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Abstract. The numerical technique of Lattice QCD holds the promise of connecting

the nuclear forces, nuclei, the spectrum and structure of hadrons, and the properties of

matter under extreme conditions with the underlying theory of the strong interactions,

quantum chromodynamics. A distinguishing, and thus far unique, feature of this

formulation is that all of the associated uncertainties, both statistical and systematic

can, in principle, be systematically reduced to any desired precision with sufficient

computational and human resources. We review the sources of uncertainty inherent

in Lattice QCD calculations for nuclear physics, and discuss how each is quantified in

current efforts.
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1. Introduction

Quantum chromodynamics (QCD) and the electroweak interactions are responsible for

the nuclear forces, and consequently for the structure and interactions of all nuclei.

Historically, the complexity of QCD has prevented direct calculation of the properties of

low-energy and medium-energy nuclear systems. However, after decades of development,

Lattice QCD (LQCD), a technique to numerically evaluate the QCD path integral,

promises to permit QCD calculations of low-energy nuclear processes with uncertainties

that can be systematically reduced to any desired precision with sufficient human and

computational resources. Before having complete confidence in LQCD predictions for

nuclear physics, it is critical to verify it as a reliable technique. This will be accomplished

by demonstrating agreement with a diverse array of experimental measurements, and

showing that the uncertainties of the LQCD calculations behave as expected with,

for instance, increasing lattice volumes, numbers of gauge-field configurations and

decreasing lattice spacings.

As with any meaningful prediction, the uncertainties associated with a LQCD

calculation define its utility. A complete quantification of all of the uncertainties

associated with any given calculation is essential for it to be scientifically complete and

provide more than a calculational benchmark. During the last few years, the LQCD

community has self-organized and assembled a compendium of lattice results, mainly of

importance for particle physics [1], including a comprehensive analysis of all associated

uncertainties. This compendium represents the consensus of the entire community and

is along the same lines as the Particle Data Group summary of experimental results in

high-energy physics. It is a valuable resource, both within and outside of the LQCD

community. Few quantities of importance to nuclear physics currently appear in this

compendium as many calculations remain in exploratory stages. As these calculations

mature, we expect they too will be added to the LQCD compendium.

In this article, we outline the array of techniques required to perform LQCD

calculations for Nuclear Physics, and identify the uncertainties that are inherent in

each of these techniques. We discuss the procedures and uncertainties associated with

generating the configurations of gluons fields, with the generation of the correlations

between quarks and gluons, and finally with the extraction of physical information from

hadronic and nuclear correlations. Our presentation is aimed at nuclear physicists who

are not experts in lattice field theory methods.

2. Lattice QCD Technology

2.1. The QCD Path Integral

There is only one known way to rigorously define QCD non-perturbatively, and that

is as the continuum limit of a lattice gauge theory. The spacetime lattice provides an

ultraviolet regulator of the continuum field theory and admits numerical evaluation of

the functional integrals required for calculating physical observables. The QCD partition
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function is

Z =

∫
DAµDψ̄Dψ e

∫
d4x

(
− 1

4
GaµνG

aµν−
∑
f
ψf [Dµγµ+mf ]ψf

)
, (1)

where Aµ is the QCD gauge field (describing the gluons), Ga
µν is the gauge field strength

and ψf , ψf are the quark fields representing quarks of flavor f . Dµ is the QCD covariant

derivative and γµ are the Dirac matrices. Physical observables are calculated from

correlation functions of operators, O, that are functions of the quantum fields (quarks

and gluons), generically written as

〈O〉 =
1

Z

∫
DAµDψ̄Dψ O e

∫
d4x

(
− 1

4
GaµνG

aµν−
∑
f
ψf [Dµγµ+mf ]ψf

)
. (2)

The functional integrals above require regularization and can be straightforwardly

defined on a discrete spacetime that we will take to be a regular hypercubic lattice. In

order to preserve gauge invariance, the gauge fields are discretized as SU(3) matrices,

Uµ(x), associated with the links of the lattice (see Figure 1). The simplest discretized

Figure 1. A two dimensional slice of the four dimensional spacetime lattice. µ̂ and

ν̂ denote unit vectors in the indicated directions. ψ(x) denotes a quark field at the

lattice site x, Uµ(x) denotes the gauge link from the lattice-site x to the site x + aµ̂,

and Pµν(x) denotes the 1× 1 Wilson plaquette centered at x+ aµ̂/2 + aν̂/2.

form of the gauge action is the sum over all plaquettes, Pµν(x), formed from the product

of links, Uµ(x) = exp
(
i
∫ x+µ̂

x
dx′Aµ(x′)

)
, around elementary plaquettes of the lattice,

Sg(U) = β
∑
xµν

(
1− 1

3
Re Tr Pµν(x)

)
, (3)

with

Pµν = Uµ(x)Uν(x+ µ̂)U †µ(x+ ν̂)U †ν(x) , (4)

and β is the lattice gauge coupling. Taking the naive continuum limit, this action

reduces to the familiar continuum gauge action, −
∫
d4x1

4

(
Ga
µν(x)

)2
. The action in

Eq. (3) is the Wilson gauge action [2], and while this discretization is not unique, it
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is the simplest. It can be modified by adding larger loops of links with coefficients

appropriately chosen to achieve a more rapid approach to the continuum [3], which is

an essential goal of the calculation.

2.2. Including Quarks

Including the dynamics of quarks, which are defined on the vertices of the lattice, is a

challenge. A naive discretization of the continuum action describing a single fermion

introduces 16 lattice fermion flavors in four dimensions. The additional 15 light lattice

fermion degrees of freedom, referred to as “doublers”, can be avoided through the use

of several ingenious formulations of lattice fermions. Wilson fermions, which were the

first to be introduced [2], eliminate the doublers by adding an irrelevant dimension

five operator to the action that lifts the masses of the doublers, leaving only one light

fermion in the spectrum. However, this approach explicitly breaks chiral symmetry and

introduces lattice artifacts that scale as O(a), where a is the lattice spacing. Kogut-

Susskind fermions [4] (staggered fermions) provide another way to remove some of the

doublers and re-interpret the remaining four as four degenerate flavors. In this approach,

a U(1) chiral symmetry remains unbroken and lattice artifacts scale as O(a2). Kogut-

Susskind fermions become problematic when the required number of flavors is not a

multiple of four (as is the case for QCD in nature). One approach to deal with this is

to take the fourth root of the corresponding determinant (see below). Although this

“rooting” is not justified at non-zero lattice spacing, current numerical evidence suggests

that the effects are negligible for many quantities. Finally, the domain-wall [5, 6, 7]

and overlap [8, 9] discretizations preserve a lattice chiral symmetry at finite lattice

spacing and are doubler free. Unfortunately, such formulations are significantly more

computationally expensive. In all cases, the lattice fermion action is of the form,

Sf = ψ̄D(U)ψ, where ψ is the fermion “vector” and D(U) is a sparse matrix ‡ acting

on the fermion vector, that depends on the gauge field, U .

In the case of two quark flavors, the discretized partition function is

Z =

∫ ∏
µ,x

dUµ(x)
∏
x

dψ̄dψ e−Sg(U)−Sf (ψ̄,ψ,U)

=

∫ ∏
µ,x

dUµ(x) det
(
D(U)†D(U)

)
e−Sg(U) , (5)

where the integrations over the quark fields (represented by Grassmann numbers) have

been performed exactly, resulting in the determinant factor. Although the quark matrix

D(U) represents one flavor, the determinant det
(
D(U)†D(U)

)
represents two flavors

as detD(U)† = detD(U). In the case of correlation functions defining observables,

integrating over the quarks gives

〈O〉 =
1

Z

∫ ∏
µ,x

dUµ(x) O(
1

D(U)
, U) det

(
D(U)†D(U)

)
e−Sg(U) , (6)

‡ In certain cases, such as with overlap fermions, the matrix is not sparse but has sparse-like properties.
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where the operators O depend on the inverse of the quark matrix and (possibly

explicitly) on the gauge fields. The above expressions are only valid in the case of

two flavors of quarks (the up and the down), assumed to have the same mass for these

discussions, which is a good approximation to the low energy physics of QCD. The

strange quark is easily accommodated by including det (Ds(U)) = det
(
Ds(U)†Ds(U)

)1/2

in the partition function, as are the charm quarks through a similar factor (although

their effects in quantities of importance to low-energy nuclear physics are expected to

be small).

2.3. Monte Carlo Evaluation of the Path Integral

The evaluation of 〈O〉 in Eq. (6) is the main numerical task faced in LQCD calculations.

The integrations over the gauge fields are of extremely large dimensionality, and are

made practical by restricting spacetime to a compact region. Given that QCD has

a fundamental length scale of ∼ 1 fm (10−13 cm), calculations must be performed in

lattice volumes (volumes are denoted by V = L3 × T , where L is the number of lattice

sites in each spatial direction and T the number in the temporal direction) that have

a physical size aL � 1 fm in order to control finite volume effects, and with lattice

spacings a� 1 fm in order to be close to the continuum limit. With moderate choices

for the volume and lattice spacing, a lattice of 643 × 256 sites is currently practical.

