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Abstract

Runt domain transcription factor 3 (RUNX3) is widely regarded as a tumour-suppressor gene 

inactivated by DNA hypermethylation of its canonical CpG (cytidine-phosphate-guanidine) island 

(CGI) promoter in gastric cancer (GC). Absence of RUNX3 expression from normal gastric 

epithelial cells (GECs), the progenitors to GC, coupled with frequent RUNX3 overexpression in 

GC progression, challenge this longstanding paradigm. However, epigenetic models to better 

describe RUNX3 deregulation in GC have not emerged. Here, we identify lineage-specific DNA 

methylation at an alternate, non-CGI promoter (P1) as a new mechanism of RUNX3 epigenetic 

control. In normal GECs, P1 was hypermethylated and repressed, whereas in immune lineages P1 

was hypomethylated and widely expressed. In human GC development, we detected aberrant P1 

hypomethylation signatures associated with the early inflammatory, preneoplastic and tumour 

stages. Aberrant P1 hypomethylation was fully recapitulated in mouse models of gastric 

inflammation and tumorigenesis. Cell sorting showed that P1 hypomethylation reflects altered 

cell-type composition of the gastric epithelium/tumour microenvironment caused by immune cell 

recruitment, not methylation loss. Finally, via long-term culture of gastric tumour epithelium, we 
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revealed that de novo methylation of the RUNX3 canonical CGI promoter is a bystander effect of 

oncogenic immortalization and not likely causal in GC pathogenesis as previously argued. We 

propose a new model of RUNX3 epigenetic control in cancer, based on immune-specific, non-CGI 

promoter hypomethylation. This novel epigenetic signature may have utility in early detection of 

GC and possibly other epithelial cancers with premalignant immune involvement.

INTRODUCTION

Gastric cancer (GC) has the second highest rate of cancer-related mortality worldwide, 

accounting for >700 000 deaths annually.1 Late diagnosis is a major challenge to GC 

management, with disease presentation typical at advanced stages when treatment is 

ineffective and prognosis is poor.2 Chronic inflammation after infection with Helicobacter 

pylori is a primary risk factor for the most common or ‘intestinal-type’ GC,3 but definitive 

mechanisms remain elusive. GC is believed to be of epithelial origin, deriving from gastric 

epithelial cells (GECs) or their progenitors.4,5 Elucidation of molecular events underlying 

the inflammation-related preneoplastic transformation of GECs3 will be critical for the 

advancement of GC management, allowing earlier disease detection and improved survival.

Aberrant DNA methylation is one of the earliest molecular alterations in cancer and has 

been linked to GC pathogenesis.6,7 Hypermethylated sequences become hypomethylated on 

a global scale. Conversely, unmethylated CpG (cytidine-phosphate-guanidine) island (CGI) 

promoters, including those of some tumour-suppressor genes (TSGs), become 

hypermethylated leading to their repression.8 Hypermethylation of TSGs has been 

traditionally viewed as a persuasive mechanism of cancer pathogenesis, as well as providing 

a target for cancer detection.9 Nonetheless, recent evidence that de novo hypermethylation in 

cancer mostly affects CGI promoters already repressed in normal tissues argues that 

methylation is not always required for their repression and therefore is not necessarily a 

driver of cancer.10 Cell-type composition of the tumour microenvironment has gained 

attention as an alternative influence on cancer methylation profiles.11 In this context, CpG-

depleted or ‘non-CGI’ promoters, which show considerable variation in lineage-specific 

methylation, may offer complementary clinical utility to CGI promoters.12,13 Indeed, the 

prognostic value of methylation signatures corresponding to non-neoplastic tumour lineages, 

such as cancer-associated fibroblasts or cytolytic T-lymphocytes, has recently been 

demonstrated.14,15

Runt domain transcription factor 3 (RUNX3) belongs to the family of conserved ‘runt-

domain’ transcription factors that have diverse roles in hematopoiesis, neurogenesis and 

skeletal development.16–18 RUNX3 transcription initiates from two cis-regulatory regions 

designated the P1 (distal) and P2 (proximal) promoters. Expressed predominantly in 

hematopoietic lineages, RUNX3 regulates several aspects of immune function, including T-

cell differentiation,19,20 dendritic cell (DC) maturation21 and natural killer (NK) cell 

activation.22,23 In contrast to these definitive immune roles, the RUNX3 locus (located on 

human chromosome 1p36.1) has been controversially linked to a TSG function in GC. In 

2002, Li et al.24 proposed that RUNX3 inactivation via hypermethylation of a large CGI 

overlapping its P2 promoter is a pivotal event in GC pathogenesis. Subsequent studies have 
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confirmed the association of RUNX3 P2 hypermethylation with GC incidence (reviewed in 

Fan et al.25 and Subramaniam et al.26). However, fresh evidence that RUNX3 is never 

expressed in the normal GEC from which GC originates27 casts doubt not only on its 

proposed TSG function, but also on the role of P2 methylation in RUNX3 silencing and its 

associated utility as a functional marker of GC. Limitations of this widely disseminated 

epigenetic model24 are further compounded by paradoxical observations of RUNX3 

overexpression in GC and other cancers28–30 where P2 is reportedly hypermethylated.31 

Although RUNX3 continues to feature in the literature, models to better explain its 

deregulation in cancer have not emerged. With its TSG function now disputed,27 unravelling 

the inconsistencies of RUNX3 epigenetic control in GC will lead to an improved 

understanding of its broader role in cancer biology.

