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Abstract: Control theory has been instrumental for the analysis and design of a number of
engineering systems, including aerospace and transportation systems, robotics and intelligent
machines, manufacturing chains, electrical, power, and information networks. In the past several
years, the ability of de novo creating biomolecular networks and of measuring key physical
quantities has come to a point in which quantitative analysis and design of biological systems is
possible. While a modular approach to analyze and design complex systems has proven critical
in most control theory applications, it is still subject of debate whether a modular approach
is viable in biomolecular networks. In fact, biomolecular networks display context-dependent
behavior, that is, the input/output dynamical properties of a module change once this is part of
a network. One cause of context dependence, similar to what found in many engineering systems,
is retroactivity, that is, the effect of loads applied on a module by downstream systems. In this
paper, we focus on retroactivity and review techniques, based on nonlinear control and dynamical
systems theory, that we have developed to quantify the extent of modularity of biomolecular
systems and to establish modular analysis and design techniques.

1. INTRODUCTION

Modularity is the property that allows to predict the
behavior of a complicated system from that of its compo-
nents, guaranteeing that the salient properties of individ-
ual components do not change after interconnection. The
assumption that is often made when designing or analyzing
a network modularly is that the input/output behavior
of a module does not change upon connection to other
modules. Researchers in the systems biology community
have hypothesized that modularity may be a property
of biological systems, proposing functional modules as a
critical level of biological organization (Hartwell et al.
[1999], Alon [2007a]). This view has profound implica-
tions on evolution (Kirschner and Gerhart [2005]) and
further suggests that biology, just like engineering, can
be understood in a hierarchical fashion (Asthagiri and
Lauffenburger [2000], Lauffenburger [2000]). Lauffenburger
[2000] in fact elaborates that biological systems can be
analyzed in a nested manner, similar to what is performed
in engineering design, in which individual components are
first characterized and tested in isolation prior to incor-
poration into incrementally larger and more sophisticated
systems. However, modularity is still subject of intense
debate and remains one of the most vexing questions in
systems biology (Alexander et al. [2009], Cardinale and
Arkin [2012], Kaltenbach and Stelling [2012]).

Modularity is also critical for the field of synthetic biol-
ogy (Purnick and Weiss [2009]), in which researchers are
pursuing a bottom-up approach to designing biomolecular
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networks (Andrianantoandro et al. [2006], Baker et al.
[2006]). The past decade has seen tremendous advances to
the point that creation of simple biomolecular networks,
or “circuits”, that control the behavior of living organisms
is now possible (Becskei and Serrano [2000], Elowitz and
Leibler [2000], Gardner et al. [2000], Atkinson et al. [2003],
Stricker et al. [2008], Danino et al. [2009], Bleris et al.
[2011], Moon et al. [2012]). A near future is envisioned in
which re-engineered cells will perform a number of useful
functions from turning feedstock into energy (Peralta-
Yahya et al. [2012], Zhang et al. [2012]), to killing can-
cer cells in ill patients (Xie et al. [2011]), to detecting
pathogens in the environment (Kobayashi et al. [2004]), to
regulate cell differentiation in diseases like diabetes (Miller
et al. [2012]). To meet this vision, one key challenge must
be tackled, namely designing biomolecular networks that
can realize substantially more complex functionalities than
those currently available.

A main bottleneck in advancing in this direction is that
modules display context-dependent behavior (Cardinale
and Arkin [2012]). Hence, accurate prediction of a mod-
ule’s behavior once part of a network is still an open ques-
tion. As a result, synthetic circuits need to be re-tuned/re-
designed through a lengthy and ad hoc process, which
takes years, every time they are inserted into a different
context (Slusarczyk et al. [2012]). Context-dependence is
due to a number of different factors. These include direct
inter-modular interactions that result in load effects, a
phenomenon known as retroactivity (Saez-Rodriguez et al.
[2004, 2005], Del Vecchio et al. [2008]); interactions of
synthetic circuits with the cell “chassis”, a phenomenon
broadly known as “metabolic burden” (Bentley et al.



[1990]), which encompasses a number of different effects,
such as effects on cell growth (Scott et al. [2010]) and
competition for shared resources, such as ATP, transcrip-
tion/translation machinery, proteases, etc. (N. A Cook-
son and et al. [2011], Yeung et al. [2013], Mather et al.
[2013]); and perturbations in the cell environment, such as
changes in temperature, acidity, nutrients’ level, etc.

In this paper, we address the fundamental question of
modularity in biology focusing on the problem of retroac-
tivity. Retroactivity extends the notion of impedance or
loading to non-electrical systems and, in particular, to
biological systems (Saez-Rodriguez et al. [2004, 2005], Del
Vecchio et al. [2008]). Because of retroactivity, the dynami-
cal behavior of a system changes upon connection to other
systems and, therefore, retroactivity effects imply a loss
of modularity. We review some of our results towards (a)
understanding the extent of modularity of biomolecular
systems by quantifying the effects of retroactivity, (b)
establishing a predictive modeling framework for modular
analysis in the presence of retroactivity, and (c) uncovering
design principles ensuring that the behavior of modules is,
to some extent, robust to retroactivity effects.

This work is complementary to but different from studies
focusing on partitioning biological networks into modules
using graph-theoretic approaches (Saez-Rodriguez et al.
[2005], Sridharan et al. [2011], Anderson et al. [2011]).
Instead, the work presented here describes a theoretical
framework to accurately predict both the quantitative
and the qualitative behavior of interconnected modules
from their behavior in isolation and from key physical
properties. In this sense, our approach is closer to that
of disciplines in biochemical systems analysis, such as
metabolic control analysis (MCA) (Fell [1992], Heinrich
and Schuster [1999], Sauro and Kholodenko [2004]). How-
ever, while MCA is primarily focused on steady state and
near-equilibrium behavior, our approach focuses on global
nonlinear dynamics evolving possibly far from equilibrium
situations.

To make the retroactivity problem amenable for a math-
ematical analysis, we propose a system concept that ex-
plicitly incorporates retroactivity (Del Vecchio and Sontag
[2009]). We then leverage the natural separation of time
scales in biomolecular networks to provide an operative
quantification of retroactivity for general networks as a
function of measurable biomolecular parameters and net-
work topology (Gyorgy and Del Vecchio [2012], Gyorgy
and Del Vecchio [2013]). From this operative quantification
and the dynamic model of a module in isolation, we can
accurately predict how the behavior of the module will
change after connection to other systems. The conceptual
similarity of this framework with the electrical circuit
theory based on equivalent impedances (Thevenin [1883])
is apparent. The key difference is that electrical circuit
theory is largely based on linear systems, while our frame-
work relies on tools from nonlinear system theory, due to
the inherent nonlinearity of biomolecular networks, which
makes linear systems theory inapplicable.