Accounting for the color and spin degrees of freedom, such calculations involve ≈ 1010

degrees of freedom. The only practical way for this type of computation to be done

is by Monte Carlo integration. Fortunately, the combination of the quark determinant

and gauge action,

P(U) =
1

Z
det
(
D(U)†D(U)

)
e−Sg(U) , (7)

is a positive-definite quantity that can be interpreted as a probability measure and

hence importance sampling methods can be used in performing the integrations. As

will be discussed in detail in the next section, the basic procedure is to generate N

gauge field configurations {Ui} representative of the probability distribution P(U) and

then evaluate

〈O〉 = lim
N→∞

1

N

N∑
i=1

O(Ui,
1

D(Ui)
) . (8)

At finite N , the estimate of O is approximate, with an uncertainty that can be shown

to scale as O(1/
√
N).

Both for the gauge field configuration generation and the evaluation of Eq. (8), the

linear system of equations,

Dm(U)χ = φ , (9)

must be solved, where m is the quark mass and the vectors χ and φ will be discussed

below. Since D(U) is sparse, iterative solvers can be used. The condition number

of D(U) (the ratio of largest to smallest eigenvalue), and therefore the computational
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resources required for the solution of Eq. (9), is inversely proportional to the quark mass.

Since the physical quark masses for the up and down quarks are small relative to the

typical scale of QCD, D(U) has a large condition number, and it is only recently that

calculations at the physical quark masses have become computationally feasible. The

vast majority of the computational resources used in nuclear physics LQCD calculations

are devoted to the solution of this linear system, both in the context of gauge-field

generation and in the later stage of the calculation of physical observables through

Eq. (8). Significant gains in the efficiency of these calculations have been achieved

through applications of state-of-the-art numerical linear algebra algorithms such as

deflation [10, 11, 12, 13], and multigrid [14, 15, 16], as will be further discussed below.

2.4. Gauge Field Generation: Hybrid Monte Carlo

The first stage of LQCD calculations is the generation of suitable ensembles of gauge

configurations. At present, the most efficient algorithm for generating such ensembles

is Hybrid Monte Carlo (HMC) [17]. Because of the quark determinant, methods that

rely on local updates of the fields, such as the heatbath or the Metropolis algorithms,

are of limited use as their computational requirements scale poorly with the volume,

O(V 2). HMC involves a noisy representation of the determinant and introduces global

updates of the gauge fields, achieving volume scaling of O(V α) where α ∼ 1. Other

methods, such as the Φ-algorithm and the R-algorithm [18], have also been used,

however, such methods are not exact and have a small systematic error that must be

carefully controlled. The global update of the gauge field using HMC is obtained through

a Hamiltonian evolution from an initial gauge-field configuration and random initial

momenta (drawn from a Gaussian distribution). In order to integrate the Hamiltonian

dynamics, reversible discrete integrators are used so that detailed balance of the update

procedure is maintained, as is required for Eq. (8) to be satisfied. The simplest forms

of such integrators are of second order, however recently, higher order integrators have

been employed following the work of Omelyan et al. [19]. The volume scaling of the

algorithm [20, 21, 22, 23] depends on the integrator, with the resource requirements,

C, scaling as

C = K

(
mπ

mρ

)−z
V 1+1/2n 1

a7
, (10)

where n is the order of the integrator, mπ is the pion mass, mρ is the ρ-meson mass

(with mπ
mρ
∝
√

mq
ΛQCD

), V is the volume of the system, K is a constant of appropriate

dimensions, and z is an exponent that ranges between 4 and 6. Currently, several

algorithmic improvements, such as preconditioned HMC [24, 25, 26], are often used to

reduce K and z, and further, higher order integrators result in better volume scaling.
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2.5. Continuum Limit and Autocorrelations

There are a large class of lattice gauge actions that have QCD as their continuum

limit. For that reason, a variety of lattice actions are used by different collaborations

worldwide. Comparing the continuum limit results obtained for a given quantity using

different actions provides confidence that the calculations are performed correctly and

uncertainties are quantified appropriately.

Continuum extrapolated results in the isospin limit are functions of only three

parameters (four including strong isospin breaking), the values of the quark masses

(up/down and strange) and the characteristic QCD scale, ΛQCD that emerges from

quantum effects. The tuning of the quark masses can be performed so that chosen

meson masses coincide with their experimental values. In the recent years, several

calculations have used the ratios

lΩ =
m2
π

2m2
Ω

and sΩ =
2m2

K −m2
π

m2
Ω

, (11)

to tune the bare quark masses, where mπ and mK are the (isospin-averaged) pion and

kaon masses, respectively, and mΩ is the mass of the Ω baryon [27]. By demanding

that these ratios reproduce their experimental values, the bare light- and strange-

quark masses in the calculation(s) are determined. The continuum limit can be taken

keeping these ratios fixed. In addition, ΛQCD, or equivalently the inverse lattice spacing

a−1, is determined in physical units (MeV) using the experimental value of another

hadron mass, or a derived quantity such as the Sommer parameter [28] or the w0

parameter [29, 30]. The mass of the Ω baryon is currently a popular choice as it depends

weakly on the up- and down-quark masses. Provided that the matching to experiment

can be performed at the physical quark masses, the scale determination is robust, with

different choices of quantities with which to match resulting in only small changes in

the extracted scale which can be quantified. For a recent review on scale setting issues,

the reader is referred to [31].

Uncertainties introduced by the choice of the hadronic observable for scale setting

arise from the discretization, which is removed once the continuum limit is taken.

Because such uncertainties percolate through to all computed observables, careful

thought is needed in choosing the hadronic observable that sets the scale in order to

minimize uncertainties in other physical quantities. A good choice of an observable is

one that can be computed with the smallest systematic and statistical uncertainties. The

robustness of the continuum extrapolation is improved if the scale setting observable is

chosen to have only weak dependence on the discretization and the light-quark masses.

The remaining systematic uncertainties from setting the scale arise from physics that

is not included in the calculation, for instance, electromagnetic (EM) effects, isospin

breaking effects, as well as the omission of vacuum polarization effects due to heavy

flavors. All these effects are currently analyzed and steps are taken to minimize

their impact. Calculations that include both isospin breaking and EM are under

way [32, 33, 34, 35], as are calculations with dynamical charm quarks [35, 36, 37, 38].
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For the continuum extrapolation, calculations at fine lattice spacings, a �
1/ΛQCD, are required. Unfortunately, as the continuum limit is approached, the

autocorrelation time (corresponding to the number of updates in the Markov chain

of gauge configurations after which an observable is statistically independent) becomes

large for some observables . This was first observed in quenched calculations [39, 40],

and recently studied in detail in dynamical fermion calculations [41, 42]. It was found

that for the topological charge, the integrated autocorrelation time τ(Q2) ∼ a−5. This

observation further increases the computational resource requirements of calculations

near the continuum limit. However, the use of open boundary conditions may help

to resolve the problem [43, 44] (although other recent work [45] suggests this may be

optimistic). Unreliable estimates of both the statistical and systematic uncertainties

may arise from long autocorrelation times. The effects can be treated with statistical

analysis methods on ensembles derived from Markov processes of length much longer

than the autocorrelation time. Such methods are well understood and are part of the

standard methodologies used in the LQCD community. For a careful discussion of

autocorrelation effects the reader should consult Refs. [46, 47].

2.6. Quark Propagators

A second major ingredient in almost all LQCD calculations is the quark propagator,

S(U), which is given by the inverse of the Dirac operator. As seen in Eq. (6),

after integrating out the quark degrees of freedom in the functional integrals defining

the correlation functions that need to be studied to extract physical observables, an

expression involving an integral over the remaining gauge degrees of freedom that

depends on S(U) ≡ D(U)−1 remains. The propagator is a 12V×12V matrix in spacetime

and color and Dirac space, and each column is the solution of the equation

[D(U)]X,Y [S(U)]Y,X0 = GX,X0 (12)

where G is a source that may be a Dirac delta function at a particular site, or a smeared

version that has support in a particular region. In addition, momentum plane waves

in fixed gauge, distillation and dilution vectors [48] and various other structures can be

used as sources.

Given the dimensions of the objects involved in Eq. (12) (for current large-scale

calculations, D(U) may be ∼ 1010×1010), and the sparsity pattern of the Dirac matrix,

iterative methods provide the only practical approach to solving this linear system and

determining the necessary components of the propagator. Most modern calculations

use Krylov-space based solvers such as conjugate gradient (CG), stabilised bi-conjugate

gradient (BiCGSTAB), or deflated versions such as EigCG [12] for this task. Some

discretized quark actions (e.g., the Wilson action) are such that the Dirac operator is

not Hermitian, in which case many of the simplest algorithms must be applied to the

normal equations, [D†D]S = D†G, instead of the direct system, with a resulting increase

in computational resource requirements. In recent years, preconditioners that reduce the

condition number of the matrix have become quite common. One such preconditioner,
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known as algebraic multigrid has been shown to be particularly efficient for the QCD

problem [16, 49]. Solution of these linear systems forms a large part of the computational

cost of LQCD calculations, and thus the calculations of these matrix inverses have been

highly optimized for many computing architectures. In particular, optimised codes exist

on IBM BlueGene and Cray supercomputers, clusters, nVidia GPUs [50, 51, 52] and

Intel Xeon Phis.

