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Abstract. Linear and nonlinear gyrokinetic simulations are used to probe turbulent
impurity transport in intrinsically rotating tokamak plasmas. For this simulation-based
study, experimental input parameters are taken from pair of ICRF heated Alcator C-
Mod discharges exhibiting a change in the sign of the normalized toroidal rotation
gradient at mid radius (i.e. a change from hollow to peaked intrinsic rotation profiles).
The simulations show that there is no change in the peaking of the calcium impurity
between the plasmas with peaked and hollow rotation profiles, suggesting that the
impurity transport and the shape of the rotation do not always change together.
Furthermore, near midradius, r/a =0.5 (normalized midplane minor radius), the linear
and nonlinear gyrokinetic simulations exhibit no evidence of a transition in linear
dominance from Ion Temperature Gradient (ITG) to Trapped Electron Mode (TEM)
when the intrinsic rotation profile changes from peaked to hollow. Extensive nonlinear
sensitivity analysis is performed, and there is no change in the ITG critical gradient or
in the stiffness of ion heat transport with the change in the intrinsic toroidal rotation
profile shape, which suggests that the shape of the rotation profile is not dominated
by the ITG onset in these cases.

1. Introduction

Understanding and controlling the core confinement of impurities is of great interest

in the fusion community. Accumulation of impurities in the core of ITER plasmas

could lead to excessive radiation of power and dilution of the fuel, ultimately resulting

in deleterious effects on the overall energy balance. Understanding the mechanisms

responsible for accumulation and expulsion of impurities from the plasma core is vital

for the success of any fusion reactor. In current day machines, large co and counter

injected neutral beams are often used to tailor the toroidal velocity profile in the plasma

core, leading to significant local E×B shearing rates, an overall reduction in the core

turbulence, ultimately enhancing core energy confinement. However, the large size and

high density of ITER plasmas is expected to limit the penetration of neutral beams into
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the core, placing limits on the use of neutral beams to achieve some high performance

scenarios. It is therefore important to study transport of impurities under reactor

relevant plasma conditions in situations with little to no external momentum input;

i.e. when the toroidal rotation profile is intrinsically generated. While the causes of

intrinsic rotation in tokamaks are not well understood, both experimental observations

and leading theories suggest that momentum transport is primarily driven by turbulence

[1]. In particular, quasilinear theory shows that near ITG marginality, momentum

transport is dominated by an inward turbulent equipartition momentum pinch [2, 3], a

subset of the more general Coriolis pinch [4, 5].

In addition to the important role turbulence likely plays in determining the

intrinsic rotation profile in tokamaks, turbulence can play an important role in setting

experimental levels of impurity transport[6, 7, 8, 9, 10]. Therefore, predicting the

transport of impurities in ITER may be linked to prediction of the intrinsic toroidal

rotation in ITER, since the local E×B shearing rates will affect the turbulence and

modify the impurity transport. Beyond the effects of ExB shearing rates, it has

been suggested that the rotation may also affect the background turbulence in a

different manner. This interpretation arises from JET experiments demonstrating a

correlation between plasmas with higher values of toroidal rotation and stiffness of the

ion temperature profile. [11, 12]. However, recent gyrokinetic work suggests that the

observed correlation may not result from a direct relationship between the stiffness and

rotation but instead may be explained by electromagnetic effects and the presence of

significant fast ion populations in the discharges studied [13, 14].

In recent years, theoretical [1, 2, 3, 6, 15, 16, 17, 18, 19] and experimental

[20, 21, 22, 23, 24, 25] work throughout the fusion community has focused on

understanding turbulent impurity and momentum transport and their connections in

the tokamak core. Several experiments have noted that changes in the toroidal rotation

profile shape, from peaked to hollow, are possibly related to the transition from linear

ITG to TEM dominance. These observations have been made in LOC/SOC plasmas

[21, 24], and in plasmas with auxiliary wave heating [26, 22]. Theoretically, changes in

the direction of the residual stress contribution to the momentum transport can change

sign for ITG versus TEM turbulence [15]. However, there is open debate regarding

this issue[18, 20]. Linear gyrokinetic simulations have shown that the normalized

toroidal rotation gradient at midradius changes sign across the linear ITG to TEM

dominance transition, consistent with observations at ASDEX-U [18]. It has also been

shown at ASDEX-U experimentally that when ECRH power is added to NBI heated

H-modes, the impurity ion density profiles will peak and the core toroidal rotation will

flatten [22]. In these plasmas, linear gyrokinetic simulations showed that the dominant

turbulence regime transitioned from ITG to TEM (the ECRH modifies the electron

and ion temperature profiles so as to favor the TEM). The peaking of the impurity

density is attributed to the change from linear ITG to TEM dominance, and importantly,

across the ITG to TEM transition, there were clear changes in both the momentum and

impurity particle transport.
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In this paper, we perform linear and nonlinear gyrokinetic analysis using the GYRO

code [27] to explore the relationships between the peaking of impurity profiles, the shape

