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Abstract In the design of discrete structures such as
trusses and frames, important quantitative goals such
as minimal weight or minimal compliance often domi-

nate. Many numerical techniques exist to address these
needs. However, an analytical approach exists to meet
similar goals, which was initiated by Michell (1904) and

has been mostly used for two-dimensional structures so
far.

This paper develops a method to extend the ex-

isting mainly two-dimensional approach to apply to
three-dimensional structures. It will be referred as the
Michell strain tensor method (MSTM). First, the proof

that MSTM is consistent with the existing theory in
two dimensions is provided. Second, two- and three-
dimensional known solutions will be replicated based

on MSTM. Finally, MSTM will be used to solve new
three-dimensional cases.

Keywords Michell structures ·Michell wheel ·Michell
cantilever · Michell sphere · Structural optimization

1 Introduction and background

The seminal paper from Michell (1904) together with
theoretical improvements brought by Hemp (1973),
Rozvany (1996) and Lewińsky and Sokó l (2014) define

the mechanical constraints that a structure should re-
spect so as to require the minimal quantity of necessary
material. Here, a structure is defined as a finite or in-

finite set of connected bars which lengths can theoret-
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ically be as infinitely small as needed. Also, such bars
only work in tension or compression. 1

More precisely, as first shown in Michell

(1904) but also in Hemp (1973), Spillers (1975)
or Lewińsky and Sokó l (2014), the Principle of Virtual
Work applied to a given structure brings:

Vtft + Vcfc ≥
W

ε
(1)

Where:

– Vt and Vc are the total volumes of material of the
elements under tension or compression within the

structure.
– ft and fc are the maximal allowable stresses for ten-

sion or compression within the structure.

– W corresponds to the work of external forces.
– ε is the maximal strain within the structure.

The sign of inequality in equation 1 becomes that of
equality if:

1. Any member is stressed up to the limit ft or fc.

2. Strain is the same in absolute value in every member
of the structure.

Such mechanical conditions correspond to Michell’s
rules. As implicitly shown for the first time in Hemp

(1973) and later explicitly by Rozvany (1996, 2014), a
structure following Michell’s rules is of minimal volume
for ft = fc only. In such case, the structure can be

referred as a Michell structure. If ft ̸= fc, another cri-
teria on strain within the structure is actually derived
using Lagrangian optimization on the quantity Vt + Vc

1 This definition relates to truss-like structures. As recently
shown in Sigmund et al (2016), other kind of structures, such
as plate- or shell-like structures with varying thicknesses, may
be more optimal in terms of stiffness or compliance than their
truss-like counterparts.
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such that the principle of virtual work is verified. Fol-

lowing recommendation given in Rozvany (1996), struc-
tures following such criteria should be referred as Hemp
structures.

However, most of truss-like structures are built out
of steel in the field of civil engineering. In cases where
member sizing in tension and compression is governed

by permissible stress (and not by buckling), or in those
where the design is governed by deflection limits, the
tension and compression stresses in a steel structure

can be approximated as equal: ft = fc = σ. Therefore,
the assumption of equal permissible stresses is made
here, which implies that this paper focuses on Michell

structures only.
From what precedes it can also be derived that the

typical volume Vm of a Michell structure is:

Vm =
W

σε
(2)

Considering that strains within the structure are im-

plied by the differentiable displacement u that verifies
the mechanical hypothesis of small displacements, then
by Love (1906):

ε =
1

2
(∇u + ∇uᵀ) (3)

Where:

– ∇u is the gradient matrix associated to u.

– ε is the strain tensor associated to u.

Michell’s rules apply to ε as follows2:

– For two-dimensional cases, it is shown in Michell

(1904) that eigenvalues, or principal strains, of ε
should be equal to ε and −ε, where ε is a non-zero
constant parameter. Also, elements of the structure

should follow the orientations of the lines of princi-
pal strain of ε.

– For three-dimensional cases, it is shown in

Lewińsky and Sokó l (2014) that the maximal and
minimal principal strains of ε should be equal to ε
and −ε, where ε is again a non-zero constant param-

eter. Also, elements of the structure should follow
the orientations of the lines of maximal and mini-
mal principal strains.

