DSpace@MIT

MIT Open Access Articles

A Formula for the Specialization of Skew Schur Functions

> The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters.

Citation: Chen, Xiaomei, and Richard P. Stanley. "A Formula for the Specialization of Skew Schur Functions." Annals of Combinatorics 20, no. 3 (April 28, 2016): 539-548.

As Published: http://dx.doi.org/10.1007/s00026-016-0312-2
Publisher: Springer-Verlag
Persistent URL: http://hdl.handle.net/1721.1/107965
Version: Author's final manuscript: final author's manuscript post peer review, without publisher's formatting or copy editing

Terms of use: Creative Commons Attribution-Noncommercial-Share Alike

A Formula for the Specialization of Skew Schur Functions*

Xiaomei Chen ${ }^{1}$ and Richard P. Stanley ${ }^{2}$
${ }^{1}$ School of Mathematics and Computational Science, Hunan University of Science and Technology, Xiangtan 411201, China xmchenhit@gmail.com
${ }^{2}$ Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
rstan@math.mit.edu

Received March 28, 2014
Mathematics Subject Classification: 05E05

Abstract

We give a formula for $s_{\lambda / \mu}\left(1, q, q^{2}, \ldots\right) / s_{\lambda}\left(1, q, q^{2}, \ldots\right)$, which generalizes a result of Okounkov and Olshanski about $f^{\lambda / \mu} / f^{\lambda}$.

Keywords: skew Schur function, q-analogue, jeu de taquin

1. Introduction

For the notation and terminology below on symmetric functions, see Stanley [6] or Macdonald [4]. Let μ be a partition of some nonnegative integer. A reverse tableau of shape μ is an array of positive integers of shape μ which is weakly decreasing in rows and strictly decreasing in columns. Let $\mathrm{RT}(\mu, n)$ be the set of all reverse tableaux of shape μ whose entries belong to $\{1,2, \ldots, n\}$.

Recall that f^{λ} and $f^{\lambda / \mu}$ denote the number of SYT (standard Young tableaux) of shape λ and λ / μ respectively, and $l(\mu)$ denotes the length of μ. Okounkov and Olshanski [5, (0.14) and (0.18)] give the following surprising formula.

Theorem 1.1. Let $\lambda \vdash m, \mu \vdash k$ with $\mu \subseteq \lambda$ and $n \in \mathbb{N}$ such that $l(\mu) \leq l(\lambda) \leq n$. Then

$$
\begin{equation*}
\frac{(m)_{k} f^{\lambda / \mu}}{f^{\lambda}}=\sum_{T \in \operatorname{RT}(\mu, n)} \prod_{u \in \mu}\left(\lambda_{T(u)}-c(u)\right), \tag{1.1}
\end{equation*}
$$

where $c(u)$ and $T(u)$ are the content and entry of the square u respectively, and $(m)_{k}=m(m-1) \cdots(m-k+1)$.

[^0]In this paper, we generalize the above result to a q-analogue. Our main result is the following.

Theorem 1.2. Let λ and μ be partitions with $\mu \subseteq \lambda$ and $n \in \mathbb{N}$ such that $l(\mu) \leq$ $l(\lambda) \leq n$. Then

$$
\begin{equation*}
\frac{s_{\lambda / \mu}\left(1, q, q^{2}, \ldots\right)}{s_{\lambda}\left(1, q, q^{2}, \ldots\right)}=\sum_{T \in \operatorname{RT}(\mu, n)} \prod_{u \in \mu} q^{1-T(u)}\left(1-q^{\lambda_{T(u)}-c(u)}\right) \tag{1.2}
\end{equation*}
$$

where the right-hand side is defined to be 1 when μ is the empty partition.

2. Proof of the Main Result

For $n \in \mathbb{Z}$ and $k \in \mathbb{N}$, we define $[n]=1-q^{n}$ and denote by $(n \downharpoonright k)$ the k th falling q-factorial power, i.e.,

$$
(n \backslash k)= \begin{cases}{[n][n-1] \cdots[n-k+1],} & \text { if } k=1,2, \ldots \\ 1, & \text { if } k=0\end{cases}
$$