(hollow vs. peaked) of intrinsic toroidal rotation profiles, and changes in the ITG/TEM

instability. The input parameters for these simulations are based on experimental data

from a pair of Alcator C-Mod discharges [28, 29]. These discharges were operated with

almost identical engineering parameters, yet display a toroidal rotation reversal and

therefore exhibit peaked and hollow toroidal rotation profiles (Figure 1), making them

an ideal testing ground for this study. For the remainder of this paper we will refer

to the discharges with peaked and hollow toroidal rotation as the peaked and hollow

discharges.

Experimental and simulation results from the peaked and hollow discharges have

been reported recently [29]. For this paper, the analysis has been updated to include

improved toroidal rotation and an analysis window that spans from 1.0 to 1.4 seconds.

This updated analysis utilizes line-integrated toroidal rotation measurement provided

by Alcator’s X-ray Imaging Spectrometer (XICS) [30, 31] and b-spline fitting of the

measurement to provide more reliable profiles of toroidal rotation and quantities reliant

on its derivative (such as E × B shear). Section II will cover a brief description of

the experimental measurements and simulation setup. Section III of this paper covers a

quantitative comparison of new global simulations with experimental impurity transport

coefficients in an attempt to resolve a previous discrepancy between simulation and

experiment. Section IV focuses on a scan of the ITG drive term, a/LTi performed using

nonlinear gyrokinetic simulation. This section examines possible links between toroidal

rotation, the ITG critical gradient, and stiffness of the ion heat transport. Section V

describes an extensive nonlinear gyrokinetic simulation sensitivity scan of TEM drive

terms that is designed to search for signs of an ITG to TEM transition in the peaked

and hollow discharges. Finally, Section VI will include a brief description of the results

and discussion.

2. Description of the Experimental and Gyrokinetic Simulation Setup

2.1. Experimental Setup and Analysis

In this paper we discuss simulation results based on two Alcator C-Mod L-mode

discharges. Alcator C-Mod is a compact (R= 0.68m, a = 0.22 m), high density

(ne(0) up to 1 × 1021 m−3), high field (BT up to 8.0 T), tokamak located at the MIT

Plasma Science Fusion Center in Cambridge, MA. It has significant plasma shaping

and auxiliary heating capabilities via Ion Cyclotron Resonance Heating (ICRH) (

PICRH ≤ 6.0 MW). The two plasmas studied in this paper are operated with effectively

identical plasma conditions including fixed plasma shape (κ = 1.6), current (Ip = 0.8

MA), ICRH input power (PICRH=1.2 MW), and magnetic field (BT=5.4 T). These

two discharges only differed in their respective density profiles (obtained via edge gas

puffing), with core densities of approximately 1.4 and 1.55 × 1020 m−3 (See Figure
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2). However, this slight increase in density resulted a reversal of the toroidal rotation

direction on axis and rotation profiles that transitioned from peaked to hollow (Figure

1). Throughout the paper we will reference the Mach number and rotation gradient of

these plasmas, using the definition used in References [18, 16] for comparison. We

define the Mach number for species x, as u = vφ/vth,x and the toroidal rotation

gradient as u‘ = −(R2/vth,x)dω/dr where ω is the toroidal angular rotation frequency

and vth,x =
�
2Tx/mx is the thermal velocity for species x. For the peaked (hollow)

discharges we find values of u ∼ 0.09(0.02); u� = 0.55(−0.30) for the main ions and

u ∼ 0.39(0.1); u� = 2.5(−1.4) for the calcium impurities studied. All analysis presented

in this paper will focus on stationary portions of the discharges from 1.0 to 1.4 seconds,

a period that is substantially longer than the energy confinement time (∼ 30 ms). Both

of these discharges were operated in upper single null with the ion ∇B drift away from

the active X-point. This operational choice raises the H-mode power threshold, allowing

the plasma to maintain an L-mode state at higher input powers. Almost all discharges

operated on Alcator C-Mod have the presence of an internal q=1 surface and therefore

demonstrate sawtooth activity. Sawteeth were present in both discharges throughout

the entirety of the analysis window. We therefore have restricted all simulation work to

occur outside of the sawtooth inversion radius (∼ r/a = 0.38 to 0.40) to minimize the

impact of this phenomenon.
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Figure 1. (Color Online) Time averaged (1.0 to 1.4 sec), fits to the toroidal rotation
profiles obtained from the Xray Imaging Crystal Spectrometer (XICS) are plotted for
the peaked (blue) and hollow (green) discharges. All analysis focuses on the region r/a
= 0.4 to 0.6

