
MIT Open Access Articles

The OpenMOC method of characteristics
neutral particle transport code

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Boyd, William, Samuel Shaner, Lulu Li, Benoit Forget, and Kord Smith. “The OpenMOC
Method of Characteristics Neutral Particle Transport Code.” Annals of Nuclear Energy 68 (June
2014): 43–52. ©2014

As Published: http://dx.doi.org/10.1016/j.anucene.2013.12.012

Publisher: Elsevier

Persistent URL: http://hdl.handle.net/1721.1/108100

Version: Author's final manuscript: final author's manuscript post peer review, without
publisher's formatting or copy editing

Terms of use: Creative Commons Attribution-NonCommercial-NoDerivs License

https://libraries.mit.edu/forms/dspace-oa-articles.html
http://hdl.handle.net/1721.1/108100
http://creativecommons.org/licenses/by-nc-nd/4.0/

The OpenMOC Method of Characteristics Neutral Particle Transport Code

William Boyd, Samuel Shaner, Lulu Li, Benoit Forget, Kord Smith

Massachusetts Institute of Technology, Department of Nuclear Science and Engineering, 77 Massachusetts Avenue, Building 24, Cambridge, MA 02139, United States

Abstract

The method of characteristics (MOC) is a numerical integration technique for partial differential equations, and has seen
widespread use for reactor physics lattice calculations. The exponential growth in computing power has finally brought the
possibility for high-fidelity full core MOC calculations within reach. The OpenMOC code is being developed at the Massachusetts
Institute of Technology to investigate algorithmic acceleration techniques and parallel algorithms for MOC. OpenMOC is a free,
open source code written using modern software languages such as C/C++ and CUDA with an emphasis on extensible design
principles for code developers and an easy to use Python interface for code users. The present work describes the OpenMOC
code and illustrates its ability to model large problems accurately and efficiently.

Keywords: Method of characteristics, neutron transport, criticality, high performance computing, nonlinear diffusion
acceleration, open source

1. Introduction

A new general purpose open source 2D method of char-
acteristics reactor physics code called OpenMOC is currently
under development at the Massachusetts Institute of Tech-
nology. OpenMOC has been developed as a general purpose
platform to deploy new numerical acceleration techniques
and parallel algorithms - two of the primary drivers for im-
proved compute performance of scientific codes. Solvers for
a variety of platforms, including multi-core CPUs and mas-
sively parallel GPUs, are available in OpenMOC to exploit the
increasingly heterogenous nature of present day as well as
future computing hardware. OpenMOC has been developed
using modern software development standards to enhance its
value as a tool for research and collaboration.

2. Method of Characteristics

The method of characteristics (MOC) is a widely used
technique for solving partial differential equations, includ-
ing the Boltzmann form of the neutron transport equation (J.
R. Askew, 1972). MOC is used to solve the transport equa-
tion in 2D by discretizing both polar and azimuthal angles
and integrating the characteristic form of the equation for a
particular azimuthal and polar angle quadrature (W. Boyd,
2014; L. Li, 2013). The MOC integration method is based on
the multi-group, steady-state form of the neutron transport
equation:

Ω · ∇Ψg(r,Ω) +ΣT
g (r)Ψg(r,Ω) =Q g(r) (1)

where g is the energy group index, r is the spatial posi-
tion vector, Ω is the angular direction vector, Ψg(r,Ω) is the

Email addresses: wboyd@mit.edu (William Boyd), shaner@mit.edu
(Samuel Shaner), lululi@mit.edu (Lulu Li), bforget@mit.edu (Benoit
Forget), kord@mit.edu (Kord Smith)

angular flux, ΣT
g (r) is the total cross-section and Q g(r) is the

source term. In MOC, this equation is transformed through a
parametrization along discrete tracks k ∈ K , resulting in the
characteristic form of the transport equation:

dΨk,g(s)

ds
+ΣT

g (s)Ψk,g(s) =Q g(s) (2)

In addition, the geometry is generally discretized into flat
source regions, or FSRs denoted by index i, to give the final
system of ODEs solved in MOC:

dΨk,i,g(s)

ds
+ΣT

i,gΨk,i,g(s) =Q i,g (3)

The source term Q i,g is defined in terms of both fission
and isotropic scattering from the area-averaged scalar flux
Φi,g in each FSR:

Q i,g =
1

4π

G
∑

g ′=1

ΣS
i,g ′→gΦi,g ′ +

χi,g

ke f f

G
∑

g ′=1

νΣF
i,g ′Φi,g ′

!

(4)

where ΣS
i,g ′→g is the scattering cross-section for group g ′

to group g, ΣF
i,g is the fission cross-section for group g, ν is

the average number of neutrons produced from fission, χi,g is
the fraction of neutrons produced in group g from fission and
ke f f is the multiplication factor. Each track is discretized into
segments across individual FSRs. Equation 3 can be integrated
for a segment across an FSR from its entry point at s′ to exit
point at s′′ using an integrating factor:

Ψk,g(s
′′) = Ψk,g(s

′)e−τk,i,g +
Q i,g

ΣT
i,g

(1− e−τk,i,g) (5)

with the optical path length defined as τk,i,g = ΣT
i,g(s

′′−s′).
With minor algebraic rearrangment, the change in the angular
flux along the characteristic k is given by the following:

Preprint submitted to Ann. Nucl. Energy

∆Ψk,g = Ψk,g(s
′)−Ψk,g(s

′′)

=

�

Ψk,g(s
′)−

Q i,g

ΣT
i,g

�

�

1− e−τk,i,g
� (6)

By defining lk,i = s′′ − s′, the average angular flux contri-
bution to FSR i from track k is the following integral:

Ψk,i,g =
1

lk,i

∫ s′′

s′
Ψk,i,g(s)ds (7)

Upon evaluating the integral, the average flux can be
reduced to the following algebraic expression:

