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SATISFIABILITY THRESHOLD FOR RANDOM REGULAR NAE-SAT

*JIAN DING, 'ALLAN SLY, AND *NIKE SUN

ABSTRACT. We consider the random regular k-NAE-SAT problem with n variables each appearing in
exactly d clauses. For all k exceeding an absolute constant ko, we establish explicit?y the satisfiability
threshold d. = d. (k). We prove that for d < d. the problem is satisfiable with high probability.while
for d > d. the problem is unsatisfiable with high probability. If the threshold d. lands exactly on
an integer, we show that the problem is satisfiable with probability bounded away from both zero
and one. This is the first result to locate the exact satisfiability threshold in a random constraint
satisfaction problem exhibiting the condensation phenomenon identified by Krzakala et al. (2007).
Our proof verifies the one-step replica symmetry breaking formalism for this model. We expect
our methods to be applicable to a broad range of random constraint satisfaction problems and
combinatorial problems on random graphs.

1. INTRODUCTION

Given a conjunctive normal form (CNF) boolean formula (an “AND of ORs”), a not-all-equal-SAT
(NAE-SAT) solution is an assignment z of literals to variables so that both z and its negation —z
evaluate to TRUE — equivalently, so that no clause evaluates its variables to all TRUE or all FALSE.
A E-NAE-SAT problem is defined by a k-cNF formula, in which each clause has exactly k literals.

A major direction of research on boolean satisfiability has concerned the large-system limit for
random problem instances, seeking to establish typical behavior and phase transitions. A random k-
satisfiability problem is given by choosing uniformly random clause literals, then assigning variables
to clauses so that the constraint structure is that of a random k-uniform hypergraph. In the relevant
asymptotic scaling the clause density a (clause-to-variable ratio) is of constant order, that is to say
the graph is sparse. Much effort has been directed towards locating the satisfiability transition: the
critical density «, where solutions cease to exist.

The (sparse) random satisfiability problems belong to a broad universality class of sparse random
constraint satisfaction problems (csps) — which includes also the coloring and independent set
problems on sparse random graphs — that has been intensively studied in theoretical computer
science, statistical physics, and combinatorics. A common feature of these problems is that in a
non-trivial regime below ., the number of solutions fails to concentrate about its mean, preventing
standard (first and second) moment methods from locating the exact transition.

Statistical physicists ([MP85, MZK"99, MPZ02] and references therein) have described these
problems via a deep but non-rigorous theory of replica symmetry breaking (RSB) which posits a
breakup of the solution space into well-separated clusters. The non-concentration of the number
of solutions below a, is understood in terms of a regime of condensation [KMR*07, MRSO08] in
which most solutions are contained in a bounded number of large clusters. Inference on clusters
yields an explicit prediction of the satisfiability threshold, the one-step replica symmetry breaking
(1rsB) solution, for a wide range of models including random k-SAT, coloring, and independent set.
However, no such prediction has been rigorously verified in the presence of a condensation regime,
with all previous bounds leaving a constant gap.
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In this paper we consider random d-reqular k-NAE-SAT, in which each variable is involved in
exactly d clauses, and clause literals are chosen uniformly at random. We establish the following
sharp satisfiability threshold, the first of its kind among this class of csPs:

Theorem 1. For k = ky there is a threshold d. = d.(k), given by the largest zero of the explicit
function (1), such that the probability for a random d-regular k-NAE-SAT instance to be satisfiable
tends to one for d < d., to zero for d > d., and stays bounded away from zero and one for d = d..

Throughout we consider the large-system limit in which the number n of variables tends to
infinity while d, k& remain fixed. Explicitly, d, is given by the largest zero of the function

*®(d) = —log(l — z) —d(1 — k=" —d ™) log(1 — 22%) + (d — 1) log(1 — z"1), (1)

where = = x(d) is the unique solution of the equation

12z 1 — 2gF-! o
d=1+ (log 1 _:)/log (1_—;_1) on the interval %— ™% ga g %

Furthermore, d, is the unique zero of *® on the interval (28! — 2)klog2 < d < 2k=1k1og 2.

It is possible for the root d. to be integer-valued, though we have no reason to believe that this
ever occurs. Nevertheless, we address this hypothetical possibility by showing that if d = d, then
the probability for the NAE-SAT instance to be satisfiable is asymptotically bounded away from
both zero and one. This gives a full characterization of the satisfiability transition in this problem.

The threshold d, has been predicted before using 1rRSB methods [CNRZ03, DRZ08], and arises
from solving survey propagation recursions, a special case of the 1RSB cavity recursions — for further
background we refer the reader to [MPZ02, AGK04, BZ04, BMZ05, MMWO07, MMO09]. The main
challenge overcome in this paper is the non-concentration of the number of solutions occurring
before the satisfiability transition. Our approach is based on the 1RSB intuition that while the
number of solutions is not well concentrated, the number of clusters is. Indeed, a key innovation
in our proof is to rigorously establish a simple combinatorial description of clusters, with which we
show the necessary concentration to locate the exact threshold d.. Our method of proof thus gives
rigorous validation of the 1RSB heuristics for this problem.

We believe that the methods developed in this paper are flexible to the model specification, and
offer a robust new approach to establishing exact thresholds for other problems within this class of
sparse random csPs. Indeed, in a companion paper [DSS13] we consider the maximum independent
set (MAX-IND-SET) problem on random regular graphs, and apply similar methods to determine
the explicit MAX-IND-SET threshold, and furthermore show tight concentration of the maximum
independent set size about the threshold value.

Previous work has identified sharp satisfiability transitions in models not exhibiting condensation.
The 2-SAT transition can be identified by a branching process argument [CR92, Goe96, FdIV01], and
even the finite-size scaling has been characterized [BBC*01]. The satisfiability transitions in the
1-in-k-sAT [ACIMO1] and XoR-sAT [MRTZ03, PS12] problems have also been exactly determined.
See [MMO09] for more detailed discussions. The study of random k-satisfiability problems has focused
on the Erdds-Rényi version, where variables are included in clauses independently at random.
For random k-cNF formulas with & > 3, successively improving bounds on the location of the
satisfiability transition have been proved ([KKKS98, AP04, CP13, Cojl4] for random k-SAT, and
[AMO6, CZ12, CP12] for random k-NAE-SAT); in each case a gap remains to be closed.

After we announced this result, A. Coja-Oghlan posted a paper [Cojl3] on a different sym-
metrization of regular k-SAT in which a 2-clause joins each consecutive pair of variables, forcing
them to take opposite literals. While not establishing a satisfiability threshold, he establishes a
1RsB-type formula for the existence of solutions that satisfy all but o(n) clauses, via an approach
of modeling clusters which is similar to ours. In subsequent work [Coj14] he demonstrated how to
apply the method to establish an improved bound on the threshold for random k-sAT, but removing
the gap to establish an exact threshold remains an open problem.
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In the remainder of this introductory section, we review the concept of RSB and explain why it
obstructs standard approaches for locating thresholds, then present a brief overview of our solution.
A more detailed overview is available in conference proceedings [DSS14].

1.1. Moments and non-concentration. Throughout we let G, 4k denote a uniformly random
d-regular k-NAE-SAT problem instance, on n boolean variables constrained by m clauses where
nd = mk (see §2.1 for the formal definition). A natural approach to locating the satisfiability
transition is via the (first and second) moment method, as follows. Let Z = Z,, count the number of
solutions for the random NAE-SAT instance G, 4. The probability of satisfiability is upper bounded
by Markov’s inequality, P(Z > 0) < EZ. Given any fixed z € {0, 1}", each clause has probability
2/2% to evaluate its k variables to all 0 or all 1, thereby invalidating the solution; otherwise the
clause is satisfied. The clauses are satisfied independently of one another, thus

EZ = 2"(1 — 2/2%)™ = exp{n®(d)} @)
with &(d) = log 2 + (d/k) log(1 — 2/2F).
For fixed k the rate function @ is clearly decreasing in d, with unique zero at
- klog2 _ [ok-1 ky—1 -k k-1 —
do= TTog(l—2/2) — [ —1/2—(6-2F)"1 —O(47")] klog2 < 2" 'klog2 =dyba  (3)
Above d, the first moment EZ is exponentially small in n, so the random NAE-SAT instance is
unsatisfiable with high probability (with probability tending to one as n — o0).

On the other hand, the probability to be satisfiable can be lower bounded by the Cauchy-Schwarz
inequality, (EZ)? < P(Z > 0) E[Z?]. If the second moment remains within a bounded factor of the
first moment squared as n — oo, then Z > 0 with positive probability (with probability bounded
uniformly away from zero in the limit n — ). We show that

Proposition 1.1. Fork > kg andd < dpg = (257! — 2) klog 2, the number Z of NAE-SAT solutions
on Gn a ) satisfies E[Z?] < (EZ)?, implying that the problem is satisfiable with positive probability.

(We write f <i g to indicate limsup,_,(f/g) < Ci for a constant Cy depending only on k. If
f <k g and g <t f then we write f =, g. We drop the subscript & to indicate that the constant
can be chosen uniformly over all k > kp.) Propn. 1.1 is entirely analogous to the second moment
estimates of [AMOG] for the Erd6s—Rényi version of random NAE-SAT.

