these 

angles is termed the contact angle hysteresis, and it can result in pinning of droplets to which a 

voltage has been applied (i.e., the droplets do not necessarily return to their original shape upon 

release of the voltage).  This is a concern for design of the EWOD base – the contact hysteresis 

must be as low as possible. 
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Electrostatic Attraction between Stage and EWOD Base 

 

The effect of electrostatic interaction between the stage and EWOD base was considered by 

applying the scaling shown in Equation S6 for the ratio of electrostatic force between two 

charged plates to gravitational force (weight) of the stage: 

 

 
𝐹𝐸
𝐹𝑔

=

𝜀0𝐴𝑉
2

2𝑑2

𝑚𝑔
=
4 × 10−5𝑁

8 × 10−4𝑁
≪ 1 

 

(S6) 

where the stage area A was approximately 1 cm x 1 cm, the voltage was taken to be the 

maximum used in the present work of 150 V, and the spacing d was taken as the closest spacing 

between the stage and the EWOD substrate observed in the present work of ≈500 μm (note that 

the permittivity of water was not taken into account due to the relatively small total area between 

the plates occupied by water compared to air).  Since the electrostatic force was much less than 

the weight of the stage itself, the electrostatic force was neglected in the model. This is a 

conservative estimate considering that the stage load and the downward force from the water 

contact line on the underside of the stage were not considered in this analysis. 

 

Model Description and Pseudocode  

 

We developed a model for one of the four identical droplets that comprised the stage actuation 

mechanism to determine the stage height as a function of the applied voltage.  First, the contact 

angle at the EWOD base was determined.  For a liquid at rest on a flat and chemically 

homogeneous solid surface, the differential energy required to advance the three-phase contact 

line can be used to determine the equilibrium contact angle between these three phases by taking 

dE/dx = 0.  The result, often referred to as the Young angle, is altered during EWOD by applying 

a voltage through the fluid and across a thin dielectric layer of thickness t which coats the solid 

surface.  This dielectric layer stores capacitive energy and effectively alters the liquid-solid 

interface net surface energy, resulting in the Lippman-Young equation: 

 

 𝑐𝑜𝑠(𝜃𝐿𝑌) = 𝑐𝑜𝑠⁡(𝜃𝑌) +
𝜀𝑟𝜀0𝑉

2

2𝜎𝐿𝑉𝑡
  (S7) 

where θLY is the contact angle with an applied voltage, θY, is the Young angle, εr and ε0 are the 

relative and vacuum permittivities, respectively, and V is the applied voltage.  Note that the 

dimensionless electrowetting parameter in this equation can only be positive; therefore, an 

applied voltage can only serve to decrease the Lippmann-Young contact angle relative to the 

Young angle. 
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As shown in Equation S7, the relationship between the applied voltage and the droplet contact 

angle on the EWOD base is found from the Lippmann-Young equation.  Therefore, the majority 

of the modeling effort focused on determining the droplet shape under the constraints detailed in 

Figure 1b and Figure S2, namely, fixed volume, fixed radius but variable contact angle at the 

underside of the stage, and variable radius but prescribed contact angle at the EWOD base.  An 

axisymmetric iterative numerical solution was developed for the four identical droplets.  The 

droplet curvature in the system is a function of the internal Laplace pressure, which is 

determined at the top of the droplet (underside of the stage) by summing one quarter of the stage 

weight and the surface tension force pulling downwards at the sides of the droplet, γLVsin(θtop), 

and then dividing by the fixed top contact area.  The electrostatic attraction between the 

oppositely charged stage and EWOD base was neglected according to Equation S6.  Note that 

θtop is initially unknown and needs to be solved for; it is initialized to 90°. Each iteration of the 

model starts at the prescribed base contact angle and a given value for the base radius and 

increments up the sidewall of the droplet by steps of size ds, ds  0, updating the wall slope at 

each step according to the local radius and the surface curvature, continuing until the expected 

volume is reached.  At this point (which must correspond to contacting the base of the stage), the 

radius is compared to the expected radius of the pinning site on the underside of the stage, and if 

the values are not equal, the base radius is incremented by a small amount and the iteration is run 

again.  Once the model-predicted top radius is equivalent to the pinned radius at the underside of 

the stage, the model-predicted contact angle at the underside of the stage is then compared to θtop 

used to set the curvature, and θtop and the curvature are adjusted accordingly and the entire 

process repeated.  This process continues until the model result converges to within 0.1° of the 

initial value of θtop while also matching the pinned top radius and the fixed volume constraint, 

having started from the prescribed base contact angle.  This nested loop structure solves for a 

droplet profile using a step size ds = 2 μm, with no change in solution at smaller step sizes.  