We then consider the problem of designing larger systems
by composing smaller modules. We first briefly describe
how the framework developed in Gyorgy and Del Vec-
chio [2013] allows to determine how the parameters of

an upstream system and a downstream system should be
tuned such that the effects of retroactivity are minimized.
This approach to minimizing retroactivity effects implies
that modules should be co-designed, a procedure that can
become impractical as the number of modules composing a
system increases. A different approach is that to design and
optimize modules in isolation and then connect modules
to each other through a special device called insulation de-
vice, such that the modules retain their isolated behavior.
The insulation device should apply negligible loading to
the upstream module while being able to keep the desired
input/output response in the face of significant retroactiv-
ity to its output (Jayanthi and Del Vecchio [2011]). This
approach has been used in electrical engineering with the
introduction of operational amplifiers and their derived
circuits such as inverting and non-inverting amplifiers
(Schilling and Belove [1968]). We illustrate a design prin-
ciple for insulation devices, which exploits the distinctive
feature of the interconnection structure in biomolecular
networks and the separation of time scales among key
processes. We illustrate the implementation of this mecha-
nism through covalent modification (Heinrich et al. [2002],
Goldbeter and Koshland [1981]), such as phosphorylation
(Jiang et al. [2011]).

This paper is organized as follows. In Section 2, we in-
troduce the retroactivity problem through a motivating
example. In Section 3, we introduce the system concept
to model retroactivity, illustrate analogies with other en-
gineering systems, provide an operative quantification of
retroactivity for a simple system, and then for general gene
transcription networks. Section 4 formulates the problem
of designing insulation devices as a disturbance attenua-
tion problem and tackles it by using singular perturba-
tion theory. In this section, we also illustrate one spe-
cific biomolecular implementation of an insulation device
through phosphorylation and discuss implications for nat-
ural systems.

2. MOTIVATING EXAMPLE

As a motivating example, consider the activator-repressor
clock of Atkinson et al. [2003] showed in Figure 1(a). This
oscillator is composed of an activator A activating itself
and a repressor R, which, in turn, represses the activator
A. Both activation and repression occur through tran-
scription regulation. Transcription regulation is a common
regulatory mechanism used in synthetic gene circuits. In
transcription regulation, a protein, called a transcription
factor, binds specific DNA sites, called operator sites,
located on a region called promoter, which is upstream
of the gene of interest and represses or activates the gene’s
expression. When the gene is expressed, the protein that
the gene encodes is produced, through the process of tran-
scription/translation (a process called the central dogma
of molecular biology (Alberts et al. [2007])). This protein
can, in turn act as an activator or repressor for other genes,
creating circuits of activation and repression interactions
(Alon [2007b]). It is common practice in synthetic biology
to fabricate the desired DNA sequences of promoters and
genes on plasmids (see Bleris et al. [2011], for example).
Plasmids are circular pieces of DNA that come with a
nominal copy number, from low copy (1-5 copies of plasmid
per cell) to high copy (hundreds copies of plasmid per cell).
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Fig. 1. (a) shows the activator-repressor clock when isolated and (b) when connected to a downstream system. (c)-(d) shows the trajectories
of the activator and repressor concentrations when the clock is isolated (solid line) and when it is connected (dashed line). In all
simulations, we have αA = αR = 100, α0,A = .04, α0,R = .004, δA = 1, δR = 0.5, Ka = Kr = 1, n = 2 and m = 4 (model (1)). In
the connected clock configuration (b), we also have kon = koff = 100 and pT = 20 (model where the dynamics of A modify to those
modeled in equation (2)).

There are several different modeling frameworks that can
be used to mathematically describe the dynamic evolution
of biological networks, depending on the desired level of
granularity in space and time. At the coarsest level, we
have reaction rate equation models in the form of ordinary
differential equations (ODE), in which individual states
represent concentrations (number of molecules divided by
the cell volume) of chemical species. These models provide
a good approximation of the system dynamics when the
number of molecules is sufficiently high and the space
is “well stirred”, that is, there are no significant spatial
gradients in the number of molecules. When, instead, the
number of molecules is low, stochastic models need to
be employed. These models include the chemical master
equation (Van Kampen [2007], Gillespie [1977]), which
describes the evolution in time of the probability of the
number of molecules of each species, and the chemical
Langevin equation (Gillespie [2000]), which describes the
dynamic evolution of the noise under the assumption of
sufficiently large volumes and molecule numbers. Reaction-
diffusion equations, which take the form of a parabolic
partial differential equation, are instead employed when
there is a significant spatial gradient in the concentration
of chemical species (Shvartsman and Baker [2012]).

In this paper, we focus on ODE models under the assump-
tion that the number of molecules in the cell volume is
sufficiently high. Letting italics denote the concentration
of species, the ODE model of the clock can be written as

Ȧ =
αA(A/Ka)

n + α0,A

1 + (A/Ka)n + (R/Kr)m
− δAA,

Ṙ =
αR(A/Ka)

n + α0,R

1 + (A/Ka)n
− δRR,

(1)

which describes the rate of change of the activator A and
repressor R concentrations. In this model, δA and δR rep-
resent protein decay, due to dilution and/or degradation.

The functions
αA(A/Ka)

n+α0,A

1+(A/Ka)n+(R/Kr)m
and

αR(A/Ka)
n+α0,R

1+(A/Ka)n
are

Hill functions (Alon [2007b]). The first one increases with
A and decreases with R, since A is an activator and R is a
repressor for A, while the second one increases with A as
A is an activator for R.

It was shown in the work of Del Vecchio [2007] that the
key mechanism by which this system displays sustained

oscillations is a Hopf bifurcation with bifurcation param-
eter given by the relative time scale between the activator
and the repressor dynamics. Specifically, as the activator
dynamics become faster than the repressor dynamics, the
system goes through a supercritical Hopf bifurcation and
a periodic orbit appears (solid plots of Figure 1(c-d)).

Assume now that we would like to use the clock as a
signal generator to, for example, provide the timing to
or synchronize downstream systems. To do so, we need
to take one of the proteins of the clock, say protein A,
as an input for a downstream system (Figure 1(b)), in
which A will activate the expression of another protein D,
for example. In this case, one needs to add to the clock
dynamics the description of the physical process by which
information is transmitted from the upstream system to
the downstream one. In any biomolecular system, informa-
tion is transmitted through (reversible) binding reactions.
In this case, n molecules of A will reversibly bind with
the promoter p controlling the expression of protein D to
form a transcriptionally active complex C (see Jayanthi
and Del Vecchio [2012] for more details on the model).
Letting pT denote the total concentration of this promoter
(given by the plasmid copy number divided by the cell
volume) and kon and koff the association and dissociation
rate constants, we have that the A dynamics modify to

Ȧ =
αA(A/Ka)

n + α0,A

1 + (A/Ka)n + (R/Kr)m
− δAA

− nkonA
n(pT − C) + nkoffC,

Ċ = konA
n(pT − C)− koffC,

(2)

while the differential equation for R remains the same.
Since A is an activator of D, we will also have that
Ḋ = kC − δDD, in which k and δD are the production
rate constant and the decay rate constant, respectively.