Ψk,i,g =
1

lk,i

�

Ψk,g(s′)

ΣT
i,g

(1− e−τk,i,g)+

lk,iQ i,g

ΣT
i,g

�

1−
(1− e−τk,i,g)
τk,i,g

�

� (8)

The area-averaged scalar flux in FSR i with area Ai can
be found by integrating the angular flux over azimuthal and
polar angles m and p using quadrature rules for each track
segment in Ai:

Φi,g =
4π
Ai

∑

k∈Ai

P
∑

p=1

ωm(k)ωpωk lk,iΨk,i,g,p (9)

where m(k) represents the azimuthal angle for track k,
ωm(k) andωp are the azimuthal and polar quadrature weights,
and ωk represents the track width for track k. The final form
of the scalar flux can be found by substituting the expression
for the average angular flux from Equation 8 into Equation 9
and rearranging in terms of the change in angular flux along
the characteristic from Equation 6:

Φi,g =
4π
Σi,g



Q i,g +
1
Ai

∑

k∈Ai

P
∑

p=1

ωm(k)ωpωk sinθp∆Ψk,i,g,p



 (10)

This is the form of the transport equation used in the
MOC formulation presented in this paper. The azimuthal
angle quadrature is chosen to ensure cyclic track wrapping
at the boundaries as discussed in the following section. The
quadrature recommended by Yamamoto (A. Yamamoto, M.
Tabuchi, N. Sugimura, T. Ushio and M. Mori, 2007) is used
for the polar angles and weights.

The spatial shape and energy distribution of the flux across
FSRs is iteratively computed by transport sweeps and source
updates until the scalar flux for each FSR has converged. Each
transport sweep integrates the flux (from the previous itera-
tion) along each track for each energy group while tallying a
new flux contribution to each flat source region (Equation 6
and Equation 10). The fission source and the absorption rate
for each flat source region is updated and used to compute
ke f f and the total source is updated based on the flux tallies
(Equation 4). These steps are repeated until each region’s
source has converged.

3. Implementation

3.1. Geometry Representation
The geometry is treated by a constructive solid geometry

formulation (CSG) similar to OpenMC (P. K. Romano and
B. Forget, 2013) using nested universes, cells, lattices and
quadratic surface primitives. This general methodology can
represent a wide range of complicated reactor geometries
with minimal memory requirements.

An example of a 4 × 4 lattice of identical pin cells is il-
lustrated in Figure 1. To reduce memory storage costs, only
unique universes are stored in memory and the appropriate
coordinate transformations between the local coordinates of
each universe and the global coordinate system are made dur-
ing ray tracing. Although this formulation works well for ray
tracing, the MOC solver requires repeated cells throughout
a core geometry to be represented by a unique FSR for flux
tallying. To accomplish this, a recursive algorithm for identify-
ing unique FSRs within a geometry built using CSG primitives
was developed and is implemented in OpenMOC (W. Boyd,
2014; D. Lax, W. Boyd and N. Horelik, 2014). OpenMOC also
provides the capability to subdivide pin cells into rings and
angular sectors to better resolve the angular and radial flux
and power gradients.

Figure 1. A 4 × 4 lattice with 3 rings and 16 angular divisions per pin cell.
Unique colors identify each flat source region.

3.2. Global Cyclic Tracking
OpenMOC uses global tracking such that each track spans

the entire extent of the simulation domain. By symmetry,
tracks only need to be represented for azimuthal angles in
the range φ ∈ [0,π] since a track with angle φ will have the
same start and end points as a track with angle φ +π. Com-
plementary angles are pairs of angles (φ,α) in the azimuthal
quadrature where α = π − φ. Tracks for complementary

3

angles have a track spacing such that they intersect at the
boundaries of the geometry and form closed cycles. An illus-
tration of OpenMOC’s track layout for eight azimuthal angles
is given in Figure 2.

Cyclic tracking is important since it allows for a simple
treatment of reflective boundary conditions. Boundary condi-
tions must be respected for the track outgoing fluxes at each
iteration. Vacuum boundary conditions on a surface can be
implemented for the MOC formulation by ensuring that each
track originating along that surface has zero incoming flux,
while tallying outgoing flux as leakage. Reflective boundary
conditions are easily implemented since complementary an-
gles ensure that tracks wrap around the geometry in closed
cycles. Hence, no approximations need to be made for each
track’s incoming flux since it is exactly the outgoing flux of
another track in the cycle.

Figure 2. Tracks for eight azimuthal angles across a square demonstrate
cyclic track wrapping.

3.3. MOC Solver

OpenMOC includes a solver implementation which inte-
grates the angular flux across the geometry for each track
as described in Section 2. A single transport sweep involves
five nested loops over azimuthal angles, tracks, segments in
different FSRs, energy groups and polar angles. A descrip-
tion of OpenMOC solver’s transport sweep is given by Algo-
rithm 1 along with the methodology to update the source in
Algorithm 2. The sets of all azimuthal angles, tracks, track
segments, FSRs, energy groups and polar angles are denoted
by M , K , S, I , G and P, respectively. For notational simplicity,
the subset of tracks for azimuthal angle m is denoted by K(m),
the subset of segments for track k is given by S(k), and the
FSR for segment s is represented as I(s). The leakage tally for
vacuum boundary conditions is designated as L.

3.4. Shared Memory Parallelism

For over fifty years, Moore’s Law (G. E. Moore, 1965) has
dictated a doubling in computational performance every 18
months. Since the mid-2000s, however, this trend has been
challenged by the physics implications of ever smaller and
denser transistors. Instead, hardware vendors have relied on
parallelism to maintain steady performance improvements in
accordance to Moore’s Law. As a result, scientific computing
software must now take advantage of parallel algorithms in
order to realize the performance gains from new hardware.