For a long time, three-dimensional Michell structures
were thought to have constraints on their intermediate

principal strain, as in Ghista and Resnikoff (1968) or
Hemp (1973): the latter was thought to be equal to ei-
ther ε and −ε. It actually turns out not to be necessary,

2 These rules, and MSTM by derivation, are valid in
T-regions only, defined in Sokó l and Rozvany (2012) or
Lewińsky and Sokó l (2014) as regions where Michell struc-
tures have orthogonal tension and compression elements.

according to Lewińsky (2004) and Lewińsky and Sokó l

(2014): the intermediate strain is free to vary between
ε and −ε. In this paper for example, case studies for
three-dimensional structures have a zero-valued inter-

mediate strain.

2 Theory and methodology

2.1 Principles of MSTM

The key idea for the new Michell Strain Tensor Method
is that information on u simplifies the calculation of ε
in equation 3. If such information is correct, then ε

should fit to the geometry of the problem, respect the
boundary conditions and follow Michell’s rules. ε be-
ing analytically determined, the corresponding Michell

structure can be drawn by following the lines of princi-
pal strains of ε.

2.2 Proof of equivalence between MSTM in 2D and
Hemp & Chan procedure

The development of Michell structures follows a proce-

dure developed in Chan (1960) and Hemp (1973) for
two-dimensional cases. Because of its major role in the
development of Michell structures, it is necessary to

prove that MSTM is equivalent to this previously de-
veloped procedure. This is the focus of this section of
the paper.

First, S is defined as a 2D orthogonal curvilinear
coordinate system whose variables are (α, β) and basis

vectors are (eα, eβ). Ω is the region of plane in which
Michell structures are allowed to exist.

In either Chan (1960), equation 10, or Hemp (1973),
equation 4.22, Michell structures are generated based

on an angular potential ϕ, solution of:

ϕ

α
β = 0 (4)

Equation 4 is explicitely recognized as the characteriza-
tion of Michell structures in Chan (1960), Hemp (1973)

or Strang and Kohn (1983). The intent of this proof is
hence to show that the logical steps leading to equation
4 are similar to those used in the definition of MSTM.

Following Sadd (2005), section 1.9, basis vectors of
S are such that:

eα
α

= − 1

B

A

β
eβ,

eα
β

=
1

A

B

α
eβ

eβ
β

= − 1

A

B

α
eα,

eβ
α

=
1

B

A

β
eα

(5)
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Where A and B are the scale factors of S in the respec-

tive directions eα and eβ and are functions of the plane
coordinates. Also, u is expressed in S as:

u = uαeα + uβeβ (6)

Equations 5 and 6 bring:

∇u =
1

A

∂uα

∂α
+

1

AB

∂A

∂β
uβ

1

B

∂uα

∂β
− 1

AB

∂B

∂α
uβ

1

A

∂uβ

∂α
− 1

AB

∂A

∂β
uα

1

B

∂uβ

∂β
+

1

AB

∂B

∂α
uα

 (7)

Also:

1

A

∂uβ

∂α
− 1

AB

∂B

∂α
uβ +

1

B

∂uα

∂β
− 1

AB

∂A

∂β
uα =

B

A

∂

∂α

uβ

B
+

A

B

∂

∂β

uα

A
(8)

Using equations 3, 7 and 8, the strain tensor is:

ε =
1

A

∂uα

∂α
+

1

AB

∂A

∂β
uβ

B

2A

∂

∂α

uβ

B
+

A

2B

∂

∂β

uα

A

B

2A

∂

∂α

uβ

B
+

A

2B

∂

∂β

uα

A

1

B

∂uβ

∂β
+

1

AB

∂B

∂α
uα


(9)

From here, Hemp-Chan procedure differs from MSTM
and each needs to be studied separately.