As a result of the interconnection, the clock stops func-
tioning (dashed plots in Figure 1(c-d)). This effect has
been called retroactivity to extend the notion of loading or
impedance to non-electrical systems, and in particular to
biomolecular systems (Del Vecchio et al. [2008]). It is due
to the fact that the communicating species, A in this case,
when occupied in the reactions of the downstream system
cannot participate in the reactions of the upstream system
and hence the clock behavior is affected.
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Fig. 2. System concept with retroactivity.

In the next sections, we illustrate a systems theory frame-
work to explicitly model retroactivity so to make the
problem of retroactivity amenable of theoretical study.

3. RETROACTIVITY

In order to model retroactivity, we propose to model
systems as shown in Figure 2. Specifically, we explicitly
add retroactivity as signals traveling from downstream to
upstream, that is, in the direction opposed to that in which
information is traveling (from upstream to downstream).
Signal s is the retroactivity to the output and models the
fact that whenever the output y of Σ becomes an input
to a downstream system, this system affects the upstream
system dynamics because of the physics of the intercon-
nection mechanism. Similarly, r is called the retroactivity
to the input and models the fact that whenever Σ receives
signal u, it changes the dynamics of the sending system.
Related system concepts include that of Paynter [1961]
and that of Polderman and Willems [2007]. Differently
from Paynter [1961], our framework does not require that
signals r and u (s and y) are generalized effort and flow
variables and hence that their product is the power flowing
through the port. Differently from Willems [1999], we keep
a directionality to signals as we consider upstream-to-
downstream as the direction in which we think information
is being transmitted. From a practical point of view, this is
useful because a module is usually characterized by forcing
input signals and measuring the consequent output signal.
So, there is an intrinsic directionality already associated
with the information transfer within a module.

The concept of retroactivity is not restricted to biomolec-
ular systems and it applies in general to many engineering
systems (Figure 3). For illustration, we provide two exam-
ples: an electrical and an hydraulic system.

Electrical Systems. Figure 3(b) depicts a voltage generator
with internal resistor R0 (upstream system) and the down-
stream system to which it is connected, a load resistor with
value RL. The output of the isolated system is y = V0

while the output of the connected system is given by
y = V0 − R0I. The two outputs are the same when the
current drawn by the resistor is I = 0. Hence, we can
take s = I. Note that for the connected system, I can
be rendered arbitrarily small by taking RL very large,
corresponding to a downstream system with high input
impedance (a downstream system with low retroactivity
to the input).

Hydraulic Systems. Figure 3(c) depicts the interconnection
of two tanks. In the case in which the upstream tank is
isolated, we have that the valve at the output pipe is closed
and hence the outlet flow is zero, that is, f = 0. When the
tank is connected to the downstream tank, we have that
f = ρk

√

(p− p1) for p > p1, in which ρ is the fluid density
and k is a parameter that depends on the output valve
geometry. In this case, the retroactivity to the output can

be taken as s = f . This additional flow will cause a change
in the pressure p of the upstream tank. For the connected
system this flow can be rendered small by decreasing k,
which corresponds to decreasing the aperture of the valve.

Biomolecular Systems. Figure 3(d) depicts the biomolec-
ular clock module with downstream system with sites
p to which A binds. In the case in which the clock is
not connected, A is not taken as an input to any down-
stream system, while when it is connected, A serves as
an input to a downstream system. This interconnection
takes place by having A bind to targets p through a
reversible binding reaction. The corresponding reaction
rate is given by −n kon An p + n koff C. Hence, we can
take s = −n kon An p + n koff C. This “usage” of A can
change the behavior of the clock and hence the value of
the A concentration as discussed in Section 2.

Retroactivity physically has the form of a “flow” between
systems: it is a current in the case of the electrical example,
a flow of fluid in the case of the hydraulic system, and the
rate of a chemical reaction in the biomolecular system.
Also, note that retroactivity is fundamentally different
from feedback. In fact, s can be removed only if the connec-
tion from the upstream system to the downstream system
is broken, that is, y is not transmitted to the downstream
system. If s were feedback, it could be removed while keep-
ing the transmission of y from upstream to downstream.

3.1 Quantification of retroactivity in a simple biomolecular
system

Because of retroactivity, the connected behavior of a
module differs from the behavior of the same module in
isolation (s = 0). We seek to predict how the behavior of a
module will change upon interconnection as a function of
measurable biochemical parameters. As a simple example,
consider the dynamics of a protein X subject to production
and decay:

Ẋ = K(t)− δX, (3)

in which the production rate K(t) varies with the activity
of the promoter controlling the expression of X. When this
protein is used as an activator or repressor for another
protein, such as protein A in the clock is used to activate
protein D, we need to modify the dynamics of X to

Ẋ = K(t)− δX − konX(pT − C) + koffC,

Ċ = konX(pT − C)− koffC,
(4)

in which we have assumed for simplicity that X binds to
DNA promoter sites p as a monomer (in one copy). In this
system, we have that s = −konX(pT − C) + koffC is the
retroactivity to the output. How this additional reaction
rate affects the X dynamics when compared to the isolated
system (3) is the next question we address.

To answer this question, we can exploit the natural time-
scale separation between protein production and decay (δ),
of the order of minutes to hours, and binding/unbinding
rates (kon/koff), of the order of seconds/subseconds (Alon
[2007b]). By defining the small parameter ǫ = δ/koff and
the slow variable z = X + C, system (4) can be taken to
the standard singular perturbation form (Khalil [2002])
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ż = K(t)− δ(z − C),

ǫĊ =
δ

Kd
(z − C)(pT − C)− δC,

(5)

in which Kd = koff/kon is the dissociation constant of
the binding between X and p. One can show that the
slow manifold of this system is locally exponentially stable
(Del Vecchio et al. [2008]), so that system (5) can be
approximated up to order ǫ by the reduced system where
ǫ = 0 given by ż = K(t) − δX and C(X) = pTX

X+Kd
.

Considering that

ż = Ẋ + Ċ = Ẋ

(

1 +
dC

dX

)

,

and that ż = K(t)− δX , we finally obtain

Ẋ = (K(t)− δX)

(

1

1 +R(X)

)

, R(X) =
pT /Kd

(X/Kd + 1)2
,

(6)
in which R(X) = dC

dX . Comparing this system with the iso-
lated system (3), we note that the net effect of retroactivity
is that of decreasing the rate of change of the species X by
a factor 1/(1 + R(X)). The expression of R(X) provides
an operative quantification of retroactivity as a function of
relevant biochemical parameters. Specifically, retroactivity
increases when pT increases (the load increases) and/or
Kd decreases (the affinity of the binding increases), which
is physically intuitive. Furthermore, since R(X) > 0, we
have that equation (6) implies that the dynamics ofX slow
down upon connection to the downstream system. Further,
as Kd becomes smaller, this “slow down” becomes close to
a finite-time delay (Figure 4).