In focussing exclusively on the mechanistic importance of P2 methylation, researchers have 

overlooked a role for the alternate ‘non-CGI’ RUNX3 P1 promoter. Here we address this gap 

in understanding, showing that lineage-specific P1 methylation constitutes a novel and 

unexpected mechanism of RUNX3 epigenetic control in GC. We find that, in normal GEC, 

P1 is strongly hypermethylated and repressed. By striking contrast, in immune lineages, P1 

is hypomethylated and widely expressed. Through studies of human and mouse GC 

progression, we uncover a preneoplastic P1 hypomethylation signature reflecting altered 

cell-type composition of the gastric epithelium/tumour microenvironment via immune cell 

infiltration. Finally, we reveal that de novo methylation of the P2 CGI promoter in GEC, 

argued previously as a driver of GC pathogenesis, arises as a bystander effect of oncogenic 

immortalization and is unlikely to exert any significant impact on GC progression. These 

results delineate a novel, more parsimonious model of RUNX3 epigenetic control with 

emphasis on lineage-specific P1 methylation as a marker of preneoplastic tissue 

remodelling. The strong translational relevance of our findings to GC, and potential 

application to other epithelial cancers of inflammatory provenance, is discussed.

RESULTS

RUNX3 P1 hypomethylation correlates with human GC progression

To date, all RUNX3 methylation studies have targeted the CGI overlapping the P2 promoter, 

but none have interrogated P1 methylation in GC (Figure 1a). The P1 sequence falls short of 

the minimum CpG density criteria to qualify as a CGI (CpG observed/expected ratio >40.6; 

>200bp32) and is therefore ‘non-CGI’-associated. In contrast to CGI promoters that 

generally resist methylation, non-CGI promoters are very likely to be regulated by 

methylation if CpG dinucleotides are present.12,33 Indeed, this is the case for the human and 

mouse P1 sequences (Supplementary Figure S1). We therefore investigated RUNX3 P1 

expression and methylation in human gastric epithelial tissue collected from individuals 

displaying early-, intermediate- or late-stage intestinal-type GC development: H. pylori-

infected/gastritis,34 intestinal metaplasia (IM) and GC, respectively,6 together with normal 

(disease-free) controls (Figure 1b). Quantitative reverse transcriptase–PCR (QRT–PCR) 

revealed increased total RUNX3 mRNA expression in H. pylori-infected (4.05 ± 0.60-fold; P 

< 0.001), IM (8.47 ± 3.04-fold; P < 0.01) and GC (2.54 ± 0.73-fold; P < 0.01) tissues 

relative to normal controls (Figure 1c). Specific measurement of P1 mRNA similarly 
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revealed increased expression in H. pylori-infected (8.77 ± 1.74-fold; P < 0.001) but not in 

IM or GC tissues. The high GC content of the P2 transcript 5′ leader exon precluded its 

direct interrogation by QRT–PCR. These results show increased RUNX3 P1 expression, 

particularly during preneoplastic stages of GC. We next examined RUNX3 P1 methylation 

levels using Sequenom EpiTYPER assays. EpiTYPER quantifies the ratio of methylated to 

unmethylated cytosines at individual CpG dinucleotides at specific loci.35 Although P1 

hypermethylation predominated in normal gastric epithelial tissues, a P1 hypomethylation 

signature was significantly associated with H. pylori-positive, IM and GC tissues. Consistent 

with its CGI status, P2 remained unmethylated in H. pylori-infected and IM preneoplastic 

tissues, showing modestly increased methylation only in a subset of tumours but not 

exceeding 15% (that is, methylation ratio 0.15) of strands in any individual tumour (Figure 

1d). Hierarchical clustering showed a clear association of P1 hypomethylation with early 

inflammatory, preneoplastic and tumour stages of GC. Conversely, P2 was less vulnerable to 

epigenetic perturbation, showing weak hypermethylation in a subset of tumours (Figure 1e). 

RUNX3 P1 and P2 are thus oppositely methylated in normal gastric tissue, respectively 

showing uniform early loss and variable late gain of methylation in GC progression. These 

results identify RUNX3 P1 hypomethylation as a novel epigenetic signature with potential 

utility in GC risk prediction.

Conserved Runx3 P1 hypomethylation following H. pylori infection, genetic induction of 
gastric inflammation or tumorigenesis in mice

Human and mouse RUNX3/Runx3 are highly conserved with respect to their genomic 

organization, dual promoter structure (Figure 2a) and tissue expression profile. Therefore, 

mouse genetic and infection models recapitulating H. pylori-related preneoplastic and 

tumorigenic stages of human GC progression (Figure 2b), offered the most stringent 

approach to pinpoint the origin and significance of RUNX3 P1 hypomethylation in vivo. 

