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Nitrogen cycling is normally thought to dominate the biogeochemistry and 

microbial ecology of oxygen-minimum zones in marine environments. Through a 

combination of molecular techniques and process rate measurements, we show that 

both sulfate reduction and sulfide oxidation contribute to energy flux and elemental 

cycling in oxygen-free waters off the coast of northern Chile. These processes may 

have been overlooked because the sulfide produced by sulfate reduction 

immediately oxidizes back to sulfate. This cryptic sulfur cycle is linked to anammox 

and other nitrogen cycling processes, suggesting it may influence biogeochemical 

cycling in the global ocean. 

 
Oxygen-minimum zones (OMZs) persist in mid-water depths of the global ocean, where 

large-scale circulation and the sinking and decomposition of surface-derived organics 

deplete oxygen compared to higher surface and deep-water oxygen concentrations (1). In 

some regions such as the eastern tropical Pacific, the Arabian Sea, and the Benguela 

Current upwelling system, water column oxygen concentrations fall below detection (2-

4), prompting the development of a dynamic nitrogen cycle. In these zones, nitrate is 

actively reduced to nitrite (5, 6). Nitrite further converted to N2 gas through "classic" 

heterotrophic denitrification (7) and the autotrophic anammox process (8, 9), or to NH4
+ 

through dissimilative nitrate reduction to ammonium (DNRA). OMZs account for 33% or 

more of the fixed nitrogen loss from the oceans (10, 11), and overall, the nitrogen cycle 

has been thought to dominate the geochemistry and microbial ecology of these regions.  

 

The recent identification of uncultured Gammaproteobacteria, closely affiliated with 

sulfur-oxidizing symbionts, in OMZ waters off the Chilean coast (12) suggests that sulfur 
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cycling may also play an important role in oxygen-free nitrate-rich OMZs. A similar 

microbial community with a full compliment of sulfide-oxidizing and nitrate-reducing 

genes was found in sulfide-free but nitrate-rich portions of the sulfidic Saanich Inlet (13), 

and a sulfate reducer has been isolated from OMZ waters off the coast of Peru (14). 

Direct evidence for large-sclae, active sulfur cycling in OMZs, however, is lacking. 

When sulfide, the product of sulfate reduction, is observed in OMZs, it originates in rare 

pockets of nitrate and nitrite-depleted water (15) or is released from sediments (6).  

 We explored the dynamics of the sulfur cycle in the upwelling waters off of 

Iquique, on the northern Chilean coast using a combination of geochemical and 

metagenomic techniques (16).  In general, the OMZ is well developed in this region of 

Chile (17). We concentrated our efforts on Station 3 (20°5´9.27´´S; 70°20´8.18´´W ; 

water depth 1050 m, 23 km from shore), which based on preliminary survey data, was in 

the most biologically active region of the OMZ in our study area. We expanded our 

geochemical studies to include Station 5 (20°5´9.69´´S; 70°46´5.78´´W; water depth 

1500), located some 44 km further offshore than Station 3. The water chemistry in the 

northern Chilean OMZ develops within an eastern boundary current, and the chemical 

profiles are somewhat dynamic (Fig 1). With some variability over time, the redoxcline at 

Station 5 was located deeper than at Station 3, and while the surface chlorophyll a 

concentrations were higher at Station 3, we frequently observed a pronounced secondary 

chlorophyll a maximum at Station 5. This deep layer consists of novel members of the 

cyanobacterial genus Prochlorococcus (18).  

 We observed extremely low O2 concentrations of < 13 nM, starting from between 

60 and 85 meters depth (depending on station and time of sampling) and continuing to > 
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180 m (Fif. S1). Similar low values were found off the southern Peruvian coast in an 

earlier study (19), suggesting that essentially anoxic waters define this region of the 

eastern tropical South Pacific OMZ. There is an upper nitrite maximum related to aerobic 

processes, but nitrite accumulated as oxygen disappeared in the anoxic core of the OMZ. 

Nitrate reduction was the most likely source for this nitrite. We measured with 15N-

enriched nitrite the rates and pathways of  N2 formation, and similar to an early study (8), 

anammox was the dominant pathway (Table 1), considerably outpacing denitrification 

(16). The overall rates of N2 formation are similar to previous measurements in this 

region (8). 

Pyrosequencing of community DNA from below the oxycline (70-80 m) and in 

the core of the anoxic zone (150-200 m) at Station 3 suggested a substantial role for 

sulfur-based metabolic pathways in the Chilean OMZ (Fig. 2; Figs. S4-7).  Gene 

sequences matching diverse sulfide-oxidizing and sulfate-reducing taxa (Table S3) 

constituted 6.3-16.2% and 2.1-2.4% of all sequencing reads with matches to protein-

coding genes in the NCBI-nr database, consistent with percentages based on 16S rRNA 

gene-encoding reads (Figs. S4-5). In contrast, sulfur-oxidizer and sulfate-reducer 

sequences represented only 0.5% and 0.3% of the total protein coding sequences 

recovered in an aerobic community from another coastal site (Monterey Bay, 10 m; Fig. 