In particular, we use $[k]$! to denote $\left(k\lfloor k)\right.$, and $\left[\begin{array}{l}n \\ k\end{array}\right]=\frac{[n]!}{[k]![n-k]!}$ for $n \geq k$.
Let λ and μ be partitions with $\mu \subseteq \lambda$ and $n \in \mathbb{N}$ such that $l(\mu) \leq l(\lambda) \leq n$. We define

$$
\begin{equation*}
t_{\lambda / \mu, n}(q)=s_{\lambda / \mu}\left(1, q, q^{2}, \ldots\right) \prod_{u \in \lambda / \mu}[n+c(u)] . \tag{2.1}
\end{equation*}
$$

The following lemma is given in [6, Exer. 102, p. 551 and Lem. 7.21.1].
Lemma 2.1. Let λ and μ be partitions with $\mu \subseteq \lambda$ and $n \in \mathbb{N}$ such that $l(\mu) \leq l(\lambda) \leq$ n. Then we have
(a) $t_{\lambda / \mu, n}(q)=\operatorname{det}\left[\left[\begin{array}{c}\lambda_{i}+n-i \\ \lambda_{i}-\mu_{j}-i+j\end{array}\right]\right]_{i, j=1}^{n}$,
(b) $\prod_{u \in \lambda}[n+c(u)]=\prod_{i=1}^{n} \frac{\left[v_{i}\right]!}{[n-i]!}$, where $v_{i}=\lambda_{i}+n-i$.

Lemma 2.2. Let λ and μ be partitions with $\mu \subseteq \lambda$ and $n \in \mathbb{N}$ such that $l(\mu) \leq l(\lambda) \leq$ n. Then we have

$$
\begin{equation*}
\frac{s_{\lambda / \mu}\left(1, q, q^{2}, \ldots\right)}{s_{\lambda}\left(1, q, q^{2}, \ldots\right)}=\frac{\operatorname{det}\left[\left(\lambda_{i}+n-i\left\lfloor\mu_{j}+n-j\right)\right]_{i, j=1}^{n}\right.}{\operatorname{det}\left[\left(\lambda_{i}+n-i\lfloor n-j)\right]_{i, j=1}^{n}\right.} \tag{2.2}
\end{equation*}
$$

Proof. By Lemma 2.1, we have

$$
\begin{aligned}
\frac{s_{\lambda / \mu}\left(1, q, q^{2}, \ldots\right)}{s_{\lambda}\left(1, q, q^{2}, \ldots\right)} & =\frac{t_{\lambda / \mu, n}(q)}{t_{\lambda, n}(q)} \prod_{u \in \mu}[n+c(u)] \\
& =\frac{\operatorname{det}\left[\left[\begin{array}{c}
\lambda_{i}+n-i \\
\lambda_{i}-\mu_{j}-i+j
\end{array}\right]\right]_{i, j=1}^{n}}{\operatorname{det}\left[\left[\begin{array}{c}
\lambda_{i}+n-i \\
\lambda_{i}-i+j
\end{array}\right]\right]_{i, j=1}^{n}} \prod_{j=1}^{n} \frac{\left[\mu_{j}+n-j\right]!}{[n-j]!} \\
& =\frac{\operatorname{det}\left[\left[\begin{array}{c}
\lambda_{i}+n-i \\
\lambda_{i}-\mu_{j}-i+j
\end{array}\right]\left[\mu_{j}+n-j\right]!\right]_{i, j=1}^{n}}{\operatorname{det}\left[\left[\begin{array}{c}
\lambda_{i}+n-i \\
\lambda_{i}-i+j
\end{array}\right][n-j]!\right]_{i, j=1}^{n}} \\
& =\frac{\operatorname{det}\left[\left(\lambda_{i}+n-i\left\lfloor\mu_{j}+n-j\right)\right]_{i, j=1}^{n}\right.}{\operatorname{det}\left[\left(\lambda_{i}+n-i\lfloor n-j)\right]_{i, j=1}^{n}\right.} .
\end{aligned}
$$

We first consider the denominator of the right-hand side of (2.2).
Lemma 2.3. We have

$$
\begin{equation*}
\operatorname{det}\left[\left(\lambda_{i}+n-i\lfloor n-j)\right]_{i, j=1}^{n}=\left(\prod_{i=1}^{n} q^{(i-1) \lambda_{i}}\right) \prod_{1 \leq i<j \leq n}\left[\lambda_{i}-\lambda_{j}-i+j\right] .\right. \tag{2.3}
\end{equation*}
$$