As this paper is primarily dedicated to new simulation results, the reader is directed

to a series of published work for a description of the experimental measurements. The

suite of diagnostics used for the experimental analysis is identical to previous work and

can be found in references [29], [32], and [28]. The experimental impurity transport
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described in this paper has been reported in reference [29] and an in-depth review of

the analysis technique can be found in reference [10].
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Figure 2. (Color Online) Time averaged (1.0 to 1.4 sec) plasma profiles and their
corresponding turbulence drive and suppression terms are plotted for the peaked (blue)
and hollow (green) discharges.

Estimated uncertainties on the turbulence drive terms, a/LTe , and a/Ln were

determined from the standard deviation of each profile during the analysis period.

Uncertainties on the ion temperature profiles attempted to include the effects of known

systematics as well as fitting errors (see Figure 2). In the region of interest, r/a =0.4

to 0.6, we have estimated the uncertainties in these quantities to be ±15 − 20% in

a/LTi and ±10 − 15% in a/LTe , and a/Ln. These uncertainties will be used in the

following sections to provide a basis for the sensitivity analysis performed and we note

that all uncertainties quoted in this paper are 1σ uncertainties. The heat fluxes reported

throughout this paper as the “experimental” heat fluxes are results of the power balance

TRANSP [33]. TRANSP takes measured plasma profiles as inputs and uses internal RF

deposition models to calculate the experimental heat fluxes. A more in-depth description

of the estimates in the profiles and experimental heat fluxes can be found in [10] and

[32].
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2.2. Linear and Nonlinear Simulation Setup

The simulation work presented in this paper utilized the GYRO code [27]. Both local

(r/a = 0.5) and global nonlinear simulations are presented here to make quantitative

comparisons with experimental heat fluxes and impurity transport coefficients. All

simulations were electrostatic, used Miller geometry [34], and a 128 point velocity

space discretization (8 pitch angles, 8 energies, and 2 signs of velocity), which has

been demonstrated previously to provide accurate simulation results [35]. Each local

simulation included 3 kinetic species: deuterium ions, electrons, and the dominant

impurity species in Alcator C-Mod (boron) while the global simulations, to determine

the simulated impurity transport, included an additional 2 trace species of calcium.

Rotation effects (E×B rotation shear, Coriolis drift effects, and parallel flow gradients)

were included in each simulation with the electrons treated drift-kinetically and both

ion-ion and electron-ion collisions included. Details of the collision model and other

aspects of GYRO can be found in Reference [36]. To adequately capture the dynamics

of the ion-scale turbulence, both the local (global) nonlinear simulations utilized 24

(20) toroidal modes and extended up to approximately kθρs = 1.25 ↔ 1.4. Here,

ρs = cs/Ωci is the sound speed gyroradius, Ωci = eB/mic is the ion frequency,

cs =
�
Te/mi is the sound speed evaluated at the center of the simulation domain

(r/a = 0.5), B = 1/r dχt/dr is the effective magnetic field, and χt is the toroidal flux

divided by 2π. The normalized gradient scale length, a/Lx (for arbitrary parameter x),

which will be referred to throughout the text, are given by −a∇x/x. These numerical

settings resulted in physical simulation box sizes in the radial and binormal directions

of approximately 100 × 100ρs for the local simulations and approximately 90 × 90ρs
in the global simulations. The global runs presented here spanned from approximately

r/a = 0.35 to r/a = 0.65. However, the comparisons presented in the next section will

focus on the region r/a = 0.4 to 0.6, where the impurity transport measurements and

simulation results are most reliable. All local simulations utilized 350 radial grid points

for a grid spacing of 0.33ρs while global runs utilized only 320 radial grid points for

the same approximate radial grid spacing. All quantities obtained from the gyrokinetic

simulations were time averaged over long simulation times (∼ 400 a/cs or longer ) to

ensure reliable results.

The impurity transport coefficients extracted from global simulations were obtained

in manner reported previously [10]. Two trace species of He-like calcium (Z = 18) were

inserted into each simulation at a concentration of nz/ne = 0.0001 and we note that they

are assumed to have constant impurity density on a flux surface. These species only

differed in their density gradients which were specified to be ±50% changes from the

electron density gradient. Plotting the simulation output values of Γ/nz versus ∇nz/nz

allows for determination of the diffusion coefficient and convective velocity from the

slope and y-intercept of the fitted line. We note that the impurity particle flux spectra

in these simulations tend to peak at relatively low values of kθρs (∼ 0.4) for both plasmas

studied and the contributions to the impurity fluxes have dropped to less than 1/10th
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of their peak value by the highest simulated wavenumber, suggesting resolving smaller

scales would result in negligible contributions to the impurity fluxes.