Michell strain tensor method In MSTM, equation 9

may or may not express ε in the basis in which the
latter is diagonal. What only matters is whether ε is
such that it meets Michell’s rules. It means that the

principal strains of ε shall be equal in absolute value
and opposed in sign, which forces the trace of ε to be
zero-valued. ε becomes:

ε =


εα εαβ

εαβ −εα

 (10)

With:

εα =
1

A

∂uα

∂α
+

1

AB

∂A

∂β
uβ = −

(
1

B

∂uβ

∂β
+

1

AB

∂B

∂α
uα

)
εαβ =

B

2A

∂

∂α

uβ

B
+

A

2B

∂

∂β

uα

A

(11)

Michell’s rules stating that eigenvalues εI and εII of ε

should be equal in absolute value to ε and opposed in
sign, it follows that:

εI =
√
ε2α + ε2αβ = ε, εII = −εI (12)

If a solution to the above equation is found, then ε is
acceptable, as it meets Michell’s rules. Eigenvectors πI

and πII of ε can be computed on every point within Ω

so as to generate the corresponding Michell structure.

Hemp-Chan procedure In Hemp-Chan procedure, equa-
tion 9 must express ε in the basis in which the latter is

diagonal. Equation 12 is therefore not directly solved -
whereas it is in MSTM.

Instead, Hemp-Chan procedure introduces the angle
ϕ that eα shares with a fixed vector of the Cartesian
coordinate system, say ex. ϕ is such that the tensor ε

is in its diagonal form:

ε =

(
ε 0

0 −ε

)
(13)

In other words, ϕ is the rotation for the Cartesian basis
vectors to become the diagonalizing basis of the strain

tensor at point M(α,β). From the definition of ϕ it fol-
lows that:

eα = cos(ϕ)ex + sin(ϕ)ey

eβ = − sin(ϕ)ex + cos(ϕ)ey
(14)

Derivatives of eα are then:

eα
α

=
ϕ

α

(
− sin(ϕ)ex + cos(ϕ)ey

)
=

ϕ

α
eβ

eα
β

=
ϕ

β

(
− sin(ϕ)ex + cos(ϕ)ey

)
=

ϕ

β
eβ

(15)

Comparing equations 5 and 15 brings:

ϕ

α
= − 1

B

A

β
,

ϕ

β
=

1

A

B

α
(16)

which corresponds to equation 4.14 in Hemp (1973) or

6 in Chan (1960). Then, the solution for ϕ can be found
by equaling equations 9 and 13, while taking equation
16 into account. Result is:

1

A

(
∂uα

∂α
− ∂ϕ

∂α
uβ

)
= ε

1

B

(
∂uβ

∂β
+

∂ϕ

∂β
uα

)
= −ε

1

A

(
∂uβ

∂α
+

∂ϕ

∂α
uα

)
+

1

B

(
∂uα

∂β
− ∂ϕ

∂β
uβ

)
= 0

(17)

Introducing the local rotation ω as defined in Love

(1906), equation 38 and used in Chan (1960) will make
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the rest of the calculation more straightforward. This

is the only reason why it is introduced, as there is no
condition on ω. By definition:

2ω =
1

AB

(
B

α
uβ −

A

β
uα

)
+

1

A

uβ

α
− 1

B

uα

β
(18)

And, by taking equation 16 into account:

2ω =
1

A

(
uβ

α
+

ϕ

α
uα

)
− 1

B

(
uα

β
− ϕ

β
uβ

)
(19)

Combining equations 17 and 19 returns:

∂uα

∂α
= Aε +

∂ϕ

∂α
uβ ,

∂uα

∂β
= −Bω +

∂ϕ

∂β
uβ

∂uβ

∂β
= −Bε− ∂ϕ

∂β
uα,

∂uβ

∂α
= Aω − ∂ϕ

∂α
uα

(20)

As in Chan (1960), elimination of uα and uβ within the

above set of equations gives:

∂

∂α
(ω − 2εϕ) = 0,

∂

∂β
(ω + 2εϕ) = 0 (21)

ε being a constant, the elimination of ω in equation 21
brings that ϕ verifies equation 4.

Proof conclusion The analysis of the Hemp-Chan pro-

cedure has shown that Michell structures were gener-
ated by finding the curvilinear basis at point M (α,β)
in which the strain tensor ε is diagonal and follows

Michell’s rules. The aforementioned curvilinear basis is
parametrized by the angle ϕ it has with the Cartesian
basis. All these conditions lead to solving the equations

shown in equation 17, which turns out to be equivalent
to solving equation 4.