The method of characteristics is one neutron transport
algorithm which can be highly parallelized and vectorized
due to its nested loop structure (see Algorithm 1). OpenMOC
has been developed to take advantage of parallel algorithms
on conventional shared memory architectures using OpenMP
(OpenMP Architecture Review Board, 2013), on Single Instruc-
tion Multiple Data (SIMD) vector units using vector intrinsics
(Intel, 2012), and on massively parallel and heterogeneous
graphics processing units (GPUs) using NVIDIA’s CUDA pro-
gramming language (NVIDIA, 2013).

3.4.1. OpenMP
A shared memory multi-threaded implementation of the

CPU-based solver has been implemented using the OpenMP
framework. Parallelization is generally most efficient when
implemented at the coarsest level possible while still providing
enough degrees of concurrency to keep the hardware busy.
For multi-core systems, both of these objectives are achieved
by parallelizing the outermost loops over azimuthal angles
and tracks in Algorithm 1 which allows for thread launch
overhead to be amortized most effectively (W. Boyd, K. Smith,
B. Forget and A. Siegel, 2014).

3.4.2. SIMD Vectorization
Much of performance improvement in next generation

processors will come from more powerful Vector Processing
Units (VPUs) for Single Instruction Multiple Data (SIMD)
algorithms. Intel’s Haswell processor line and the Intel Xeon
Phi (Knights Corner) Coprocessors provide 8-wide and 16-
wide (single precision) VPUs for each core, respectively (Intel,
2013a). OpenMOC includes solvers which utilizes Intel’s Math
Kernel Library (MKL) (Intel, 2013b) and leverages the auto-
vectorization capabilities of Intel’s C++ compiler to vectorize
the inner loop over energy groups in Algorithm 1.

3.4.3. Graphics Processing Units (GPUs)
A GPU-based solver written in NVIDIA’s CUDA program-

ming language (W. Boyd, K. Smith and B. Forget, 2013) is
included in OpenMOC. The MOC transport sweep was mas-
sively parallelized for GPUs by taking advantage of the nested
loop structure of the algorithm as shown in Algorithm 1.

The OpenMOC framework for I/O and ray tracing is kept
intact as these functions are performed on the CPU. Following
ray tracing, all tracks, segments and FSRs are transformed
into arrays of corresponding CUDA structures and copied to
the GPU’s memory. After the sources and fluxes are converged

4

Algorithm 1 Transport sweep for OpenMOC

Φi,g ← 0 ∀ i, g ∈ {I , G} # Initialize FSR scalar fluxes to zero
while Φi,g ∀ i not converged do

for all m ∈ M do # Loop over azimuthal angles
for all k ∈ K(m) do # Loop over tracks

for all s ∈ S(k) do # Loop over segments
for all g ∈ G do # Loop over energy groups

for all p ∈ P do # Loop over polar angles
i← I(s) # Get FSR for this segment

∆Ψk,i,g,p ←
�

Ψk,g,p −
Q i,g

ΣT
i,g

�

(1− e−τk,i,g,p) # Compute angular flux change along segment

Φi,g ← Φi,g +
4π
Ai
ωmωpωk sinθp lk,i∆Ψk,i,g,p # Increment FSR scalar flux

Ψk,g,p ← Ψk,g,p −∆Ψk,g,p # Update track outgoing flux
end for

end for
end for

end for
if B.C. are reflective then # Set incoming flux for outgoing track
Ψk′,g,p(0)← Ψk,g,p # Reflective B.C.’s

else
Ψk′,g,p(0)← 0 # Vacuum B.C.’s
L← L +Ψk,g,p # Increment leakage tally

end if
end for
Update ke f f and FSR sources Q i,g ∀ i # Algorithm 2

end while

Algorithm 2 FSR source update for OpenMOC

for all i ∈ I do # Loop over FSRs
for all g ∈ G do # Loop over energy groups

Q(n+1)
i,g ← χi,g

ke f f
νΣF

i,gΦ
(n)
i,g # Initialize new total source with fission

for all g ′ ∈ G do # Loop over energy groups
Q(n+1)

i,g ←Q(n+1)
i,g +ΣS

i,g ′→gΦ
(n)
i,g ′ # Increment total source with scattering

end for
end for

end for

by the GPU solver, the FSRs are copied back to the CPU to
generate relevant output and data visualizations using the
same routines applied to output data from the CPU solver.

During a transport sweep, each GPU thread integrates the
flux for one energy group of a track across the entire geometry
while updating the FSR scalar fluxes for each segment. The
loop over energy groups is unrolled across GPU threads to
provide sufficient parallel concurrency to keep all of the GPU
cores busy and to reduce thread warp divergence. To achieve
good performance on the GPU, OpenMOC makes extensive
use of the sophisticated GPU memory hierarchy. In particular,
the solver uses fast shared memory for frequently updated
values such as FSR sources and scalar fluxes, and cacheable
constant memory for fixed value scalar variables such as loop
termination conditions.

3.5. Nonlinear Diffusion Acceleration

In addition to providing speedup through parallelization
and hardware acceleration, OpenMOC also includes a nonlin-
ear diffusion acceleration (NDA) scheme to solve the neutron
transport equation. Acceleration schemes, such as NDA, are
necessary when solving full-core problems which require thou-
sands of power iterations due to a high dominance ratio.

The NDA algorithm of choice is the Coarse Mesh Finite Dif-
ference (CMFD) method. CMFD was first proposed by Smith
(K. S. Smith, 1983) and has been widely used in accelerating
neutron diffusion and transport problems for many years (J.
Y. Cho, H. G. Joo, K. S. Kim and S. Q. Zee, 2002; Z. Zhong,
T. J. Downar, Y. Xu, M. D. DeHart and K. T. Clarno, 2008). In
particular, it has been shown that CMFD acceleration gives
>100x speedups on large LWR problems (K. S. Smith and J.
D. Rhodes, 2002).