Proof. For $j=1, \ldots, n-1$, we subtract from the j th column of the determinant on the left-hand side the $(j+1)$ th column, multiplied by $\left[\lambda_{1}+j\right]$. Then for all $j<n$, the (i, j) th entry becomes

$$
\begin{equation*}
\left(\lambda_{i}+n-i\lfloor n-j-1)\left(\left[\lambda_{i}+j+1-i\right]-\left[\lambda_{1}+j\right]\right)\right. \tag{2.4}
\end{equation*}
$$

In particular, the $(1, j)$ th entry becomes 0 for $j<n$. Therefore, the determinant on the left-hand side becomes

$$
\left(\prod_{i=2}^{n}\left[\lambda_{1}-\lambda_{i}-1+i\right] q^{\lambda_{i}}\right) \operatorname{det}\left[\left(\lambda_{i+1}+n-i-1\lfloor n-j-1)\right]_{i, j=1}^{n-1},\right.
$$

and then the result follows by induction.
The following lemma is almost the same as [5, Lemma 2.1], just lifted to the q-analogue.

Lemma 2.4. Let $x, y \in \mathbb{Z}$ with $x+1 \neq y$ and $k \in \mathbb{N}$. Then we have

$$
\frac{(y\lfloor k+1)-(x+1 \downharpoonright k+1)}{-q^{y}+q^{x+1}}=\sum_{l=0}^{k} q^{-l}(y\lfloor l)(x-l\lfloor k-l) .
$$

Proof. We have

$$
\begin{aligned}
& \left(-q^{y}+q^{x+1}\right) \sum_{l=0}^{k} q^{-l}(y \downharpoonright l)(x-l \downharpoonright k-l) \\
& =\sum_{l=0}^{k}\left(-q^{y-l}+q^{x+1-l}\right)(y \downharpoonright l)(x-l \downharpoonright k-l) \\
& =\sum_{l=0}^{k}(y \downharpoonright l)\left(x-l\lfloor k-l)[y-l]-\sum_{l=0}^{k}(y\lfloor l)(x-l\lfloor k-l)[x+1-l]\right. \\
& =\sum_{l=1}^{k+1}\left(y \lfloor l) \left(x-l+1\lfloor k-l+1)-\sum_{l=0}^{k}(y\lfloor l)(x-l+1 \downharpoonright k-l+1)\right.\right. \\
& =(y \downharpoonright k+1)-(x+1\lfloor k+1) .
\end{aligned}
$$

For two partitions μ and v, we write $\mu \succeq v$ if $\mu_{i} \geq v_{i} \geq \mu_{i+1}$ for all $i \in \mathbb{N}$, or equivalently v is obtained from μ by removing a horizontal strip. Thus given a reverse tableau $T \in \mathrm{RT}(\mu, n)$, we can regard it as a sequence

$$
\mu=\mu^{(1)} \succeq \mu^{(2)} \succeq \cdots \succeq \mu^{(n+1)}=\emptyset,
$$

where $\mu^{(i)}$ is the shape of the reverse tableau consisting of entries of T not less than i.

Let μ / v be a skew diagram. We define

$$
\begin{equation*}
(x \downharpoonright \mu / v)=\prod_{u \in \mu / v}[x-c(u)] \tag{2.5}
\end{equation*}
$$

This is a generalization of the falling q-factorial powers. Now we can give the proof of Theorem 1.2.

Proof of Theorem 1.2. By Lemma 2.2, it is equivalent to prove that

$$
\begin{equation*}
\frac{\operatorname{det}\left[\left(\lambda_{i}+n-i\left\lfloor\mu_{j}+n-j\right)\right]_{i, j=1}^{n}\right.}{\operatorname{det}\left[\left(\lambda_{i}+n-i\lfloor n-j)\right]_{i, j=1}^{n}\right.}=\sum_{T \in \operatorname{RT}(\mu, n)} \prod_{u \in \mu} q^{1-T(u)}\left[\lambda_{T(u)}-c(u)\right] . \tag{2.6}
\end{equation*}
$$