The approach used to perform the nonlinear simulations is briefly summarized

here for completeness but can be found in more detail in references [10, 37, 29, 32].

The gyrokinetic simulations performed for this work focus only on long wavelength

contributions to the heat flux (kθρs ≤ 1.0 ) and neglect contributions from electron-

scale turbulence. The inclusion of electron-scale turbulence may play a significant role

in setting the overall electron heat flux, but has previously been observed to provide

relatively little increase in the ion heat flux [38, 39, 40]. Therefore, small modifications

to the experimental turbulence drive terms, always within experimental uncertainty,

were made to match the simulated ion heat flux with the experimental value while

agreement in the electron channel was ignored. As demonstrated in Sections IV and V,

both discharges investigated are ITG dominated at the location of interest (r/a = 0.5).

With this observation, modifications were made to the ITG drive term, a/LTi to match

the simulated and experimental heat fluxes. All of the global simulations reported here

as well as the local nonlinear simulation base cases (at r/a = 0.5) are ion heat flux-

matched simulations. We note that no discussion of the simulated momentum fluxes

will be presented here. Due to a lack of symmetry breaking mechanisms, comparisons

between GYRO simulation and experimental momentum fluxes in intrinsically rotating

plasmas is not possible at this time. For more details, see reference [29] and references

therein.

3. Quantitative Comparison of Measured Impurity Transport with

Nonlinear Simulation

Earlier work reported by White et al. made quantitative comparisons of gyrokinetic

simulation with experimental impurity transport in both the peaked and hollow

discharges [29]. The peaked discharge displayed quantitative agreement between

simulation and experimental impurity transport across most of the profile studied

while a disagreement between the simulated and experimental impurity diffusion

coefficient was found across the simulated domain (r/a = 0.4 - 0.6) in the hollow

discharge. Although simulations were never performed to demonstrate agreement, it

was speculated that small adjustments to the dominant turbulence drive, a/LTi , could

resolve this discrepancy. In this section we present an attempt to use the updated

analysis (time averaged input profiles and fitted rotation profiles) to perform new global

simulations that resolve the previous discrepancy between simulation and experiment in

the hollow discharge and improve upon the previous simulation of the peaked discharge.

Additionally, we discuss the observed changes in the simulated impurity transport and

its relationship to the measured changes in the toroidal rotation profiles.

The results from an ion heat flux-matched global simulation of the peaked discharge

are presented in Figure 3 where the impurity transport diffusion and convection

coefficients, D and V, are plotted in panels a and b with the ion and electron heat fluxes
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plotted in panels c and d. It may be noted that the final, ion-heat flux-matched profiles

of a/LTi used in both the peaked and hollow simulations varied from the previous work

by typically < 10% across the simulation domain when compared to the previous work

[29]. For comparison with the turbulence driven impurity transport, the neoclassical

impurity transport coefficients from both discharges are plotted in Figures 3 and 4.

Local simulations were performed using the neoclassical transport code NEO [41]. These

simulations used Miller geometry, toroidal rotation effects, and 5 species (deuterium,

electrons, boron, and 2 trace calcium species). As shown in Figures 3 and 4, they

demonstrate a negligible role of neoclassical transport in the region of interest for these

discharges.
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Figure 3. (Color Online) The results from an ion-heat flux matched global gyrokinetic
simulation are shown for the peaked discharge. Comparisons are made with measured
levels of impurity transport (panels a and b) as well as heat fluxes (c and d). Agreement
is generally found with measured ion heat flux and impurity transport coefficients

This simulation displays approximate agreement with the upper error bar of the

experimental ion heat flux while under predicting the electron heat flux across the

entirety of the simulated profile (r/a = 0.4 to 0.6). This discrepancy in the electron

heat flux channel has been observed in a large number of Alcator C-Mod discharges

[10, 37, 32]. It is believed that it arises from the electron-scale turbulence that is excluded

from standard ion-scale gyrokinetic simulation. This is the subject of ongoing model
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validation work but is out of the scope of this paper. Despite missing contributions to

the electron heat flux, this new global simulation finds agreement within the diagnosed

uncertainties between the simulated and experimental values of the impurity diffusion

coefficients across a majority of the simulation domain. Similar agreement is found in the

convective velocity outside of approximately r/a =0.48 with some slight disagreements

found inside of this radial location. The results from the peaked discharges analysis are

found to be in general quantitative agreement with that reported previously [29].