Accordingly, we first determined Runx3 transcription and methylation in stomachs of 

C57BL6 (wild type; WT) mice infected with mouse-adapted H. pylori SS1 for either 3- or 

12 months. QRT–PCR showed that P1 and P2 transcripts were progressively upregulated in 

3-month (4.10 ± 1.08; P = 0.036 and 12.58 ± 3.00; P = 0.008) and 12-month (8.22 ± 1.43-

fold; P = 0.005 and 66.59 ± 12.28-fold; P < 0.001) infected mice compared with uninfected 

littermate controls (Figure 2c). Similar to our observations in H. pylori-infected humans, 

aberrant P1 hypomethylation was evident in H. pylori-infected mice, showing progression 

from a moderate to a strong signature in 3- and 12-month infected mice, respectively. 

Conversely, P2 methylation was unaltered with H. pylori infection (Figures 2d and e). To 

discern effects of H. pylori-dependent inflammation versus bacterial presence on P1 

hypomethylation, we utilized transgenic mice with stomach-specific overexpression of the 

pro-inflammatory cytokine, gmcsf, (gmcsfTg). GmcsfTg mice develop spontaneous gastric 

inflammation independently of H. pylori infection.36 Runx3 P1 transcripts were upregulated 

(2.58 ± 0.31-fold; P < 0.01) in gmcsfTg compared with WT stomachs (Figure 2c) and 

correlated with P1 hypomethylation (Figures 2d and e). P2 was not differentially expressed 

or methylated (Figures 2c and e). Therefore P1 hypomethylation correlates with gastric 

inflammation, not with H. pylori’s presence per se. To determine whether P1 

hypomethylation persists later in GC progression, we utilized the gp130F/F GC model.37 

Gp130F/F mice develop tumours of the distal stomach with similar histopathology to human 
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GC. Though epithelial in origin, gp130F/F tumours are strongly infiltrated by cells of the 

innate and adaptive immune system. Increased P1 transcription (9 ± 1.46-fold; P < 0.05) 

(Figure 2b) and P1 hypomethylation were clearly correlated in gp130F/F tumours (Figures 2c 

and d), further supporting a link with gastric inflammation. Conversely, P2 transcription was 

increased (23.19 ± 6.10-fold; P<0.01) independently of its methylation status (Figures 2b 

and d). These results show that aberrant RUNX3 P1 hypomethylation is a conserved, 

inflammation-associated process correlating with the preneoplastic and tumorigenic stages 

of GC.

RUNX3 localizes to infiltrating immune cells and not to epithelial cells in gastric 
preneoplasia and cancer

RUNX3 was localized in H. pylori-infected (n = 16) and uninfected (n= 6) human gastric 

tissues by immunohistochemistry. RUNX3-specific staining was detected in nuclei of 

immune cells infiltrating the lamina propria of H. pylori-infected but was not detected in 

uninfected tissues (Figure 3a). RUNX3 was not detected in GECs of infected or uninfected 

individuals. We similarly analysed the stomachs from gmcsfTg and gp130F/F mice. In 

gmcsfTg mice, RUNX3-specific staining localized to the nuclei of immune cells infiltrating 

the gastric epithelium but was not detected in GECs (Figure 3b). Similarly, in gp130F/F 

mice, RUNX3 was detected in immune cells infiltrating lamina propria of antral tumours 

and in submucosal lymphoid pockets but was not detected in GECs (Figure 3c). Earlier work 

showed absence of RUNX3 in normal mouse intestinal epithelium;27 however, our results 

make the novel and critical distinction of showing absence of RUNX3 in normal, 

preneoplastic and tumour gastric epithelium in both humans as well as in mice. Therefore, 

RUNX3 overexpression in gastric preneoplasia and cancer is likely dependent on immune 

cell recruitment.

Differential Runx3 P1 methylation in GECs and immune lineages

Runx3 is known to be highly expressed in immune lineages (Supplementary Figure S2). 

Localization of gastric RUNX3 to infiltrating immune cells suggested that altered P1 

methylation could similarly reflect immune cell recruitment. To address this, we isolated 

immune lineages known to have high Runx3 expression: NK1.1+CD3− NK cells, CD8+ T-

cells, CD11c+ DCs, or low/absent Runx3 expression: CD11b+ macrophages, Gr1+ 

neutrophils, and CD45R+ B-cells from the spleens of WT mice by fluorescence-activated 

cell sorting (FACS) (Figure 4a; Supplementary Figure S3) and characterized their Runx3 

mRNA and methylation profiles relative to primary GECs. Runx3 P1 transcripts were 

detected in all immune cell types except B-cells, being most abundant in NK cells, CD8+ T-

cells and DCs. P2 transcripts were abundant only in NK cells, showing modest levels in 

other lineages and were absent in GECs (Figure 4b). Strikingly, P1 was hypomethylated in 

all immune cell types irrespective of their Runx3 expression level. This suggests that P1 

hypomethylation is permissive but not sufficient for transcription. Conversely, P1 was 

hypermethylated in primary GECs and mouse embryonic fibroblasts, which lack Runx3 

expression (Figure 4c). By reference to the public domain transcriptome data, mast cells 

(MCs) were noted for abundant Runx3 mRNA expression (Supplementary Figure S2) but 

have otherwise not been formally described to express Runx3. Analysis of spleen-derived, c-
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kit/CD117+FcεR1 + MCs (Figure 4a) confirmed Runx3 P1 hypomethylation and 

transcription at similar levels to CD8+ T-cells (Figures 4b and c).