The effects of retroactivity on the behavior of biomolecular
systems have been experimentally demonstrated in the
MAPK cascade in eukaryotic cells (Kim et al. [2011]), in
gene circuits in bacterial cells (Jayanthi et al. [2013]), and
in signaling systems in vitro (Ventura et al. [2010a], Jiang
et al. [2011]).

0 20 40 60 80 100 120 140 160 180 200
0

0.2

0.4

0.6

0.8

1

1.2

time

A
 c

on
ce

nt
ra

tio
n

 

 

p
T
=0

p
T
=100,K

d
=1

p
T
=100,K

d
=0.1

p
T
=100,K

d
=0.001

Fig. 4. Effect of retroactivity on the dynamics of X when subject
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3.2 Revisiting the effects of retroactivity on the clock

Since retroactivity slows down the dynamics of the output
species, it is natural that the clock in Section 2 stops oscil-
lating if the load is sufficiently high. In fact, the addition
of the load causes the activator dynamics to slow down
compared to the repressor dynamics and hence the system
moves to the “left” of the supercritical Hopf bifurcation so
that the equilibrium point becomes stable. Using the re-
sults of the previous section, the clock dynamics with load
on the activator become (see Jayanthi and Del Vecchio
[2012] for the full derivation)

Ȧ =

(

αA(A/Ka)
n + α0,A

1 + (A/Ka)n + (R/Kr)m
− δAA

)(

1

1 +R′(A)

)

,

Ṙ =
αR(A/Ka)

n + α0,R

1 + (A/Ka)n
− δRR,

(7)
in which we have R′(A) = npT (A

(n−1)/Kn
a )/(1 +

(A/Ka)
n)2, so that the activator dynamics become slower

compared to the unloaded case (1). In particular, the
effect of retroactivity is that of making the rate of change
of A slower compared to the rate of change of R. As a
consequence, when the activator load pT is increased, the
system goes through a Hopf bifurcation so that the stable
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limit cycle disappears and the system trajectories converge
to a stable equilibrium point (Figure 5).

At this point, one may ask how the clock behavior would
be affected if the load were applied to the repressor. Since
retroactivity slows down the dynamics of the repressor, one
should expect that a non-oscillating clock can be turned
into an oscillating clock for sufficiently high load as the
system moves through the Hopf bifurcation. This is in fact
the case as formally shown in the work of Jayanthi and Del
Vecchio [2012].

These results illustrate that downstream targets allow to
tune the dynamics of a module without changing the parts
of the module itself, hence providing an additional degree
of freedom in design. Therefore, retroactivity does not
always have a negative connotation and natural systems
may actually use it in advantageous ways. It is very well
known, for example, that transcription factors in natural
systems can have large numbers of DNA binding sites,
several of which do not even have regulatory functions (see
Burger et al. [2010]). Our finding highlights an additional
role that these DNA binding sites may have, that is,
to tune effective kinetic rates in natural gene regulatory
networks.

3.3 A Thevenin-like framework to quantify retroactivity in
gene networks

The operative quantification of retroactivity outlined in
the previous sections can be extended to the intercon-

nection of any two general gene transcription networks
(Figure (6)). In particular, given the isolated modules
dynamics ẋA = fA

0 (xA, uA) and ẋB = fB
0 (xB, uB), in

which xA, xB , uA, uB are vectors with dim(yA) = dim(uB),
one can demonstrate (see Gyorgy and Del Vecchio [2013]
for the technical details) that the dynamics of connected
module A will have the form

ẋA = (I + (I +RA)−1SB)−1(fA
0 (xA, uA)+

(I +RA)−1MBfB
0 (xB , yA)),

(8)

in which RA, SB, and MB are state-dependent matrices.
Specifically, RA depends only on parameters (promoter
amounts and dissociation constants) of module A, while
SB and MB depend only on parameters of module B.
Matrix RA is called internal retroactivity and quantifies
the effect of intramodular connections on the dynamics of
module A in isolation. In fact, the vector field fA

0 (xA, uA)
contains in its expression also matrix RA according to
fA
0 (xA, uA) = (I +RA)−1[(gA(xA, uA)−QAu̇A], in which
gA(xA, uA) is a vector field that models the dynamics of
the nodes in module A neglecting retroactivity and QA is a
matrix that determines how the rate of change of the input
affects the state (see Gyorgy and Del Vecchio [2013] for
details). Matrix MB is called the mixing retroactivity and
quantifies the “coupling” between the isolated dynamics
of module A and the isolated dynamics of module B.
Specifically, when MB = 0, the isolated dynamics fB

0
of module B do not appear in the dynamics of module
A, so that the two dynamics are not “mixed”. From a
physical point of view, this mixing occurs when nodes in
module B have parents both from module B itself and
module A, so that transcription factors from A and B
interfere with each other while binding to promoter sites in
module B. Matrix MB models the phenomenon by which
transcription factors in B can force transcription factors
from A to bind/unbind promoter sites in module B, thus
effectively changing the free concentration of transcription
factors in A. When MB = 0, the dynamics of module A
are simply given by

ẋA = (I + (I +RA)−1SB)−1fA
0 (xA, uA), (9)

so that the dynamics of module A are a “matrix-scaled”
version of the dynamics of A in isolation. This is why
matrix SB is called the scaling retroactivity and quantifies
the loading effect that module B has on module A due
to transcription factors in A binding to promoter sites in
module B. When also SB = 0, the dynamics of module A
are the same as in isolation.

These retroactivity matrices can be calculated once the
measurable parameters (promoter amounts and dissocia-
tion constants) and the interconnection graph are known.
Specifically, they can be calculated as:

RA(xA, uA) =
∑

i∈ nodes in A

V T
i Ri(x

A, uA)Vi

SB(xA, xB) =
∑

i∈ input nodes in B

WT
i Ri(x

A, uA)Wi

MB(xA, xB) =
∑

i∈ input nodes in B

WT
i Ri(x

A, uA)Di,

in which Ri(x
A, uA) is the retroactivity of the node and

depends on the promoter concentration at the node and
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Fig. 7. Equivalent representation of an upstream electrical network
(Module A) and a downstream electrical network (Module B).

on the dissociation constant of the same promoter. For
example, if the node has only one parent, Ri is a scalar
quantity and it has the expression given in equation (6).
If the node has two parents, Ri is a two by two matrix
whose off-diagonal entries are zero if the parents bind
independently to the promoter, while they are non-zero
when the parents bind non-independently (cooperatively
or competitively). The specific expressions can be found in
the work of Gyorgy and Del Vecchio [2012]. The matrices
Vi, Wi, and Di have entries equal to 0 or 1 and encode
the interconnection graph among nodes. Specifically, Vi

encodes the topology of the interconnection graph internal
to module A, while Wi and Di encode the topology of
the interconnection graph between nodes in module A and
nodes in module B.