 

The model pseudocode is shown here for use in future design and improvement of the stage.  As 

an interesting side note, the model yielded a catenoid when the Laplace pressure was set to zero, 

which served to validate the model.  The accompanying schematic in Figure S2 is provided for 

reference.  Additionally, the model results for the intrinsic contact angles of the two surfaces 

used in experimental device demonstration in the manuscript are plotted in Figure S3 below; the 

stage displacement as a function of the base contact angle shown here is used in combination 

with the base contact angle as a function of the applied voltage (Figure 3(a), Lippmann-Young 

equation) in order to determine the model prediction of stage displacement (Figure 3(b)). 
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Figure S2. Schematic to accompany pseudocode.  The device actuation can be modeled through 

a droplet of fixed volume, V, where the droplet-stage interface has fixed radius but variable 

contact angle at the pinned radius, Rt, between the hydrophilic and superhydrophobic regions on 

the stage underside, and the droplet-base interface has a contact angle, θb, set by the applied 

voltage using the Lippmann-Young equation but a variable radius.  The coordinate system is as 

shown, with “y” representing a radial coordinate in the axisymmetric system. 

 

  
Figure S3. Model results for the two different surfaces experimentally tested in the manuscript.  

The stage displacement is plotted as a function of the bottom surface contact angle. 

 

Pseudocode: 

 
Initialize constants: EWOD base Young angle, EWOD coating thickness, EWOD 

coating permittivity, fluid surface tension, droplet volume, fixed (pinned) 

top radius, stage mass, applied voltage 

 

Set step size (for example, ds = 0.000002 m) 

 

Initialize contact line force on stage underside (with theta_top = 90 deg) 

 

Add this force to (stage weight / 4) to get total force at stage 
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Divide total force by pinned contact area underneath stage to get pressure 

 

Use Laplace pressure to get droplet curvature, assumed uniform across surface 

 

Calculate base contact angle from Lippmann-Young equation 

 

Convert base contact angle to slope: dydx_0 = tan(CA_b-90);  

 

while loop 
 

    Loop through possible base radii starting with a lower bound guess: 

    for base radius FROM lower_bound TO upper_bound BY step_size; 

 
        volcount = 0; %this keeps track of the total volume in the iteration 
        x = 0; 
        y = R_b; 
        dydx = dydx_0; 

 

        while volcount < total_volume 

             
            dx = ds*cos(atan(dydx)); 
            dy = ds*sin(atan(dydx)); 

             
            x = x + dx; 
            y = y + dy; 

             
            if (x<0) 
   disregard this iteration, droplet surface intersected base 
            end 

             
            if (y<0) 
   disregard this iteration, crossed over centerline 
            end 

             
            R_1 = y/cos(atan(dydx));  %calculate R_1 perpendicular to surface 

 
            d2ydx2 = -(curv - 1/R_1); %find other component of curvature,  

   which is the d2ydx2 

 
            dydx = dydx + d2ydx2*dx;  %update dydx using d2ydx2 

             

             
            volcount = volcount + pi*y^2*dx; %add to the volume count one  

   cylindrical wedge with radius y 

   and thickness dx             
        end 

         
        if abs(R_t - y) < threshold_value_to_accept 
            accept this solution 
        end 

         

         
    end for loop 
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    Calculate top contact angle for current solution 

 

    Compare top contact angle for current solution with value used to  

    determine the Laplace pressure: 

     
    if abs(CA_t_Laplace - CA_t_solution)> Threshold to exit, e.g., 0.1 deg; 

 

        CA_t_Laplace = (CA_t_Laplace+CA_t_solution)/2+0.1*rand; 

  %updated the contact angle used to get downward force from the  

contact line.  The random number generator avoids local minima. 

 
        Recalculate downward force, Laplace pressure, and curvature 

         
        continue 

 

    else 

 

   break %exit the while loop since criteria in Figure S2 are all met. 

 
    end 

 
end while loop 
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