CMFD acceleration is implemented in OpenMOC by over-

5

laying a Cartesian coarse mesh on top of the unstructured flat
source region mesh. During a MOC transport sweep, Open-
MOC tallies the partial currents across the surfaces of each
mesh cell, designated by J I+ for the positive sides of coarse
mesh cell I and J I− for the negative sides of I . At the end
of the transport sweep, OpenMOC proceeds to calculate the
following terms for each mesh cell I and energy group g:

Table 1. Variables in CMFD

Variable Description

φ̄g,I Volume-averaged scalar flux
Σ̄x

g,I Flux-weighted cross section for reaction x
D̄g,I Flux-weighted diffusion coefficient
D̂g,I± Finite-difference diffusion coefficient cou-

pling mesh cell I and I ± 1
D̃g,I± Finite-difference-like nonlinear diffusion co-

efficient coupling mesh cells I and I ± 1

The nonlinear diffusion coefficient coupling terms lie at
the heart of CMFD, and are computed from the J I± tallied
during the MOC sweep using the net current equation:

J I±
g = −D̂I±

g (φ̄
I±1
g − φ̄ I

g)− D̃I±
g (φ̄

I±1
g + φ̄ I

g) (11)

There are two subtle points in computing the nonlinear
coupling coefficients D̃I±

g . First, the condition |D̃I±
g | < |D̂

I±
g |

must be met in order to guarantee the diagonal dominancy in
the destruction matrix. Otherwise, OpenMOC will re-compute
two terms that are equal in magnitude and satisfy Equation 11.
Furthermore, under-relaxation of the nonlinear correction
factor is used to accelerate and maintain stability of the eigen-
value convergence rate for large, heterogeneous geometries.
OpenMOC does so by applying a fixed damping factor on the
D̃I±

g terms.
Upon computing the above terms, OpenMOC sets up the

standard production and destruction matrices for the diffu-
sion eigenvalue problem with addition of nonlinear coupling
coefficients in the destruction matrix:

Aφ =
1

ke f f
Mφ (12)

where A is the destruction matrix whose main diagonal
contains absorption, out-scattering and leakage terms (from
this cell to the four adjacent cells) and off-diagonals contain
in-scattering and leakage terms (from the adjacent cells), M
is the construction matrix filled with the fission source terms,
and φ is a vector containing scalar fluxes for each mesh cell
and energy group.

Within each CMFD iteration, OpenMOC uses power it-
erations to solve the generalized non-Hermitian eigenvalue
problem. In each power iteration, the linear system is solved
using a parallel (red-black) implementation of the successive
over-relaxation method.

Upon convergence of the CMFD diffusion problem, Open-
MOC performs prolongation by multiplying each FSR’s scalar

flux by the ratio of the converged coarse mesh scalar flux to
the initial coarse mesh scalar flux in the acceleration step:

φ̄g,i = φ̄g,i

φ̄g,I

φ̄g,I ,0

∀i ∈ I (13)

where φ̄g,i is the FSR scalar flux for energy group g and
FSR i in coarse mesh cell I , φ̄g,I ,0 is the initial scalar flux for
the CMFD solver, and φ̄g,I is the converged CMFD scalar flux
for mesh cell I .

4. Modern Software Design

4.1. Programming Languages

One of the motivations behind OpenMOC was to develop
a code with balanced design criteria for maximal compute
performance, maintainability, extensibility, and portability. In
addition, it was required that OpenMOC be both user and
developer friendly with a relatively small learning curve. To
achieve these goals, the code was developed to conform to
modern software development practices.

OpenMOC is designed using the object-oriented program-
ming paradigm, a standard for software development for over
two decades. In addition, OpenMOC uses a compiled lan-
guage coupled with a scripting language “glue” (M. F. Sanner,
1999), a methodology that has increasingly gained traction
across scientific and engineering disciplines since it enables
both usability and performance.

The majority of the source code is written in C/C++ as it
is the most robust and well supported general purpose, high
performance, compiled programming language with object-
oriented features. In addition, OpenMOC’s solver routines for
the GPU are written in NVIDIA’s CUDA programming language
(NVIDIA, 2013) - a compiled language with similar syntax
to C/C++. The widely adopted Simplified Wrapper Interface
Generator (SWIG) (D. M. Beazley, 2003) is deployed to expose
the C/C++/CUDA classes and routines to the Python script-
ing language (see Figure 3). OpenMOC’s Python interface
allows for rapid prototyping and testing of code features and
tight integration with the rich ecosystem of powerful data
processing and visualization tools developed for Python.

OpenMOC uses the Git revision control system and an
open source distribution is hosted on GitHub at https://
github.com/mit-crpg/OpenMOC. The build system and con-
figuration management for OpenMOC is handled using Python’s
Distutils package, which is provided by default with all modern
Python distributions.

4.2. User Input

OpenMOC’s Python interface makes it relatively easy to
create complicated reactor models with modest effort. Gen-
erating input for an OpenMOC simulation does not involve
writing an input file in the traditional sense. OpenMOC lever-
ages the flexiblity provided by Python to allow users complete
control to build their inputs in one or more scripts just as

6

https://github.com/mit-crpg/OpenMOC
https://github.com/mit-crpg/OpenMOC

Figure 3. The model used in OpenMOC to couple the compiled C/C++/CUDA
code to the Python scripting language.

one may do for any Python program. The user imports the
necessary OpenMOC modules (see Table 2) into Python and
“builds” a simulation using only those classes and routines
which are needed.