1.2. Non-concentration due to clustering. The above shows that if the threshold d, exists,
then it must lie between djpq and do < dy,q. However, the basic moment approach cannot locate
the exact satisfiability transition: there is a non-trivial regime d < dy in which the first moment
of Z is exponentially large, but the second moment is exponentially larger than the first moment
squared, yielding no conclusions about the typical behavior of Z.

We will now review a heuristic explanation for the failure of the second moment. We refer also to
detailed discussions in prior work on satisfiability lower bounds [AMO06, AP04]. Observe that, due
to the sparsity of the graph, a typical NAE-SAT solution will have a non-negligible fraction of “free”
variables, whose states can be flipped without violating any clauses. Indeed, suppose variable v
is incident to clause a: if the other k — 1 variables incident to a have the same evaluation (which
occurs with probability roughly 4/2%), then v will be forced to a particular literal to satisfy a;
otherwise, a is satisfied regardless of the literal on v. The probability that v can be flipped without
violating any of its d neighboring clauses is then

1—4/28)¢

e ( w\d 2) Fad’ 4)
2(1 — 2/2%)d — (1 — 4/2F)

where the denominator accounts for the fact that we have conditioned on a valid solution, so

different clauses cannot force the variable to conflicting literals. (Let us emphasize again that this
discussion is only meant as a heuristic guide; in particular, the calculation incorrectly assumes that
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neighboring variables are roughly independent, when in fact the model has long-range correlations.)
Thus the existence of a single solution implies the existence of a cluster of at least 2"¢ nearby
solutions, related by flips on the free variables, where c is a positive constant depending on k& and
d. Observe moreover that e remains positive (at least on the order of 2-%) up to and beyond the
first moment threshold, and consequently ¢ can be chosen uniformly over d < do. Thus there is a
regime d < d, where

E[Z?%] > 2"°EZ > (EZ)* (5)
— that is, the amount of non-rigidity in a typical solution overcomes the total expected number of
solutions, causing the second moment method to fail.

Statistical physicists have developed a sophisticated but non-rigorous theory which explains how
this non-concentration fits within a more comprehensive picture. We briefly summarize here the
(conjectural) phase diagram of a CsP, referring the reader to [KMR*07, MRS0S] for the details. For
small d, almost all of the solution space belongs to a single well-connected cluster. As d surpasses
a certain clustering threshold ds, the solution space undergoes an abrupt structural transition:
for d above ds, most of the mass in the solution space becomes divided into exponentially many
well-separated clusters, each contributing an exponentially small fraction of the total mass. This
geometry persists up to a further (conjectured) condensation transition d., above which most of
the solution space becomes concentrated within a bounded number of large clusters. In the non-
trivial regime between the condensation and satisfiability transitions, the within-cluster correlation
dominates the moment calculation, causing the failure of the second moment method. In a sense
this issue characterizes this class of CSPs.

1.3. Combinatorial representation of clusters. Given a random NAE-SAT instance, define a
graph on the solution space by putting an edge between any two solutions differing in a single
variable. Each connected component of this graph constitutes a cluster. Note that changing the
state of a free variable can potentially free some of its neighboring variables, so the path joining
two solutions in the same cluster may be complicated. Nevertheless, we have the following simple
combinatorial description of clusters:

Definition 1.2 (frozen model). On a given NAE-SAT instance, a frozen configuration is a vector
ne€ {0,1,£}V satisfying the following properties:
(i) No clause is invalidated by having k variables evaluating to all 0 or all 1 (f evaluates to £, so
a clause involving any f-variables is automatically satisfied);
(ii) Variables take value O or 1 if and only if forced to do so, that is, 7, takes value z € {0,1} if
and only if setting 7, = —x invalidates a clause.
Variables with spin £ are free while the rest are rigid or forced.

We claim that frozen configurations effectively encode NAE-SAT solution clusters. Indeed, the
following coarsening algorithm projects clusters to frozen configurations:

Definition 1.3 (coarsening algorithm). Starting from a valid NAE-SAT solution, whenever a 0/1
variable is seen to be unforced (that is, can be flipped without invalidating any clause), change its
state to f. Iterate until no more variables can be set to £.

Natural analogues of this procedure can be defined for many CSPs of interest. Coarsening was
originally introduced in the context of the coloring model, where it was called whitening [Par02).
We refer to [MMWO7] for a study of the combinatorics of the coarsening procedure.

In the regime djpq < d < dypg, we see from (4) that the density of variables which are already
free in the initial NAE-SAT solution is very low, on the order of 2%. Setting a variable to free
can cause more of its neighbors to become free, so in principle the coarsening algorithm may
terminate in the configuration of all frees (which clearly does satisfy the conditions for a frozen
configuration). However, the following heuristic calculation suggests that this propagation of frees
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will be extremely subcritical: suppose variables u and v are joined through clause a. Freeing u
can change the state of v from forced to free only if (i) the other k — 2 variables in a have the
same evaluation, which has probability 8/2%; and (ii) v is not forced by any of its neighboring
clauses other than a, which also has probability around 2= (roughly, (4) with d — 1 in place of d).
Altogether this has probability < 4~*, while each variable has d(k — 1) < 4* neighboring variables:
thus the frees propagate through the graph in the manner of a subcritical branching process. Based
on this intuition we prove

Proposition 1.4. In the regime dipbq < d < dybd, with high probability the coarsening algorithm
projects all NAE-SAT solutions to frozen configurations with density of frees < 7/2%.

In reverse, if we start from a frozen configuration and try to recover a valid NAE-SAT solution,
setting a free variable to O or 1 can force the states of neighboring variables, and cycles in the graph
can create conflicts making it impossible to recover any solution. However, a simple argument
shows that a valid NAE-SAT solution can be recovered as long as each connected component in this
propagation contains at most one cycle. But by the same token as above, if the initial density of
frees in the frozen configuration is sufficiently low, then the propagation of this effect is subcritical.
As a result

Proposition 1.5. Conditioned on the event that there exist frozen configurations with density of
frees < 7/2%, with high probability there also exist NAE-SAT solutions.

1.4. Sharp threshold for clusters. In view of Propns. 1.4 and 1.5, Thm. 1 will follow by estab-
lishing a sharp threshold d. for positivity of the “cluster partition function”

Z = Z, = number of frozen configurations on G 4 with density of frees < 7/2*. (6)

The sharp threshold for Z, which comprises the majority of our proof, is proved via the moment
method followed by a variance reduction argument. The principle is that the frozen model does
not suffer the non-rigidity (5) present in the original model, and consequently its partition function
Z can be expected to have good concentration. Guided by this intuition, in §3-5 we prove

Theorem 2. For k = kg, dipq < d < dypd, and *® = *®(d) as in (1),
EZ =; exp{n*®} and E[Z%]5; (EZ)?+EZ.

The proof of Thm. 2 comprises a large portion of the present paper. The first moment EZ is
calculated in §3. We refer to [MS08] for prior work upper bounding EZ in random (Erdés-Rényi)
3-sAT, where the definition of Z differs but is closely analogous. In this work, in order to obtain
the precise asymptotic order of EZ, we identify the exact local neighborhood profile that gives
the maximal contribution to the expectation. This is done by a Bethe variational principle which
relates stationary points of the rate function to fixed points of certain tree recursions. A major
technical difficulty is the high dimensionality of the maximization problem, and the possibility of
multiple stationary points which must be ruled out. This is done by delicate a priori estimates
which allow us to reduce the dimensionality by certain symmetry conditions.

The second moment can be understood in the same framework by regarding it as the first moment
of the pair model: on a given NAE-SAT instance, a valid pair configuration is a pair (',7%) where
each 7 is a valid frozen configuration for the same underlying instance. The dimensionality is
substantially increased in the pair model compared with the original (single-copy) model, so the
analysis becomes more difficult. We show in §4 that the dominant contribution comes from two local
maximizers: one corresponding to pairs whose overlap distribution looks like product measure, and
the other corresponding to perfectly correlated pairs — in each case, with marginals given by the
first moment maximizer. The results of §3 and 4 control the moments up to polynomial prefactors,
which are determined in §5 by establishing negative-definiteness of the Hessians for the first- and
second-moment rate functions at their maximizers.
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Recall (EZ)?%/E[2?] < P(Z > 0) < EZ. It follows from Thm. 2 (with Propns. 1.4 and 1.5) that
for d > d. the NAE-SAT instance G, 4 is with high probability unsatisfiable, while for d < d, it is
satisfiable with positive probability. For d strictly below d. we improve the latter statement from
positive probability to high probability to establish the sharp transition:

Theorem 3. For k > ko and dipq < d < d., the cluster partition function Z is positive with high
probability. For d < di,q the original NAE-SAT partition function Z is positive with high probability.

Thm. 3 is proved in §6 by a variance reduction argument. The variance issue arises commonly
in applications of the moment method, and is most often dealt with by a somewhat standard
machinery known as the subgraph conditioning method ([RW92, RW94]; see also [JER00, Wor99])
which “explains” the variance in terms of the short cycles in the graph. However, applying this
method is technically demanding, though we refer to [GSV14] for recent advances on this front. It
seems to us potentially intractable in our models due to the dimensionality of the problem.