Our results showing universal P1 hypomethylation in immune cells suggested that its 

specific epigenetic state might originate before, or during, hematopoiesis. To address this 

question, we tracked P1 methylation levels during MC differentiation from mouse bone 

marrow stem cells (BMSCs) cultured with interleukin (IL)-3. Correct MC differentiation 

was verified by the acquisition of a c-kit/CD117+FcεR1α+ surface phenotype (Figure 4d) 

and induction of carboxypeptidase (Cpa3) mRNA (Supplementary Figure S3). Bone 

marrow-derived MCs showed strong induction of Runx3 P1 mRNA relative to BMSCs 

showing only marginal expression, while P1 was equivalently hypomethylated in BMSCs 

and differentiated MCs (Figures 4e and f). Similar results were obtained in bone marrow-

derived DCs (B Kurklu, unpublished data). These results argue that immune-specific P1 

hypomethylation is inherited from BMSCs, further suggesting the existence of a 

developmental mechanism that protects P1 against de novo methylation in certain contexts.

Immune cell recruitment accounts for Runx3 P1 hypomethylation in gastric epithelial 
tumours

We next examined P1 methylation in GECs and immune cells isolated directly from 

gp130F/F gastric tumours. Dissected tumours were non-enzymatically disaggregated, and the 

following cell types were recovered by FACS: e-cadherin+ GECs, CD8+ T cells, and 

CD11c+ DCs (Figure 5a). EpiTYPER analysis of these tumour cell fractions revealed that 

P1 hypomethylated alleles were enriched in CD8+ T-cells and CD11c+ DCs. Conversely, P1 

hypermethylated alleles were enriched in e-cadherin+ GECs. P2 was unmethylated in 

tumour-derived immune cells and GECs (Figures 5b and c). That is, hypomethylated P1 

alleles reside predominantly within the immune, but not the epithelial component of gastric 

tumours, supporting immune cell recruitment as a key mechanism underlying a RUNX3 P1 

hypomethylation signature in GC progression.

Runx3 P2 hypermethylation triggered by immortalization of GECs

RUNX3 P2 hypermethylation clearly has no direct role in RUNX3 repression or as an 

autonomous driver of GC; however, its significance remains unexplained. Cancer-related de 

novo methylation targets repressed CGI promoters,10,38 and this global deregulation of 

methylation may arise as an effect of cellular immortalization.38 Immortalized cell lines 

often show more extensive CGI hypermethylation than corresponding primary tumours.39 

Accordingly, we compared P2 methylation levels in immortal human GC cell lines and 

primary GC tissues. Five out of the six cell lines showed near complete (>90%) P2 

hypermethylation (Figure 6a) contrasting with much lower levels (<15%) in primary GC 

tumour tissues. The single exception was the slow growing NCI-N87 line, which showed 

only marginally increased P2 methylation levels. P1 methylation levels were similar in both 

normal, tumour and cell lines. These results reveal a specific correlation between 

hypermethylation of the P2 CGI and GEC immortalization. To explore this concept, we next 

quantitated P2 methylation levels in mouse GECs both before and after their 

immortalization in vitro. Immortalization, defined as the inappropriate acquisition of 

indefinite proliferation, was induced by serial passage of cultured primary GECs isolated 
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from gp130F/F gastric tumours (Figure 6b). We cloned five GEC lines showing key features 

of an immortalized phenotype, including a high level of aneuploidy and the capacity to 

proliferate indefinitely in culture. Additionally, two of the lines displayed anchorage-

independent growth in soft agar, yet all of the lines retained expression of key epithelial 

marker proteins, including cytokeratin (Krt)8 (Figures 6c and d; Supplementary Table S1). 

Though derived from primary GECs lacking P2 methylation, four of the five GEC lines had 

acquired high-level P2 hypermethylation after immortalization (Figure 6e). P2 methylation 

levels were the highest in the fastest growing lines (clones1, 3 and 5), whereas only minor 

gains in methylation were observed in the slowest growing line (clone 2). Conversely, P1 

methylation in the immortal GECs was unperturbed relative to normal GECs (Figure 6e), 

consistent with evidence that de novo methylation in epithelial carcinogenesis may 

specifically target repressed CGI promoters. Therefore, P2 hypermethylation can be induced 

during GEC immortalization, likely in concert with de novo hypermethylation of other CGI 

promoters on a global scale. The over-representation of P2 hypermethylation among GC cell 

lines argues that CGI hypermethylated GEC clones may have a growth advantage, resulting 

in their preferential expansion in culture.

DISCUSSION

This work is the first to reveal a role for RUNX3 P1 promoter methylation in regulating 

lineage-specific RUNX3 transcription in the stomach. We specifically showed that P1 

methylation is established differently in GEC and immune cells and that increased 

recruitment of the latter underlies aberrant P1 hypomethylation in GC progression. Finally, 

we showed that de novo methylation of the P2 CGI promoter in GEC/tumour cells, argued 

previously as a driver of GC progression, likely arises as a bystander effect of oncogenic 

immortalization and is unlikely to have a causal role in the disease. We surmise that an in 

vitro growth advantage, associated with global CGI promoter hypermethylation, leads to an 

over-representation of hypermethylated P2 alleles in immortal GC cell lines. Our novel 

findings are summarized in Figure 7.