Table 2. OpenMOC’s Python modules

Module Description

openmoc Main module for OpenMOC
openmoc.options Command line options
openmoc.log Level-based logging messages
openmoc.materialize Import multi-group nuclear data
openmoc.plotter Visualizations for geometry, flux, etc.
openmoc.process Data processing
openmoc.cuda Routines for NVIDIA GPUs

Figure 4 illustrates a simple OpenMOC Python script to
model a simple pin cell lattice. The script first defines some of
the key simulation parameters for an OpenMOC simulation,
including the track spacing and azimuthal angle quadrature
order. With respect to materials data, such as multi-group
cross-sections, the user can manually create arrays of the
data within the input script and assign the data to unique
Material class objects. The openmoc.materialize module
provides routines to write nuclear data to a binary format,
such as HDF5 (S. Koranne, 2011), and easily retrieve the data
at runtime as shown in Figure 4. To construct the geometry
using the CSG formulation as described in Section 3.1, the
user defines Surface, Cell, Universe and Lattice objects
from the main openmoc module and adds them to a Geometry
object. Once the simulation parameters have been defined,
all materials data has been imported, and the Geometry has
been built, the user may instantiate one of the Solver class
objects provided with OpenMOC for CPUs or NVIDIA GPUs.

The open source distribution of OpenMOC provides a
number of sample input files of varying complexity which
may serve as templates for new users and developers wishing
to learn how to use the code.

4.3. Simulation Output

The Python framework for OpenMOC makes it convenient
to leverage the extensive data processing and visualization

capabilities available in the scientific Python ecosystem. The
OpenMOC code includes mechanisms to generate output in
the form of text-based console output, visualizations, and
binary data files.

The openmoc.log module uses a level-based logging mod-
ule that is unified between the C/C++/CUDA and Python
source codes. Messages written using the openmoc.log mod-
ule’s routines are displayed in the console and written to a
persistent logfile for each simulation run. Furthermore, Open-
MOC’s openmoc.process module includes the functionality
needed to store simulation data - such as ke f f , flat source
region fluxes, etc. - to binary output file(s) and to retrieve
simulation data for data processing at a later time.

The openmoc.plotter module contains routines to create
visualizations using the popular matplotlib Python package (J.
D. Hunter, 2007). The types of plots which may be generated
include diagrams of the geometry color-coded by material,
cell, or flat source region (see Figure 1). In addition, it is often
instructive to plot a diagram of the tracks and track segments
(see Figure 2). Furthermore, the openmoc.plotter module
may be used to plot the flux by energy group as well as the
normalized pin and assembly powers.

An example code snippet utilizing the openmoc.plotter
and openmoc.process modules is shown in Figure 5.

5. Results

5.1. C5G7 2D Benchmark

A series of test cases were run for the 7-group 2D C5G7
benchmark problem (E. E. Lewis, G. Palmiotti, T. A. Taiwo,
R. N. Blomquist, M. A. Smith and N. Tsoulfanidis, 2003).
The C5G7 problem was developed as a modern benchmark
for deterministic neutron transport methods without spatial
homogenization. The problem contains four 17 × 17 pin cell
assemblies with vacuum boundary conditions on the right and
bottom and reflective boundary conditions on the left and top
boundaries. Each pin has a 0.54 cm radius with a pitch of
1.26 cm. The bundles on the top left and bottom right contain
UO2 fuel while the ones on the opposite two corners are MOX
assemblies, as depicted in Figure 6. Each assembly contains a
pattern of fuel pin cells of varying enrichments, guide tubes
and fission chambers.

A model of the C5G7 geometry was built for OpenMOC
with three rings and eight angular divisions per pin cell. A
1.26 mm × 1.26 mm mesh was used for the moderator region
adjacent to the bundles (of width 13.86 cm) to capture the
thermal flux gradient in this region. A coarser 1.26 cm × 1.26
cm mesh was used for the remaining 7.56 cm of moderator
on the outermost edge of the geometry. A total of 142,964
flat source regions were represented for the entire geometry.
OpenMOC was used to converge the source distribution to
1E-5 with 12 threads on two Intel Xeon processors, each with
six cores. The thermal flux distribution is shown in Figure 7.

The converged eigenvalues for OpenMOC’s solvers are pre-
sented in Table 3 for 4 - 128 azimuthal angles with 0.01 cm
track spacing, and in Table 4 for 0.1 - 0.01 cm track spacing

7

from openmoc import *
from openmoc.materialize import *

num_threads = 4 # Number of OpenMP threads
track_spacing = 0.1 # Preferred track spacing in cm
num_azim = 128 # Azimuthal angle quadrature order
tolerance = 1E-5 # Convergence criterion on the source

Import materials data from HDF5 file
materials = materialize(’materials.hdf5’)

Extract the unique ID for each Material of interest
uo2_id = materials[’UO2’].getId()
water_id = materials[’Water’].getId()

Create bounding Surfaces for a pin cell
circle = Circle(x=0.0, y=0.0, radius=0.45)
left = XPlane(x=-0.63)
right = XPlane(x=0.63)
top = YPlane(y=0.63)
bottom = YPlane(y=-0.63)

Create bounded Cells
cells = []
cells.append(CellBasic(universe=1, material=uo2_id)) # Fuel
cells.append(CellBasic(universe=1, material=water_id)) # Moderator
cells.append(CellFill(universe=0, universe_fill=2)) # Pin cell

Add bounding Surfaces to each Cell
cells[0].addSurface(halfspace=-1, surface=circle)
cells[1].addSurface(halfspace=+1, surface=circle)
cells[2].addSurface(halfspace=+1, surface=left)
cells[2].addSurface(halfspace=-1, surface=right)
cells[2].addSurface(halfspace=+1, surface=bottom)
cells[2].addSurface(halfspace=-1, surface=top)

Create simple 2 x 2 Lattice
lattice = Lattice(id=2, width_x=4.0, width_y=4.0)
lattice.setLatticeCells([[1, 1],

[1, 1]])

Create the Geometry
geometry = Geometry()

Add Materials, Cells and Lattices to the Geometry
for material in materials.values(): geometry.addMaterial(material)
for cell in cells: geometry.addCell(cell)
geometry.addLattice(lattice)

Create the TrackGenerator and perform ray tracing
track_generator = TrackGenerator(geometry, num_azim, track_spacing)

Create a Solver for the CPU and converge the source
solver = CPUSolver(geometry, track_generator)
solver.setConvergenceThreshold(tolerance)
solver.setNumThreads(num_threads)
solver.convergeSource(max_iters)

Figure 4. A sample OpenMOC Python script to model a 2 × 2 fuel pin lattice. First, the necessary OpenMOC Python modules are imported and variables are
defined for some of the parameters in an OpenMOC simulation. Multi-group nuclear data is imported into OpenMOC from an HDF5 binary file. A Geometry
composed of Surfaces, Universes, Cells and Lattices is constructed. Finally, a Solver class object for the CPU is instantiated and used to converge the
source distribution.