‘We develop instead a novel approach of taking a certain log-transform of the partition function,
and bounding the incremental fluctuations of its Doob martingale with respect to the edge-revealing
filtration; each increment amounts to the effect of adding a clause. We control the variance by
discrete Fourier analysis applied on the spins at the boundary of a large local neighborhood of the
added clause, and we show that the main contribution comes from the degree-two Fourier coefficients
which correspond to the formation of short cycles in the graph. We expect this approach to be
applicable within a broad range of models.

Acknowledgements. We are grateful to Amir Dembo, Elchanan Mossel, Andrea Montanari,
David Wilson, and Lenka Zdeborova for helpful conversations. We thank the anonymous referee
for helpful comments on the manuscript.

2. SATISFYING ASSIGNMENTS

2.1. Preliminaries. The constraint structure of a d-regular k-NAE-SAT problem corresponds to
a d-regular k-uniform hypergraph — equivalently, a (d, k)-regular bipartite graph G = (V, F, E),
where (V, F) gives the bipartition of the vertex set into n variables V' (each degree d) and m clauses
F (each degree k), and E is the set of edges joining clauses to variables, with |E| = nd = mk (Fig. 1).
Multi-edges are permitted, i.e. a clause may include the same variable more than once.

F: m = 8 clauses, each degree k = 3

! "‘\-g
V: n = 4 variables, each degree d =6

FIGURE 1. (d, k)-regular bipartite factor graph

Write 0 = TRUE, 1 = FALSE, and —~z = 2@ 1. A variable assignment is a vector z € {0,1}", and
a literal assignment is a vector L € {0,1}€. Use da = (vy, ..., ;) to denote the k variables adjacent
to clause a, with repetition if the graph has multi-edges. More generally, for any subset U of V U F,,
we use U to denote the external boundary of U, that is to say, the vertices in (V u F)\U which
are neighboring to U. For a variable v € V participating in a clause a € F, the value of v is z,,
while the evaluation of v in a is Lay @ zy. Let (Lz)g = (Lay ® Tv)vesa € {0, 1}* denote the vector
of evaluations for the variables incident to a; the evaluation of z by clause a is the boolean OR of
this vector. The assignment z is SAT if all clauses evaluate to TRUE, and is NAE-SAT if both z and
its negation —g are SAT.
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To generate a random problem instance, sample G according to the usual “configuration model”:
starting with V' U F as a collection of n + m isolated vertices, equip each v € V with d half-edges,
and each a € F' with k half-edges. The edge set E is given by a uniformly random matching between
clause and variable half-edges. (Equivalently, take a uniformly random permutation 7 on [nd], and
for each 1 < i < nd put an edge between variable [i/d] and clause [r(i)/k].) Each edge e€ E is
equipped with an independent random literal L., 0 or 1 with equal probability. The resulting
random graph G, 4 constitutes a random d-regular k-NAE-SAT problem instance.

For non-negative functions f(k,d,n) and g(k,d,n) we shall use any of the equivalent notations
F=0k(9), 9 =Q%(f), f <k 9, 9 2k f to indicate f < C(k) g for a finite constant C(k) depending
on k but not on d,n. (In this paper, if f < C(k,d) g then f < C(k) g simply by taking the maximum
of C(k,d) over the finitely many integers d < dypq(k).) We drop the subscript k to indicate when
we can take the same constant C(k) = C for all k > ko.

2.2. Satisfiability below critical regime. We now prove Propn. 1.1 by applying the second
moment method to the NAE-SAT partition function. The analysis here is similar to that of [AMU6],
but due to the slightly different combinatorics of the random regular model we are not able to
directly apply their result. We begin by fixing some notation. For any measures p, q defined on a
discrete space . we denote the entropy by H(p), and the relative entropy by H/(q|p):

T
H@) == 3 pe)logpla), Hlalp) = Y, a(o)og 2.
eSS zeS p
If p, g are measures on the binary set {0, 1} then we may abuse notation and represent the measures
P, q by the scalars = = p(1),y = ¢q(1):

H(z) = —zlogz — (1 — z)log(l —z), H(y|z) =ylog%+(1—y)log l—y.

l-=x
Write bin, 5(j) = (?)p? (1-p)ni.

Proof of Propn. 1.1. Assume throughout that d < djpq. By definition, E[Z?] is the sum over pairs
z!,z% € {0,1}V of the probability that both z* are valid NAE-SAT solutions. By symmetry, the sum
over z? is the same for all £!; further, conditioned on z! being a valid solution, the probability that
z2 is also valid depends only on the number na of vertices in which the z* agree. Therefore

E[Z?] - (E2) ¥ (n’;) S p2(1 - 8™
@ Y

where 9 = 2/(2* — 2), and pg is the probability, given vectors z!,z? € {0,1}" which agree in na
coordinates, that there are exactly my clauses a € F for which (z! @ z2)a, is not identically 0 or
identically 1. Let Dy,..., Dy, be i.i.d. Bin(k, &) random variables: then

P = By 1{Da ¢ {0,k}} = my| Sy Da = mak) @
< PE D¢ O} =) _ 000 iy 1),

where v = vo(a) = 1 — o — (1 — a)*. Thus we conclude
E[2?] < n°W) (EZ) exp{n sup, , a(a,7)}
with a(a,7) = H(a) + (d/k)[-H(7| ) + vlog(1 — 9)}.
For fixed a, a is strictly concave in ~ with second derivative —[y(1 —)]~! < —4, and is uniquely
maximized at v*(a) = 70(1 — 9)/(1 — ¥7) with optimal value
3(a) = H(a) + (d/K)log(1 = 100) ®
= (d/k)log(1 — 9) + H(a) + (d/k)log(1 + tZ5[a* + (1 — a)¥]).
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The function @ is symmetric in o with a(1/2) = &, the first-moment exponent of (2). We now show
that a = 1/2 is the global maximizer for d < djpa. Since &(cr) — @ is nondecreasing in d, it suffices
to show this for d = dipq. Since (d/k)[9/(1 — 9)] = log2 for d = djpq we find

a(e) — ® < H(a) + [-1+ o + (1 — a)* — 2/2¥]log 2 + O(87F).
It is straightforward to calculate that for k~!(logk)? < @ < 1 — k™ (logk)?,
(8)"(e) = H'(a) + O(k~(EH/2) < —3,
so clearly a = 1/2 is the unique maximizer on this interval. For 0 < a < 1/2, H(c) is increasing
while o + (1 — a)* is decreasing, and we use this to bound
sup{[a(a) — @] : k™2 < a < k~4%} < O(k~*Plogk) — k~210g2 < 0.
For o < k=32 we have (1 — &) = 1 — ke + O(k'/2a), therefore
sup {[A(c) — @] : 2734 < & < k~¥?} < a(3k/4) log 2 — aklog2 + O(k'/2a) < 0.
Lastly, recalling H(z) + zlog c < log(1 + c) < c gives
sup {[A(a) — 3] : & < 27/} < —(2/2¥)log 2 + O(k?/2%/2) + sup,cq-stra[H(a) — aklog2]
< 27%[1 — 21og 2] + O(K%/2%%/2) < 0.

Therefore a is uniquely maximized at (a*,7*(a*)) = (1/2,1 —¥) with maximal value ®, which
proves E[Z2] < n°() (EZ)2.

To remove the polynomial factor we give a more precise calculation of the probabilities p§ of (M-
Let Dy, ..., D, be iid. Bin(k, @) as before, and for 0 < j < k let pj(a) = (1 — 9)1U#%bin, , (5).
Then, since a(c) is uniquely maximized at & = 1/2,

o EDOENT Samka(l-a)

where the inner sum is taken over probability measures v on {0,...,k} such that mv is integer-
valued. By Stirling’s approximation,

E[Z%)/(EZ)? = o(1) +

5 5 T = kel expinble, )

E[Z%)/(EZ)* = o(1) + P(a,v) EZ

la—1/2|<1/4 ¥
where b(a,v) = H (ag — (d/k) Y., v;log[v;/p;j(a)] is strictly concave in (a,v), and the correction
term P(a,v) is n°0) in general, and is =i n*+1)/2 for v satisfying max; 1/v; Sk 1. It is easily
seen that this is indeed satisfied by arg max, b(a, v) for 1/4 < a < 3/4, so it follows using the strict
concavity of b that

]E[Zz]/(]EZ)2 = 0(1) + Ok(l) Z exp{n S]l;g,llEl;(a, V)}'
la—1/2|<1/4 n

Of course sup,, b(«, v) need not be concave in a, however, since we previously took an upper bound
on pg, sup, b(a, ) < &(a) which is strictly concave near & = 1/2 with global maximum &(1/2) = ®.
This proves ]E[ZZ] <k (EZ )2 for d < djpg- (]

2.3. Coarsening algorithm and frozen model. In view of Propn. 1.1 we hereafter assume
unless indicated otherwise that k > kg where kg is a large absolute constant,

dia <d = (21— p)klog2 < dyba (0<p<2), s0o®=2"%2p—-1)log2+047*). (9
In this regime, we define the following algorithm to map a satisfying variable assignment z € {0, 1}V

to a coarsened configuration n = n(z) € {0,1,£}V. In the coarsened model, 0 and 1 indicate vari-
ables which are “rigid” or “forced” while f indicates variables which are “free,” as follows:
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Definition 2.1. Given n € {0,1,£}V, a clause-variable edge (av) is said to be n-forcing (or simply
forcing if n is unambiguous) if ny, € {0, 1}* with Lay @7y = —Law @ 7y for all w € da\v. We also
say that a is g-forcing and v n-forced; note each clause can have at most one 7-forcing edge.! Given
050 € {0,1}F, of the 2¥ — 2 valid configurations of L, there are exactly two which are (av;)-forcing
for each 1 < i < k, with the remaining 2¥ — 2 — 2k configurations not forcing to any v;. A variable
which is not -forced is said to be n-free.