For gauge-field configurations that are physically large compared to the QCD scale,

L � Λ−1
QCD, it is beneficial to make use of translational invariance to exploit the full

statistical power of the computationally expensive gauge-field configurations. To this

end, it is advantageous to compute propagators from multiple, physically-separated

source locations on the same configuration, and subsequently average measurements

over these different locations. This amounts to solving Eq. (12) repeatedly with the

same D(U), but multiple different right-hand sides. This makes the application of more

complex solvers computationally viable; for solvers such as EigCG and multigrid, there

is a significant setup cost involved that must be performed once but can then be reused

to accelerate subsequent solves. By amortizing over a large number of solves, these

algorithms lead to order-of-magnitude increases in computational speed compared to

CG and even BiCGSTAB.

Since the methods used are iterative, applying a set of steps repeatedly until

a convergence criterion is satisfied, the desired criterion and precision goal must be

specified. Since there are significant fluctuations intrinsic to the importance sampling

of the gauge field, it is only useful to solve the above linear systems to a precision that

is marginally better than the gauge-field noise. However, for typical calculations at the

present time, the desired precision of solves is typically a relative error on the norm

||DS − G|| < 10−10 ∼ 10−12, approaching machine precision. While the final solution

may be required with double precision accuracy, it is possible to obtain this accuracy

in a computationally expedient way by first solving the system in single precision and

then using this solution as a starting point for the more expensive double precision solve,

which will then converge in relatively few iterations. On GPUs, half-precision numerical

representations are also available and result in effectively twice the performance of single

precision. The QUDA library for propagator inversions on GPUs takes advantage of this

feature and includes mixed half-double precision solves.

An interesting development in recent years has been the construction of improved

estimators for many physical observables. These techniques aim to perform a modified

set of measurements in which statistical fluctuations are small. A number of variants to

this approach exist, such as low-mode averaging [53, 54] or truncated solver methods [55],

which are being tested in single hadron calculations. One promising technique is

covariant approximation averaging [56, 57]. These methods attempt to speed up the

solution of the linear systems by calculating low eigenmodes exactly or by performing

“sloppy precision solves” and then correcting for the residual. They are currently being

used for calculations of nucleon form factors and related observables.
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Many observables, such as flavour singlet meson masses and iso-singlet matrix

elements, involve quark-line-disconnected contributions in which a quark propagator

must be evaluated from every site in the lattice to itself. Each solution of Eq. (12)

provides a propagator from a single site to everywhere, so in order to have propagators

from every site to itself, O(V ) solutions of Eq. (12) are required. This is a prohibitive

task to perform deterministically, but significant progress has been made in estimating

such all-to-all propagators using stochastic volume sources. Recent progress has also

been made with the introduction of probing methods [58, 59]. Nevertheless, quantities

that require all-to-all propagators remain challenging.

2.7. Mistuning Input Parameters

The tuning of the quark masses is accomplished by performing a combination of

extrapolations from heavier masses and of low-statistics calculations in the vicinity of

the parameter set of interest, followed by an interpolation to the desired point. As

this is accomplished with a relatively small number of measurements compared to those

involved in the actual production, the tuning will always be imperfect. Only after the

production is complete, involving calculations at multiple lattice spacings and multiple

volumes, are the meson masses and scale setting known with high precision. These

can be used with great effect in subsequent tunings, however, the mistunings require

that small corrections are made to the results that have been generated in order to

make predictions. Consequently, multiple calculations are needed in the vicinity of the

quark masses of interest in order to be able to systematically eliminate the impact

of the mistuning. Alternatively, reweighting methods [60] can be used to replace the

determinant terms in Eq. (6) with ones with corrected mass parameters. As the quark

masses will be close to the desired ones, and all physical results will be smooth functions

(for sufficiently small deviations), simple polynomial forms describing the behavior of

the quantity of interest will be sufficient to interpolate to the desired quark masses.

For precision calculations, the uncertainty associated with this mistuning of input

parameters must be quantified.

3. Spectroscopy : Two-Point Correlation Functions

A central task of LQCD, is to perform hadron spectroscopy. To achieve this, quark

propagators are contracted together with the appropriate flavor, Dirac and spacetime

structure to generate correlation functions with the desired quantum numbers. These

correlation functions are then analyzed with an array of statistical techniques to extract

energies and energy differences and their corresponding uncertainties.

3.1. Euclidean Space Correlation Functions

For lattice actions with a positive-definite transfer matrix [61, 62], such as the Wilson

gauge and quark actions, Euclidean space two-point correlation functions are the sums of
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exponential functions. § The arguments of the exponentials are the product of Euclidean

time with eigenvalues of the finite-volume Hamiltonian. For a lattice that has infinite

extent in the time direction, the correlation functions become a single exponential at

large times, dictated by the ground-state energy and the overlap of the source and

sink with the ground state. As an example, consider the pion two-point function,

Cπ+(t), generated from interpolating operators of the form π+(x, t) = π−(x, t)† =

u(x, t)γ5d(x, t),

Cπ+(t) =
∑
x

〈0| π−(x, t) π+(0, 0) |0〉

=
∑
n

e−Ent

2En

∑
x

〈0| π−(x, 0)|n〉〈n|π+(0, 0)|0〉 → |Z0|2
e−E0t

2E0

, (13)

where the sum over all lattice sites at each time slice, t, projects onto p = 0 momentum

states. The source π+(x, t) is not an eigenstate of QCD and not only couples to single

pion states, but also to all other states with the quantum numbers of the pion. More

generally, the source and sink can be distributed (smeared) over a subset of lattice sites

to increase the overlap onto the ground state. Eq. (13) shows that the lowest energy-

eigenvalue extracted from the correlation function corresponds to the mass of the π+

(and, more generally, the mass of the lightest hadronic state that couples to the source

and sink) in the finite volume.

Once such a correlation function has been calculated on a set of gauge-field

configurations, the simplest objective is to extract the argument of the exponential

function that persists at large times. One way to do this is to simply fit the correlation

function over a finite number of time-slices to a single exponential function. A second

method, that is useful in visually assessing the quality of the calculation, is to construct

the effective-mass (EM) function from Eq. (13) as

Meff.(t; tJ) =
1

tJ
log

(
Cπ+(t)

Cπ+(t+ tJ)

)
→ mπ , (14)

where t, tJ and Meff.(t; tJ) are in lattice units. At large times, Meff.(t; tJ) becomes a

constant equal to the mass of the lightest state contributing to the correlation function ‖.
The anti-periodic (periodic) boundary-conditions (BCs) in the time direction, imposed

§ For many improved actions, terms in the action extend over multiple time slices and the transfer

matrix is not positive definite at the lattice scale. However, a positive definite effective transfer matrix

emerges over physical length scales. In addition, domain-wall fermions do not have a single time slice 4D

transfer matrix, and the correlation functions can exhibit additional sinusoidally modulated exponential

behavior with a period set by the lattice spacing. Until the continuum limit is taken, this introduces a

systematic error that is difficult to quantify. Consequently, calculations that seek to probe short distance

details of QCD, such as the excited state spectrum, tend to use actions with no temporal improvement.

If improvement is performed in this asymmetric way, this introduces a further systematic, in that the

action is anisotropic – spatial and temporal directions are not interchangeable. This translates into an

anisotropy between spatial and temporal lattice spacings that must be determined and its impact on

final uncertainties must be quantified.
‖ This is obviously the most simplistic approach to this problem. One well-known method to extract

the ground state and excited state energies is the variational method [63, 64], which is discussed below.
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on the quark (gluon) fields, in order to recover the correct partition function, result in

the correlation functions being sums of forward and backward propagating exponentials

in the time direction.

More sophisticated methods aim to extract multiple energy eigenvalues. Fitting

correlation functions to the sum of p exponentials (or hyperbolic functions) to extract

the ground state energy requires fitting ranges that start at time separations from the

source that are large enough so that the p+1th and higher excited states make negligible

contributions. The determination of the minimum time separation that can be included

in the fit is sometimes subjective. Hence a systematic uncertainty from the choice of

the minimum time separation in the fit is included, and is estimated by observing the

variation of the extracted results as a function of the choice of fitting interval.

Multi-hadron correlation functions are somewhat more complex, particularly with

a finite temporal direction due to many allowed combinations of hadrons propagating

backwards in time. These require significantly more complex analysis [65, 66].