Since Lemma 2.2 still holds when $\mu \nsubseteq \lambda$, in which case both sides of (2.2) are equal to 0 , we just assume $l(\mu) \leq l(\lambda) \leq n$ in (2.6). The proof of (2.6) is by induction on n. The case $n=0$ is trivial, which is equivalent to the statement $\frac{1}{1}=1$. For the induction step $(n>0)$, it suffices to prove that

$$
\begin{align*}
& \frac{\operatorname{det}\left[\left(\lambda_{i}+n-i\left\lfloor\mu_{j}+n-j\right)\right]_{i, j=1}^{n}\right.}{\operatorname{det}\left[\left(\lambda_{i}+n-i\lfloor n-j)\right]_{i, j=1}^{n}\right.} \\
& =\sum_{\substack{v \leq \mu \\
l(v)<n}} q^{-|v|}\left(\lambda_{1} \downharpoonright \mu / v\right) \frac{\operatorname{det}\left[\left(\lambda_{i}^{\uparrow}+n-1-i\left\lfloor v_{j}+n-1-j\right)\right]_{i, j=1}^{n-1}\right.}{\operatorname{det}\left[\left(\lambda_{i}^{\uparrow}+n-1-i\lfloor n-1-j)\right]_{i, j=1}^{n-1}\right.} \tag{2.7}
\end{align*}
$$

where $\lambda \uparrow$ denotes the partition obtained from λ by removing λ_{1}.
To see the sufficiency, let T^{\uparrow} be the reverse tableau obtained from a given $T \in$ $\mathrm{RT}(\mu, n)$ by removing all entries equal to 1 and decreasing remaining entries by 1 . Let v be the shape of T^{\uparrow}. Then we have $v \preceq \mu$ and $l(v)<n$. On the other hand, given partitions v and μ with $v \preceq \mu$ and $l(v)<n$, then for $T^{\uparrow} \in \operatorname{RT}(v, n-1)$, we can uniquely recover $T \in \operatorname{RT}(\mu, n)$ from T^{\uparrow} in a reverse way. Thus for a fixed v with $v \preceq \mu$ and $l(v)<n$, we have

$$
\begin{align*}
& \sum_{\substack{T \in \operatorname{RT}(\mu, n) \\
\text { shape }\left(T^{\uparrow}\right)=v}} \prod_{u \in \mu} q^{1-T(u)}\left[\lambda_{T(u)}-c(u)\right] \tag{2.8}\\
&=\sum_{T^{\uparrow} \in \operatorname{RT}(v, n-1)}\left(\lambda_{1} \downharpoonright \mu / v\right) \prod_{u \in V} q^{-1} q^{1-T^{\uparrow}(u)}\left[\lambda_{T^{\uparrow}(u)}^{\uparrow}-c(u)\right] \\
&=q^{-|v|}\left(\lambda_{1} \downharpoonright \mu / v\right) \sum_{T^{\uparrow} \in \operatorname{RT}(v, n-1)^{u}} \prod_{u \in V} q^{1-T^{\uparrow}(u)}\left[\lambda_{T^{\uparrow}(u)}^{\uparrow}-c(u)\right] \\
&= q^{-|v|}\left(\lambda_{1} \downharpoonright \mu / v\right) \frac{\operatorname{det}\left[\left(\lambda_{i}^{\uparrow}+n-1-i\left\lfloor v_{j}+n-1-j\right)\right]_{i, j=1}^{n-1}\right.}{\operatorname{det}\left[\left(\lambda_{i}^{\uparrow}+n-1-i\lfloor n-1-j)\right]_{i, j=1}^{n-1}\right.}, \tag{2.9}
\end{align*}
$$

here the last equality follows from induction hypothesis. By summing (2.8) and (2.9) respectively over all partitions v with $v \preceq \mu$ and $l(v)<n$, we then obtain (2.6) from (2.7).

Consider the numerator of the right-hand side of (2.7),

$$
\begin{equation*}
\operatorname{det}\left[\left(\lambda_{i}+n-i \backslash \mu_{j}+n-j\right)\right] \tag{2.10}
\end{equation*}
$$

For $j=1,2, \ldots, n-1$, we subtract from the j th column of (2.10) the $(j+1)$ th column, multiplied by $\left(\lambda_{1}-\mu_{j+1}+j \downharpoonright \mu_{j}-\mu_{j+1}+1\right)$. Then for all $j<n$, the (i, j) th entry of (2.10) becomes

$$
\begin{align*}
\left(\lambda_{i}+n-i \backslash \mu_{j+1}+n-j-1\right) & \left(\lambda_{i}-\mu_{j+1}+j+1-i \backslash \mu_{j}-\mu_{j+1}+1\right) \tag{2.11}\\
& \left.-\left(\lambda_{1}-\mu_{j+1}+j \downharpoonright \mu_{j}-\mu_{j+1}+1\right)\right) .
\end{align*}
$$

In particular, the first row of (2.10) becomes

$$
\left(0, \ldots, 0,\left(\lambda_{1}+n-1 \downharpoonright \mu_{n}\right)\right)
$$