S5).  The Chilean OMZ metagenomes were particularly enriched in sequences matching 

the genomes of sulfur-oxidizing endosymbionts of deep-sea clams [Candidatus Ruthia 

magnifica (Rm) and Candidatus Vesicomyosocius okutanii (Vo) (20, 21)] and the 

endosymbiont-related SUP05 pelagic lineage from Saanich Inlet (13) (Fig. 2A).  These 

taxa increased in abundance in January 2010 (austral summer), relative to samples 
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collected from the same site in August 2009 (late winter).  Notably, in the January-2010 

samples, SUP05-like sequences dominated the identifiable protein-coding gene pool (up 

to 7.5% of all hits to NCBI-nr).  The SUP05 metagenome (13) was represented at high 

coverage, matching 80% of all SUP05 genes (1169 of 1456) with relatively uniform 

abundances, and an average amino acid similarity of 70% (Fig. S7).  The sulfate-reducing 

population contributed to a lower, but appreciable proportion of sequencing reads, and 

was represented by a diverse population that included Desulfatibacillum, 

Desulfobacterium, Desulfococcus, Syntrophobacter and Desulfovibrio species (Figs. S4-

6). 

 The prevalence of sulfur metabolizing taxa was paralleled by a strong 

representation of sulfur energy metabolism genes.  These genes occur in various 

combinations across diverse sulfur-utilizing taxa (22).  Here, genes of the dissimilatory 

sulfite reductase enzyme (dsr), the sulfur oxidation (sox) gene complex mediating 

thiosulfate oxidation, and the adenosine 5′-phosphosulfate (APS) reductase (apr) were 

present throughout the OMZ (Fig. 2B).  Several of the proteins encoded by these genes, 

including dsr and apr enzymes, function in both oxidative and reductive pathways (23, 

24).  Here, the majority of the sequences recovered in the OMZ matched known sulfide 

oxidizers, consistent with the high abundance of the SUP05 group.  Putative sulfide-

oxidizing and sulfate-reducing taxa constituted 62.0% and 2.2% of top hits to aprA 

sequences, respectively, with the remainder matching aprA genes of the 

alphaproteobacterial genus Pelagibacter, whose function in sulfide oxidation is not yet 

clear (25) (Fig. S6).  Overall, the metagenomic data suggest a prevalent summer OMZ 

community of both oxidative and reductive sulfur cycling bacteria.   
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Although our metagenomic libraries suggest an active sulfur cycle, it is cryptic 

with no obvious in situ chemical expression. To explore the geochemical importance of 

the sulfur cycle and any possible to nitrogen cycling, we measured rates of sulfate 

reduction with 35SO4
2- (e.g. (26)). We subdued the immediate reoxidation of sulfide 

produced during sulfate reduction by adding 10 to 13 µM of  unlabeled sulfide to trap any 

radiolabeled sulfide from sulfate reduction (16). Radiolabeled sulfate was added within 

10 hours of sample collection. In some cases, our added unlabelled sulfide was 

substantially oxidized during the incubations (16), implying radiolabeled sulfide must 

also have been oxidized and lost as a result. After estimating the loss of radiolabeled 

sulfide due to sulfide oxidation, we corrected the rates  to obtain estimates of the gross 

sulfate reduction rates (16) (Fig.3). Our findings contrast with the current consensus that 

sulfate reduction in OMZs will only be active when other more thermodynamically 

favorable electron acceptors, like nitrate and nitrite, are fully utilized (27). Although not 

the most favorable, our calculations show that sulfate reduction is still a 

thermodynamically favorable process in these OMZ waters (16). Previous observations 

of pure cultures of sulfate-reducing bacteria that actively reduce sulfate in the presence of 

nitrate (28, 29) also support our observations of active sulfate reduction. 

 Rates of sulfate reduction were much higher at Station 3 compared to Station 5. 

Indeed, corrected rates at Station 3, match and even exceed rates of denitrification and 

anammox (Table 1), implying that sulfate reduction is an important pathway of organic 

carbon mineralization at this site. Depth-integrated corrected rates of sulfate reduction at 

Station 3 are equivalent to about 2 mmoles C oxidized m-2 d-1 assuming 2 moles organic 

carbon oxidized per mole sulfate reduced. Sediment traps studies at coastal and off-shore 
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stations about 200 km south of our study site (17) reveal about 5.50 mmol m-2 d-1 of 

carbon mineralization within the OMZ waters from between 65 and 300 depth. If these 

rates apply to Station 3, then sulfate reduction would account for about 33% of the total 

organic carbon mineralization in the OMZ waters. 