3.2. Scaling with Source Density and Number of Configurations

It is interesting to explore the scaling of the uncertainties in the masses of the

hadrons with the number of source locations and also with the number of gauge-

field configurations. On any given configuration, it is possible to perform a number

of measurements equal to the number of lattice sites (for a given source structure).

However, the uncertainty in the extracted energies is expected to scale as 1/
√
Nsrc

with the number of measurements, Nsrc, at low source density, but when the density

approaches one source per hadronic volume, deviations from this scaling are expected.

To demonstrate this behavior [67], the dependence of hadron masses on the number

of sources obtained on an ensemble of gauge configurations is shown in Figure 2.

The fractional uncertainties in the masses of the π+ and nucleon are shown as a

function of the number of sources used on each configuration. A simple fit of the form

δM/M = AN b
src returns exponents b = −0.03(2) and -0.41(3) for the π+, and nucleon,

respectively. The uncertainty in the energy of the pion is seen to saturate at relatively

Figure 2. The fractional uncertainty in the extracted masses of the π+ (left panel) and

nucleon (right panel) as a function of the number of sources on each configuration [67].

Statistical and systematic uncertainties have been combined in quadrature.
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low source density compared to that of the heavier hadrons. This behavior is expected

from the differing Compton wavelengths of the hadrons. In contrast, the scaling with

the number of configurations is seen to be consistent with 1/
√
Ncfg for each of the

hadrons, as expected. Figure 3 shows the fractional uncertainty in the mass of the π+

Figure 3. The fractional uncertainty in the extracted masses of the π+ and nucleon as

a function of the number of gauge-field configurations [67]. Statistical and systematic

uncertainties have been combined in quadrature.

(left panel) and nucleon (right panel) as a function of the number of configurations. An

extrapolation can be performed with a fit to the uncertainties in Figure 3 of the form

δM/M = AN b
cfg. The exponents extracted in these fits are -0.55(4) and -0.38(4) for the

π+ and nucleon, respectively [67].

3.3. Analysis of Correlation Functions

3.3.1. Statistical Analysis Methods Since Monte-Carlo integration is used to compute

the correlation functions, they are subject to statistical uncertainty that must be

carefully determined. The main observables extracted from the calculations presented in

this review are energy eigenvalues and their differences, which contain information about

phase shifts, scattering lengths and three-body interactions. The energy eigenvalues are

extracted by fitting the relevant correlation functions to a sum of exponentials. The

optimal values for the energy are extracted from correlated χ2-minimization fits that

take into account the correlations in the lattice calculations, both between different

gauge configurations and between different times in a given configuration. In the case of

energy shifts, the correlations between the energies of different states are also accounted

for. In particular, the relevant parameters, such as the energies and the amplitude of

each state that contributes to the correlation function, are determined as those that

minimize

χ2(A) =
imax∑

i,j>imin

[
Ḡ(ti)− F (ti, A)

] [
C−1

]
ij

[
Ḡ(tj)− F (tj, A)

]
, (15)



Uncertainty Quantification in Lattice QCD Calculations for Nuclear Physics 14

where F (t, A) is the fitting function, A denotes the set of fitting parameters over which

χ2(A) is minimized, and

Ḡ(t) =
1

N

N∑
k=1

Gk(t) , Cij =
1

N(N − 1)

N∑
k=1

[
Gk(ti)− Ḡ(ti)

] [
Gk(tj)− Ḡ(tj)

]
, (16)

are the average correlation function and correlation matrix, respectively. The

uncertainties in the fitted parameters are determined by the boundaries of the ellipsoid

defined by a given confidence level ¶, typically 68% or 90%. It is important to account

for correlations in a manner that gives the best estimate of the statistical uncertainty.

GivenN independent measurements of an energy level, it is straightforward to obtain the

sample mean and variance and thereby give an unbiased measure of the uncertainty in

the mean. However, in computing scattering parameters, the procedure for determining

the statistical uncertainties is somewhat more involved because the relation between the

scattering amplitude and the energy levels of the two hadron system is highly nonlinear.

First, one is interested in the energy differences between the energy levels of the two

hadron system and the sum of the masses of the two free hadrons (similarly for the case

of three or more hadrons). These energy differences can be determined in various ways.

The simplest is to perform fits to correlation functions of the multi-hadron system and

the single hadron system(s) generated on the same gauge-field configurations and to

form correlated differences of the extracted energies. The ratios of correlation functions

can also be analyzed, where Jackknife and Bootstrap resampling methods are used to

determine the covariance matrix and then a correlated χ2-fit is performed [68, 69].

Beginning with a sample of N elements, single-elimination Jackknife removes the

kth element, leaving a sample of N − 1 elements. Taking Rk to be the desired ratio of

correlation functions computed with the kth sample omitted from the full ensemble and

R̄ its ensemble average, the covariance matrix of the ratio of correlation functions is

given by

Cij =
N − 1

N

N∑
k=1

[
Rk(ti)− R̄(ti)

] [
Rk(tj)− R̄(tj)

]
. (17)

The Bootstrap method is a generalization of Jackknife. Again, beginning with a sample

of N elements, in its simplest implementation Bootstrap forms a new sample of N

elements by randomly choosing values from the original sample, with repetitions allowed.

This procedure is repeated NB times and a statistical analysis is carried out on each

of the Bootstrap ensembles. Now denoting Rk as the kth Bootstrap ensemble, the

covariance matrix is estimated by

Cij =
1

NB − 1

NB∑
k=1

[
Rk(ti)− R̄(ti)

] [
Rk(tj)− R̄(tj)

]
, (18)

where now

R̄ =
1

NB

NB∑
k=1

Rk . (19)

¶ For a pedagogical presentation of fitting see Ref. [68].
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The value of NB should be large enough so that stable and accurate estimates are

obtained. In computing the mean and uncertainty, both Jackknife and Bootstrap lead

to comparable results, as the distributions of correlation functions are smooth.

3.3.2. Fitting Methodology Fitting correlation functions to a sum of exponentials is

a difficult problem. It is significantly simplified if only the lowest energy eigenvalue

is required. However, a great deal of spectral information about QCD resides in the

energy levels above the ground state. In order to reduce the systematic uncertainty

from excited-state contamination at small time separations, it is important to have a

signal at large Euclidean times. However, at large times, the statistical uncertainties

in most correlation functions grow exponentially and therefore the extraction of the

lowest energy eigenvalue at large times typically results in large statistical uncertainties.

In principle one can trade statistical uncertainty growth for systematic uncertainty

reduction by developing improved sampling methods to reduce statistical uncertainties

in the correlation functions. However, in practical LQCD calculations, one extracts as

much information as possible from the correlation functions at short times where the

statistical noise does not overwhelm the signal, but multiple exponentials contribute to

the correlation functions.

Although the general multi-exponential fit problem is difficult and not well behaved,

systems of correlation functions can be designed in order to optimize these fits.

Variational analyses on symmetric positive-definite matrices of correlation functions

have been successfully used in the LQCD community to extract the energy eigenvalues

contributing to the correlation functions. These methods were originally introduced in

Refs. [63, 64], and have been subsequently developed [70, 71, 72, 73].

Generalizing the pion correlation function of Eq. (13) to a set of operators, {Oi},
of commensurate quantum numbers, the correlation functions can be defined

Cij(t) = 〈O†i (t)Oj(0)〉 =
∑
n

e−Ent

2En
〈0| O†i (t)|n〉〈n|Oj(0)|0〉 . (20)

At large times, the correlation functions are dominated by the first few exponentials, and

E0, E1, ... can be extracted by considering multiple correlation functions. If sufficient

resources exist to construct a basis of interpolating operators, the orthonormality of

state vectors can be used to extract multiple energies in a controlled manner [63, 64].

This is achieved by solving the generalized eigenvalue problem of the form

C(t) vn = λn(t)C(t0) vn , (21)

where the λn and the vn are the principal correlators and eigenvectors, respectively.

The utility of this method stems from the observation that at large times, the principal

correlators satisfy

λn(t) = e−En(t−t0)
(
1 + O(e−|∆E|(t−t0))

)
, (22)

where ∆E is the gap between the level of interest and the N + 1th level, where N is

the rank of Cij. There are many implementations of this so-called variational method.
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In Figure 4, we show recent results for the nucleon excited spectrum from the Hadron

Spectrum Collaboration [74] determined using these methods.

Figure 4. Excited nucleon spectra calculated at a pion mass of mπ ∼ 390 MeV [74].

The solid regions correspond to the 68% confidence intervals for the energies of the

states. [Figure reproduced with the permission of the Hadron Spectrum Collaboration.]

In many cases, computational cost precludes the construction of a basis of

interpolating operators required for the variational method to be employed. In these

cases, Matrix-Prony and other related methods [75] facilitate an extraction of the low-

lying levels from a set of at least two correlation functions with distinct operator source

and sink structure.