Coarsening algorithm.
Set n° = z. For ¢ > 0, if there exists v € V which has 7} # £ but which is not n-forced, then
take the first? such v and set 7i*! = £. Set nff! = 7, for all w # v.
Iterate until the first time ¢; that no such vertex v remains.

Denote the terminal configuration n = n(z) = n**.* Let Z>np denote the contribution to Z from
assignments z € {0,1}" such that the coarsened configuration n(z) € {0,1, £}V has more than nf
free variables.

Proposition 2.2. In regime (9), EZ5,p is ezponentially small in n for B = 7/2F.

Proof. By symmetry, EZ>,,g = (EZ) f,s where f,5 denotes the probability, conditioned on z = 0
being a valid NAE-SAT solution, that its coarsening n has at least nf8 free variables.

We simulate the coarsening algorithm as follows: of the nd half-edges incident to variables,
choose ey,..., e, uniformly at random (with random ordering) to be potentially forcing. Edge
eq corresponds to clause a, though here the clauses are not explicitly formed. Conditioned on z
being a valid solution, each clause independently has probability ¥ = 2k/(2F — 2) to be z-forcing
(cf. Defn. 2.1): therefore set each e, to be initially forcing with probability ¥, independently over
a. Then, for each ¢ > 0, if there exists » € V which is incident to no (remaining) initially forcing
half-edge, then take the first such v and

(i) Delete all d¢, remaining potentially forcing half-edges incident to v; and

(ii) Delete the first d — d%, potentially forcing half-edges among all those remaining.
The interpretation is that the coarsening algorithm sets v to be a free variable at stage ¢t. Thus the
d — d¢, clauses incident to v and potentially forcing to other variables can no longer be forcing, so
we remove these clauses from consideration (step (ii)).*

Say a variable v is ¢-free if it has no initially forcing half-edges remaining after nt iterations of
the above procedure. Since initially forcing edges are deleted in order, v must avoid the set E;
of initially forcing edges e, with index a > ndf. If there are > nt free variables in the coarsened
configuration 5, then the above process must survive at least nt iterations. The law of |E| is
Bin(m — ndt, ), so (by a union bound)

foe < () ELC5,")/ (D] < () ELL - 1]
= nP0W) exp{n[H(t) + (k™ — t)log(1 — 9t)]}.
If t = C/2* with C =1 then f£,; < n°W exp{n(C/2*)[1 —log C + O(k?/2¥)]}. Then recalling (9)
we have EZsn; < €™ f,,; exponentially small in n for C = 7. O

Definition 2.3. We say ne {0,1,£}" is a 0/1/f frozen model configuration on (G, L) if
(a) No clause a € F is unsatisfied (meaning 1, € {0,1}* with (Ln), identically 0 or 1);

1Recall that da indicates the neighbors of a with multiplicity; for example, if 6a = (v, v, v, w,...,w) with ny # fw
and L, = (0*), the clause is not considered z-forcing.

2First with respect to the ordering on V = [n]. This choice is useful for the analysis of the coarsening algorithm,
but in fact the terminal configuration does not depend on the order in which variables are set to free.

3We could define a cluster of NAE-SAT solutions to be the pre-image of any 1 under the coarsening algorithm.

4Step (i) does not delete any initially forcing half-edges, but step (ii) can.



10 J. DING, A. SLY, AND N. SUN

(b) Each variable v € V has 5, # £ if and only if there is a clause a € dv with 5y, € {0,1}* and
Loy ® 1y = =Ly ® Ny for all w € da\v (cf. Defn. 2.1).

Some of our computations are simplified by working with the image of the 0/1/f frozen model

under the projection {0, 1} — r, hereafter r/f frozen model.

Let Zpp denote the frozen model partition function on (G, L) restricted to configurations with
exactly nf f-vertices. In view of Propn. 2.2, in regime (9) we hereafter restrict all consideration to
the truncated 0/1/f frozen model partition function

Z= ) Znt, Bumax=T7/2% (10)
t<Bmax

We will show in §7 that restricted frozen model solutions indeed correspond to true NAE-solutions.?

3. FIRST MOMENT OF FROZEN MODEL

In this section we identify the leading exponential order *® = limp—.on"1logEZ of the first
moment of the (truncated) frozen model partition function (10). The random (d, k)-regular bipartite
factor graph G = G, 4 converges locally weakly (in the sense of [BS01, AL0OT]) to the infinite (d, k)-
regular tree Ty — the infinite tree with levels indexed by Zo such that all vertices at even integer
levels are of degree d (variables) and all vertices at odd integer levels are of degree k (clauses). Our
calculation is based on a variational principle which relates the exponent *® to a certain class of
Gibbs measures for the frozen model on Ty which are characterized by fixed-point recursions. In
fact the recursions can have multiple solutions, and much of the work goes into identifying (via
a priori estimates) the unique fixed point which gives rise to *®. We begin by introducing the
Gibbs measures which will be relevant for the variational principle.

3.1. Frozen model tree recursions. We shall specify a Gibbs measure v on Ty, by defining
a consistent family of finite-dimensional distributions vy on finite subtrees U < T;x. A typical
manner of specifying vy is to specify a “boundary law” for the configuration on oU, and then to
define vy as an appropriate finite-volume Gibbs measure on U conditioned on the dU-configuration.
The family (vy)y is consistent if vg is a marginal vy whenever S € U.

In our setting some difficulty is imposed by the fact that the frozen model is not a factor model
(or Markov random field) in the conventional sense that 7|4 and 7|p are conditionally independent
given the configuration 7|c on any subset C separating A from B — in particular, given the variable
spins at level 2t of Ty x, whether a variable at level 2(¢ — 1) is permitted to take spin £ depends on
whether its neighboring 0’s and 1’s in level 2¢ are forced by clauses in level 2¢ + 1.

We shall instead specify Gibbs measures for the frozen model via a message-passing system, as
follows. First sample uniformly random literals L on the edges of the tree. Given the literals, each
variable v will send a message o,—., to each neighboring clause e € dv which represents the “state
of v ignoring @”, and will receive in return a message o,—,, representing the “state of a ignoring v.”
That is, oy Will be a function mg—; of d — 1 incoming messages (0b—y)pesv\a; 2nd likewise 04—y
will be a function sy (which will involve the literals at a) of k — 1 incoming messages (0w—a)weda\v-
The actual state 7, of v is then a function mg of all its incoming messages ¢5,_,, = (Cu—v)ucav; the
configuration may be invalidated if any variable receives conflicting incoming messages.

Say at the boundary of the subtree U we are given a vector 3! = (n})z of incoming messages,
where z runs over the external boundary éU and 17,1; stands for the message 0;—.y from z to its
unique neighbor y € U. Then there is at most one valid completion of 1! to a bi-directional message
configuration on U, which is obtained simply by iterating the maps my_;,f,, from the leaves inward.

5Some truncation is indeed necessary: the identically-f vector is a valid configuration of the unrestricted frozen
model, and in fact it turns out that the dominant contribution to the partition function of the unrestricted 0/1/¢f
frozen model comes from configurations with much higher density of free variables (roughly = (log k)/k) — hence not
corresponding to NAE-solutions.
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The measure vy can then be specified by giving the law of the boundary messages n': our choice
will be to take the 17; mutually independent, distributed according to law ¢ if x is a variable, and
law § if x is a clause. Consistency of the family (vy)y will then amount to fixed-point relations on
4,4, as we see below.
The message-passing rules for our frozen model are as follows:
1. Vertex message-passing rule mp : {0,1,£}° — {0,1,£}: output
£ if all D incoming messages are f;
0 if at least one 0 but no 1’s incoming;
1 if at least one 1 but no 0’s incoming;
UNSAT otherwise (i.e. both 0,1 incoming).
2. Clause message-passing rule fqy : Taa\v—a " Ta—y: OUtDUL
0 if Lyy ®0 = —Lgy, @ 0yy—q for all w € da\v;
1 if Lay @1 = —Lgy ® 0y, for all w € da\v;
£ otherwise.

We then define
Zyvy(Ly,ay,1') = I(Ly,npsn’) [] dtd) [T dtd) (11)
veVnoU aeFnoU

where I(L;;,ny,n') is the indicator that, under the literals L(t), the boundary messages n' can be
completed (no UNSAT messages) to a valid message configuration on U, which in turn corresponds
to the frozen configuration n;;. The marginal at the root vertex o is then given by
Jo e a) - @)

(d¢ + do)? + (G + G1)¢ — (Ge)?
with the remaining probability going to 7, = £. The measures (vy)y are consistent if and only if
g = (4, §) satisfies the frozen model recursions

do = a1 = (2/25)(do + §1)* " = 1- /2,

- + A Yd—1 — (A d-1 .