The conceptual analogy between equation (8) and Thevenin’s
theorem for electrical networks is instructive. Specifically,
Thevenin’s result shows that a linear electrical network
between two terminals can be reduced, independently of
its complexity, to an equivalent ideal energy source and
an equivalent impedance (Agarwal and Lang [2005]). In
particular, an upstream module A has an equivalent volt-
age source fA

0 and an equivalent output impedance ZA,
while its downstream module B can be represented by
an equivalent voltage source fB

0 and an equivalent input
impedance ZA (Figure 7). Referring to Figure 7, when
module A and module B are not connected to each other
the voltage at the output terminals of module A is given by
fA = fA

0 . When these modules are connected, the output
voltage of module A becomes

fA =
1

(ZA/ZB) + 1
fA
0 +

ZA/ZB

(ZA/ZB) + 1
fB
0 ,

so that when ZA/ZB ≈ 0, that is, the output impedance
of module A is much smaller than the input impedance of
module B, then we have that fA ≈ fA

0 . Comparing this
equation with equation (8), it is apparent that the ratio
ZA/ZB plays a conceptually similar role to the “ratios”
(I+RA)−1SB and (I+RA)−1MB: as SB and MB become
“small” compared to (I + RA), equivalently, ZA becomes
“small” compared to ZB, the output of module A is the
same as that in isolation (not connected to module B).
Here, we have placed quotes on “small” since we are
dealing with matrices for the case of gene networks and
with complex numbers for the case of electrical circuits.
The notion of small in the case of the gene network can be
made precise by calculating the matrix 2-norm (see Gyorgy
and Del Vecchio [2013] for more details). Therefore, from
a conceptual point of view the internal retroactivity RA

plays a similar role to the output admittance 1/ZA of

u y

sr

Insulation
Module A Module BDevice

Fig. 8. An insulation device is placed between an upstream module
A and a downstream module B in order to protect these systems
from retroactivity. An insulation device should have r ≈ 0
and the dynamic response of y to u should be practically
independent of s.

module A in the electrical circuit, while SB plays a similar
role to the input admittance 1/ZB of module B in the
electrical circuit. This analogy is purely conceptual since
the structure of the two systems (gene network and electric
network) is fundamentally different especially since one
(the electrical network) is linear while the other (gene
network) is nonlinear.

We can further quantify the difference between trajectories
of connected and isolated systems as function of measur-
able biochemical parameters. Specifically, let x(t) and x̂(t)
denote the trajectory of the state of Module A when in
isolation and when connected to module B, respectively.
When MB = 0, it can be shown under mild assumptions
that the difference between the isolated and connected
module trajectories satisfies

‖x(t)− x̂(t)‖2 = O(µ), µ =
σM (SB)/σm(I +RA)

1− σM (SB)/σm(I +RA)
,

in which σM (SB)/σm(I + RA) < 1, and σM (A) and
σm(A) denote the largest and smallest singular values of A,
respectively. Parameter µ provides a metric of robustness
to interconnections. It can be employed to either partition
a natural network into modules whose behavior can be
isolated (for modules with small µ), to some extent, from
that of the surrounding modules. At the same time, it
can also be employed in the bottom-up design of synthetic
circuits by matching the output retroactivity of module A
to the scaling retroactivity of module B so that µ is small,
leading to a module A that preserves its isolated behavior
after connection to module B.

In summary, this framework can be employed to predict
the behavior of a transcription network once it is connected
into a larger system, that is, to understand how the in-
put/output properties of a module depend on its context.

4. INSULATION

From a design point of view, it is often desirable that the
behavior of the upstream system does not change when it is
connected to a downstream one. However, we have seen in
the previous sections that retroactivity causes a potentially
dramatic change in the dynamics of the upstream system.
If one cannot design the downstream system to have low
scaling and mixing retroactivity compared to the internal
retroactivity of the upstream system, a different approach
is required to connect the two systems while preserving
their isolated input/output response. A viable option is
to design a device that, once placed between module A
and module B, insulates them from retroactivity effects
(Figure 8). We call this device an insulation device and
we formally specify its properties by requiring that (a)
r ≈ 0 and (b) the effect of s on y is completely attenuated.
The first requirement can be satisfied by picking the
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Fig. 9. A phosphorylation cycle is a protein modification mechanism
in which an inactive protein X is converted by a kinase K to an
active form X∗, which is converted back to X by a phosphatase
P.

parts of the input nodes of the device so that they have
low retroactivity to the input (low scaling and mixing
retroactivity). The second requirement can be formulated
as a disturbance attenuation problem and it is the focus
of the next section.

4.1 Retroactivity attenuation through high-gain feedback

One established technique for disturbance attenuation is
high-gain negative feedback (Young et al. [1977]). We illus-
trate how this idea applies to our problem by considering
again the dynamics of X in the isolated

Ẋ = K(t)− δX

and connected

Ẋ = (K(t)− δX)(1/(1 +R(X))

upstream system configuration. In this case, the idea of
high-gain feedback is to apply a negative feedback gain G
and, in order not to attenuate the signal X(t), to apply
a similarly large gain G′ = αG for some α > 0 to the
input K(t). In this case, the dynamics of the isolated and
connected systems become

Ẋ =G′K(t)− δX −GX (isolated)

˙̄X = (G′K(t)− δX̄ −GX̄)

(

1

1 +R(X̄)

)

(connected),(10)

so that when G increases, we have that |X(t) − X̄(t)| →
O(1/G) (Del Vecchio et al. [2008]), which implies that the
effect of retroactivity on X̄(t) is attenuated as G increases.

The next question is how to implement this mechanism
through a biomolecular system. To this end, consider a
phosphorylation cycle (Figure 9), in which protein X is
converted to the active form X∗ through an enzymatic
reaction with a kinase K (the input of the system) and
converted back through another enzymatic reaction with
a phosphatase P (Klipp et al. [2005]). Only when active,
protein X can act as a transcription factor and activate
or repress the expression of D. The basic idea is that
amplification of the input K should occur through the
forward cycle reaction while the negative feedback should
occur through the reverse cycle reaction. In order to
understand how this can be explained mathematically, we
consider a simple model of the cycle, in which enzymatic
reactions are modeled through one-step reactions:

K + X
k1−→ K+X ∗

P+ X ∗ k2−→ P + X,

in which we let XT denote the total amount of cycle
protein. Along with these equations, we need to model also
the binding reaction of X ∗ with sites in the downstream
system so that, after applying singular perturbation as
performed before, we obtain

Ẋ∗ = (k1XTK(t)(1 −X∗/XT )− k2PX∗)

(

1

1 +R(X∗)

)

.

(11)
Comparing this equation with equation (10), we see that
the gain on the input is given by G′ = k1XT , while the
negative feedback gain is given by G = k2P . As a conse-
quence, we can conclude that as XT and P are increased,
the behavior of X∗ should be minimally affected by the
retroactivity to the output of the phosphorylation cycle.
This result implies that phosphorylation cycles can func-
tion as insulation devices, suggesting another reason why
these cycles are ubiquitous in natural signal transduction:
they can enforce unidirectional signal propagation, which
is certainly desirable in any (human-made or natural)
signal transmission system. Related works have proposed
that adding an explicit negative feedback to the cycle
should further improve its robustness (Sauro and Ingalls
[2007]). Here, we focus on the cycle without explicit nega-
tive feedback due to simpler experimental implementation.