In an attempt to resolve the previous disagreement in the diffusion coefficient,

identical analysis was performed on the hollow discharge. The results of this analysis

are plotted in Figure 4. The simulated ion heat flux obtained from the previous analysis

approximately matched the mean experimental heat flux. In contrast, the new ion heat

flux-matched simulations have slightly different ion temperature profiles and match the

simulated ion heat flux at the upper error bar of the experimental value.
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Figure 4. (Color Online) The results from an ion-heat flux matched global gyrokinetic
simulation are shown for the hollow discharge. Comparison are made with measured
levels of impurity transport (panels a and b) as well as heat fluxes (c and d). Decent
agreement is generally found with measured ion heat flux and impurity transport
coefficients, although some discrepancy with the diffusion coefficient still remains

This small adjustment to the ion temperature tends to enhance the overall level of

the impurity transport and therefore results in a slightly higher simulated diffusion
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coefficient and larger inward convective velocity. We note that this ion heat flux-

matched simulation exhibits a similar under-prediction of the electron heat flux to

that found in the peaked discharge. Given the similarity in the input parameters

and linear stability analysis (see Figure 6), this result is unsurprising. Compared with

previous results, it appears as though the simulated diffusion coefficient has improved

agreement with the experiment. Although some discrepancy between simulation and

experiment remains, the simulated diffusion coefficient is found to be in agreement with

experiment outside of r/a = 0.5 with the convective velocity displaying agreement across

the simulation domain. It is important to note that for both discharges, the location of

the sawtooth inversion radius is approximately r/a = 0.38 to 0.4. Although relatively

small, disagreement at inner radii (Figures 3b and 4a) may be related to the influence

of sawtooth activity, neoclassical contributions, sensitivity to a driving gradient not

explored in this work, or some combination of these mechanisms.

The analysis technique used to extract the experimental values of D and V from

measured calcium emission attempts to assess uncertainty in these values resulting from

error in the background plasma profiles. Unfortunately, for the studied discharges,

the resulting uncertainties on the experimental impurity peaking do not allow for any

statement of changes in impurity peaking to be made. Any change in the impurity

peaking is obscured by the error bars obtained for this dataset. An initial analysis

of argon emissivity profiles for the peaked and hollow discharges does suggest a larger

peaking of impurities in the core of the hollow discharge. However, a full analysis of

this data has not been performed and is left for future experimental impurity transport

analysis.

Despite limitations in the impurity transport data, comparison can be made

between the peaked and hollow impurity peaking obtained from the simulation results.

Observations from ASDEX-Upgrade suggest a strong link between changes in toroidal

rotation, rotation gradient, and boron impurity transport [22, 16]. However, as seen in

Figures 3b and 4b the direction of the simulated impurity convection is inward (negative)

for both discharges. This result holds for all simulations performed while trying to obtain

ion heat flux-matched simulation and appears robust for simulation results constrained

to match the experimental ion heat flux. The presence of inward impurity convection

implies peaked profiles of the calcium impurities in both discharges, suggesting no strong

link between the observed rotation changes and impurity peaking.

However, it is important to note that the ASDEX-Upgrade results span a wide range

of Mach numbers (u) and rotation gradients (u’). The main ion and calcium Mach

numbers and rotation gradients, evaluated in a manner consistent with the ASDEX

results are given in Section 1 of this text. We determine that although the Mach

number range is more limited than the ASDEX-Upgrade results, the range of rotation

gradient spanned by the peaked and hollow discharge is equivalent to approximately

half of the range covered in references [22, 16]. Casson, et al. report a strong scaling

of measured boron transport with rotation gradient. However, we note that the C-

Mod discharges studied here display weak or little response of the impurity transport
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to the differences in rotation gradient. Overall, we conclude that nonlinear gyrokinetic

simulation demonstrates quantitative agreement with experimental ion heat flux and

impurity transport over most of the range studied and that the simulated impurity

peaking does not appear to track the observed transition in toroidal rotation for these

discharges.

4. Toroidal Rotation, the ITG Critical Gradient, and Ion Stiffness

In 2009, results from the JET tokamak were reported by Mantica et al. that indicated a

link between measured toroidal rotation and ion stiffness [11]. With increased values of

toroidal velocity, a decrease in the ion stiffness was observed. However, very recent work

utilizing the GENE code [42] and reported by Citrin et al. indicates that the reduction of

ion stiffness with toroidal rotation on JET may be explained by stabilization of ITG by

electromagnetic effects and fast ions [13, 14]. Despite the fact that the two discharges

reported here are at significantly smaller Mach numbers than the JET results, their

angular rotation frequencies are comparable to this previous work and they provide

another test of the role of toroidal rotation on stiffness and the ITG critical gradient.