3.3.3. Non-Gaussian Fluctuations and Lepage’s Argument. As QCD is a highly non-

trivial interacting quantum field theory, the quantum fluctuations of the quark and gluon

fields, and hence in the derived correlation functions, are non-Gaussian. Following

Parisi [76], Lepage [77] explored the relation between the variance of a correlation

function and its mean, and in the process identified the exponentially degrading signal-

to-noise in baryonic systems. This argument can be generalized to arbitrary moments of

any given correlation function. Denote the single nucleon correlation function (projected

to zero momentum) as

〈θN(t)〉 =
∑
x

Γβα+ 〈0| Nα(x, t)N
β
(0, 0) |0〉 → ZN e−MN t , (23)

where Nα represents an interpolating operator for the nucleon, Γ+ denotes a positive-

energy projector, and the angle brackets denote the statistical average over calculations

on an ensemble of gauge-field configurations. At short times, for operators that have a

large overlap with the nucleon ground state, the moments of this correlation function

are dictated by the multi-nucleon-anti-nucleon states, 〈
(
θ†NθN

)n
〉 ∼ e−nMN t (neglecting

the interactions between nucleons), and the distribution of correlation functions is
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asymmetric with a non-exponentially degrading signal-to-noise ratio +. At large times,

however, the lightest states with the appropriate quantum numbers dominate, and the

moments scale as

〈
(
θ†NθN

)2n

〉 ∼ e−3nmπt , 〈
(
θ†NθN

)2n+1

〉 ∼ e−MN te−3nmπt . (24)

The odd moments degrade exponentially compared with the even moments, leaving a

non-Gaussian, but symmetric, distribution with a mean ∼ e−MN t and variance ∼ e−3mπt.

In Figure 5, we show the effective mass of the Λ-baryon obtained at a pion mass of

mπ ∼ 390 MeV on an ensemble of anisotropic gauge-field configurations [78]. The inset

histograms in this figure show the distribution of correlation functions, from which the

time evolution from an asymmetric distribution with a non-zero mean value, to a non-

Gaussian symmetric distribution suffering from an exponentially degrading signal-to-

noise ratio is clearly evident. At large times, exponentially large computational resources

Figure 5. An effective mass plot (blue points) obtained from Λ-baryon correlation

functions on an ensemble of anisotropic clover gauge-field configurations. The time axis

is in temporal lattice units (tlu), while the energy axis is in spatial lattice units (slu).

The insets (from left to right) show the (normalized) distribution of the correlation

function at time t = 20, 40 and 60 tlu from the source. This is derived from ∼ 120

measurements on each of ∼ 700 gauge-field configurations. These measurements were

blocked down to 93 independent representative correlation functions, and Jackknife

was used to generate the covariance matrix.

are required to precisely extract the mean value of a baryon correlation function, which

has an uncertainty ∼ e−3mπt/2/
√
N for a large number of measurements, N (where

+ The magnitude of the suppression of lighter hadronic states with the same quantum numbers as the

multi-nucleon and anti-nucleon state, as well as the same number of quark and anti-quark propagators,

such as multi-pion states, depends upon the structure of the sources and sinks. When the sink is

momentum projected over the lattice volume, overlap onto the multi-pion states are suppressed by the

ratio of the volume of the nucleon compared to the lattice spatial volume, delaying the onset of the

exponential degradation of the signal-to-noise ratio.
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Gaussian statistics have been assumed to provide an estimate of the scaling of the

uncertainty in the mean). A closer inspection of the time dependence of the moments

of the correlation functions shows that there is an intermediate time range, dictated by

the structure of the sources and sinks used to generate the correlation function [67], in

which the signal-to-noise ratio is degrading much less severely than at asymptotically

large times. This “Golden Window” is seen in the effective mass shown in Figure 5

between t ∼ 15 and 50 tlu. Efforts have been made [79] to optimize the signal-to-noise

ratio by combining optimizing the overlap of the source and sink onto the correlation

function(s) of interest with minimizing the overlap onto the corresponding variance

correlation function(s).

It is worth attempting to understand the mechanisms responsible for the statistical

behavior of the nuclear correlation functions. At each point in spacetime, the relevant

parts of a light-quark propagator can be encoded in a 12 × 12 matrix in Dirac ⊗
color space. Loosely speaking, in color space, for each pair of Dirac indices, the pion

correlation functions arise from the sum of the squared norms of the columns of this

matrix while the nucleon correlation functions arise from its determinant. The elements

of each column scale as ∼ e−
1
2
mπt, while the determinants scale as e−MN t. As the

norms and orientations of each of the columns of these matrices are fluctuating because

of interactions with the gauge field, with average values that are becoming linearly

dependent, the signal-to-noise problem arises.

3.3.4. Blocking, the Central Limit Theorem and Robust Estimators. Correlation

functions can be determined from multiple source locations on a given gauge-field

configuration. These measurements are correlated with each other as they result from

the same sample of gluon fields, and, in general, cannot be treated as statistically

independent. Because the correlation functions become translationally invariant after

averaging, these measurements can be averaged together (blocked) to generate one

representative correlation function for that gauge-field configuration. More generally,

because of the correlation between nearby gauge-field configurations produced in a

Markov chain, quantified by analysis of auto-correlation functions, the measurements

performed over multiple gauge-field configurations are typically blocked together to

produce one representative correlation function from a “patch” of the Markov chain.

For a long Markov chain, or multiple independent Markov chains, there will be a large

number of independent representative correlation functions that, by the central limit

theorem, will have an approximately Gaussian-distributed mean. In general, this set

of blocked correlation functions are analyzed using correlated χ2-minimization methods

(see Sec. 3.3.1) assuming Gaussian statistics.

As computational resources are limited, only a finite number of measurements of

each correlation function can be performed. The underlying distributions for nuclear

correlation functions are non-Gaussian with extended tails, as seen in Figure 5, and

therefore outliers are typically present in any sample, which can lead to poor convergence

of the mean (for a discussion of the “noise” associated with these and other such
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calculations, see Ref. [80]). Dealing with outliers of distributions is required in many

areas beyond physics, and there is extensive literature on robust estimators that are

resilient to their presence, such as the median or the Hodges-Lehmann (HL) estimator.

However, for the quantities we are interested in, it is the mean value (vacuum-

expectation value) that is required, and not the median or mode. With sufficient

sampling and blocking, the mean of the distribution of any given correlation functions is

expected to tend to a Gaussian distribution by the central limit theorem, for which the

mean, median and mode coincide. As an example, the nucleon effective masses obtained
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Figure 6. Effective mass plots for the nucleon obtained from an ensemble of isotropic

clover gauge-field configurations. Blocked correlation functions are analyzed with the

mean using Jackknife (blue) and Hodges-Lehman using Bootstrap (red).

from an ensemble of isotropic clover gauge-field configurations (243×64, mπ ∼ 430 MeV),

analyzed with both the mean under Jackknife and Hodges-Lehman under Bootstrap,

from ∼ 100 blocked representative correlators, are shown in Figure 6. The non-Gaussian

distribution present in the blocked correlation functions leads to a large estimated

variance at late times, while the HL-estimator is more robust. Investigations in this

direction are ongoing.

3.4. Observables

The energies and energy differences extracted from correlation functions calculated on

one ensemble of gauge-field configurations deviate from those of QCD, even in the

infinite sampling limit, because of the finite lattice spacing and the finite lattice volume.

Further, there are also deviations because of unphysical values of quark masses and/or

imperfections in their tuning.

3.4.1. Finite Lattice Spacing and the Continuum Limit. Because of the computational

resource requirements, most calculations of quantities of importance for nuclear physics

have been performed at one, in some cases two, and in very few instances three lattice
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spacings. In contrast, simpler quantities, such as the meson decay constants, have been

computed with precision at multiple lattice spacings and extrapolated to the continuum.

As an example, the MILC collaboration’s [81] recent continuum extrapolation of the

Figure 7. The MILC collaboration’s recent continuum extrapolation of fK+/fπ+ [81].

The solid (red) curve shows the result of fitting to the form c0 + c2a
2 + c4a

4, while

the dashed (red) line corresponds to fitting a constant to the smallest two lattice

spacings. The black point at a = 0 corresponds to the continuum extrapolation, with

the inner uncertainty being statistical and the outer being the statistical and systematic

uncertainties combined in quadrature. [Figure reproduced with the permission of the

MILC collaboration.]

ratio of decays constants, fK/fπ, determined at a pion mass of mπ ∼ 135 MeV

with nf = 2 + 1 + 1 dynamical quarks, is shown in Figure 7. MILC has produced

large ensembles of gauge-field configuration using a one-loop Symanzik-improved gauge

action for the gluons and the HISQ (highly-improved staggered quark) action for the

quarks with lattice spacings of a ∼ 0.06, 0.09, 0.12 and 0.15 fm, allowing for continuum

extrapolations involving four independent points. ∗ Two different extrapolations of their

results, shown and described in Figure 7, provide consistent continuum limit values

The lattice-spacing dependence of observables can be determined from the

Symanzik action [82], dictated by the symmetries of the discretized action, that describes

the dynamics of the quarks and gluons at momentum scales much less than the inverse

lattice spacing. The operators in this EFT are formed from the quark and gluon

fields with arbitrary numbers of derivatives and insertions of the quark mass matrices,

with coefficients that scale with the appropriate power of the lattice spacing. It is the

matrix elements of these operators between the hadronic states of interest that dictate

the lattice-spacing dependent deviations from QCD. While the Symanzik action lacks

Lorentz invariance and rotational symmetry, it is constrained by the residual hypercubic

∗ Due to the mistunings of quark masses, as discussed previously, such continuum extrapolations also

require interpolations in the quark masses.
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symmetry of the discretized action. The presently available computational resources

have not permitted calculations of sufficient precision to isolate lattice-spacing artifacts

beyond polynomial in the lattice spacing, however, such terms are present, for instance,

from the intrinsic logarithmic scale dependence of the coefficients in the Symanzik action.