Ge + G (?if—l q°)~ 5 (?if—)1 -t = 1~ dt/2. (12)
(G + do)3=1 + (ge + d1)*1 — (d¢)

For example, the equations for § can be obtained by comparing v, and vy where U is the subgraph

induced by {o,a} for some clause a € dv. In particular one sees that § = §; due to the randomness
of the literals in clause a.

Vo(7o = forz=0or1,

do=aq1 =

Lemma 3.1. In the regime ¢ < 27, the recursion (12) has a unique solution g*, which furthermore
satisfies 2F(gs)* = 1/2 + O(k2/2F).
Proof. Writing ¢ =1— ¢¢ and v = §¢/(go + §¢), we see that a solution of (12) corresponds to a
solution of the equations

2 2y9-1 1—2(g/2)k1

—_— = —_— 13

q= Qd—l('u) i1 v 'Uk—l(Q) 1— (q/2)""1 ( )

Ifl-g¢<2%thenwvg_y(g) =1- 2/2" + O(k/4¥), therefore vg—1(q)%~! = 2% + O(k?/4F) and then
@d-1°Vk-1(q) = 1 — 2751 4 O(k?/4F). In this regime we also calculate

- k-1 d— d—1
thos(0) = —EI ek, i) -

]

=k,

thus (ga_1 © vk-1)’ = k?/2* so in this regime (13) must have the unique solution as claimed. [
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Remark 3.2. Note that if v is the Gibbs measure on Ty corresponding to a solution ¢* of (12),
then v(o, # £) is a fixed point of g4 0 vx—;. In the regime of Lem. 3.1 the fixed points of g 0 vx—1
and gqg_; o vx_1 are nearly identical, so in view of Propn. 2.2 we are justified in restricting attention
to fixed points with ¢s < 2.

3.2. Auxiliary model. On the tree Ty, the frozen model configuration 1 can be uniquely re-
covered from the configuration g of messages on all the directed edges: each vertex spin 7, is
determined by applying my to the incoming messages. We refer to g as the auziliary configuration,
and we now observe that we can define a model on auxiliary configurations on (d, k)-regular bi-
partite graphs which is in bijection with the frozen model but has the advantage of being a factor
model in a relatively simple sense.

The spins of the auxiliary model on the bipartite factor graph are the bidirectional messages
Ova = Oay = (Oy—a; Ta—y), taking values in the alphabet # = {0, 1,£}?\{01,10}. Write g, for the
d-tuple of spins on the edges incident to variable v € V, and write &, for the pair of spins on the
edges incident to clause a € F'.

In the auziliary model, each configuration ¢ € .#F receives the factor model weight

¥o) = Yo(e) = [ | 9(&) [ | #°(20) (14)
veV acF
where the variable factor weight ¢(g,) is simply the indicator that each outgoing message oy—a
is determined by the message-passing rule mg_; from the incoming messages op—y, b € Ov\a; and
likewise the clause factor weight $%(&,) is the indicator that each outgoing message 0q—.y is deter-
mined by the message-passing rule i, from the incoming messages oy—q, w € da\v. Then, with
—f = £, we have ¢%(d,) = ¢°(&, ® L,) where ¢ and ¢° are given explicitly by

,

(1, &= (££9), 1, & e Per[(00 or £0,1£571)]

, &€ Per[(£0,0£471)], 1, & e Per[(11 or £1,0£%71)]

, &€ Per[(£1,1£271)], 1, & e Per[(0£7, 15 7)ogick—2],

, o€ Per[(007,0£977);5,],’ 1, &ePer[(££,0£7,1£5179) . o],
, g€ Per[(117,1£977);5,], 1, &ePer[(££7,0£°,1£5717%),5,],

\0’ else; 0, else;

with Per(c) the set of permutations of g. We refer to this as the factor model with specification
@ = (p,9)-

Remark 3.3. The frozen model is in exact bijection with the auxiliary model. Given an auxil-
jary configuration g € #E, the corresponding frozen configuration 7 is given by coordinate-wise
application of mg. The inverse mapping ) — ¢ can be defined as follows: first determine the clause-
to-variable messages by setting o,—, to be n, if (av) is p-forcing and £ otherwise, equivalently
Oa—v = ligy(79a\p)- Then determine the variable-to-clause messages 0., by applying mg—; (since
we assumed 7 is a valid frozen model configuration, v cannot receive conflicting incoming messages
Og—y = 0 and gp_y = 1).

Definition 3.4. The 0/1/f auziliary model on G is defined to be the average of the auxiliary model
(14) over all literal configurations L. The r/f auziliary model is the image of the 0/1/f auxiliary
model under the projection IT: {0,1} > r, £ — £.

1
o@) =1 #@)=1 (15)
1

\

It is easily seen that the 0/1/f auxiliary model is again a factor model on G, with variable factor
¢ as before and clause factor ¢(¢) =27*Y L #°(@® L). Further, ¢(¢) and () depend on ¢ and
& only through their projections under II, so we conclude that r/f auxiliary model on G is a factor
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model with specification

A k—1
1, &= (e£9), 2;c _¢;7_e Per[lgrr or fr,rf* 1)),
2, ¢ e Per(fr,rf 1) 2. 72-%, &=t
e@) =1, ~ i eded P(@) =27% {2k —4, & € Per(£f, r£* ), (16)
2, gePer[(rr?,r£%77);50], & n i ek—g
0. else: 2%, & € Per[(££7,r£%77);52],
’ 0, else.

3.3. Bethe variational principle. The primary purpose of defining the auxiliary model is that
it gives us the following approach for calculating EZ. Given an auxiliary configuration g, consider
the normalized empirical measures

h(g) =n! Yev H{g, =3} (6 e€.#%  variable empirical measure;
R(@)=m1Y p1{8, =8} (Ge.#¥) clause empirical measure.
We regard h = (iz, fz) as a vector indexed by supp ¢ = (supp ¢, supp ). For o € 4 and & € supp ¢
let H; s denote the number of appearances of ¢ in g, and similarly write I?,,é_ for the number of
appearances of o in . For h to correspond to a valid configuration g, the variable and clause
empirical measures must give rise to the same edge marginals
h=d'Hh=k"Hh, h(o)=(nd)? Y, 1{ow =o0}.
(va)eH
Definition 3.5. Given ¢ = (¢, ) let A denote the space of probability measures h = (h,h) on
supp @ (that is, hisa probability measure on supp ¢ while h is a probability measure on supp ¢)
such that
(i) (h, (d/k)R) lies in the kernel of matrix Ha = (H —H), and
(i) A(2a(@) = £) < Bmax (cE. (10)).
Let $ = |supp¢|, 8§ =|supp¢|, and 5= |supp@| = |#|: we shall show (Lem. 6.6) that Ha is
surjective, therefore A is an (8 + § — § — 1)-dimensional space.

The expected number of auxiliary configurations on G, 4 with empirical measure h is

EZ(p) = ) lah) g o _ im! [1, (ndh(0) 1—[ (@)@ H PR

2 T ) (MR@)! L5 (@)

Stirling’s formula gives EZ(h) = n°() exp{n®(h)} where

B(h) = Zh(a) log ‘°E—; + (d/k)Zh(_) log == (—) dZ R(o)log 77— ( ;- (17)
If further minh 23 1 as n — o, then
Ok ™) [1, dk(o) 1/2
2209 = Gyt [E e T, Gy ) =
2(h)

The first moment of frozen model configurations is EZ = >}, A EZ(h). The aim of this section
is to compute the exponent *® = lim, n~!logEZ by determining the maximizer *h = (*h *h) of
® on A. Observe it is clear from the functional form of ® that *h and *h must be symmetric
functions on .#% and .#* respectively.

If *h lies in the interior A° of A then it must be a stationary point for ®. Such points correspond
to a generalization of the tree Gibbs measures considered in §3.1, where the boundary conditions
are specified by a law on incoming and outgoing messages, as follows. Given a finite subtree U
of the infinite tree Ty = (V, F, E), sample uniformly random literals Ly on the edges of U as
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before. Let U° denote the interior vertices of U (the vertices with no neighbors in T\U). Let 6U
denote the internal edge boundary of U, that is, the edges (zy) where z € U° and y € U\U®. Let
SvU < 6U denote the subset of such (zy) where z € V; and let 6rU denote the rest, with z € F.
For probability measures h,h on .# we define the measures

Zyvy(Ly,op) = [] @) [] ¢*@a) [1 hoe ] Poos (19)

veVnU° acFnU° eebyU eedpU

with Zy the normalizing constant which makes vy a probability measure. This generalizes the
definition of vy in (11) by taking hy,y proportional to ¢, and h,,y proportional to gy, i.e.

oy = Gnf 2+ Ge), Py = Gy /(2 + &) (20)
The family (vy)y is consistent if and only if k = (h, ) satisfies the Bethe recursions
d k
inhe= ), 9@ ][bo tnho= D, ¢@&)]]ha (21)
g:o1=0 i=2 g:o1=0 i=2

(with 2, 2, the normalizing constants); these generalize the frozen model recursions (12), as we
shall see explicitly below. Thus a solution k of (21) specifies a Gibbs measure v for the auxiliary
model on T} which generalizes the measures v described in §3.1.