The peaked and hollow discharges are extremely similar in engineering parameters (only

varying in the density) and demonstrate significantly different values of the toroidal

rotation at mid-radius (r/a = 0.5), where the profiles of ion and electron temperature,

rotation, and electron density are well diagnosed. Although opposite in sign, the local

value of the E×B shearing rate at the analysis location is similar ( abs(γExB) (in a/cs)

= 0.023 (0.018) for peaked (hollow) ) between the two discharges and 3-4× smaller than

the peak of the low-k linear growth rate (Figure 6) . This eliminates some uncertainty

in the results imposed by differences in E × B shear which is known to have significant

effects on the ITG critical gradient and low-k turbulence dynamics.

Analysis was performed at mid-radius to exploit the significant difference in the

local values of rotation. The local values of XICS measured toroidal rotation are

∼ 7 km/s for the hollow discharge and 30 km/s for the peaked discharge at r/a=0.5.

Local, nonlinear gyrokinetic simulation was performed at this location with almost

identical simulation parameters to those described in Section II. We note that these

simulations neglected ion-ion collisions but were otherwise numerically identical to the

local simulations presented in the following section. This difference in the simulation

setup was found to have no significant effect on the conclusions presented in this section

but is mentioned for completeness. To probe both the ITG critical gradient and the

stiffness at these locations, the value of the ITG drive term, a/LTi was varied from its

experimental value down to 70% of its experimental value using 14 separate simulations.

This scan more than sufficiently reveals the location of the ITG critical gradient and

allows us to understand the response of the ion heat flux to changes in the turbulence

drive. In Figure 5 the ion heat flux obtained via nonlinear simulation is plotted versus

the ITG drive term.

We find that despite a significant difference in the local value of toroidal rotation,
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Figure 5. (Color Online) Nonlinear gyrokinetic simulation at r/a = 0.5 is presented
for the peaked and hollow rotation discharges. The simulated heat fluxes from the
peaked (blue) and hollow(green) discharges are shown for a scan of the ITG drive
term, a/LTi . The x intercept of this plot is indicative of the ITG critical gradient and
the slope is indicative of the ion stiffness in these plasmas.

there is no recognizable difference in the value of the ITG critical gradient in these

discharges, denoted approximately by the x intercept of the ion heat fluxes. Both

discharges appear to have simulated heat fluxes that approach zero at a value of the

ITG drive term, a/LTi equal to approximately 1.57. The location of the experimental ion

heat fluxes relative to the nonlinear critical gradient is also effectively identical in these

plasmas. Both discharges sit less than 10% above the nonlinear threshold, suggesting the

plasma conditions are marginally stable to ITG. This result is interesting in the context

of the observed changes in the toroidal rotation. Work by Hahm [2] and Yoon [3] suggests

that near marginally ITG stability, the inward turbulent equipartition momentum pinch

plays a dominant role and is directed inward for typical plasma parameters. Despite

both of the studied plasmas exhibiting marginally stability to ITG turbulence, they

display a robust reversal of their toroidal rotation profiles, suggesting the physics of the

peak to hollow transition is not dominated by the mechanism proposed by Hahm and

Yoon for these discharges.

Examining the slope of ion heat flux plotted versus the ITG drive term for values

above the ITG critical gradient provides information on the local ion stiffness predicted

by the simulation. Both discharges appear to respond extremely strongly to changes in

the ITG drive, with a 15− 20% increase in this drive resulting in up to a 450% increase

in the driven heat flux. These ion-scale simulations suggest that the dependence of the

ion heat flux on a/LTi is identical between the peaked and hollow discharges, implying
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identical ion stiffness at substantially different values of toroidal rotation. Although no

data from dedicated experimental scans of the ion heat flux was collected for comparison,

we note that the ion temperature profile shapes obtained from the peaked and hollow

discharges are nearly identical, consistent with similar levels of ion stiffness in the

plasma core and the results of this nonlinear gyrokinetic analysis. On Alcator C-Mod

we therefore find no significant effect of toroidal rotation on ion stiffness, consistent with

the results from Citrin et al. [13, 14].

5. Search for ITG/TEM Transition Using Nonlinear Gyrokinetic

Simulation

Links between impurity transport, ITG/TEM stability, and toroidal rotation have been

explored both experimentally [22, 16], and theoretically [6, 18]. It has been proposed

that the transition from Linear to Saturated Ohmic Confinement regimes (LOC to

SOC) and the accompanied reversal of the toroidal rotation [23, 43] are the result of a

transition from TEM to ITG dominated plasma turbulence[24, 18, 44, 45]. Reversal or

hollowing of the toroidal rotation profile in auxiliary heated plasmas has been observed

more recently [26, 28] and has been attributed to the same underlying transition of the

turbulence [22]. To date, these conclusions have been based predominantly on low-k

(kθρs < 1.0) linear stability analysis performed in the plasma core. In this paper we

perform nonlinear gyrokinetic analysis at the mid radius to search for evidence of an

ITG to TEM transition in the peaked and hollow discharges. This location is just inside

of the radial location where the rotation profiles deviate significantly (see Figure 1) and

might be expected to exhibit signatures of ITG/TEM transition.