We can now apply Lemma 2.4, where we set

$$
x=\lambda_{1}-\mu_{j+1}+j-1, \quad k=\mu_{j}-\mu_{j+1}, \quad y=\lambda_{i}-\mu_{j+1}+j+1-i
$$

Then (2.11) becomes

$$
\begin{align*}
-\left(\lambda_{i}+n-i\left\lfloor\mu_{j+1}+n-j-1\right)\right. & {\left[\lambda_{1}-\lambda_{i}+i-1\right] q^{\lambda_{i}-\mu_{j+1}+j+1-i} } \\
& \cdot \sum_{l=0}^{\mu_{j}-\mu_{j+1}} q^{-l}(y\lfloor l)(x-l\lfloor k-l) . \tag{2.12}
\end{align*}
$$

Let $v_{j}=l+\mu_{j+1}$. Since

$$
\begin{aligned}
q^{y}-q^{x+1} & =q^{\lambda_{i}-\mu_{j+1}+j+1-i} \cdot\left[\lambda_{1}-\lambda_{i}+i-1\right], \\
(x-l\lfloor k-l) & =\left(\lambda_{1}-v_{j}+j-1 \downharpoonright \mu_{j}-v_{j}\right), \\
(y \downharpoonright l) & =\left(\lambda_{i}-\mu_{j+1}+j+1-i \downharpoonright v_{j}-\mu_{j+1}\right), \\
\left(\lambda_{i}+n-i \downharpoonright \mu_{j+1}+n-j-1\right)(y \downharpoonright l) & =\left(\lambda_{i}+n-i\left\lfloor v_{j}+n-j-1\right),\right.
\end{aligned}
$$

(2.12) becomes

$$
\begin{gathered}
-\left[\lambda_{1}-\lambda_{i}+i-1\right] q^{\lambda_{i}-\mu_{j+1}+j+1-i} \sum_{v_{j}=\mu_{j+1}}^{\mu_{j}} q^{\mu_{j+1}-v_{j}}\left(\lambda_{1}-v_{j}+j-1 \downharpoonright \mu_{j}-v_{j}\right) \\
\cdot\left(\lambda_{i}+n-i \downharpoonright v_{j}+n-j-1\right)
\end{gathered}
$$

Expand the determinant (2.10) by the first row,

$$
\begin{align*}
& \left(\lambda_{1}+n-1 \downharpoonright \mu_{n}\right) \operatorname{det}\left[\left[\lambda_{1}-\lambda_{i+1}+i\right] q^{\lambda_{i+1}+j-i} \sum_{v_{j}=\mu_{j+1}}^{\mu_{j}} q^{-v_{j}}\right. \\
& \cdot\left(\lambda_{1}-v_{j}+j-1\left\lfloor\mu_{j}-v_{j}\right)\left(\lambda_{i+1}+n-i-1 \downharpoonright v_{j}+n-j-1\right)\right]_{i, j=1}^{n-1} \tag{2.13}
\end{align*}
$$

For any chosen value of $v_{j}(1 \leq j \leq n-1)$ in the range from μ_{j+1} to μ_{j}, $v=\left(v_{1}, \ldots, v_{n-1}\right)$ is a partition, and we have $v \preceq \mu$. Furthermore, when $v_{j}(1 \leq j \leq n-1)$ ranges from μ_{j+1} to μ_{j}, v ranges over all partitions with $v \preceq \mu$ and $l(v)<n$. Therefore, (2.13) equals

$$
\begin{align*}
& \left(\lambda_{1}+n-1 \downharpoonright \mu_{n}\right) \sum_{\substack{v \leq \mu \\
l(v)<n}} \operatorname{det}\left[\left[\lambda_{1}-\lambda_{i+1}+i\right] q^{\lambda_{i+1}+j-i-v_{j}}\right. \tag{2.14}\\
& \left.\cdot\left(\lambda_{1}-v_{j}+j-1 \downharpoonright \mu_{j}-v_{j}\right)\left(\lambda_{i+1}+n-i-1 \downharpoonright v_{j}+n-j-1\right)\right]_{i, j=1}^{n-1} .
\end{align*}
$$