It is clear from the 0/1 symmetries of ¢ that any solution % of the 0/1/f Bethe recursions must
also have the 0/1 symmetry, and as a consequence must correspond to a solution g of the r/f Bethe
recursions via . .

oy = .‘}l'lrl,l'ln’/ (2 — ges), By = 21{'7:"‘:‘}.‘51111,1117’/ 2. (22)

The r/f Bethe recursions read explicitly as follows:

2A"g grr = 2{; gfr = (2/2k)(grf)k_la .

29 Gee = (gt + {]ff)k_l -4/ 2k)(grf)k—lv_ _ . . .

gt = (get + Gee) 1 = (/296 + 1)(Gea)*~ + (2/28)(k = 1)(Gee)* (e + e — 200)

29 gt = (!?rf)d_l, 29 gtr = 2(§rf)d_l,

2 Gre = Zg Gre = 2[(Ger + grf)d_l - (grf)d_l]v
where g+ was simplified using g = §zr- The recursion for g+ then simplifies to

Eg Grt = B9 Bz + (2/2°)(k = 1)(Gee)* " (dre — 2G21),

so we see that ggr = 2g¢¢ if and only if g = §e¢, in which case the corresponding solution h of the
0/1/f Bethe recursions satisfies the symmetries (20). A fixed point of the recursion (13) is given by

q = rt/(Grs + Ge¢) and v = Gre/(Ger + Grt) = bt /(a1 + heg) = 4heg/(1 + Rgs), using the relation
4hyy + 3hge = 1. In the reverse direction, any solution g, v of (13) gives rise to a Bethe solution via

Get = o0 = 2hee/(1+ hee) = v/2,  Gox = Gex = 2hus/(1 + he) = (1= 0)/2, (23)
9tr = 202¢ = 2hee = 2G¢/(2+ Ge),  Grr = Grt = 2has = /(2 + G1).
This proves our claim that the measures v generalize the measures v of §3.1.
The connection between these Gibbs measures and the rate function ® is given by the following

variational principle. Versions of this principle have appeared in many places in the prior literature;
we refer the reader to the bibliographic notes of [MM(9, Ch. 14].

Lemma 3.6. If o = (p, ) is such that both H and H are surjective, then any stationary point h
of ® belonging to A° corresponds to a Bethe fized point solving (21) via

d k
2#h(@) = (&) [[hoir 20R(&) = 0@ [ [ horr  Znh(0) = hoho (24)
i=1 i=1

with zp, 2, Zp normalizing constants satisfying Zn = /2, = Zx/2y for zh, 2, as in (21).
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Proof. At an interior stationary point h, consider dlfferentlatmg ® in direction § = (6 0) with
Hé =0, so that h + s6 € A° for |s] small Writing & = log[¢(&)/h(5)],

0 =0;®(h + 38)|s=0 = Z' 8(6)a(¢) = ¥4 8(6)é(5),
é(o) =a(g) + Zz=1 A(o:) with A : # — R arbitrary.
We claim it is possible to choose A such that € has marginals £ = 0: in vector notation é = @ + H ‘A

so this amounts to solving Ha + HH) = 0, which has a unique solution A by surjectivity of H.
Taking & = € with this value of ) in the above derivative gives

. k.
h(g) = (&) He*‘”*’, likewise (&) = $(&) [ [ X. (25)
i=1 i=1
Now differentiate in the direction of general § with d"1Hé = § = k~1H8§, so h + 36 € A for small
|s|. Applying (25) and simplifying gives

0= 3,®(h + 58)|s=0 = d(8,p) where (o) = log h(a) — A(c) — A(0).

By surjectivity we may choose & with 8(c) = p(c) — |-#|~! %, 5(0’), and then substituting into
the above we find that log h — X — ) is a constant function of o, that is,

h(c) equals @) o) up to normalizing constant.
On the other hand, the marginal of (25) reads

d k
Ro) =@ 3 o@[M0 = 31 @) []e.
ag:o1=0 1=2 g:01=0 =2
Comparing the expressions for (o) shows that the probability measures h and h on .# obtained
by normalizing respectively e"(") and €M) must solve the Bethe recursions (21). Lastly (25) shows
that h corresponds to h = (h, k) via (24), concluding the proof.

Theorem 3.7. In the 0/1/f auxiliary model, let *h denote the unique stationary point of ® which
corresponds — via (24) and (20) — to the solution g* of the frozen model recursions (12) which
was identified in Lem. 3.1. The unique maximizer of ® on A is given by *h.

In view of Lem. 3.6 and our preceding discussion of Gibbs measures, Thm. 3.7 will follow by
showing
1. Any global maximizer h of ® on A must lie in the interior A°, and so corresponds via (24) to
a solution h of the Bethe recursions (21). (For the required surjectivity of H, H see Lem. 6.6.)
2. Any such Bethe solution h satisfies the symmetries (21), therefore reduces to a solution g of the
frozen model recursions (12). Further ¢ is in the regime of Lem. 3.1, which uniquely identifies
h ="*h.

3.4. Boundary maximizers. In this section we verify (by a priori estimates) that ® has no
maximizers on the boundary of A. By Rmk. 3.3 we may work interchangeably with the frozen and
auxiliary models.

We begin with a preliminary calculation. For a vector £ € Z™ let g—(n, E) denote the probability,
with respect to a uniformly random assignment of F forcing half-edges to n degree-d variables, that
variable 1 recelves at least ¢; of the E edges for each 1 < i < n. If £ is the constant vector (l,...,1)
we write g&(n, E) = gl(n, E).

Lemma 3.8. For ¢ = y(logd)/d with y =<1 and £ upper bounded by l <1 (uniformly ind),

gé(n, nd¢) =< exp{O(nd=?(log d)* )} [ [P¢(X: > &)-

i=1
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Proof. Let X1, X1,...,Xn be iid. Bin(d, ) random variables, with joint law Pp: then

gh(n,nd()  _ Po(Tr, X; = nd¢| X; > & Vi)
=1 Pe(Xi > &) Po(3r, X: = nd()

For any ¢ the conditional mean Eg[X | X > £] is increasing in @ (the derivative is the variance
of a certain random variable), thus there is a unique value 8 = [1 + O(d"¥(log d)'~!)] { such that
Eo[>%, Xi| Xi = & Vi] = nd(. For this value of 6, the local CLT (see [DM95]) combined with
Stirling’s approximation gives
¢
gr(n,nd() _ —2y 21-1
e gy = e (nd HC10)) = exp(O(nad o),

concluding the proof. ]

Lemma 3.9. For k > ko and dipq < d < dyba, the contribution to EZ (see (10)) from all B < Brmax
with |2¥%18 — 1| > 278 is exponentially small in n compared with EZ. Further

00/ = EZ > EZ, jyrnr > exp(n[® — 1/2¥*1 + O(CW2%3)]},  with @ asin (2).  (26)

Proof. Recall that Z,g denotes the contribution to the frozen model partition function from con-
figurations with nf free variables.

Upper bound ignoring forcing constraints.

Let Y,5 denote the partition function of 0/1/f frozen configurations with nj frees where we ignore
the requirement that rigid variables be forced, so clearly Y g > Z,g. In a given frozen configura-
tion let my; (0 < j < k) count the number of clauses incident to exactly j free variables; and let
pe denote the probability of empirical measure v of clauses with respect to a uniformly random
matching between clause half-edges and variable half-edges with density B of frees. Then

EZns < EYpp = 270~ (%) 3 pf(1 — 2/2%)y™0 (1 - 4/2%)™,
14

Similarly to the calculation in the proof of Propn. 1.1, let D,,..., Dy, ~ Bin(k, 8), and calcu-
late ph = P}, 1{Ds = j} = my; for all 0 < j < k] 3}, Do = mkf): since the local CLT implies
P(3, Dy = mkB) = n°M), we find

EYng =nOM 28R (") 5 1{3; jv; = kB}( ) [1;9;  where
po = (1 — 2/2%) bing g(0), p1 = (1 — 4/2¥) bin g(1), p; = bingg(j) for 2 < j < k.
The above is optimized at v; = pjuj /c where ¢ = }"_,j pjuj and u is chosen such that k8 matches
2 Jvi = (2; 7pw? )/(2; pjw’). The latter is increasing in u, and it is straightforward to check that
it has a unique solution u = 1 + 2/2F + O(k/4%). This implies ¢ = 1 — 2/2% + O(k?/8*), thus
EYng = n" exp{ny(p)} with
y(B) = (1 - B)log2 + H(B) + (d/k)[log c — kBlogu]
= —log 2 + (d/k)log(1 — 2/2%) — Blog 2 + H(B) — dB(2/2F) + O(k?/4¥)
= & + Bllog(e/B) — log 2¥+1] + O(k?/4¥),
with ® as in (2) (not depending on g).
Bounds with forcing constraints.
Suppose we condition on an assignment of edges such that every clause is satisfied, and no f£-
variables are illegally forced. Each of the muy fully rigid clauses is forcing with probability
9 = 2k/(2% — 2), and mu is clearly sandwiched between m and 17 = m(1 — kf), therefore

IEZ,,ﬁ {g IEYnﬁ Za binm,l’ (ma) gr(n(l - B): ma);

> EY,p 3, bing(1hat) g, (n(L — B), ha). (27)
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For o = [1+ O(27%/3)] 9 we have
mo —k/3 ¢ ylogd ) logk

—  =[1+0(2 9/2k = L7252 =1-

w1 B)d [1+0( )] 2/2 7 withy =1 Flog2
the same estimate holds with 77, in place of m,y. Applying Lem. 3.8 then gives

g:(n(1 - B),ma) = [1 - (1 - 2/2")? exp{O(k/2")}]"( =P exp{O(nkO(1) /4¥)}
= exp{(n/2¥)[-1 + O(k/2*7%)]} = g (n(1 - B), 7har).