The hypothesis that phosphorylation cycles function as
insulation devices when both the amounts of cycle protein
and phosphatase are sufficiently large is appealing since it
can be experimentally tested. However, model (11), while
providing an intuition behind the mechanisms responsible
for retroactivity attenuation, is overly simplified and hides
many important details that may be relevant to the overall
cycle robustness. Specifically, covalent modification cycles
can be modeled considering the enzymatic reactions as
two-step processes (Goldbeter and Koshland [1981]) and
can even include all of the details of the units that makeup
a protein, some (or all) of which can be modified by the
enzymes (Ventura et al. [2010b]). In the latter case, the
ODE model of the upstream system in Figure 9 can even
have several dozens of state variables. Hence, a mathe-
matical framework to study insulation from retroactivity
is required to handle models of arbitrary dimension. This
is illustrated in the next section.

4.2 Retroactivity attenuation through time scale separation

We have developed a technique to analyze and design
retroactivity attenuation, which holds for arbitrarily com-
plex biomolecular network models. The basic idea exploits
separation of time scales and the specific structure of the
interconnection between biomolecular modules. This can
be illustrated through the following simplified treatment.
For the general results, the reader is referred to the work
of Jayanthi and Del Vecchio [2011].

For the insulation device of Figure 8, which we refer to as
system Σ, we seek to determine conditions under which
the dynamic response of y to u is minimally affected by
retroactivity s. In order to do so, we write the model
of the system in its isolated configuration (s = 0) and
in its connected configuration (s 6= 0) and quantify the
difference between the trajectories of the isolated and
connected systems. Specifically, letting u be a vector
variable and assuming for simplicity that y ∈ R

n is the



state of Σ, we can write the dynamics of the isolated
system as

u̇= f0(t, u) + r(u, y)

ẏ =G1f1(u, y), (12)

in which G1 > 0 is a positive constant, and we can write
the dynamics of the connected system as

˙̄u= f0(t, ū) + r(ū, ȳ)

˙̄y=G1f1(ū, ȳ) +G2Ms(ȳ, v) (13)

v̇ =−G2Ns(ȳ, v),

in which G2 > 0 is also a positive constant and M
and N are matrices called stoichiometry matrices (Klipp
et al. [2005]). Here, v is a vector variable that models
the dynamics of the downstream system to which Σ is
connected. The distinctive structure of the interconnection
comes in the fact that matrices M and N are such that
there is a non-singular n×n matrix B and a matrix T such
thatBM−TN = 0. This is the case because the entries of s
physically represent the rate of reversible binding between
two species and it always affects with opposite signs the
species involved in the binding, one of which belongs to the
upstream system and the other belongs to the downstream
system. The constant G2 models the fact that binding
reactions are among the fastest reactions in biomolecular
networks, so that G2 ≫ 1.

Now, assume that we can take G1 ≫ 1 probably not
as large as G2 but still sufficiently larger than 1. This
can be achieved, for example, by letting y be driven by
protein modification reactions, such as phosphorylation
or allosteric modification, which are usually much faster
than protein production and decay processes (Klipp et al.
[2005]). In this case, we can re-write the dynamics of the
connected system (13) by using the change of variables
z = Bȳ + Tv, ǫ1 = 1/G1, and ǫ2 = 1/G2 as

˙̄u= f0(t, ū) + r(ū, ȳ)

ǫ1ż =Bf1(ū, ȳ)

ǫ2v̇ =−s(ȳ, v),

which is in standard singular perturbation form with
two small parameters. Under the assumption that the
slow manifold is locally exponentially stable (the technical
conditions can be found in Jayanthi and Del Vecchio
[2011]) the above system can be well approximated by one
in which ǫ1 = 0 and ǫ2 = 0. This leads to ȳ = γ(ū)
(the locally unique solution of f1(ū, ȳ) = 0), which is
the same solution as found in the isolated system (12)
when ǫ1 = 0. As a consequence, we can conclude that
‖y(t) − ȳ(t)‖ = O(ǫ1) for 0 < tb ≤ t < T for some tb > 0
and T > 0, independently of the value of G2. This result
implies that if the time scale of Σ is sufficiently faster than
the time scale of the input and suitable stability conditions
are satisfied, then Σ attenuates the effects of retroactivity
s on the response of y to u.

4.3 Implementation through phosphorylation cycles

In view of the result of the previous section, we can
consider a more realistic model of the phosphorylation

cycle and exploit the natural time scale separation between
phosphorylation and gene expression (controlling K(t)) to
show retroactivity attenuation.

Consider a two-step reaction model for the phosphoryla-
tion reactions, given by

K + X
β1

−⇀↽−
β2

C1
k1−→ X∗ +K

P+X∗
α1−⇀↽−
α2

C2
k2−→ X+ P

with conservation laws PT = P + C2, AT = X + X∗ +
C1+C2+C, along with the binding of X∗ with downstream
sites p, that is,

X∗ + p
kon−−⇀↽−−
koff

C.

The resulting ODE model is given by

K̇ = k(t)− δK − β1XTK

(

1−
X∗

XT
−

C1

XT
−

C2

XT
−

C

XT

)

+(β2 + k1)C1

Ċ1 =−(β2 + k1)C1 + β1XTK

(

1−
X∗

XT
−

C1

XT
−

C2

XT

−
C

XT

)

Ċ2 =−(k2 + α2)C2 + α1PTX
∗

(

1−
C2

PT

)

Ẋ∗ = k1C1 + α2C2 − α1PTX
∗

(

1−
C2

PT

)

+koffC − konX
∗(pT − C)

Ċ =−koffC + konX
∗(pT − C). (14)

To take this system in the form (13), we can define the gain
G1 by considering the separation of time scales between
gene expression and protein phosphorylation, so that

G1 :=
β1XT

δ
≫ 1,

b2 := β2

G1
, a2 := α2

G1
, a1 := α1PT

G1
, and κi := ki

G1
for

i = 1, 2. Similarly, we can define the gainG2 by considering
the separation of time scales between gene expression and
binding reactions, so that

G2 :=
koff
δ

≫ 1

and Kd := koff

kon
. By using the change of variables z = K +

C1 and ensuring that XT ≫ pT so that C/XT ≪ 1, we
can re-write the system as
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Fig. 10. Simulation of the phosphorylation cycle in (14) with low
gain G1 and high gain G1 when K(t) is a periodic signal.
Specifically, we have δ = 0.01, XT = 5000, PT = 5000,
α1 = β1 = 2 × 10−6G1, and α2 = β2 = k1 = k2 = 0.01G1, in
which G1 = 10 (upper panel), and G1 = 1000 (lower panel).
The downstream system parameters are kon = 100, koff = 100
and, thus, G2 = 10000. Simulations for the connected system
(s 6= 0) correspond to pT = 100 while simulations for the
isolated system (s = 0) correspond to pT = 0.