More than a decade has passed since Li et al.24 initially described RUNX3 as a TSG 

repressed by P2 hypermethylation in GC. Then recognized as a significant advance, the 

findings engendered a long-standing paradigm of gastric tumorigenesis via TSG epigenetic 

loss. Frequent P2 hypermethylation in GC and other cancers remains undoubted, having 

been verified by hundreds of subsequent studies seeking to replicate and extend the 

pioneering work of Li et al. (reviewed in Fan et al.25 and Subramaniam et al.26). However, 

the demonstrable absence of RUNX3 from normal GECs, the progenitors to GC, casts doubt 

upon its much vaunted TSG function.27 By inference, the existing model of P2 

hypermethylation as a driver of GC is also inadequate given that RUNX3 is repressed by 

default in normal GECs and is often overexpressed in GC and other cancers.

We propose an alternative model in which differential methylation of P1 dictates lineage-

specific RUNX3 expression. This novel modality was evident from observations in normal 

GEC and mesenchymal (fibroblast) lineages, where P1 was hypermethylated and repressed. 

By contrast, in immune lineages P1 lacked methylation and was widely transcribed. The fact 

that not all immune cell types have Runx3 expression, despite their universal P1 
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hypomethylation, argues that trans-factors are also required for full activation of 

transcription. This mode of differential methylation was highly significant in the context of 

human and mouse GC progression. P1 hypomethylation (and increased transcription) 

signatures reflected evolving cell-type composition of the preneoplastic epithelium and/or 

tumour microenvironment due to immune cell recruitment. Moreover, localization of 

RUNX3 to immune cells infiltrating the preneoplastic and tumour epithelium as shown here 

excludes the possibility that preneoplastic epithelial lesions, such as atrophic gastritis or 

mucous cell metaplasia, may have influenced P1 transcription and/or methylation. In breast 

cancer, DNA methylation profiles reflecting the tumour immune component have been used 

to great effect for clinical prediction.14 Presence of T-cell ‘methylation biomarkers’ in breast 

tumours correlated with better prognosis, suggesting a link with anti-tumour immunity. We 

postulate that RUNX3 P1 hypomethylation, as a marker of cytotoxic lymphocytes, may have 

similar prognostic value in GC, a postulate supported by the fact that cytolytic properties of 

CD8+ T-cells and NK cells are Runx3-dependent.23

A second major conclusion here is that P2 hypermethylation is a phenotypic feature of 

transformed, or immortal, GECs and has no causal role in RUNX3 repression or GC 

pathogenesis. Our findings are reminiscent of recent work in hTERT-immortalized 

fibroblasts showing progressive accumulation of P2 hypermethylation as a function of 

increasing generations in culture, without affecting transcription.40 However, our findings 

make the key distinction of showing evolution of immortal P2 hypermethylated clones from 

primary GECs ostensibly lacking P2 methylation. Whether P2 hypermethylation can arise de 

novo in culture, or amplifies clonally from rare aberrant cells in primary tumours, remains to 

be elucidated. Resonant with our findings, repressed CGI promoters are more vulnerable to 

de novo methylation in cancer than active CGI promoters10,38 based on polycomb-mediated 

premarking by repressive histone (H)3-lysine (K)27 tri-methylation.41 Together with 

evidence that the polycomb repressor complex 2 can promote RUNX3 P2 repression in 

GEC,42 these studies illustrate how a program of DNA methylation-independent repression 

might promote de novo P2 hypermethylation in immortal GECs. Nonetheless, it is 

increasingly apparent that CGI hypermethylation is less frequent in cancer than initially 

hypothesized.43 We indeed observed lower P2 methylation frequencies here using 

quantitative EpiTYPER analysis than reported by earlier studies using nonquantitative 

methylation-specific PCR (MSP).25,26 The propensity of non-quantitative MSP to 

overestimate low methylation levels44 may explain this discrepancy. In agreement, recent 

work found that P2 methylation levels of <10% can be reported as ‘hypermethylated’ by 

MSP.45

With its TSG function now in doubt,27 alternative roles for RUNX3 in the stomach must be 

considered. It has not escaped our notice that gastric epithelial hyperplasia in Runx3−/− mice 

may arise by a non-autonomous mechanism. This phenotype was attributed to Runx3 

deficiency in CD8+ cytolytic T-cells and consequent impairment of anti-tumour 

immunity.46 An immune-specific anti-tumour role was similarly implicated by spontaneous 

colitis and tumour growth in mice with lymphocyte-specific Runx3 deficiency.47 It may be 

significant that Runx3 expression is particularly abundant in immune lineages with known 

roles in anti-tumour immunity. Runx3 is essential for the cytolytic functions of CD8+ T-cells 
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and NK cells,19,23 but if either of these modalities might extend to restrain gastric tumour 

growth remains to be proven.

Here we have proposed a new model of RUNX3 epigenetic control based on lineage-specific 

hypomethylation of its (non-CGI) P1 promoter in immune cells. Furthermore, aberrant 

RUNX3 P1 hypomethylation derives from the mobile immune component of the 

preneoplastic and tumour epithelium during GC development. The significance of this new 

data lies in the potential clinical utility of P1 methylation in identifying ‘at-risk’ individuals 

during the preneoplastic stages of GC, before the emergence of malignant adenocarcinoma. 