For |1 — /9] > 27%/3 we have bin, y(ma) < exp{—n/2¥/2}: consequently, in each of the two sums
on the right-hand side of (27), the total contribution from such a is an exponentially small fraction
of the sum. We therefore conclude

EZnp = (EYng) exp{(n/2¥)[—1+ O(k/2)]}
= exp{n[® + B[log(e/B) — log 2*1] — 27% + O(k/2%/3)]}.
This is clearly optimized with 2¥+18 ~ 1, and estimating the second derivative of the exponent
with respect to 8 implies the result. 0

+ O(1/k);

Proposition 3.10. The mazimum of the 0/1/f auziliary model exponent ® on A is not attained
on the boundary /A.

Proof. Lem. 3.9 shows that the maximum cannot be obtained on the boundary 8 = fmax, S0 it
remains to show that the maximizer must be a strictly positive measure on supp¢. For § = (4, 0)
such that h + té lies in A for ¢t = 0 small, consider

d(h + td) — ®(h : . A - - -

(b 22020 - di(supp )] + (@/k)8l(supp )] - dAl(suppF’L
To show that h € A is not a maximizer it suffices to exhibit T®(h; d) > 0 for some J. In particular,
it follows by convexity that for any h € A, h + t(*h — h) € A° for ¢t > 0 small and *h as in the
statement of Thm. 3.7. Therefore, if h is a maximizer such that the edge marginal has full support
supp h = ., then necessarily supp h = supp ¢, since otherwise T®(h;*h — h) > 0.

Suppose h is a maximizer for ® on A; recall A, h must be symmetric functions. By Lem. 3.9,
almost all variables are rigid except for = n2~* free variables; so some but not all edges are forcing.
It is also clear that the rigid variables will be divided roughly evenly between 0’s and 1’s, so we
obtain {f£f,0f,1£} S supph as well as h({fz,zx}) > 0 for = 0, 1.

1. Case h(£0) > 0 = h(00).
By symmetry of k, (£0,0£%71) € supp h and (£0,0£5°1) e sugph
Further (0£*) € supp h, else T®(h; k' — h) > 0 for b’ = (h’ k') defined by

R = 1(£0,024-1), (d/k)R' = Ls0,0tk-1) + (d/k — 1)1 (gek).
If 2(00) = O then consider

T®(h; ) = lim
tl0

6. = 1(002,0fd—2) - 1(10,0!""’)’ (d/k)g =2 1(00,01"‘1) - 1(:0,0fk—1) - l(ofk);
this has marginal dé = 2- 1¢0 — 1¢o — 1oz so we find T®(h;6) =1+2—-2>0.
2. Case h(00) > 0 = h(£0).
By symmetry of h, (00, Of""l) € supp h.
Further (002, Of"‘z) € supp h, else T®(h;h' — h) > 0 for b’ = (R, h’) defined by
h = l(ooz,ofd—z), (d/k)h =2- 1(00 ofk— 1) + (d/k 2)1(0fk)
If h(£0) = O then for § as above we find T®(h;-6) =1+1-1> 0.
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Clearly the same argument applies replacing 0 with 1. In each case the conclusion contradicts the
assumption that h is a maximizer, concluding the proof." a

3.5. Bethe recursion symmetries. Suppose h is an interior maximizer for ® on A, and so
corresponds to a Bethe solution k. Let Td & denote Ty ;. with a subtree incident to the root removed
leaving an unmatched half-edge ¢ incident to o (Fig. ") Consider defining a Gibbs measure on Td k
in the manner of (??), with boundary law given by the Bethe solution k. Then the marginal law
of o will be k, and the marginal law of the tuple of spins incident to any given vertex will be A if
the vertex is a variable, h if it is a clause. Further, the Gibbs measure on Td & can be generated in
Markovian fashion, starting with spin o¢ distributed according to h, generating the messages on the
other d — 1 edges incident to o according to the conditional measure h(¢ | o1 = 0¢), and continuing
iteratively down the tree.

Write O'é = 140 where 4 is the variable-to-clause message and ¥ the clause-to-variable message
(in Fig. 2, 4 is directed upwards, ¥ downwards). Given any valid auxiliary conﬁguratlon g on
the edges of Td &, changing © and passing the changed message through the tree (via mg—;, figy)
produces a new auxiliary configuration ¢’ (Fig. 2). The symmetries (20) will follow by showing
that for any fixed 41, the effect of changing ¥ is measure-preserving under the Gibbs measure v
corresponding to k. From our definition of the Gibbs measure via the boundary law, the measure-
preserving property will follow by showing that the effect of changing ¥ almost surely does not
percolate down the tree.

(no further changes)

FIGURE 2. Change of message incoming down to é is passed down T
(1) means message 7 up, message 77 down in g, message 7 down in g')

Indeed, recall that we already saw directly from the Bethe recursions that fzoo = fzm: this came
from the observation that ¢ does not distinguish between 00 and £0, which corresponds to the fact
that changing the message incoming to a clause along a forcing edge has no effect on the other
k—1 edges. We also saw that hgg = hgo implies hgg = hog: this corresponds to the fact that if
4 = 0, changing ¥ at most can change messages incoming to clauses in do along forcing edges, so
the effect terminates before the second level of the tree.

Proof of Thm. 3.7. By Propn. 3.10, any maximizer h for & on A must lie in the interior A°, and
so corresponds to a solution & of the Bethe recursions (21). From the above discussion it remains to

6In our setting we have checked supph = 4 in a rather ad hoc manner. A simpler argument applies generally to
any specification ¢ which is everywhere positive on .#°, d #*: if o ¢ supph then take & € suppk, and observe that
T®(h;5) > 0 for & defined by § = 1(, 4a-1) — 1(54), (d/k)3 1(5,5k-1) = Lighy-
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show that h satisfies hes = hgo: meaning that in the Gibbs measure v corresponding to h, changing
v with % = £ fixed has a finite-range effect. Let g correspond to h via (22).

The effect of changing 4® from ££ to £0 can only propagate through clauses in which the parent
variable and exactly one descendant variable send message £, and the evaluation of the remaining
k — 2 messages under the clause literals is identically 0 or 1. The vertex-preceding edges of Td,k
whose spins will be affected by changing © from £ to 0 form a branching process with mean

(92£)2(Grz) k-2
— 4/2F)ges (gre )5

(d—1)(k - 1)(8/2%)h(& € (££2,r£*"2) | o) = ££) < dk(8/2F) a = < kK%Ges /Gt

(28)
where the intermediate step follows from (24). Similarly, the effect of changing % from £0 to ££
can only propagate through clauses in which exactly one descendant variable sends message £, and
the evaluation of the remaining k — 1 messages under the clause literals is identically 0 or 1. This
forms a branching process with mean

(2~ Dieedles” o
<k . (29
2k —9_ 2k)(grf)k gft/grf ( )
To show that both processes are subcritical, we estimate the ratio & = g¢¢/gr¢. Recall from the proof
of Lem. 3.9 that mh(r£¥), the number of all-rigid non-forcing clauses, is mua: = m(1 — O(k/2%))
(otherwise the contribution to the partition function is an exponentially small fraction of the whole).
Applying (24) again we have

ndf - & ; ; k\ .. . .
= h(x£*)~1 ) j h(Per(££d, r£F-7)) = j( .)uJ = ka(l +a)F?,

myya ; 3§1 j
so we conclude @& = ges/grs = B[1 + O(k/2¥)] < 27%, which clearly shows that the effect of changing
U given 4 = £ does not percolate. Therefore h satisfies the symmetries (20), and so corresponds to
a solution ¢ of the frozen model recursions (13). Further 1 - g = gr¢/(grs + 92¢) S 2%, 50 Lem. 3.1
implies ¢ = ¢* as claimed. O

(d - 1)(k — 1)(4/2)h(6 € (x£*~!, £r) | 01 € Tf) < dk(4/2F) (

3.6. Explicit form of first moment exponent. We conclude this section by giving the explicit
form of *® = *®(d).
Proposition 3.11. For k = kg, dipq < d < dybd, *P = *®i(d) is given by

*® =log?2 —log(2 — q) — d(1 — k~! — d~!)log[1 — 2(¢/2)¥] + (d — 1) log[1 — (¢/2)*"']  (30)
where q is the unigue solution of

2(1-q) 1 —2(g/2)F! . k
= th0<1-¢<1/2% 31
d 1+(log 5 g )/(logl—(q/Z)k—l) with 0 g<1/ (31)

The function *® is strictly decreasing in d with 25[® — *®] = 1/2 + O(k?/2¥), and so has a unique
zero dipq < d. < dypd satisfying

d. = (271 - % - ngz) klog2+0(g;) =do— (mlg_z‘ %) klog2+o('2°—:), (32)

with do the first moment threshold of the original NAE-SAT partition function (3).