In order to have confidence in the extraction of multibaryon binding energies and

scattering phase shifts, and to be able to quantify one of the systematic uncertainties in

these determinations, it is important to determine the single-hadron dispersion relations

with precision. Example calculations of the energies of the pion and nucleon as a

function of
∑
j

sin2
(

2πa
L
nj
)

are shown in Figure 8 [83, 84], where the triplet of integers

n = (n1, n2, n3) is related to the momentum of the state via P =
(

2π
L

)
n. In these LQCD
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Figure 8. Examples of the squared energy (in (l.u.)2) of the single pion and nucleon

as a function of
∑
j

sin2
(
2πa
L nj

)
at the flavor-SU(3) symmetric point [83, 84]. The

figures show the results of LQCD calculations performed on isotropic clover gauge-

field configurations, along with the best linear fits.

calculations, the energy of the hadron can be related to its lattice momentum through

dispersion relations of the form

( aEH)2 = (aMH)2 +
1

ξ2
H

∑
j

sin2

(
2 π a

L
nj

)
+ ... , (25)

where ξH is the the anisotropy parameter for hadron H (or equivalently its fractional

speed of light βH = 1/ξH). In the continuum limit, this reduces to E2
H = |pH |2β2

H +

M2
H , as required. At any finite lattice spacing, the relation between energy and

momentum of any given hadron involves an infinite number of terms that respect

the underlying hypercubic symmetry, and this relation can only be determined by

direct calculation. The measured dispersion relation, and associated uncertainties, are

necessary for determining multihadron binding energies and scattering phase shifts,

as will be discussed below. Even after accounting for the lattice dispersion relation,

these quantities will have residual dependence upon the lattice spacing because of

modifications to the hadronic interactions, and an extrapolation in lattice spacing is

required to obtain their continuum limit values.
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A final comment regarding finite lattice spacing concerns the recovery of rotational

symmetry from the underlying hypercubic symmetry and the mixing of operators with

those with lower angular momentum (and hence lower dimension). It has recently been

shown that in the limit of a lattice spacing that is small compared with any of the

intrinsic length scales of the system, including the renormalization scale needed for

certain operators, the breaking of rotational symmetry scales as O(an) with n ≥ 2, and

its effects vanish in the continuum limit [85]. This results in a parametric suppression

of higher-dimension operators mixing with ones of lower dimension.

3.4.2. Finite-Volume Effects and Boundary Conditions (I): Single Hadrons. For

localized hadronic systems, such as single mesons, baryons and nuclei, if the objective

of a LQCD calculation is to determine its mass or binding energy, then it is desirable

to work in the largest practical lattice volume, both in the spatial and temporal

directions. Ground-state energies, in situations where the lattice volume and temporal

extent are much larger than the hadronic size, have finite-volume (FV) effects that

scale exponentially with the lattice volume, a result that follows straightforwardly from

considering the FV system in terms of its image systems [86, 87, 88].

For single mesons and baryons, calculations of the FV effects have been performed

in the p-regime of chiral perturbation theory (χPT) (the regime in which the momentum

and quark mass divided by the chiral symmetry breaking scale are the expansion

parameters), and are found to agree well with the results obtained in LQCD calculations

at unphysical light-quark masses, e.g. Refs. [78, 89, 90], but remain to be verified at

the physical point. However, for the pseudo-scalar mesons, the FV modifications to the

decay constants and masses have been calculated beyond the one-loop level [91], and it

has been shown that removing these FV effects from the results of LQCD calculations

improves the overall fit quality at and near the physical point [92]. These works suggest

that loop-level χPT calculations describe the FV modifications to meson masses in large

volumes as expected. In using the low-energy EFT to determine the FV effects, it is

implicit that the FV effects can be described by modifications of loop diagrams involving

the lowest-lying mesons. The reason this type of seperation is possible is because the

FV modification to the coefficients of the local operators in the low-energy EFT, in this

case χPT, are exponentially suppressed by the size of the hadron, scaling as ∼ e−L/rχ ,

where 1/rχ is set by the mass of the ρ or the chiral symmetry breaking scale, Λχ, as

opposed to parametrically larger ∼ e−mπL behavior that results from the loop diagrams.

For baryons, the situation is more complex because of the poor convergence

properties of baryon-χPT. Figure 9 shows the volume dependence of the nucleon mass

obtained at a pion mass of mπ ∼ 390 MeV [78]. Its volume dependence is expected

to be linear in e−mπL/L at leading order in the chiral expansion, consistent with what

is observed in Figure 9. As a function of the pion mass, the FV effects in the nucleon

mass are expected to scale as m3
π for fixed mπL (for p-regime calculations), and are

thus expected to be significantly smaller at the physical light-quark masses [78] for a

given mπL. However, χPT does not appear to describe the quark-mass dependence
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Figure 9. The mass of the nucleon as a function of e−mπL/(mπL) calculated on

anisotropic gauge-field configurations at a pion mass of mπ ∼ 390 MeV.

of the nucleon mass over the range 140 MeV < mπ < 400 MeV [93], as discussed in

Section 3.4.4, so it is an open question as to whether it continues to describe volume

effects at lighter masses.

It is important to quantify the FV effects and to be able to remove them from

LQCD calculations in order to compare the spectrum of the hadrons with those of

nature. Further, it is vital to understand them in order to investigate two-hadron

scattering amplitudes and nuclear binding energies. As nuclear binding energies are

typically in the MeV range, the nucleon mass must be calculated with precision and

accuracy that is < 0.1%. The results shown in Figure 9 provide guidelines for future

calculations to fulfill such constraints.

While the discussions we have presented so far have been based upon the use of

periodic BCs in the spatial directions, one is free to choose different BCs. Periodic

BCs constrain the quark momentum to satisfy p = 2π
L

n with n being an integer triplet,

and are a subset of a larger class of BCs called twisted BCs (TBCs). TBCs are those

for which the quark fields acquire phases θi at the boundaries, ψ(x + nL) = eiθ·nψ(x),

where 0 < θi < 2π is the twist angle in the ith Cartesian direction [94]. An arbitrary

total spatial momentum can be selected for the hadronic system by a judicious choice

of the twist angles of its valence quarks, p = 2π
L

n + φ
L

, where φ is the sum of the

twists of the valence quarks, again with 0 < φi < 2π. TBCs have been shown to be

useful in LQCD calculations of the low-momentum transfer behavior of form factors

required in determining hadron radii and moments, and for calculations of the vacuum

polarization contributions to the muon g − 2, alleviating the need for large-volume

lattices, e.g. Ref. [95]. ] It was recently noted that twisting can be used to reduce the

] We note that twisting is usually applied to the valence quarks only, leading to a violation of unitarity

in such calculations [96]. Nevertheless, the low energy properties of the resulting partially quenched

theory are assumed to be described by partially quenched χPT [97, 98], which can subsequently be
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FV modifications to the hadron masses [99]. This can be accomplished by averaging

the results of periodic BC and anti-periodic BC calculations, by twist-averaging, or by

working with i-PBCs corresponding to a single twist of φ = (π/2, π/2, π/2) [99].

Realistic calculations are performed in volumes with a finite time direction, with

the quark fields satisfying anti-periodic BCs, corresponding to calculations of the system

at a typically low, but non-zero temperature. One effect of the finite temperature

is to introduce contributions to the correlation function from subsets of hadronic

degrees of freedom propagating backwards in time. These give rise to energies in the

correlation function that are lower than that of the ground state. However, such effects

are exponentially suppressed by the length of the time direction. For interpolating

functions OA,B, a correlation function calculated with anti-periodic BCs on the quark-

fields becomes

CO(t;T ) =
1

Z
Tr
[
e−ĤT Ô†A(t) ÔB(0)

]
=

1

Z

∑
j,k

e−EjT e(Ej−Ek)t 〈j| Ô†A(0) |k〉〈k| ÔB(0) |j〉 , (26)

where T is the length of the time-direction and Z = Tr
[
e−ĤT

]
is the partition function.