P1 methylation may therefore offer superior clinical potential to P2 methylation, which 

appears later in GC progression and, reportedly, has no predictive value in staging, 

prognosis, recurrence or survival.25

MATERIALS AND METHODS

Human tissues

H. pylori-infected and uninfected human gastric epithelial tissues, GCs and preneoplastic 

adjacent to cancer tissues with IM were obtained endoscopically as described.6 Ethics 

approvals were obtained from the Royal Melbourne Hospital Human Research Ethics 

Committee (approval number 2004.176) and the Kanazawa University Ethics Committee for 

Human Genome Research (approval number 174.2008). Written informed consent was 

obtained for all study participants.

Mice

H+/K+ATPase-gmcsf transgenic mice36 were maintained on a Balb/C genetic background. 

Gp130/F/F co-receptor knock-in mice37 were maintained on a C57BL6/J genetic 

background. WT littermate controls were used in all the experiments. Mice were housed 

under specific pathogenfree conditions. Experiments were approved by the Murdoch 

Children’s Research Institute Animal Ethics Committee (approval numbers A693 and 

A713). WT (C57BL6) mice were infected with the H. pylori Sydney strain (SS) 1 as 

described.6

Mammalian cell culture

Human GC cell lines AGS, MKN7, MKN28, NCI-SNU1, KATO III and NCI-N87 were 

cultured in RPMI 1640 Glutamax medium supplemented with 10% fetal bovine serum 

(FBS); 2 mM non-essential amino acids; 50 IU penicillin; 50ug/ml streptomycin (Invitrogen, 

Carlsbad, CA, USA) at 37 °C in a humidified incubator with 5% CO2/air. To derive mouse 

primary GECs, stomachs from 3-week-old mice were chopped into ~1-mm3 pieces and 

digested with 2 mg/ml collagenase A (Roche, Mannheim, Germany) at 37 °C for 1 h. 

Digested tissue was resuspended in Dulbecco’s modified Eagle’s medium Glutamax 

medium supplemented with 20% FBS, 2 mM non-essential amino acids; 50IU penicillin; 

50ug/ml streptomycin (Invitrogen), disaggregated by repeated pipetting, seeded into 24-well 

plates and incubated at 37 °C with 5% CO2/air for 48 h to allow for culture maturation. To 

derive immortal mouse GEC lines, freshly dissected gp130F/F gastric tumours were surface 

sterilized by incubation in 0.04% sodium hypochlorite in phosphate-buffered saline (PBS) 
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for 20 min at room temperature, rinsed in PBS, chopped into ~1-mm3 pieces, resuspended in 

sterile PBS and allowed to settle for 1 min. Supernatants were aspirated, and tissue was 

collected by centrifugation, resuspended in 1 mg/ml collagenase and 1 IU/ml neutral 

protease (Sigma, St Louis, MO, USA) in PBS and digested at 37 °C for 60 min. Digested 

tissue was collected by centrifugation, resuspended in growth medium48 seeded onto 

collagen-coated 24-well culture plates and incubated undisturbed for 7 days. Rapidly 

expanding epithelial clones were isolated from contaminating non-epithelial cells by 

limiting dilution.

Generation of bone marrow-derived cultured MCs

Bone marrow stem cells were extracted from femurs of 6–8-week-old C57BL6 mice and 

cultured in Dulbecco’s modified Eagle’s medium Glutamax medium, supplemented with 

10% FBS, 50 IU penicillin, 50 ug/ml streptomycin and IL-3 for 6 weeks as described.49 

IL-3-enriched medium was sourced from murine WEHI-3 myelomonocytic leukaemia 

cultures and added to growth medium at 20%v/v.50 MC differentiation was verified by cell 

surface staining with CD117-FITC (fluorescein isothiocyanate; 1:300) and FcεR1α-PE 

(1:300; BD Biosciences, San Jose, CA, USA). Stained cells were analysed on a LSR-II flow 

cytometer using the FacsDiva software (BD Biosciences).

Immunohistochemistry and immunofluorescence

Immunohistochemistry with peroxidase detection was done essentially as described.51 A 

well-characterized rabbit polyclonal anti-Runx3 antiserum (poly-G) was used at a dilution of 

1:1000.52 Bound immunocomplexes were detected using Vectastain ABC reagents (Vector 

Laboratories, Burlingame, CA, USA), and staining was visualized by incubation in 3, 3′-

diaminobenzidine tetrahydrochloride buffer (Sigma). Immunofluorescence in cultured cells 

was performed as described.51 A FITC-conjugated rat polyclonal anti-mouse cytokeratin 

(Krt)8 antibody (Sigma) was used at a dilution of 1:100.

FACS

Splenocytes were prepared from 12-week mice, erythrocytes were removed by incubation in 

lysis buffer (1:9 v/v 0.17M Tris: 0.16 M ammonium chloride) for 5 min and enriched 

splenocytes were resuspended in 2% FBS and 1 mM EDTA in Hank’s Balanced Salt 

Solution. For isolation of tumour lineages, dissected gp130F/F gastric tumours were chopped 

into ~3–4mm3 pieces and disaggregated non-enzymatically by incubation in dissociation 

buffer (5% FBS, 1 mM dithiothreitol, 1 mM EDTA in PBS) for 1 h at 37 °C with agitation. 