In MSTM, the curvilinear basis remains constant.

The strain tensor ε is expressed in such basis and im-
plemented to see if it can satisfy Michell’s rules. If it
does, eigenvectors of ε are computed and the Michell

structure is generated. Therefore, the curvilinear basis
at point M (α,β) in which the strain tensor ε is diag-
onal is found after ensuring that ε respects Michell’s

rules, and not at the same time as in Hemp-Chan pro-
cedure. Note that diagonalizing ε is not about rotating
the Cartesian basis anymore, but the curvilinear basis

of reference.
By showing that the only true difference between

Hemp-Chan procedure and MSTM is about when the

diagonalization of ε is performed and what the affected
basis is, we conclude that both methods are equivalent
in 2D. Ultimately, both methods find the exact same

basis in which ε is diagonal, and use its basis vectors
to generate a Michell structure.

Both methods are equivalent in 2D, but MSTM has

advantages in 3D over Hemp-Chan procedure. In 3D,

the latter would indeed require the introduction of two

other angles in equation 14, each referring to the rota-
tion to perform around each of the three axes. Equa-
tions within the Hemp-Chan procedure would therefore

incorporate additional terms and become much more
difficult to solve. Also, if the use of complex variables in
Hemp (1973), chapter 4, makes Hemp-Chan procedure

work simply and elegantly in 2D, it can’t be extended
to 3D. Complex variables are indeed powerful objects
to simplify the analysis of 2D problems only, by inte-

grating one direction of the plane in their real part and
the other in their imaginary part.

In contrast, MSTM can easily apply to 3D by using

a 3 × 3 tensor matrix rather than a 2 × 2 one, with
no change in any equation required. Indeed, algebraic
operations on tensor matrices work the same whatever

the dimension of a square matrix may be. This is what
fundamentally makes MSTM a suitable method to in-
vestigate Michell structures in 3D.

3 MSTM algorithm

In this section, the algorithm corresponding to MSTM

is defined. It is designed to draw lines which are part
of a Michell structure and works for either two or three
dimensional cases. The functioning is as follows:

– Step 0 (pre-initialization). Ω is defined and ε is de-
termined to meet the boundary conditions of the

problem and be solution of equation 12. A step value
δ used in step 4 is also defined at this stage.

– Step 1: A set of starting points
(
M0,i

)
1≤i≤K

is se-

lected, preferably on a border of Ω.
– Step 2: ε is estimated for each M0,i.
– Step 3: Eigenvectors πI,i and πII,i of ε are computed

for each M0,i. πI,i and πII,i correspond to the re-
spective maximal and minimal eigenvalue of ε, +ε
and -ε, ε > 0.

– Step 4: M1,i and M2,i are defined to have a first
order approximation of the Michell structure:

OM1,i = OM0,i+δπI,i, OM2,i = OM0,i+δπII,i

Where O is the origin of the coordinate system and

δ the precision by which one wishes to discretize the
curved lines of the structure. It is enough for δ to be
an order of magnitude or two less than the typical

dimensions of Ω for the resulting structure to be
smooth enough.

– Step 5: Members [M0,iM1,i] and [M0,iM2,i] are

drawn.
– Step 6: ε is estimated for each M1,i and M2,i.
– Step 7: πI,i is computed for each M1,i and πII,i for

each M2,i.
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– Step 8: M ′
1,i and M ′

2,i are defined as:

OM ′
1,i = OM1,i+δπI,i, OM ′

2,i = OM2,i+δπII,i

– Step 9: Members [M1,iM
′
1,i] and [M2,iM

′
2,i] are

drawn.
– Step 10: M1,i ←M ′

1,i and M2,i ←M ′
2,i and go back

to step 6 as long as M1,i and M2,i are within Ω.

Fig. 1: Functioning of the tensor-based algorithm.

Figure 1 illustrates the typical functioning of the algo-
rithm for a given i. Steps 6 to 10 make the complexity of

the algorithm equal to O(1), which implies fast compu-
tation time. The algorithm hence generates the lines of
principal strains corresponding to tension or compres-

sion starting at
(
M0,i

)
1≤i≤K

and reaching a boundary
of Ω. As optimum structures typically consist in an
infinite amount of tension and compression lines, the

algorithm only generates sub-sets of such structures.