8

import openmoc.plotter as plotter
import openmoc.process as process

Generate plots using Matplotlib
plotter.plotMaterials(geometry)
plotter.plotCells(geometry)
plotter.plotFlatSourceRegions(geometry)
plotter.plotFluxes(geometry, solver, energy_groups=[1,3,5,7])

Store the simulation data in an HDF5 output file
process.storeSimulationState(solver, filename=’pin-cell-data’, extension=’hdf5’)

Figure 5. Routines to plot the materials, geometry, FSRs and more are provided in the openmoc.plotter module. The openmoc.process module enables
users to store/retrieve simulation data, such as ke f f and FSR scalar fluxes, to binary files.

Figure 6. The C5G7 benchmark problem.

with 128 azimuthal angles. Each of these cases was run with-
out use of CMFD acceleration. The absolute error in pcm for
each converged solution with respect to the reference Monte
Carlo eigenvalue solution of ke f f = 1.18655 ± 9.5 pcm is
given in each table. The results demonstrate excellent agree-
ment between OpenMOC’s converged eigenvalue to within
the uncertainty of the reference Monte Carlo solution.

Table 3. OpenMOC converged eigenvalues with respect to azimuthal angle
quadrature order for the C5G7 benchmark.

Azimuthal Transport ke f f ∆ρ [pcm] Runtime
Angles Sweeps [sec]

4 702 1.18543 -112 508
8 717 1.18456 -199 788

16 718 1.18499 -151 1,452
32 715 1.18625 -25 2,515
64 715 1.18650 -5 4,655

128 715 1.18663 +8 8,884

The percent relative pin power error for each pin in the
C5G7 benchmark problem is illustrated in Figure 8. As ex-

Figure 7. Thermal flux distribution for the C5G7 benchmark.

pected, the maximum errors are for those pins nearest the
moderator where the thermal flux gradient is greatest. The
average and maximum relative pin power error dependence
on azimuthal angle quadrature order is shown in Table 5 for
cases run with 0.01 cm track spacing.

5.2. LRA 2D Diffusion Benchmark

The diffusion solver implemented in OpenMOC has been
validated with the 2D Laboratorium für Reaktorregelung (LRA)

Table 4. OpenMOC converged eigenvalues with respect to track spacing for
the C5G7 benchmark.

Track Transport ke f f ∆ρ [pcm] Runtime
Spacing [cm] Sweeps [sec]

0.1 715 1.18664 +9 1,017
0.05 715 1.18662 +7 1,900
0.01 715 1.18663 +8 8,884

9

Figure 8. Percent relative pin power errors for the C5G7 benchmark.

Table 5. OpenMOC converged average and maximum percent relative pin
power errors for the C5G7 benchmark.

Azimuthal Avg. Relative Max. Relative
Angles % Error % Error

4 1.791 6.558
8 0.404 1.659

16 0.368 1.720
32 0.436 1.734
64 0.451 1.772

128 0.456 1.785

benchmark initial steady state solution. The 2D LRA bench-
mark is a 2-group, quarter-core BWR blade drop transient
problem. The geometry consists of 78 15 cm × 15 cm homog-
enized fuel assemblies (regions 1-4) surrounded by water cells
(region 5) to fill the 165 cm × 165 cm geometry as depicted
in Figure 9.

q
The reference eigenvalue for the initial steady state prob-

lem was taken to be ke f f = 0.99637, as reported by B. N.
Aviles (1993). To validate the diffusion solver, a fine mesh
was overlayed on the LRA geometry and successively refined
until the eigenvalue converged. OpenMOC was used to con-
verge the root-mean-square of the relative change in the suc-
cessive iteration’s energy-integrated fission source to 1E-8
with 12 threads on two Intel Xeon processors, each with six
cores. The over-relaxation factor on the linear solve was set
to 1.5 for all cases. As shown in Table 6, the OpenMOC dif-
fusion solver eigenvalue agrees quite well with the reference
solution. The diffusion solver for the nonlinear CMFD accel-
eration equations uses the same general diffusion solver with
a non-symmetric form of the iteration matrix.

5.3. Parallel Scaling

The C5G7 benchmark problem was used in a series of
scaling studies to profile OpenMOC’s parallel performance (W.

Figure 9. The LRA benchmark geometry.

Table 6. OpenMOC diffusion solver converged eigenvalues with respect to
mesh cell size for the LRA benchmark.

Mesh Size ke f f ∆ρ [pcm] Runtime
[cm] [sec]

15 1.00389 755 0.4
7.5 0.99750 113 0.7

3.75 0.99623 -14 1.0
1.875 0.99625 -12 4.0

0.9375 0.99633 -4 38.0
0.46875 0.99636 -1 396.4

ref 0.99637 - -

Boyd, K. Smith, B. Forget and A. Siegel, 2014). One type of
study applied was a strong scaling study in which the problem
size is fixed while the number of parallel threads is varied. In
this case, the C5G7 problem was solved with 192 azimuthal
angles and 0.1 cm track spacing with 1-12 threads on 12
Intel Xeon Sandy Bridge-EP cores with 24 GB of memory.
Intel’s icpc (version 13.1.0) and GNU’s g++ (version 4.4.6)
C++ compilers were evaluated for both single and double
precision (SP and DP). The parallel speedup for the strong
scaling study is shown in Figure 10. As shown in the Figure,
all compiled versions of OpenMOC’s multi-threaded solvers
achieve nearly 11× speedup with 12 threads on 12 cores.