Digested tissue pieces were passed through a 70-μm strainer, and the cells were resuspended 

in 2% FBS and 2 mM EDTA in Hank’s Balanced Salt Solution. Splenocytes and gastric 

tumour cells were stained with CD11c-APC (1:500), CD8α-APC-Cy7 (1:500), CD45R/

B221-FITC (1:500), CD11b-PE (1:500), Gr-1 (Ly6-G/C)-PerCP-Cy5.5 (1:300) (all from BD 

Biosciences) and NK1.1-brilliant violet 421 (1:300) E-cadherin-PE (1:300) (from 

BioLegend, San Diego, CA, USA). Cells were sorted (at low pressure with a 100-μm 

nozzle) on a MoFlo sorter (Beckman-Coulter, Brea, CA, USA). Cells were not cultured in 

the period between isolation and sorting.
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Gene expression and DNA methylation analysis

QRT–PCR was performed as described.53 Primer sequences (Supplementary Table S2) were 

designed using the primer3 tool (http://frodo.wi.mit.edu/primer3/). Relative gene expression 

was normalized to the reference genes GAPDH (glyceraldehyde 3-phosphate 

dehydrogenase; human) or Rpl32 (mouse) using −2ΔΔCt = ΔCt sample−ΔCt calibrator. 

Quantitative DNA methylation analysis was performed by EpiTYPER (Sequenom, San 

Diego, CA, USA) as described.6 Primer sequences for methylation amplicons 

(Supplementary Table S3) were selected using EpiDesigner (http://www.epidesigner.com). 

Data cleaning and hierarchical clustering were performed in R script using the gplots 

package (http://www.r-project.org/).

Statistical analysis

Data were analysed with GraphPad Prism V5.1 software (GraphPad Software, La Jolla, CA, 

USA). Data were expressed as mean ± s.e.m. Statistical analysis was performed by one-way 

analysis of variance and the appropriate parametric or nonparametric post test. P-values of ≤ 

0.05 were considered statistically significant.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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ABBREVIATIONS

CGI CpG island

CpG cytidine-phosphate-guanidine

DC dendritic cell

GC gastric cancer

GEC gastric epithelial cell

hTERT human telomerase reverse transcriptase

IM intestinal metaplasia

MC mast cell

MSP methylation-specific PCR

NK natural killer

RUNX runt-domain family transcription factor
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Figure 1. 
Epigenetic regulation of RUNX3 P1 in human GC. (a) Mapping of methylation amplicons 

within human RUNX3. Genome browser output for human RUNX3 on chromosome 1p36 

(GRCh37 Hg19; http://genome.ucsc.edu/) shows relative locations of P1 and P2 promoter 

regions and intron/exon structures of the derived transcripts. Browser tracks show locations 

of RUNX3 methylation amplicons (from previously published studies, black bars; from 

current study, red bars) aligned with the human genome using the ‘Blast Like Alignment 

Tool’ (BLAT). (b) Schematic showing progressive alteration in cell-type composition of the 

gastric epithelium during human GC progression. (c) QRT–PCR analysis of RUNX3 mRNA 

expression in human GC progression. Box plots show mRNA fold change relative to 

GAPDH (glyceraldehyde 3-phosphate dehydrogenase) internal reference gene expression 

for normal (N; n=6), H. pylori-infected (HP; n = 16), preneoplastic adjacent to tumour with 

intestinal metaplasia (IM; n=28) and gastric cancer (GC; n=28) mucosal tissues. (d) 

EpiTYPER analysis of RUNX3 P1 and P2 methylation in tissue samples analysed in panel 

(b). Box plots show combined CpG methylation values for P1 and P2, respectively. (e) 

Heatmap showing two-way hierarchical clustering of methylation data presented in panel 

(c). CpGs are shown on the horizontal axis; tissue samples are shown on the vertical axis. 
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Tissue identities are indicated to the right of the heatmap. Asterisks show statistical 

significance: **P < 0.01; ***P < 0.001.
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Figure 2. 
Conserved Runx3 P1 hypomethylation in mouse gastric inflammation and tumorigenesis. (a) 

Genome browser output for the mouse Runx3 locus on chromosome 4qD3 (GRCm38/

mm10; http://genome.ucsc.edu/) shows relative locations of P1 and P2 promoters and intron/

exon structure of their transcripts. (b) Schematic showing the mouse genetic and infection 

models used to recapitulate key stages of human GC progression. (c) QRT–PCR analysis of 

Runx3 P1 and P2 transcripts in stomach tissues collected from C57BL6 (WT) mice infected 

with H. pylori SS1 for 3 months (Hp 3m) and 12 months (Hp 12m) in GmcsfTg and gp130F/F 

mice. Histograms show mRNA fold change relative to uninfected or WT controls. (d) 

EpiTYPER quantitative DNA methylation analysis of Runx3 P1 and P2 promoters of gastric 

tissues analysed for mRNA in panel (b). Histograms show the combined CpG methylation 

levels for P1 and P2, respectively. Error bars ± s.e.m. Asterisks show statistical significance: 

*P < 0.05; **P < 0.01; ***P<0.001. (e) Heatmaps show two-way hierarchical clustering of 