ż = k(t)− δ(z − C1)

Ċ1 =G1

[

−(b2 + κ1)C1 + δ(z − C1)

(

1−
X∗

XT
−

C1

XT

−
C2

XT

)]

Ċ2 =G1

[

−(κ2 + a2)C2 + a1X
∗

(

1−
C2

PT

)]

Ẋ∗ =G1

[

κ1C1 + a2C2 − a1X
∗

(

1−
C2

PT

)]

+G2

[

δC −
δ

Kd
X∗(pT − C)

]

Ċ =−G2

[

δC −
δ

Kd
X∗(pT − C)

]

,

which is in the form of system (13) with

u = z, y = (C1, C2, X
∗)′, v = C,

s = koffC − konX
∗(pT − C),

M = (0, 0, 1)′, N = 1, r = 0.

Therefore, the main result of the previous section applies
with B = I and T = (0, 0, 1)′, so that as G1 increases, the
response of X∗ to K becomes insensitive to retroactivity
s, as also reflected by the simulation results of Figure 10.

This technique is applicable to large models and was uti-
lized for designing experiments on a covalent modification
cycle in vitro (Jiang et al. [2011]) and for designing a
buffer between an in vitro biomolecular oscillator and a
load (Franco et al. [2009, 2011]).

From a design point of view, the gain G1 can be made
larger by increasing the total concentration of substrate
XT and of phosphatase PT in comparable amounts. Note,
however, that in doing so the loading applied to the input
kinase K increases, so that the retroactivity to the input r
of the insulation device also increases. As a consequence,
by increasing G1 this way, the retroactivity attenuation
property improves to the expense of applying increased
retroactivity to the input K. As a result, the output is
not the desired one as it mirrors an input K(t) that
has been distorted due to retroactivity r. In this case, it
becomes necessary to perform an optimal design in which

R A

p

D

R A
K

X*X

P p’

D

Fig. 11. Illustration of how one can interconnect the clock to its
downstream system through the insulation device of Figure 9.
The top diagram illustrates a simplified genetic layout of the
activator-repressor clock of Figure 1(a). The boxes represent
the genes expressing R, A, and D, while the arrows upstream
of the genes represent the promoters that control these genes.
The bottom diagram illustrates how the genetic layout of the
clock should be modified such that it can connect to the
phosphorylation cycle that takes as input the kinase K. In this
case, the downstream system still expresses protein D, but its
expression is controlled by a different promoter that is activated
by X* as opposed to being activated by A.

the amounts of substrate and phosphatase are optimized
to minimize the overall error due to both the contribution
of r and of s. This optimal design can be performed by
explicitly computing bounds on the errors due to r and s
and my minimizing these, which, in turn, can be obtained
by employing robustness results from contraction theory.
For details on these, the reader is referred to the work of
Rivera-Ortiz and Del Vecchio [2013].

A further downside in overexpressing proteins is that the
cost of the circuit in terms of cellular resources increases
(Stoebel et al. [2008]). Of particular concern in a phos-
phorylation cycle is the consumption of ATP, the cellular
energy currency. An extensive analysis of how increased
gains (increased substrate and phosphatase concentra-
tions) reflect in an increased energy cost of the cycle can
be found in the work of Barton and Sontag [2013]. Finally,
it is well known from the Bode’s integral formula for
linear systems that increased gains can lead to undesired
sensitivity increase in certain frequency ranges, ultimately
potentially leading to noise amplification. This limitation
is found also in the presented insulation design, for which a
simplified analysis using the chemical Langevin equation
can be found in the work of Jayanthi and Del Vecchio
[2009]. All these constraints should be taken into account
when implementing the insulation device design.

4.4 Connecting the clock to its downstream system through
an insulation device

In this section, we illustrate how the insulation device
implemented through phosphorylation of Figure 9 can be
employed to connect the clock to the desired downstream
system such that (a) the clock behavior is not significantly
perturbed and (b) the signal from the clock is transmitted
to the downstream system robustly with respect to the
load that this downstream system applies. To this end,
consider the diagrams depicted in Figure 11. The top
diagram illustrates a simplified genetic layout of the clock.
The activator A is expressed from a gene under the control
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Fig. 12. Simulation results for the concentration of protein K in
Figure 11 in the case in which this were used directly as an
input to the downstream system, thus binding sites p’ (dashed
red plot).

of a promoter activated by A and repressed by R, while
the repressor is expressed from a gene under the control of
a promoter activated by A. Protein A, in turn, activates
the expression of protein D in the downstream system. In
this case, the promoter p controlling the expression of D
contains a sequence that A recognizes, so that A can bind
to it.

When the insulation device of Figure 9 is employed to
interconnect the clock to the downstream system, two
modifications need to be made to enable the connections.
Since A is not a kinase, we need to insert in sequence
to the gene expressing A the gene expressing the kinase
K (bottom diagram of Figure 11). Since both A and K
are under the control of the same promoter, they will be
produced at the same rates and hence the concentration of
K should mirror that of A. Note that a solution in which we
insert in sequence to the gene expressing A a transcription
factor K that directly binds to downstream promoter sites
p’ to produce D (without the insulation device in between)
would not solve the problem. In fact, while the clock
behavior would be preserved in this case, the behavior of
the concentration of K would not mirror that of A since
protein K would be loaded by the downstream promoter
sites p’ (Figure 12). As a consequence, we would still fail
to transmit the clock signal to protein D. The second
modification that needs to be made is to change the
promoter p to a new promoter p’ that has a sequence that
the protein X* recognizes (bottom diagram of Figure 11).

In the case of the bottom diagram of Figure 11, the
dynamics of the clock remain that of model (1). To these,
we need to add the dynamics of K(t), which, when the
phosphorylation cycle is not present, will be given by

K̇ =
αA(A/Ka)

n + α0,A

1 + (A/Ka)n + (R/Kr)m
− δKK. (15)

When the phosphorylation cycle is present, this ODE
changes to

K̇ =
αA(A/Ka)

n + α0,A

1 + (A/Ka)n + (R/Kr)m
− δKK

−β1XTK

(

1−
X∗

XT
−

C1

XT
−

C2

XT
−

C

XT

)

,

(16)

in which the term r = −β1XTK
(

1− X∗

XT
− C1

XT
− C2

XT
− C

XT

)

represents the retroactivity to the input of the insulation
device realized by the phosphorylation cycle. The ODE

model of the insulation device with the downstream system
remains the same as before and given by the second to fifth
equations of system (14), in which we replace pT by p′T , so
that the retroactivity to the output of the insulation device
is given by s = koffC − konX

∗(p′T − C). Figure 13 shows
the trajectories of A(t), K(t), and X∗(t) for the system of
Figure 11. As desired, the signal X∗(t), which drives the
downstream system, closely tracks that of A(t) despite the
retroactivity due to load applied by the downstream sites
p’. Note that because of a non-zero retroactivity to the
input r of the insulation device, the trajectory of K(t) is
slightly different from the same trajectory in the absence
of the insulation device (Figure 13(b)). The retroactivity
to the output s only slightly affects the output of the
insulation device (Figure 13(c)). The plot of Figure 13(c),
showing the signal that drives the downstream system, can
be directly compared to the signal that would drive the
downstream system in the case in which the insulation
device would not be used (Figure 12). In the latter case, the
downstream system would not be properly driven, while
with the insulation device it is.