 Sulfate reduction may also contribute to the ammonium requirements of other 

indigenous bacteria participating in the anammox process. Indeed, the source of 

ammonium for anammox has proven elusive because insufficient ammonium is liberated 

during organic matter decomposition by denitrification to drive measured anammox rates 

in many OMZ waters (8, 9). In a partial resolution to this dilemma, the dissimilatory 

reduction of nitrate to ammonium and the heterotrophic reduction of nitrate to nitrite have 

been identified as significant ammonium sources in OMZ waters off the Peruvian coast 

(9) (the later due to the ammonium liberated during heterotrophic organic matter 

mineralization). But even these extra sources do not account for all of the ammonium 

demand. From our sulfate reduction rates at Station 3, sulfate reduction produces a total 

of about 0.30 mmoles m-2 d-1 assuming a 6.6/1 ratio between carbon oxidation and 

ammonium liberation (30). This would contribute 22% of the ammonium needs for 

anammox at Station 3 (Table 1). At Station 5, sulfate reduction would only contribute 

about 8% of the ammonium needs for anammox, underlining the complexity of the 

nitrogen cycle and the variability of ammonium sources for anammox (9). 

 We also explored the dynamics of sulfide oxidation in these waters, and the 

relationship between sulfide oxidation and the nitrogen cycle (16). In parallel with our 

sulfate reduction rate determinations, we incubated OMZ water from two depths at both 

Stations 3 and 5 with and without added sulfide. Sulfide oxidation was strongly coupled 
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to nitrate reduction to nitrite, and at Station 5, nitrate reduction to nitrous oxide was also 

enhanced with sulfide addition (Fig. S8). At Station 3, N2 production from both nitrite 

and nitrate (at 75 m depth) increased, and in general, rates of sulfide oxidation and 

subsequent rates of nitrogen turnover were much higher at Station 3 than Station 5. This 

is consistent with the higher rates of sulfate reduction at Station 3 and a more active 

sulfur cycle.  

 Admittedly, our added levels of sulfide and subsequent rates of sulfide oxidation 

exceed in situ levels.  Never the less, our results demonstrate the inherent capacity for 

active in situ coupling between the sulfur and nitrogen cycles in OMZ zones of the 

marine water column.  This cycling is analogous to that observed at the sulfide/nitrate 

interface in other strongly redox stratified marine systems (13, 31, 32), and demonstrates 

that nitrite, N2 and N2O may all be products of this coupling.  We speculate other nitrate-

rich oxygen-free OMZs may also house actively coupled sulfur and nitrogen cycles. 
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Table 1. Summary of process rate averages  
 nmol l-1 h-1 
Process Sta 3 Sta 5 

anammox 0.43 ± 0.21b 0.29 ± 0.10c 
denitrificationa 0.079 ± 0.04b 0.042 ± 0.029c 
Sulfate reduction 0.51 ± 0.21d 0.055 ± 0.023e 

Depth-integrated rates mmol m-2 d-1 
anammox 1.21 ± 0.45 0.70 ± 0.24 
denitrification 0.22 ± 0.11 0.10 ± 0.069 
sulfate reduction 1.00 ± 0.40f 0.28 ± 0.12 
carbon oxidation in OMZg 5.50 5.50 

ameasured as nitrite reduction to N2 
bfrom 65 to 183 meters depth (n=17) 
cfrom 73.5 to 173 meters depth (n=16) 
dfrom 85 to 150 meters depth (n=8) 
efrom 85 to 300 meters depth (n=14) 
fassuming sulfate reduction stops first at 200 meters 
gestimated from data in ref (17) 
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Figure captions 
 
Figure 1.  Representative nutrient, oxygen and chlorophyll a profiles from the OMZ off 

the northern Chilean coast at Station 3 (left) and Station 5 (right). 

Figure 2. Taxonomic representation of protein-coding genes and relative abundances of 

sulfur energy metabolism genes in OMZ metagenomic data. (A) Most abundant 

taxa identified from annotations of protein-coding genes (in the NCBI-nr 

database) in pyrosequencing reads from genomic DNA.  Reads matching multiple 

putative sulfate-reducer reference taxa (Fig. S1, Table S2) are binned in a single 

category (black bar). (B) Abundances (hit counts per gene) of dissimilatory sulfur 

metabolism genes, shown relative to the putative single copy per organism RNA 

polymerase subunit B (rpoB).  Abundances per gene are normalized to gene 

length but not to copy number variation.  dsr = dissimilatory sulfite reductase 

gene cluster, sox = sulfur oxidation gene cluster; aprBA = adenosine 5′-

phosphosulfate (APS) reductase; aprM, APS reductase membrane anchor; FCSD, 

flavocytochrome c sulfide dehydrogenase; SQR, sulfide-quinone reductase. 

Figure 3. Sulfide-oxidation corrected and uncorrected rates of sulfate reduction at Staions 

3 and 5. Standard deviations represent variability during scintillation counting 

(16). 
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Figure 1. 
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