P1 and P2 individual CpG methylation values for data shown in panel (d).
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Figure 3. 
Immunolocalization of RUNX3 in human and murine gastric preneoplasia and 

tumorigenesis. (a) RUNX3 immunohistochemistry in human gastric mucosal tissue 

collected from H. pylori-infected and uninfected individuals. (b) Runx3 

immunohistochemistry in GmcsfTg gastric fundus. (c) Runx3 immunohistochemistry in 

gp130F/F gastric antral tumours. Tissue sections were counterstained with hematoxylin (blue 

staining). Magnifications are indicated (×20, ×40, ×100). Arrows indicate highly discrete 

Runx3 nuclear staining. lp, lamina propria; ep, epithelium.
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Figure 4. 
Differential Runx3 P1 methylation in GEC and hematopoietic lineages. (a) Isolation of 

immune cell populations from splenocytes by FACS: NK1.1+ CD3− NK cells; CD3+CD8+ 

T-cells; CD117+ FcεR1a+ MCs; CD11c+ DCs; CD11b+ macrophages; Gr1+ neutrophils; 

and CD45R+ B-cells. (b) QRT–PCR analysis of Runx3 P1 and P2 transcripts in FACS-

sorted immune cell types. Histograms show mRNA fold changes relative to levels in 

primary GEC. (c) Quantitative DNA methylation analysis of Runx3 P1 and P2 promoters in 

FACS-sorted immune cell types, primary GECs and primary mouse embryonic fibroblasts. 

Heatmap showing two-way hierarchical clustering of P1 and P2 methylation data. (d) In 

vitro generation of bone marrow-derived MCs. Flow cytometric analysis of murine bone 

marrow stem cells (BMSC) cultured with IL-3 (BMSC+IL3) or untreated (BMSC –ve). MC 

differentiation is shown by the acquisition of a CD117+ FcεR1+ double-positive phenotype 

(one representative experiment of four replicates is shown). (e) QRT–PCR analysis of Runx3 

P1 and P2 mRNA in BMSC+IL3 and BMSC control cultures. Error bars ± s.e.m. Asterisks 

show statistical significance: *P < 0.05. (f) Heatmap showing EpiTYPER quantitative 

methylation analysis of Runx3 P1 and P2 promoters corresponding to the samples analysed 

in panel (e).
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Figure 5. 
Runx3 P1 methylation in gastric tumour lineages. (a) Isolation of immune cells and GECs 

from gp130F/F gastric tumour tissue by FACS: CD8+ T-cells; CD11c+ DCs; and e-cadherin

+ GECs. Shown is one representative example of five replicate experiments. (b) EpiTYPER 

quantitative DNA methylation analysis of Runx3 P1 and P2 promoters of isolated cell types 

shown in panel (a). Histograms show the combined CpG methylation levels for P1 and P2, 

respectively. Error bars ± s.e.m. Asterisks show statistical significance: ***P < 0.001. (c) 

Heatmap showing two-way hierarchical clustering of P1 and P2 individual CpG methylation 

data represented in panel (b).
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Figure 6. 
RUNX3 P2 methylation is triggered by immortalization of human and mouse GECs. (a) 

EpiTYPER analysis of RUNX3 P2 (and P1) methylation levels in human GC cell lines, 

primary GC tumours and normal gastric epithelial tissues. Heatmap shows two-way 

hierarchical clustering of individual CpG methylation values against cell line or tissue type. 

(b) Flow diagram showing the derivation of mouse immortal GEC lines from gp130F/F 

primary gastric epithelial tumours. (c) Immunofluorescent detection of cytokeratin (Krt)8 in 

immortal GEC lines. Representative staining for one of the lines (clone 1) is shown. (d) 
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Growth curves of mouse immortal GEC lines in monolayer culture. Viable cell count data 

are shown as the mean of six replicate wells for each clone. (e) EpiTYPER analysis of 

Runx3 P1 and P2 methylation in immortal mouse GEC, primary gp130F/F tumours and WT 

gastric tissue. Heatmaps show two-way hierarchical clustering of individual CpG 

methylation values for P1 and P2.
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Figure 7. 
Schematic showing effects of cell-type composition and tumour clonality on RUNX3 

promoter methylation in GC progression and cell line establishment. In GECs, P1 is 

hypermethylated and repressed. In immune cells, P1 is hypomethylated and expressed (1). 

These lineage-specific differences in P1 methylation underlie P1 hypomethylation in GC 

progression (2). Immune cell recruitment triggered H. pylori infection (3), leads to altered 

cell-type composition of the gastric epithelium leading to decreased P1 methylation. 

Conversely, P2 lacks methylation in both GECs and immune cells, thus its methylation level 

is unaffected by altered tissue cellularity. In gastric tumours, P2 becomes aberrantly 

hypermethylated (in concert with other CGI promoters on a global scale) in a subset of 

highly immortalized/transformed GECs (orange shading), leading to a modest increase in P2 

methylation in tumour tissue (4). P2 hypermethylated clones have an in vitro growth 

advantage over non-hypermethylated clones, allowing their preferential expansion during 

cell line establishment from primary tumour tissue (5), leading to a significant over-

representation of P2 hypermethylated clones among GC cell lines (6).
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