To understand the low-k (kθρs < 1.0) linear stability, initial value, linear gyrokinetic

analysis was performed on both the peaked and hollow discharges at r/a = 0.5. The

results of this analysis are detailed in Figure 6 for the peaked (panels a and b) and

hollow discharges (panels c and d) respectively. The real frequencies and growth rates

from analysis using all experimental inputs are plotted together with the values obtained

from the ion heat flux-matched conditions. As these plasmas have similar values of the

turbulence-relevant parameters ( a/LTi , a/LTe , a/Ln, and ŝ), it is not surprising the

linear stability from these discharges exhibit very similar characteristics. For parts of

the linear spectrum below kθρs ∼ 0.95, the most unstable linear modes rotate in the ion

diamagnetic drift direction (negative by GYRO conventions) and respond sensitively to

changes in the ITG drive, above this value of kθρs the TEM/ETG branch appears to

dominate the spectrum with unstable modes rotating in the electron direction (positive

real frequency). It is expected that a majority of transport is driven by the longer

wavelengths associated with the lower values of kθρs. For this reason, we classify

both the discharges are being ITG dominated with perhaps some subdominant TEM

contributions. However, to understand how the turbulent state of these plasmas and to

investigate any effects of subdominant modes, we turn to nonlinear simulation of these

discharges at r/a = 0.5.
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Figure 6. (Color Online) Results from low-k linear gyrokinetic simulation are
plotted for the peaked (a & b) and hollow (c & d) discharges for the experimental
gradients (black diamonds) and those used in the ion heat flux-matched simulation
(red diamonds).

Local, nonlinear sensitivity scans were used to search for evidence of an ITG to

TEM transition in the peaked and hollow discharges. All of the simulations presented

in this section were based around the ion heat flux-matched, base case simulations for

both discharges. As the response of the simulation results to changes in the ITG drive

term was studied in the previous section, we focused this sensitivity analysis on scans

of known TEM drive terms to search for evidence of an ITG/TEM transition. These

variations included scans of a/LTe , a/Ln, and νei within estimated 1σ uncertainties

(±15% in a/LTe , ±15% in a/Ln, and ±20% in νei). This analysis resulted in 12 total

simulations performed at r/a = 0.5 in the hollow and peaked discharges. The resulting

ion and electron heat fluxes obtained from these scans can be found in Figures 7 and 8.

In contrast to the extreme sensitivity to the ITG drive term, a/LTi found in Section

IV (Figure 5), the peaked discharge displays only weak dependencies to all of the TEM

drives. Both the ion and electron heat fluxes appear to slightly decrease with increased

collisionality and slightly increase with increased values of a/Ln. However, we note that
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Figure 7. (Color Online) Response of the nonlinear heat fluxes to changes in TEM
drive terms are shown. The response of these quantities to 1σ increases/decreases in
a/LTe (red), a/Ln (blue), and νei (green) around the ion heat flux-matched base case
are plotted for the peaked discharge

a 1σ change in these parameters results in only an approximately 25% modification of

simulated heat flux. To remind the reader, Figure 5, indicates that a 1σ increase in

a/LTi results in an approximately 450% change in the simulated heat flux. Therefore

no strong evidence for an ITG to TEM transition is found when examining purely the

sensitivity of the simulated heat fluxes to changes in the TEM drive terms for the peaked

discharge. Furthermore, none of the variations reported here come even remotely close

to simultaneous matching of the ion and electron heat fluxes. As discussed earlier, this

observation is believed to be the result of missing high-k, electron-scale turbulence in

these simulations. Resolution of this discrepancy is out of the scope of this work but is

the subject of ongoing investigation.