4 Results in 2D

4.1 Case study: Michell wheel

x

y
O

R
2

R
1

u(
R
2)=

U
eθ

u(R1) = 0

Fig. 2: Michell wheel problem statement.

Problem Statement This section presents results for a
set of boundary conditions in 2D previously studied in
Hemp (1973) and shows that MSTM produces the same
results. Let Ω be the region of plane between two con-
centric circles of radii R1 and R2, with R1 < R2. A
polar coordinate system (r, θ) which origin O is the
center of the two aforementioned circles is defined. The
circle of radius R1 is fixed, hence experiences no dis-
placement. The circle of radius R2 experiences a cir-
cumferential displacement Ueθ.

Boundary conditions are:

u(r = R1) = 0, u(r = R2) = Ueθ (22)

Because the problem is invariant by rotation, the dis-
placement u within Ω is such that:

u(r, θ) = uθ(r)eθ (23)

Finding the strain tensor By equations 3, 23 and Sadd
(2005) equation 2.7.3, the strain tensor is such that:

ε(r) = erθmrθ (24)

With:

mrθ =

(
0 1
1 0

)
, erθ =

1

2

(
duθ

dr
− uθ

r

)
(25)

In this case study, equation 12 becomes:

duθ

dr
− uθ

r
= 2ε (26)

Solution for the above differential equation meeting the
first boundary condition in equation 22 is:

uθ(r) = 2εr ln

(
r

R1

)
(27)

This equation is equivalent to Hemp (1973), equation
4.85, found for the same case study.

A relation between U and ε appears in order to sat-
isfy the second boundary condition in equation 22:

U

ε
= 2R2 ln

(
R2

R1

)
(28)

From equation 24, eigenvectors πI and πII verify:

πI ∥ er + eθ, πII ∥ er − eθ (29)

The expected structure is hence one with intersections
at right angles and rotated by π

4 from er - see figure
3. Such geometrical relations are also shown in Hemp
(1973), figure 4.11. Such structure is known as Michell
wheel.
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MSTM generation of solutions The starting point of

the algorithm corresponds to the location of the point
load and results are shown in figure 6. Such structures
correspond to the solution found in Michell (1904), as

reproduced in figure 7.

Fig. 6: Cantilever solution for decreasing values of the
step parameter δ.

Fig. 7: Original Michell (1904) cantilever.

5 Results in 3D

Spherical coordinates (r,φ,θ) are used, as defined in
Sadd (2005). It follows that: r ∈ R+, θ ∈ [0, 2π), φ ∈
[0, π]. θ is the radial angle, φ is the colatitude angle.

5.1 Case study: Michell sphere
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Finding the strain tensor From equations 3 and 36 it

can be shown that:

ε = εφθ(φ)Mφθ (39)

Where:

εφθ(φ) =
sin(φ)

2

dω

dφ
, Mφθ =

0 0 0
0 0 1

0 1 0

 (40)

For this 3D case, equation 12 becomes:

sin(φ)
dω

dφ
= 2ε (41)

And solutions exist for 0 < φ1 ≤ φ < π. Taking the
first boundary condition in equation 38 into account,

integration of equation 41 is:

ω(φ)− ω1 = 2ε ln

(
tan(φ/2)

tan(φ1/2)

)
(42)

In order to satisfy the second boundary condition in
equation 38, a condition on the parameter ε arises

(mathematically true for φ1 ̸= φ2, which is always the
case):

ε =
ω2 − ω1

2

[
ln

(
tan(φ2/2)

tan(φ1/2)

)]−1

(43)

Which gives:

ω(φ) =

(ω2 − ω1)
ln(tan(φ/2))− ln(tan(φ1/2))

ln(tan(φ2/2))− ln(tan(φ1/2))
+ ω1 (44)

Hence an expression for ε has been found so as to apply
to Michell’s rules and to the boundary conditions:

ε =
ω2 − ω1

2

[
ln

(
tan(φ2/2)

tan(φ1/2)

)]−1

Mφθ (45)

MSTM generation of solutions The two maximum and
minimum eigenvectors πI and πIII found from equation
45 have the following directions:

πI ∥ eθ + eφ, πIII ∥ eθ − eφ (46)

Relying on the algorithm introduced in section 3, solu-
tions have been generated. Accuracy has been increased
by adding more starting points on the disc perimeter on

φ = φ1 - keeping all other parameters R, R1 and R2

equal. Also, MSTM algorithm terminates once φ ≥ φ2.
Such a generation is shown in figure 9a. Figure 9b shows

how solutions vary with R1 and R2.