As an example, consider an interpolating operator that couples to the π+π+-state,

which can be written in terms of hadronic field operators as Ô(0) = Zπ+π+ π+π+ +

Zπ+π+π0π0 π+π+π0π0 + ..., where the ellipses denote all other possible operators with

the same quantum numbers and the Z’s are a priori unknown overlap factors. In

Eq. (26), this operator thus gives non-zero values of 〈π−π−| Ô(0) |0〉, 〈π−| Ô(0) |π+〉,
〈0| Ô(0) |π+π+〉, and for all other states with the same quantum numbers as the π+π+

source. Consequently, the correlation function contains exponentials e−E t with energies

E = Eπ+π+ , Eπ+ − Eπ+ = 0, −Eπ+π+ , Eπ+π+π0π0 , −Eπ+π+π0π0 , Eπ+π+K+K− ,. . . . In the

zero temperature limit, only those exponentials with E ≥ Eπ+π+ survive. States with

energies less than Eπ+π+ can be interpreted as thermal excitations, for instance arising

from the process shown in Figure 10.

Figure 10. Thermal contributions to ππ correlation functions. The vertical lines

indicate anti-periodic temporal boundaries and the grey regions represent the π+π+

source and sink. The solid lines correspond to valence quark propagators.

As they dominate correlation functions at times t ∼ T/2, the thermal states are

used to correct for these effects in many cases.
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not simply a curiosity that can be safely ignored. The amplitudes of these states are

exponentially suppressed by the temporal extent of the lattice times the energy of the

backward going hadronic state. Consequently, the most important thermal states involve

backward propagating pions, and the product mπT must be large in order to suppress

these states. As the chiral limit is approached, and the pion becomes lighter, this

requires increasingly large computational resources.

3.4.3. Finite-Volume Effects and Boundary Conditions (II): Multiple Hadrons.

Extracting hadronic interactions from LQCD calculations is significantly more

complicated than determining the spectrum of stable particles. This is encapsulated

in the Maiani-Testa theorem [100], which states that S-matrix elements cannot be

extracted from infinite-volume Euclidean-space Green functions except at kinematic

thresholds. This is clearly problematic from the nuclear physics perspective, as a main

motivation for pursuing LQCD is to be able to compute reactions involving multiple

nucleons. However, Euclidean-space correlation functions calculated in a finite volume

can be used to extract S-matrix elements, as has been known for decades in the context

of non-relativistic quantum mechanics [101] and extended to quantum field theory by

Lüscher [86, 88]. The allowed energies of two particles in a finite volume depend in a

calculable way upon their elastic scattering amplitude for energies below the inelastic

threshold.

Since Lüscher’s original analysis [86, 88], there have been many works that have

generalized the analysis to cases such as boosted systems and those performed with

twisted BCs, and have made explicit the formalism for higher angular momentum

channels. For a bound system, a single hadron or a nucleus, that is compact compared

with the lattice volume, the impact of the boundary is exponentially suppressed by the

energy gap to the next lightest hadronic state. In the large volume limit, with the

impact of the lattice spacing parametrically diminished in the continuum limit, a bound

system can be classified by its SO(3) (and other) quantum numbers. In contrast, the

(low-lying) continuum (scattering) states are intrinsically linked to the BCs, and are

classified by irreps of the cubic group rather than SO(3). †† In volumes that are large

compared with the range of the interaction, the energies of scattering states have a

power-law dependence on the spatial extent of the lattice, with exponential corrections

suppressed by the inverse of the range of the interaction. For two scalar particles in the

A+
1 irrep of the cubic group, with energy below the inelastic threshold, a direct relation

between the FV energy shift, δE, and the s-wave phase shift, δ0, only exists when the

l = 4, 6, ... phase shifts are neglected. In that case, the Lüscher relation becomes

q cot δ0 =
2√
πL
Z0,0(1; q̃2) with Zl,m(s; q̃2) =

∑
n

|n|l Ylm(Ωn)

[|n|2 − q̃2]s
, (27)

†† One understands the recovery of SO(3) in the large-volume limit by considering the systems at

fixed energy, with finite energy resolution and high excitation in the lattice volume, where the large

multiplicity of a given cubic irrep allows for better resolution of angular momentum [102].
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where q̃ =
(
L
2π

)
q and q is the magnitude of the relative three momentum, derived from

the energy shift δE/2 =
√
q2 +m2−m (for identical mass hadrons). In general, for two-

hadron systems, the FV energy shift receives contributions from all partial waves, and

truncations must be made in order to extract phase-shift information. These truncations

can be checked for self consistency by further calculations in different volumes, or

with different BCs. However, the extraction of phase shifts using Lüscher’s method

necessarily introduces systematic uncertainties that require quantification.

The extention of Lüscher’s method to multiple, coupled two-hadron channels has

recently been detailed, e.g. [103, 104, 105, 106, 107, 108]. This extension has impact

beyond low-energy nuclear physics, as it is essential for LQCD calculations in support

of the GlueX experimental program at the Thomas Jefferson Laboratory that is focused

on identifying gluonic excitations of hadrons and other exotic states (for recent work,

see Ref. [109]). In such coupled systems, the energy eigenvalues obtained from LQCD

calculations depend upon all of the phase shifts and mixing parameters describing the

S-matrix in non-trivial ways. This is true even after neglecting the channels that do

not contribute in the infinite-volume limit. Each eigenvalue provides a combination of

scattering parameters evaluated at that energy eigenvalue. Generally, assumptions have

to be made as to the analytic structure of the amplitude near the energy eigenvalues

in order to extract the scattering parameters. In some cases, this can be done in

a constrained way by appealing to EFTs to provide an approximate form of the

momentum dependence [75, 110]. The validity and robustness of the assumed form

of the scattering amplitudes has to be systematically verified, and used to estimate the

associated systematic uncertainty. Recently, Lüscher’s energy quantization conditions

(QCs) have been extended to include the EM interactions between charged hadrons [111]

in anticipation of future LQCD calculations.

Figure 11. The expected energy of two nucleons in the positive-parity isoscalar

channel (which contains the deuteron) with boost vector d = (0, 0, 1) as a function of

L, extracted from the A2 (red) and E (blue) QCs given in Ref. [106].



Uncertainty Quantification in Lattice QCD Calculations for Nuclear Physics 27

As the NN phase shifts and mixing parameters have been measured experimentally

to relatively high precision, studies have been performed [107] to explore the impact of

truncating the QCs that follow from a generalization of Lüscher’s work, building upon

earlier studies [75]. In the case of the deuteron, the volume dependence of the two lowest

energy eigenvalues obtained from the experimentally determined phase shifts and mixing

parameter for the system boosted with one unit of lattice momentum (corresponding to

the one-dimensional A2 and two-dimensional E irreps of the cubic group) are shown in

Figure 11. Energies with and without the contributions from the sd-mixing parameter,

ε1, and the d-wave phase shifts in the J = 1, 2, 3 channels (these can all contribute

because of the absence of rotational symmetry) in the vicinity of the deuteron pole,

are shown (contributions from the higher partial waves have been neglected). The

differences in energies provide an estimate of the impact of truncating Lüscher’s QC.

Interestingly, the observed sensitivity to ε1 suggests that calculating the energy splitting

between these two irreps will allow for its determination.

Beyond two-hadron systems, there are ongoing efforts aiming to formulate relations

between S-matrix elements describing three-body systems and the FV energies of

three-body states [112, 113, 115, 116, 117]. However, at this point in time, only

a few systems involving more than two unbound hadrons have been explored with

LQCD [65, 66, 118, 119].

3.4.4. Chiral Extrapolations. LQCD has revolutionized our understanding of the

quark-mass dependence of hadronic observables. It has provided precise determinations

of low-energy constants defining χPT, and has made explicit its limitations. Many

mesonic observables are now being calculated at, or near, the physical pion mass,

although often still in the isospin limit. Currently, the spatial volumes and temporal

extents employed in such calculations remain somewhat small, but this situation is

improving. Only a few quantities of interest to nuclear physics have so far been

calculated near the physical point, specifically the ground-state baryon masses, e.g.

Ref. [34], and nucleon matrix elements of quark bilinear operators, e.g. Ref. [120].

Currently, higher precision is required in all of these calculations in order to impact the

experimental program.

For the most part, chiral extrapolations are currently still necessary and introduce

further systematic uncertainties in the predictions of LQCD calculations. One arises

from the fact that a set of coefficients have to be fit to the lattice results to perform an

extrapolation at any given order in the chiral expansion. This truncation of the chiral

expansion means that the nth-order fit potentially deviates from QCD by an amount

characterized by the small expansion parameter raised to the n+ 1th power.

An observable that shows major deviations from expectations of χPT is the mass

of the nucleon. Naively, the nucleon mass has an expansion in powers of the light-

quark masses and non-analytic contributions from loop diagrams. Figure 12 shows a

compilation of the nucleon mass from LQCD calculations [93], which are well reproduced

by a chiral dependence that is linear in the pion mass, MN = 800 +mπ MeV, in conflict
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Figure 12. A compilation of LQCD calculations of the nucleon mass, as a function

of mπ [93]. [Figure reproduced with the permission of Andre Walker-Loud.]

with expectations from χPT, MN = M0 + α1m
2
π + α2m

3
π + ....