The identical analysis was performed on the hollow discharge and is reported in

Figure 8. The results from the nonlinear scans are nearly identical to those found

in analysis of the peaked discharge with a slightly increased sensitivity to changes in

electron-ion collisionality and a slightly reduced sensitivity to changes in a/Ln. The

observed trend with collisonality can be explained by a decrease in the Dimits shift and

the value of the ITG critical gradient at decreased electron-ion collisionality. It was

shown by Mikkelsen et al. that decreases in collisionality result in a downward shift

of the ITG critical gradient [46]. Therefore, at a constant value of a/LTi one observes

an increase in the overall ion and electron heat fluxes due to increased strength of the

ITG, and not an overall increase in TEM activity. Neither discharge is observed to have

a meaningful trend with a/LTe suggesting a minimal presence of electron temperature

gradient driven TEMs. We conclude that this analysis does not identify any signatures

of an ITG/TEM transition in either the peaked or the hollow discharges at r/a=0.5.
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Figure 8. (Color Online) Response of the nonlinear heat fluxes to changes in TEM
drive terms are shown. The response of these quantities to 1σ increases/decreases in
a/LTe (red), a/Ln (blue), and νei (green) around the ion heat flux-matched base case
are plotted for the hollow discharge

The nonlinear gyrokinetic analysis of C-Mod plasmas presented here suggests that a

clear transition from ITG to TEM does not accompany changes in particle transport

and rotation profiles as previously reported on ASDEX-Upgrade [22]. We note that the

relationship between changes in the the toroidal rotation and ITG to TEM transition

has also been studied recently in Ohmic plasmas and auxiliary heated plasmas at

Alcator C-Mod [47] and ASDEX-Upgrade [48, 18, 20]. In these works, no clear ITG to

TEM transition appears responsible, but rather, more subtle changes in the turbulence

correlate with the rotation and particle transport changes. The current work presented

here is consistent with these findings [48, 18, 47, 20].

6. Discussion and Results

This paper presents analysis of two Alcator C-Mod L-mode discharges exhibiting

significantly different profiles of toroidal rotation with approximately matched

turbulence drive and suppression terms. The validation quality datasets obtained from

these discharges and their extreme similarly makes them an ideal pair for testing recent

theories related to impurity transport, rotation reversals, and transitions from core ITG

to TEM dominated turbulence. Using updated profile analysis, new global, nonlinear

gyrokinetic simulations were performed in both discharges that span the radial region

r/a = 0.4 to 0.6. The updated analysis presented here improved agreement between

the simulated and experimental impurity transport coefficients compared with previous

work [29]. The impurity transport coefficients obtained from experiment were found

to generally be in quantitative agreement with the updated simulation analysis (within
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estimated uncertainties). Simulated peaking of impurities obtained from ion heat flux-

matched simulation indicated peaked profiles in the range r/a = 0.4 to 0.6 for both

the peaked and hollow rotation discharges. We note that, although analysis of these

discharges results in a relatively small scan in Mach number, they exhibit significantly

different values of the rotation gradient (u’). Unlike the database reported by Casson

et al. [16], the C-Mod discharges do not exhibit a clear indication of dependence on

rotation gradient. However, we note that this could be a result of our slightly smaller

range in the rotation gradient or the smaller range in Mach numbers spanned by the

peaked and hollow discharge relative to the ASDEX-Upgrade dataset.

Local, nonlinear gyrokinetic simulation was used to probe the response of the

simulated ion heat flux to changes in the ITG drive term and to search for differences in

the location of the ITG critical gradient and ion stiffness between the peaked and hollow

discharges. A correlation between increased toroidal rotation and decreased ion stiffness

was reported previously by Mantica et al. [11]. The work presented here attempted to

leverage the significant difference in the toroidal rotation profiles from the peaked and

hollow discharges and the similarity of most other simulation inputs, to explore any

link between rotation and stiffness on Alcator C-Mod. The simulation results suggest

that, despite the difference in the rotation profiles, the nonlinear ITG critical gradient

and stiffness of the peaked and hollow discharges is indistinguishable and both plasma

appear to display marginal stability to the ITG. These results appear inconsistent with

work by Hahm and Yoon [2, 3], where it is suggested that an inward directed equipartiion

momentum pinch plays a dominant role in plasmas exhibiting marginal stability to ITG.

Ion heat flux-matched simulations were obtained for both the hollow and peaked

discharges, demonstrating the commonly observed Qe under-prediction [32]. To search

for evidence of ITG to TEM discharges in these discharges, sensitivity scans in

known TEM drive terms were performed around the ion heat flux-matched base

case simulations. A slight dependency of the simulated heat fluxes on electron-ion

collisionality was found in both discharges but can be explained by a decrease in the

Dimits shift and a reduction of the ITG critical gradient reported by Mikkelsen et al.

[46]. The sensitivity of the simulated heat fluxes to changes in TEM drive terms are all

found to be negligibly small compared to the sensitivity to a/LTi . It is found that both

discharges exhibit characteristics primarily found in ITG dominated plasmas and there

is no evidence of significant subdominant TEM activity or any ITG to TEM transition.

Therefore this simulation study finds no clear link between ITG/TEM transition and

the measured rotation reversal in these discharges.
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