For the determinant in (2.14), we can extract $\left[\lambda_{1}-\lambda_{i+1}+i\right] q^{\lambda_{i+1}-i}$ from the i th row and extract $q^{j-v_{j}}\left(\lambda_{1}-v_{j}+j-1 \backslash \mu_{j}-v_{j}\right)$ from the j th column by multilinearity for $1 \leq i, j \leq n-1$. Then (2.14), which is equal to (2.10), becomes

$$
\begin{align*}
& \left(\prod_{i=1}^{n-1}\left[\lambda_{1}-\lambda_{i+1}+i\right] q^{\lambda_{i+1}}\right) \sum_{\substack{v \leq \mu \\
l(v)<n}}\left(\prod_{j=1}^{n-1} q^{-v_{j}}\right)\left(\lambda_{1} \downharpoonright \mu / v\right) \tag{2.15}\\
& \cdot \operatorname{det}\left[\left(\lambda_{i+1}+n-i-1 \downharpoonright v_{j}+n-j-1\right)\right]_{i, j=1}^{n-1} .
\end{align*}
$$

On the other hand, by Lemma 2.3 we have

$$
\begin{align*}
& \operatorname{det}\left[\left(\lambda_{i}+n-i\lfloor n-j)\right]_{i, j=1}^{n}\right. \\
& =\prod_{i=1}^{n-1}\left(\left[\lambda_{1}-\lambda_{i+1}+i\right] q^{\lambda_{i+1}}\right) \operatorname{det}\left[\left(\lambda_{i+1}+n-i-1\lfloor n-j-1)\right]_{i, j=1}^{n-1} .\right. \tag{2.16}
\end{align*}
$$

Combining (2.15) and (2.16) together, we then obtain (2.7), which implies Theorem 1.2.

Theorem 1.1 can be recovered from Theorem 1.2 by setting $q=1$. To show that, we need the following result given in [6, Prop. 7.19.11].

Lemma 2.5. Let $|\lambda / \mu|=m$. Then

$$
s_{\lambda / \mu}\left(1, q, q^{2}, \ldots\right)=\frac{\sum_{T} q^{\operatorname{maj}(T)}}{[m]!}
$$

where T ranges over all SYTs of shape λ / μ, and $\operatorname{maj}(T)$ is the major index of T.
Proof of Theorem 1.1: Divide both sides of (1.2) by $(1-q)^{|\mu|}$ and then set $q=1$. Then the right-hand side of (1.2) becomes

$$
\begin{equation*}
\sum_{T \in \operatorname{RT}(\mu, n)} \prod_{u \in \mu}\left(\lambda_{T(u)}-c(u)\right) \tag{2.17}
\end{equation*}
$$

Since

$$
\left.\sum_{T} q^{\operatorname{maj}(T)}\right|_{q=1}=f^{\lambda / \mu}
$$

when T ranges over all SYTs of shape λ / μ, we know by Lemma 2.5 that

$$
\begin{align*}
& \left.\frac{s_{\lambda / \mu}\left(1, q, q^{2}, \ldots\right)}{(1-q)^{|\mu|} s_{\lambda}\left(1, q, q^{2}, \ldots\right)}\right|_{q=1} \\
& =\left.\frac{[m]!\sum_{T_{1}} q^{\operatorname{maj}\left(T_{1}\right)}}{(1-q)^{\mu}[m-k]!\sum_{T_{2}} q^{\operatorname{maj}\left(T_{2}\right)}}\right|_{q=1} \tag{2.18}\\
& =\frac{(m)_{k} f^{\lambda / \mu}}{f^{\lambda}}
\end{align*}
$$

where T_{1} and T_{2} range over all partitions of shape λ / μ and λ, respectively. Combining (2.17) and (2.18) together, we then obtain Theorem 1.1.

Corollary 2.6. The rational function

$$
\frac{s_{\lambda / \mu}\left(1, q, q^{2}, \ldots\right)}{(1-q)^{|\mu|_{s_{\lambda}}}\left(1, q, q^{2}, \ldots\right)}
$$

is a Laurent polynomial in q with nonnegative integer coefficients.

Proof. Given $T \in \operatorname{RT}(\mu, n)$, if $\lambda_{T\left(u_{0}\right)}<c\left(u_{0}\right)$ for some $u_{0} \in \mu$, then

$$
\begin{equation*}
\prod_{u \in \mu}\left[\lambda_{T(u)}-c(u)\right]=0 \tag{2.19}
\end{equation*}
$$

In fact, while u moves from right to left along rows of $T, \lambda_{T(u)}$ is weakly decreasing, and $c(u)$ is decreasing by 1 in each step. Let u_{1} be the leftmost square in the row containing u_{0}. Since $\lambda_{T\left(u_{1}\right)} \geq c\left(u_{1}\right)$ and $\lambda_{T\left(u_{0}\right)}<c\left(u_{0}\right)$, we have $\lambda_{T\left(u_{2}\right)}=c\left(u_{2}\right)$ for some square u_{2}, which implies Equation (2.19).