It is now generally understood that, while the chiral expansion in the pseudo-

Goldstone boson sector appears to converge relatively well, there is little indication that

it is reliable for making predictions for the mass dependence of nucleon observables,

e.g. Refs. [121, 122], except in the close vicinity of the chiral limit. Therefore, there

is uncertainty associated with LQCD calculations that require chiral extrapolation that

is challenging to reliably assess. Because of this behavior, there have been a number

of efforts to partially resum higher orders in the chiral expansion, such as Finite-Range

Regularization [122]. Typically this involves identifying a function that has the correct

behavior near the chiral limit and the heavy-quark limit, and is a smooth function at

intermediate pion masses, with parameter(s) associated with this behavior that are fit

to LQCD results. While the functional forms are not obtained from the symmetries of

QCD for all quark masses, they do, in many instances, provide fits that agree well with

the LQCD results, and provide predictions at the physical point with small statistical

uncertainties. The systematic uncertainties associated with such forms are difficult to

assess. However, given the current level of statistical precision of LQCD calculations,

they are likely estimated sufficiently well at present.

For multi-nucleon systems, the situation is somewhat different and far less certain.

At heavy pion masses, a pionless EFT, with only contact operators and derivatives

thereof, can be used to describe the results of LQCD calculations and then used to make

predictions for other systems in the periodic table [123]. However, while this allows for

an extrapolation in atomic number, it cannot be used for chiral extrapolations as the

light-quark mass dependence is “hidden” in the coefficients of the operators. At lighter

pion masses, the chiral interactions can be used to extrapolate [124, 125, 126, 127], and,

in fact, isolating the light-quark mass dependence of the nuclear forces is essential for

their refinement at the physical point. Only one such calculation exists at present, and

this is for hyperon-nucleon scattering [128]. Lattice results obtained at a pion mass
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of mπ ∼ 390 MeV were used to constrain the hyperon-nucleon interaction at leading

order in the low-energy EFT, from which predictions were made at the physical pion

mass which agreed, within uncertainties, with phenomenological parameterizations of

experimental measurements. The uncertainties associated with this extrapolation were

estimated from the size of contributions at next-to-leading order in the EFT expansion.

3.4.5. Electromagnetism In most of the observables of interest in particle physics, EM

corrections are fine-structure effects, entering at the sub 1%-level. However, in the

structure of moderate and large nuclei, EM becomes a leading effect. This is because of

its long-range nature, compared to the short range nature of the nuclear forces. In many

instances, LQCD calculations of the properties of the lowest-lying mesons are becoming

sufficiently precise that isospin violation, from the up- and down-quark mass difference

and the effects of EM, must be included. In a few cases, hadronic properties are now

being calculated with nf = 1 + 1 + 1 + 1 non-degenerate quark flavors and with fully-

dynamical QED, e.g. Ref. [34]. However, most of the LQCD calculations that include

EM [129, 130, 131, 132, 33] do so for the valence quarks, but not in the generation of

the gauge-fields, leading to a systematic uncertainty in those results. Including EM,

while straightforward in principle, complicates the quark-mass tuning and introduces

power-law finite-volume effects. One advantageous feature of LQCD calculations is that

the EM coupling constant can be chosen to be an arbitrary value, within reason, to

magnify the EM effects for the purpose of extracting them with improved precision and

refining estimates of uncertainties.

4. Hadronic Structure: Three-Point Correlation Functions

LQCD has a much broader scope than purely the spectroscopic information available

from the two-point correlators discussed up to now. A second class of observables

of importance in nuclear physics that have undergone extensive study are aspects of

hadron structure such as electromagnetic form factors, moments of parton distributions

and generalized parton distributions and transverse-momentum dependent parton

distributions (see Ref. [134] for a recent comprehensive review). These quantities

correspond to matrix elements of local (and non-local) operators, and require the

calculation of three-point correlation functions, as shown schematically in Figure 13.

Using the nucleon electromagnetic form-factors as examples, consider

Cµ(p,q; τ, t) =
∑
z,y

ei(p·z+q·y)〈0|χ(x0, 0)Jµ(y, τ)χ(z, t)|0〉 , (28)

where χ is an interpolating operator with the quantum numbers of the nucleon. In the

limit of large Euclidean time separations between the source, current insertion and sink,

the insertion of complete sets of states on either side of Jµ shows that this correlation

function is given by the nucleon matrix element of this current, up to overlap and

kinematic factors that can be extracted from simpler two point correlators,

Cµ(p,q; τ, t)
0�τ�t−→ 〈0|χ(0)|N(p〉〈N(p + q)|χ(0)|0〉e−Epτe−Ep+q(t−τ) (29)
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t0 = 0 τ t t0 = 0 τ t

Figure 13. Contributions to three point correlation functions: connected (left) and

disconnected (right). The shaded circles correspond to source and sink interpolating

operators while the crossed circle represents the current insertion.

× 〈N(p)|Jµ|N(p + q)〉 ,

where the last term is the desired matrix element of the electromagnetic current between

ground-state nucleons of momentum p and p + q. An additional uncertainty that is

introduced in these more complicated calculations is the dependence of the results on

the source–operator and operator–sink time separations rather than just on the source–

sink separation. As with two-point functions, the source couples to all eigenstates of

the specified quantum numbers, but the high lying states are exponentially damped out

in Euclidean time. However, the inserted current can couple back to the excited states,

introducing more contamination. It is only in the limit of both τ and t− τ being large

that the matrix elements can be extracted simply. Unfortunately this requires temporal

separations of the source and sink that are larger than those needed for two-point

correlation functions and so calculations of matrix elements are expected to be both

noisier than, and subject to more excited state contamination than, the corresponding

two-point functions. A number of techniques have been explored to address this issue,

for instance, through the use of matrices of correlators and multiple state fits (see, for

example, Ref. [120, 135, 136]).

In many studies, uncertainties were introduced into calculations of three-point

correlation functions by the omission of quark-line disconnected diagrams (the right-

hand diagram in Figure 13). In these terms, the quark field creation and annihilation

operators in the inserted current self contract, resulting in a propagator from the

insertion point to itself, and are present whenever the current under consideration has

a flavor-singlet component. All-to-all propagator techniques, discussed previously, are

used to calculate such contributions, and require substantial computational resources.

In the single nucleon sector, sophisticated all-to-all propagator techniques have recently

allowed complete calculations of the proton electromagnetic form factors, e.g. Ref. [137],

and of the spin decomposition of the nucleon, e.g. Ref. [138]. Ongoing work to apply

these methods to nuclei is underway.
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5. Error Budgets

The results of a series of LQCD calculations of a given observable are presented as

a central value, a statistical uncertainty and a systematic uncertainty (for correlated

quantities, this is generalized to a central point and associated region in a multi-

dimensional space). However, a great deal of information is contained in the various

contributions to both such uncertainties. In precision calculations of weak matrix

elements, and other fundamental quantities in particle physics, it is now standard to

provide an “error budget” by tabulating all of the sources of uncertainty, an example of

which is shown in Figure 14 [139]. Included in the contributions to the total uncertainties

Figure 14. The error budget for the Υ decay constant and b-quark mass determined

in the calculations of Ref. [139]. [Table reproduced with the permission of HPQCD

collaboration.]

are those from the statistics of the calculation of the quantity, from lattice perturbation

theory (matching continuum QCD to lattice QCD), from chiral, continuum and infinite-

volume extrapolations, from determining the lattice spacing, from tuning the quark

masses, and from the absence of EM. In calculations of simple quantities, sufficient

computational resources are now available to numerically determine and control most

of these uncertainties, through calculations with multiple lattice volumes, spacings and

quark masses. Even in cases where complete calculations such as these are prohibitively

computationally expensive, a clear and complete error budget presenting all of the

uncertainties, even if they result from estimates based upon dimensional analysis or

EFT arguments, is informative.

6. Summary

Lattice quantum chromodynamics is a numerical technique with which to calculate

strong-interaction observables in the low-energy regime with uncertainties that can be
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fully quantified and systematically reduced. In this article, we have attempted to

summarize all of the sources of uncertainty that arise in starting from the handful

of parameters that define QCD (the quark masses and the strong interaction length

scale) and using the numerical machinery of LQCD to make predictions for low-energy

observables, such as the meson and baryon spectra, the structure of the nucleon, and

the masses and interactions of nuclei. At the time of writing this article, relatively

simple quantities are being calculated at, and near, the physical light-quark masses,

essentially eliminating one of the major uncertainties that has been present in the field

for many years - the chiral extrapolation. While the lattice volumes and spacings that

are computationally accessible at the present time are not ideal for nuclear physics,

with increased computational resources and algorithmic improvements, we expect that

calculations of many quantities of importance to nuclear physics with fully quantified

statistical and systematic uncertainties will become routine in the near future.
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