4.5 Natural mechanisms for retroactivity attenuation

In natural signal transduction systems, phosphorylation
cycles often appear in cascades, such as in the MAPK
cascades (Seger and Krebs [1995], Rubinfeld and Seger
[2005]), where signals from outside the cell are transmitted
down to the gene expression machinery. Cascades often
intersect with each other by sharing common substrates, so
that perturbations at the bottom or at intermediate stages
of a cascade are frequently applied by the intersecting
cascade(s) (Roux and Blenis [2004], Müller [2004]). Since,
we have seen that a load applied to the output protein of
a cycle can affect the dynamic state of the cycle itself, a
natural question is how these downstream perturbations
propagate backward toward the upstream stages of the
cascade. Specifically, the role of the length of a cascade
has been subject of many studies in the systems biology
community, indicating that it has specific functions in
signal amplification, signal duration, and signaling time
(Heinrich et al. [2002], Chaves et al. [2004]). Here, we
investigate whether the length of the cascade has any role
in how perturbations applied downstream of a cascade
propagate backward.

To investigate this question, we refer to the cascade de-
picted in Figure 14. Here, the downstream substrate D has
total available amount DT , which we assume is subject to
perturbations due to other intersecting cascades. Letting
dT be a small perturbation of DT about a steady state
value, the ODE system can be linearized about the steady
state corresponding to DT , and a static gain from dT to
the total phosphorylated ith cycle protein perturbation zi
can be obtained (see the work of Ossareh et al. [2011] for
details). Let

Φi :=
zi

zi+1
and Φtot := Πn−1

i=1 Φi

represent the gain from downstream stage i to upstream
stage i + 1 and the gain from stage n to stage 1, respec-
tively. Then, it is possible to show that

|Φi| < 1 and Φi < 0,
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Fig. 13. Simulation results for the system of Figure 11. Panel (a) shows the concentration of the clock activator protein A. Panel (b) shows
the concentration of the kinase K with and without (r = 0 in equation (16)) the insulation device. Panel (c) shows the behavior of the
output of the insulation device without (s = 0) and with the downstream system. The clock parameters are the same as those in Figure
1 and δK = δA. The phosphorylation cycle parameters are as follows: k1 = 5000, k2 = 5000, α1 = 1, β1 = 1, β2 = 1000, α2 = 1000,
PT = 1500, and XT = 1500. The load parameters are given by kon = koff = 100 and p′

T
= 100.

Fig. 14. Cascade of phosphorylation cycles. Proteins W∗

i
are kinases

that lead to phosphorylation of the substrates at the next
downstream stage i+1. Proteins Ei are phosphatases for stage
i. D represents a downstream substrate, where we assume a
perturbation is applied.

that is, the perturbation from stage i + 1 to stage i is
attenuated in magnitude and there is a reversal of the
sign as the perturbation travels from one stage to the
next upstream. As a consequence, the total gain Φtot is
also strictly less than one and it becomes smaller as the
number of stages increases. That is, the perturbation in
the total phosphorylated protein is attenuated as it prop-
agates upstream in the cascade. Hence, longer cascades
present enhanced retroactivity attenuation ability. For a
more detailed study also including the free phosphorylated
protein and a computational study with parameters from

established databases, the reader is referred to the work of
Ossareh et al. [2011].

This finding illustrates that natural systems may mitigate
retroactivity effects by employing multiple stages of co-
valent modification, allowing each stage to have smaller
gains. In fact, the same attenuation of retroactivity can
be obtained by employing one stage with high gains or
two stages, each with lower gain. The fact that natural
systems may prefer using multiple stages with lower gains
is not surprising. In fact, high gains imply significant
expenditure both in terms of energy (ATP) and in terms
of gene expression machinery, such as ribosomes, RNA
polymerase, and amino acids (Barton and Sontag [2013]).

5. CONCLUSIONS AND DISCUSSION

In this review paper, we have illustrated how problems
of loading, called retroactivity, are found in biomolecular
systems just like they are found in many engineering sys-
tems. These effects alter the behavior of a module upon
interconnection and hinder modular analysis and design
approaches. Differently from electrical circuits, which can
be analyzed to a large extent through linear systems
theory, biomolecular network models are highly nonlinear
and hence their study requires nonlinear systems the-
ory. We have illustrated how, using singular perturbation
theory, we can analyze and quantify retroactivity effects
by obtaining equivalent system representations, just like
Thevenin’s theorem does for electrical circuits. Inspired by
the approach used in electrical circuit design, we analyzed
the question of how to design devices that attenuate the
retroactivity to the output and have low retroactivity to
the input (insulation devices). We described an approach
to answer this question by exploiting the structure of
the interconnection found in biomolecular networks and
employing singular perturbation theory after a suitable
change of variables. We illustrated on a simple example,
how an insulation device could be used in synthetic biology
circuits to connect systems to each other, while keeping the
isolated systems behaviors.

Many system-level challenges remain to be addressed for
the analysis and design of biological networks. First of all,



we have not touched on the problem of noise in biology,
which is a central issue since all the reactions that make the
circuits are probabilistic in nature. Unfortunately, while
many analysis and design tools for nonlinear dynami-
cal systems are available, only a limited pool of similar
results are available for stochastic systems (Khammash
and ElSamad [2005]). Hence, problems such as designing
the probability distribution of a system’s trajectories, as
opposed to designing their mean value, remain mostly
open, while being very important for engineering biolog-
ical circuits. We have briefly mentioned the interactions
that arise between biomolecular circuits and the cell ma-
chinery, such as due to loading of cellular resources or
to interfering directly with important cellular pathways.
These interactions are rarely modeled due to the fact that
most of them are unknown. As a result, it is currently
very difficult to design circuits that behave robustly once
in the cellular chassis. Designing circuits such that their
function is robust to external perturbations, parameter
uncertainty, unwanted interactions, and competition for
shared resources is a central problem, which is currently
open. Robust design approaches have been extensively
developed in the control community, but most of these
tools are hardly applicable to biomolecular systems, which
are highly nonlinear and often rely on nonlinearities for
proper functioning. Finally, another hard question that
remains open is the “realization” question, that is, how to
implement a given function with the available biological
parts. Addressing this question is especially challenging as
it requires, even more than the other questions, a syner-
gistic interplay of system-level analytical expertise and a
deep knowledge of the available biological mechanisms.
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