In addition, studies to compare performance results be-
tween the CPU and GPU solvers were performed (W. Boyd,
2014). Figure 11 illustrates the parallel speedup for the GPU
as the number of azimuthal angles is scaled from 4 - 128 for
four NVIDIA GPUs. The results demonstrate a nearly 50×
speedup for the GPU-based solver over the sequential CPU
solver. The advantage for the GPU grows with the problem
size as the azimuthal angle quadrature order increases.

10

Figure 10. Strong scaling for the C5G7 benchmark with 1-12 threads on 12
cores.

Figure 11. Speedup for NVIDIA GPUs relative to a single Intel Xeon CPU
core for the C5G7 benchmark.

5.4. Nonlinear Acceleration

To illustrate the effect of CMFD acceleration on the C5G7
benchmark problem, Figure 12 shows the root-mean-square
of the relative change in the successive iteration’s energy-
integrated fission source for the unaccelerated OpenMOC
calculation. As expected, the unaccelerated calculation takes
hundreds of power iterations to solve a heterogeneous reactor
problem with a high dominance ratio. In contrast, CMFD
acceleration dramatically reduces the number of transport
iterations and runtime, as shown in Table 7.

The effect of a fixed damping factor on the CMFD method
is further investigated. Table 7 and Figure 13 show the number
of transport sweeps required to converge the source distribu-
tion to 1E-5 for the C5G7 benchmark problem with 0.05 cm
track spacing and 64 azimuthal angles using 12 threads on
two Intel Xeon processors, each with six cores. As shown in
Table 7 the CMFD method with a damping factor of less than
0.8 reduces the number of MOC transport sweeps by a factor
of 30 and the runtime by a factor of 20. The optimal damping

Figure 12. OpenMOC’s convergence rate for the C5G7 benchmark without
CMFD acceleration.

Figure 13. OpenMOC’s convergence rate for the C5G7 benchmark using
different CMFD damping factors.

factor is about 0.7. For this specific case, no damping or using
a damping factor of 0.8 or 0.9 would fail to converge the
problem. The eigenvalues for the unaccelerated and acceler-
ated cases agree quite well with a difference of less than 10
pcm. This difference can be expected for this problem and
convergence criteria due to the high dominance ratio causing
slightly premature convergence for the unaccelerated case.

6. Conclusions

A new method of characteristics code called OpenMOC
has been developed for 2D neutron transport calculations.
OpenMOC is an open source platform created to explore ad-
vanced algorithmic acceleration schemes and parallel algo-
rithms for next generation heterogeneous computer architec-
tures. The results presented in this paper verify the accuracy
of the OpenMOC code with respect to other deterministic

11

Table 7. The eigenvalue, time, and number of transport sweeps required to
convege the C5G7 benchmark with different CMFD damping factors.

CMFD Damping Transport ke f f Runtime
Factor Sweeps [sec]

No N/A 715 1.18650 4,655
Yes 0.4 24 1.18659 236
Yes 0.5 23 1.18659 216
Yes 0.6 22 1.18659 208
Yes 0.7 21 1.18659 207
Yes 0.8 - - -
Yes 0.9 - - -
Yes 1.0 - - -

neutron transport codes in solving the 2D C5G7 and LRA
benchmark problems. OpenMOC has been shown to scale
nearly perfectly on single-node shared memory CPUs, and to
achieve nearly 50× speedups on NVIDIA GPUs with respect
to a single-threaded CPU solver.

CMFD non-linear acceleration scheme has been imple-
mented in OpenMOC and has been shown to achieve a factor
of 30 reduction in the number of MOC transport sweeps re-
quired to obtain the same convergence as the unaccelerated
method of characteristics results for the C5G7 example shown
in this paper. An advanced low order acceleration scheme
based on transport theory has also been implemented in the
OpenMOC framework (L. Li, 2013).

The OpenMOC code is being actively pursued by the Com-
putaional Reactor Physics Group at MIT and the DOE’s Center
for Exascale Simulation of Advanced Reactors. The OpenMOC
collaboration intends to continue devloping the code with the
intention of creating a tool for 3D full-core reactor physics
calculations. To achieve that goal, future work will need to
focus on distributed memory parallelism via spatial/angular
domain decomposition to model larger and more complex
problems. In addition, higher order source approximation
schemes (R. Ferrer, J. Rhodes and K. Smith, 2012) will permit
coarser spatial discretization which will reduce the memory
requirements for large calculations. It is the hope of those
involved with the OpenMOC collaboration that others in the
nuclear engineering community will make use of and con-
tribute to the open source codebase for their own research
interests.

Acknowledgments

The software design principles employed for OpenMOC
are in large part inspired by the legacy left behind by Paul
Romano on the MIT Computational Reactor Physics Group.

The first author was supported by the National Science
Foundation Graduate Research Fellowship under Grant No.
1122374 in addition to the DOE’s Center for Exascale Sim-
ulation of Advanced Reactors (CESAR). The second author
is a recipient of the DOE Office of Nuclear Energy’s Nuclear
Energy University Programs Fellowship, and the third author
is a Studsvik Scandpower Graduate Fellow. This work was

also partially supported by the Office of Advanced Scientific
Computing Research, Office of Science, US Department of
Energy, under Contract DE-AC02-06CH11357.

References

A. Yamamoto, M. Tabuchi, N. Sugimura, T. Ushio and M. Mori, 2007. Deriva-
tion of Optimum Polar Angle Quadrature Set for the Method of Character-
istics Based on Approximation Error for the Bickley Function. Journal of
Nuclear Science and Engineering 44 (2), 129–136.