On the other hand, by Theorem 1.2 we have

$$
\frac{s_{\lambda / \mu}\left(1, q, q^{2}, \ldots\right)}{(1-q)^{|\mu|} s_{\lambda}\left(1, q, q^{2}, \ldots\right)}=\sum_{T \in \mathrm{RT}(\mu, n)} \prod_{u \in \mu} q^{1-T(u)} \cdot \frac{\left[\lambda_{T(u)}-c(u)\right]}{1-q} .
$$

Then the result follows after omitting the sum terms that equal to 0 on the right-hand side.

For the special case when $\mu=1$, we give a simple formula for $s_{\lambda / 1} /(1-q) s_{\lambda}$ in Corollary 2.7 below. Before giving a combinatorial proof of this result, we first introduce some notation.

The acronym SSYT stands for a semistandard Young tableau where 0 is allowed as a part. Jeu de taquin (jdt) is a kind of transformation between skew tableaux obtained by moving entries around, such that the property of being a tableau is preserved. For example, given a tableau T of shape λ, we first delete the entry $T(i, j)$ for some box (i, j). If $T(i, j-1)>T(i-1, j)$, we then move $T(i, j-1)$ to box (i, j); otherwise, we move $T(i-1, j)$ to (i, j). Continuing this moving process, we eventually obtain a tableau of shape $\lambda / 1$. On the other hand, given a tableau of shape $\lambda / 1$, we can regard $(0,0)$ as an empty box. By moving entries in a reverse way, we then get a tableau of shape λ with an empty box after every step. For more information about jdt, readers can refer to [6, Ch. 7, App. I].

The following result was first obtained by Kerov [2, Thm. 1 and (2.2)] (after sending $q \mapsto q^{-1}$) and by Garsia and Haiman [1, (I.15), Thm. 2.3] (setting $t=q^{-1}$) by algebraic reasoning. For further information see [3, p. 9].

Corollary 2.7. We have

$$
\begin{equation*}
\frac{s_{\lambda / 1}\left(1, q, q^{2}, \ldots\right)}{(1-q) s_{\lambda}\left(1, q, q^{2}, \ldots\right)}=\sum_{u \in \lambda} q^{c(u)} \tag{2.20}
\end{equation*}
$$

Proof. We define two sets in the following way:

$$
\begin{aligned}
T_{\lambda / 1} & =\{(T, k) \mid T \text { is an SSYT of shape } \lambda / 1, \text { and } k \in \mathbb{N}\}, \\
T_{\lambda} & =\{(T, u) \mid T \text { is an SSYT of shape } \lambda, \text { and } u \in \lambda\} .
\end{aligned}
$$

Since we can rewrite (2.20) as

$$
s_{\lambda / 1}\left(1, q, q^{2}, \ldots\right) \cdot \sum_{i \geq 0} q^{i}=s_{\lambda}\left(1, q, q^{2}, \ldots\right) \cdot \sum_{u \in \lambda} q^{c(u)}
$$

it suffices to prove that there is a bijection $\varphi: T_{\lambda} \rightarrow T_{\lambda / 1}$, say $\varphi(T, u)=\left(T_{\varphi}, k\right)$, such that $|T|+c(u)=\left|T_{\varphi}\right|+k$, where $|T|$ and $\left|T_{\varphi}\right|$ denote the sum of the entries in T and T_{φ} respectively.

We define φ in the following way. Given $(T, u) \in T_{\lambda}$, let $k=T(u)+c(u)$. To obtain T_{φ}, we first delete the entry $T(u)$ from T, and then carry out the jdt operation. Since T is an SSYT, we have $k \geq 0$, and thus the definition is reasonable.

On the other hand, given $\left(T_{\varphi}, k\right) \in T_{\lambda / 1}$, we carry out the jdt operation to T_{φ} step-by-step in the reverse way. Denote by u_{t} the empty box and T_{t} the tableau obtained after t steps. If we get an SSYT by filling u_{t} with $k-c\left(u_{t}\right)$ in T_{t}, then we call u_{t} a nice box.