(a) 8, 16 and 32 starting
points.

(b) Different disc radii R1

and R2.

Fig. 9: Parametrized solutions.

Equation of the Michell sphere lines An infinitely small

displacement dOM is expressed in spherical coordi-
nates as:

dOM = drer + r sin(φ) dθeθ + r dφeφ (47)

In addition, dOM ∥ πI or πIII. Hence:

dr = 0, r sin(φ) dθ = ±r dφ (48)

Finding dr = 0 explicitly shows that the lines of the
structure will remain on a same sphere. The Michell
structure is therefore a surface, or shell, as proved in

Lewińsky and Sokó l (2014) for the general case. A so-
lution for the second part of equation 48 with φ0 > 0
and φ < π is:

θ(φ)− θ(φ0) = ± ln

(
tan(φ/2)

tan(φ0/2)

)
(49)

The above equation defines a typical line part of the

torque-resisting structure, plotted in figure 10.
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Fig. 10: The two sets of lines from equation 49 - com-
pression or tension.

Fig. 11: The original sphere, as shown in Michell (1904).

Volume of Michell sphere As described in 5.1

Problem statement, the motion of the two discs is
caused by torques - namely, −T and T on discs of re-
spective radius R1 and R2 for external equilibrium to

be maintained. The work of external forces W is:

W = T (ω2 − ω1) (50)

Applying equations 45 and 50 in equation 2, the volume

Vm of the Michell sphere is:

Vm =
2T

σ
ln

(
tan(φ2/2)

tan(φ1/2)

)
(51)

which is identical to Lewińsky (2004), equation 76. The
simplified case in Michell (1904) shown in figure 11 ap-
plies for:

R1 = R2, ω2 = −ω1 = ω

p2,θ = −p1,θ = pθ, φ2 = π − φ1

(52)

Here equation 51 reduces to:

Vm =
4T

σ
ln
(

cot
(
φ1/2

))
(53)

This equation is identical to Hemp (1973), equation
4.100 and Lewińsky (2004), equation 77 for the same

case.
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Fig. 13: Evolution of the cantilever solution. From left

to right:
R1

R2
= 3, 2, 1 and 0.2.

(a) Case R1 > R2. (b) Case R1 < R2.

Fig. 14: Views of typical 3D Michell cantilever solutions.

5.3 Case study: Spinning spheres

Problem statement This problem has, to date, not been
studied. Two concentric spinning spheres S1 and S2

are defined, with respective radii R1 and R2, such that
R1 < R2. Their common center is O. Ω is the region of
space between the two spheres.

Angular displacements ω1 and ω2 on each sphere are

constant. Therefore, each sphere rotates in an uniform
way. As both the geometry and the motion conditions
of the problem are invariant with respects to θ, θ is not

a variable for any function describing the problem.
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of the equation, 2ε. Therefore both (α) r
dω

dr
and (β)

sin(φ) shall be constant.
Condition (β) implies that if a Michell structure ex-

ists, it will necessarily have every members lying on
two cones of equation φ = φ0 and φ = π − φ0, with
φ0 ∈ (0, π

2 ], such that sin(φ) is a constant. A typical

solution for the spinning spheres problem will therefore
be a set of Michell cones.

Also, solving condition (α) is equivalent to solving

equation 63 adapted to condition (β):

r
dω

dr
=

2ε

sin(φ0)
(64)

A solution that meets the first boundary condition in
equation 57 is:

ω(r) =
2ε

sin(φ0)
ln

(
r

R1

)
+ ω1 (65)

And the second boundary condition is met for:

ε = sin(φ0)
ω2 − ω1

2

(
ln

(
R2

R1

))−1

(66)

Hence, a family of Michell structures has been found,
parametrized by φ0. If all structures have constant max-

imal and minimal principal strains which are equal in
absolute value and opposed, they may not all be of min-
imal volume though.