B. N. Aviles, 1993. Development of a Variable Time-Step Transient NEM Code:
SPANDEX. pp. 425–427.

D. Lax, W. Boyd and N. Horelik, 2014. An Algorithm for Identifying Unique Re-
gions in Constructive Solid Geometries. In: Submitted to the Proceedings
of PHYSOR. Kyoto, Japan.

D. M. Beazley, 2003. Automated Scientific Software Scripting with SWIG.
Future Generation Computer Systems 19 (5), 599–609.

E. E. Lewis, G. Palmiotti, T. A. Taiwo, R. N. Blomquist, M. A. Smith and
N. Tsoulfanidis, 2003. Benchmark Specifications for Deterministic MOX
Fuel Assembly Transport Calculations without Spatial Homogenization.
, Organisation for Economic Co-operation and Development’s Nuclear
Energy Agency.

G. E. Moore, 1965. Cramming More Components onto Integrated Circuits.
Electronics 38 (8), 114–117.

Intel, 2012. Intel C++ Intrinsic Reference. http://software.intel.
com/en-us/articles/intel-intrinsics-guide, [Online; accessed
12/30/2013].

Intel, 2013a. Intel Architecture Instruction Set Extensions Programming Ref-
erence. http://software.intel.com/en-us/intel-isa-extensions,
[Online; accessed 10/30/2013].

Intel, 2013b. Intel Math Kernel Library. http://software.intel.com/
en-us/intel-mkl, [Online; accessed 10/30/2013].

J. D. Hunter, 2007. Matplotlib: A 2D Graphics Environment. Computing In
Science & Engineering 9 (3), 90–95.

J. R. Askew, 1972. A Characteristics Formulation of the Neutron Transport
Equation in Complicated Geometries. AAEW-M 1108, UK Atomic Energy
Establishment.

J. Y. Cho, H. G. Joo, K. S. Kim and S. Q. Zee, 2002. Cell Based CMFD
Formulation for Acceleration of Whole-Core Method of Characteristics
Calculations. Journal of the Korean Nuclear Society 34 (3), 250–258.

K. S. Smith, 1983. Nodal Method Storage Reduction by Non-linear Iteration.
Vol. 44.

K. S. Smith and J. D. Rhodes, 2002. Full-Core, 2-D, LWR Core Calculations
with CASMO-4E. In: Proceedings of PHYSOR. Seoul, South Korea.

L. Li, 2013. A Low Order Acceleration Scheme for Solving the Neutron
Transport Equation. M.S. Thesis, Massachusetts Institute of Technology.

M. F. Sanner, 1999. Python: A Programming Language for Software Inte-
gration and Development. Journal of Molecular Graphics and Modelling
17 (1), 57–61.

NVIDIA, 2013. NVIDIA CUDA C Programming Guide. http://docs.
nvidia.com/cuda/cuda-c-programming-guide/, [Online; accessed
12/22/2013].

OpenMP Architecture Review Board, 2013. OpenMP Application Program In-
terface Version 4.0. http://www.openmp.org/mp-documents/OpenMP4.
0.0.pdf, [Online; accessed 12/22/2013].

P. K. Romano and B. Forget, 2013. The OpenMC Monte Carlo Particle Transport
Code. Annals of Nuclear Energy 51, 274–281.

R. Ferrer, J. Rhodes and K. Smith, 2012. Linear Source Approximation in
CASMO5. In: Proceedings of PHYSOR. Knoxville, TN, USA.

S. Koranne, 2011. Hierarchical Data Format 5: HDF5. In: Handbook of Open
Source Tools. Springer US, pp. 191–200.

W. Boyd, 2014. Massively Parallel Algorithms for Method of Characteristics
Neutral Particle Transport on Shared Memory Computer Architectures.
M.S. Thesis, Massachusetts Institute of Technology.

W. Boyd, K. Smith and B. Forget, 2013. A Massively Parallel Method of
Characteristic Neutral Particle Transport Code for GPUs. In: Proceedings of
the International Conference on Mathematics and Computational Methods
Applied to Nuclear Science and Engineering. Sun Valley, ID, USA.

12

http://software.intel.com/en-us/articles/intel-intrinsics-guide
http://software.intel.com/en-us/articles/intel-intrinsics-guide
http://software.intel.com/en-us/intel-isa-extensions
http://software.intel.com/en-us/intel-mkl
http://software.intel.com/en-us/intel-mkl
http://docs.nvidia.com/cuda/cuda-c-programming-guide/
http://docs.nvidia.com/cuda/cuda-c-programming-guide/
http://www.openmp.org/mp-documents/OpenMP4.0.0.pdf
http://www.openmp.org/mp-documents/OpenMP4.0.0.pdf

W. Boyd, K. Smith, B. Forget and A. Siegel, 2014. Parallel Performance Results
for the OpenMOC Method of Characteristics Code on Multi-Core Platforms.
In: Submitted to the Proceedings of PHYSOR. Kyoto, Japan.

Z. Zhong, T. J. Downar, Y. Xu, M. D. DeHart and K. T. Clarno, 2008. Imple-
mentation of Two-Level Coarse Mesh Finite Difference Acceleration in
an Arbitrary Geometry, Two-Dimensional Discrete Ordinates Transport
Method. Nuclear Science and Engineering 158 (3), 289–298.

13

	Introduction
	Method of Characteristics
	Implementation
	Geometry Representation
	Global Cyclic Tracking
	MOC Solver
	Shared Memory Parallelism
	OpenMP
	SIMD Vectorization
	Graphics Processing Units (GPUs)

	Nonlinear Diffusion Acceleration

	Modern Software Design
	Programming Languages
	User Input
	Simulation Output

	Results
	C5G7 2D Benchmark
	LRA 2D Diffusion Benchmark
	Parallel Scaling
	Nonlinear Acceleration

	Conclusions