We first show that a nice box exists. For the sake of discussion, if (i, j) is not a box of a tableau T, then we define $T(i, j)=-\infty$ if $i<0$ or $j<0$, and $T(i, j)=+\infty$ if $i \geq 0$ and $j \geq 0$. The existence is obvious if the initial empty box u_{0} is nice. If there is no integer t such that $k-c\left(u_{t}\right)$ is less than the adjacent entry left or not greater than the adjacent entry above in T_{t}, then by filling the last empty box $u_{t_{0}}$ with $k-c\left(u_{t_{0}}\right)$, we get an SSYT, which implies that $u_{t_{0}}$ is a nice box. Otherwise, let t be the smallest integer such that $k-c\left(u_{t}\right)$ is less than the adjacent entry left or not greater than the adjacent entry above. Then we claim that u_{t-1} is a nice box. Assume that $u_{t}=(i, j)$. Since T_{t-1} and T_{t} satisfy the conditions of SSYT except for the empty box, we have $T_{t-1}(i, j-1) \leq T_{t-1}(i, j) \leq T_{t-1}(i-1, j+1)$ if $u_{t-1}=(i-1, j)$, and $T_{t-1}(i-1, j)<T_{t-1}(i, j)<T_{t-1}(i+1, j-1)$ if $u_{t-1}=(i, j-1)$. In the first case, we have $k-c\left(u_{t}\right) \leq T_{t-1}(i, j)$, thus $k-c\left(u_{t-1}\right)=k-c\left(u_{t}\right)-1<T_{t-1}(i, j) \leq$ $T_{t-1}(i-1, j+1)$. In the latter one, we have $k-c\left(u_{t}\right)<T_{t-1}(i, j)$, so $k-c\left(u_{t-1}\right)=$ $k-c\left(u_{t}\right)+1 \leq T_{t-1}(i, j)<T_{t-1}(i+1, j-1)$. By assumption, $k-c\left(u_{t-1}\right)$ is not less than the entries left and greater than the entry above in T_{t-1}. Therefore, we get an SSYT by filling u_{t-1} with $k-c\left(u_{t-1}\right)$ in T_{t-1} in both cases, which completes the proof of the existence.

Next we show the uniqueness of the nice box. Let $u=(i, j)$ be the first nice box and let T be the corresponding SSYT. If there exists another nice box $u^{\prime}=\left(i^{\prime}, j^{\prime}\right)$, and T^{\prime} is the corresponding SSYT, then we have $i^{\prime} \geq i$ and $j^{\prime} \geq j$. Since T^{\prime} is an SSYT, we must have $T^{\prime}\left(i^{\prime}, j^{\prime}\right) \geq T^{\prime}(i, j)+i^{\prime}-i$. Since T is an SSYT, we have $T^{\prime}(i, j)>k+i-j$ when $j^{\prime}=j$, and $T^{\prime}(i, j) \geq k+i-j$ when $j^{\prime}>j$. In either case we get a contradiction, since $T^{\prime}\left(i^{\prime}, j^{\prime}\right)=k+i^{\prime}-j^{\prime}$ by the definition of T^{\prime}.

Acknowledgments. The first author warmly thanks the second author for his hospitality while visiting the MIT Mathematics Department during academic year 2012-2013. The two authors wish to thank the anonymous referees for a careful reading of their manuscript and several helpful suggestions that greatly improved the paper.

References

1. Garsia, A.M., Haiman, M.: A random q, t-hook walk and a sum of Pieri coefficients. J. Combin. Theory Ser. A 82(1), 74-111 (1998)
2. Kerov, S.V.: A q-analog of the hook walk algorithm and random Young tableaux. Funktsional. Anal. i Prilozhen. 26(3), 35-45 (1992); translation in Funct. Anal. Appl. 26(3), 179-187 (1992)
3. Lewis, J.B., Reiner, V., Stanton, D.: Reflection factorizations of Singer cycles. J. Algebraic Combin. 40(3), 663-691 (2014)
4. Macdonald, I.G.: Symmetric Functions and Hall Polynomials. 2nd edition. Oxford University Press, Oxford (1995)
5. Okounkov, A., Olshanski, G.: Shifted Schur functions. Algebra i Analiz 9(2), 73-146 (1997); translation in St. Petersburg Math. J. 9(2), 239-300 (1998)
6. Stanley, R.P.: Enumerative Combinatorics. Volume 2. Cambridge University Press, Cambridge (2001)

[^0]: * The first author was partially supported by China Scholarship Council. The second author was partially supported by NSF grant DMS-1068625.