More precisely, equation 66 shows that the principal
strains vary with φ0: εI = −εIII = ε(φ0). The volume
for each Michell structure, as defined in equation 2, will

therefore vary with φ0 as well - see equation 69.
In view of what precedes, the strain tensor ε is:

ε = sin(φ0)
ω2 − ω1

2

(
ln

(
R2

R1

))−1

Mrθ (67)

Volume of the Michell cones For a torque T on R = R2,

external equilibrium brings that the torque on R = R1

is −T . The work of external forces is:

W = T (ω2 − ω1) (68)

Combining equations 2, 66 and 68, the volume of a

Michell structure is:

Vm =
2T

σ sin(φ0)
ln

(
R2

R1

)
(69)

The absolute minimal structure is found for φ0 = π
2 ,

which corresponds to the 2D Michell wheel - as shown in

equation 33. Interestingly enough, this two-dimensional
Michell structure is the optimal solution for the three-
dimensional case under consideration - which would

have been challenging to intuit.

Michell structures on cones φ = φ0 and φ = π−φ0

are not the optimal solution within Ω, but they are
within Ω ∩D, where D is the region of space in which
φ is such that |π/2− φ0| ≤ |π/2− φ|. In such domain,

Michell cantilevers can also be derived from Michell
cones the same way they have been derived from Michell
sphere. Such structures won’t be as economical though,

because they are constrained to exist in a reduced por-
tion of space, i.e. Ω is smaller.

MSTM generation of solutions Figure 16 shows the

family of Michell structures and their corresponding
volume-based performance scores γ(φ0), with:

γ(φ0) =
Vm(φ0)

Vm(π/2)
=

1

sin(φ0)
(70)

γ

(
π

10

)
= 3.24

γ

(
π

5

)
= 1.70

γ

(
3π

10

)
= 1.24

γ

(
2π

5

)
= 1.05

γ

(
π

2

)
= 1.00

Fig. 16: Different Michell structures. The darker the
structure, the more economically efficient.

Equation of the Michell cones lines From equation 67,
eigenvectors πI and πIII of ε are such that:

πI ∥ er + eθ, πIII ∥ er − eθ (71)

By equation 47, it leads to solving:

r dφ = 0, dr = ±r sin(φ) dθ (72)
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As r > 0, dφ = 0 and members stay on conical surfaces

φ = φ0. Solutions for equation 72 are plotted in figure
17 and have the following expression:

r(θ) = R1e
± sin(φ0)(θ−θ0) (73)

Fig. 17: The two sets of lines from equation 73 - com-

pression or tension.

6 Conclusion

A new analytical method for finding Michell structures
has been defined in this paper: the Michell strain tensor

method, or MSTM. The latter has been proved equiv-
alent to the existing mathematical methods of Chan
(1960) and Hemp (1973). It has also been implemented

on known two-dimensional cases to ensure results from
MSTM were consistent with existing studies.

Nevertheless, the paper has also shown that MSTM

has the advantage of easier applications to three-
dimensional problems. MSTM relies on strain tensors
which can describe either two- or three-dimensional

problems through 2× 2 or 3× 3 matrices. In contrast,
equation 4 from Chan (1960) and Hemp (1973) does
not hold true in three dimensions, because it does not

take the additional direction of space into account.

MSTM paves the way for new three-dimensional
Michell structures to be found, hence enabling the

transfer of loads from one location in space to another
in the most economical way possible. The case studies
from this paper are analytically solvable mostly because

their geometrical characteristics fit well with the polar
and spherical coordinate systems under consideration.
In the future, other three-dimensional case studies can

be investigated for other coordinate systems.

Furthermore, the ideas presented in this paper may

be explored and extended through numerical methods,
possibly leading to the discovery of additional new op-
timal structures. For such methods, the main challenge

to address is the computation of a displacement field u
that meets Michell’s rules.
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