Proof. The equation (31) is a rewriting of the frozen model recursions (13), which by Lem. 3.1
has a unique solution with 0 < 1 — ¢* < 27%. Write g =¢*, ¢r = 1 — g = 1/25+! + O(k?/4%), and
v = v(q) = vg-1(g) as in (13). We also abbreviate

Q=Q(g)=(g/2)*'=(1-v)/v and
=1 = @/(1— Q) = 2-H[2 — 2(k — 1)ge + 4/2* + O(KZ/45)]. (33)
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Clearly, Lem. 3.6 applies for both the 0/1/f and r/f auxiliary models. Substituting (24) into (17)
and rearranging gives

*® = B(*h) = log 2, + (d/k)log 2, — dlog Z, = log 24 + (d/k) log 2, — dlog Z,. (34)
We use (23) to calculate

= 2(§ex + gu)d (9¢2)? = 279(2 — o) = (2/2%)(1 + gve)/(1 + 1),
= (grt + ge2)* — 2(4re/2)* = 2+ ) *(1 + qevr) /(1 + v2), (35)
zg = (Grr + 9t¢) (Grr + 121) + Ge2Grr = (1/2)(1 + qeve)/(2 + a1).
(From the Bethe recursions (21) we see that Zg ger = (§22)9 " and Zg §rr = (9r£/2)F71, so we can
use (23) again to express zg, 2, in terms of g¢, v and confirm that the relations Z; = 2,/2 = 24/,
of Lem. 3.6 are indeed satisfied.) Then
® = log2 — (d/k)log(1 +v;) —d(1 — k™1 — d~1)log(1 + gsv:) — log(1 + g¢)

= & — (d/k)log[(1 — 2/2*)(1 +vr)] — d(1 = k! — d™")log(1 + gsve) — log(1 + g¢)
with & = log2 + (d/k) log(1 — 2/2¥) the first-moment exponent for the original NAE-SAT partition
function (2). From (33) we have

(1—-2/2%)(1 + v) = 1 = 2(k — 1)g¢/2% + O(K?/8F), therefore

*® — & = d(1 - k71)gs(2/2F — ur) — log(1 + gz) + O(K?/4¥) = —q¢ + O(K?/4F).
Let us now see that *® is strictly decreasing in d. Recalling (33) that v = Q/(1 — Q), we find

1-—
*® = log2 + (d/k)log(1 — ¢Q) + (d — 1) log g q% - log(2 - q),

and rearranging gives (30). This can be expressed as a function of ¢ alone by taking @ = Q(q) as
in (33) and d = d(g) as in (31). With D, denoting differentiation in g, we calculate

po= -q1)g 26204 o/2h), D=~ 202 = - HEZ Vi 4 o2ty

(1-Q)7?
@:_233 = (grvr) ™! + O(k?2%) = 4%[1 + O(F*/2")).

The total derivative of *® = *®(d(g)) with respect to ¢ is then straightforward to calculate: the
main contribution comes from

Dg[(d/k)log(1 — ¢Q)] = —(dkQ)/(1 — ¢Q) + k™! (Dyd) log(1 — ¢@Q)

= —k~1Q(Dyd) + O(k) = —(2/k)2*[1 + O(K*/29)],

while Dy[(d — 1) log[(1 - Q)/(1 — ¢Q)] —log(2 — g)] = O(k?)

Thus *® = *®,, is strictly decreasing on the interval dipg < d < dypq With derivative
e/ D@ _ 3 ok

®(d) = 77 = gl + O/,

so it must have a unique zero dipg < dv < dypg. We further estimate from (9), (33), and (36) that
d. must satisfy (32), concluding the proof. O

(36)

Dyd = —[ge(1 + g¢) logv] ™! +

4. SECOND MOMENT OF AUXILIARY MODEL

In this section we compute the exponential growth rate 3® = limy,_.o ! log E[ Z?] of the second
moment of the (truncated) frozen model partition function (10). This is done in the same framework
as introduced in §3, regarding the second moment as the first moment of the partition function of
pair frozen model configurations w = (n!,7?) on the same underlying graph. The corresponding
model of pair auxiliary configurations T = (¢!, 0?) has variable factors 4p = ¢ ® ¢, clause factors
#0%(2) = ¢°(2 D L) = ¢°(6! ® L) °(6% ® L), and rate function ,® on the space ,A of empirical
measures 5h having both marginals in A. We again average over literals to define the 0/1/f auxiliary
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model on G; note however that the pair auxiliary model does not have a simple r/f projection as
was found in (1G). In this section we prove

Theorem 4.1. The rate function ,® on ,A aitains its mazimum only at the product measure
sh E(*h ® ‘h,) or at the measures $h (x = 0,1) with marginals *h supported on pair configurations
z=(,zDa).

We begin with an a priori estimate in the frozen model. As before r denotes {0,1}. We partition
rr = {0,1}? into rr™ = {00,11} and rr* = {01,10}, and we decompose Z2 = 3, Z2 where Z2
denotes the partition function of pair frozen configurations with associated empirical measure 7 on
P = {rr=,rr* rf,fr,f£}. We use . to denote {0,1,£}, so for example 7s_ = ¢y + 7ee, etc.; in
view of (10) we always assume m¢_, 7 ¢ < Bmax- Throughout the following we write a = myr=/mrr
for the fraction of rr-vertices taking the same spin in both coordinates.

Lemma 4.2. With o = Ttrr= [Tz, the function ;® can only attain its global mazimum on A either
in the near-independent regime 3A S A of measures with |2a — 1| < k/2¥/2, or in the near-identical
regime ;A € A of measures with min{a,1 — o} < 273%/4,

Proof. Given empirical measure 7 on &, let p7 denote the probability, with respect to a uniformly
random matching between variable and clause half-edges, that there are exactly mv clauses which
are incident to only rr= or only rr* variables: such clauses have two invalid literal assignments.
Of the remaining m(1 — v) clauses, all but O(mk?/4*) must have fewer than two frees in at least
one of the two coordinates, hence must have at least four invalid literal assignments. Therefore

E[Z7] < 207 (2) 3 D (1 — 2/25)™(1 — 4/25)™0 ) exp{O(nk?/4¥)}.

The typical value of v given 7 is T = n¥.[o* + (1 — a)*]; conditioning and applying the local cLT
(see (7) or the proof of Lem. 3.9) gives p% < n°(!) exp{—m H(v|7)}. The optimal contribution to
the summation above comes from
v o v here O = 2
1-v (Q-9)(-0) V= E_g
Since ms_, T+ < Pmax we find 2717 ( ") = exp{n[log2 + H(c) + O(k/2¥)]}. Combining and re-
calling (2), (8) gives

E[Z2] < exp{n[® + &(a) + O(k/2F)]}.
Recall from (26) that EZ = 9/ 2k); it therefore follows from the estimates in the proof of Propn. 1.1
that E[Z2]/(EZ)? is exponentially small in n for 2-3*/4 < min{a, 1 — o} < 1(1 - k/2%/2). O

4.1. Near-independence regime. We now complete our analysis of the near-independent regime
2A to prove

Proposition 4.3. The unique global mazimizer of the restriction of ,® to 3A is Jh.

Lemma 4.4. The contribution to E[Z2] from frozen configurations with |2a — 1| < k/2¥/2 and
(2/3) Bmax < max{ms_, _¢} < Bmax is ezponentially small in n compared with (EZ)2.

Proof. Write ws =1 — mrx. Let my; count the number of clauses with exactly 2j invalid literal
assignments, and let 7; denote the typical value of v; given m:

71 2 (mer)¥[0F + (1 — )] = 2/2% + O(K?/23%/2),

Tp 2 (mer)¥[1 — & — (1 — @)¥] = 1 — 2/2% — kmg + O(K2/23+/2),

U3 = k(fer + ) (e )F 11 — o*~1 — (1 — @)F71] = k(e + 7c) + O(K/4F),

Ty 2 kmgs ()11 — @51 = (1 — @)*71] = kmeg + O(K/4F).
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By the argument of Lem. 4.2,
E[2Z] < 2"-m)(2) 5, [Tj50(1 — 24/2%)™
< exp{n](1 — msr) log 2 + H(x) + (d/k) log(1 — (2/2¥) £} 57;)]}-
Note that H(7) is maximized at o = 1/2, therefore
H(r) < -3 Prer Tw log my — Tyx log Ty + T log 2
<1082 — 3 e p\px Tw l0g T + 2 log(e/2).
From the above estimates on the 7; we find
1-(2/2F) 2351 375 = (1 — 2/2%)2 — (2k/2F)(7et + Tex + 2mee) + O(K2/255/2).
Combining these estimates and recalling ® = log 2 + (d/k) log(1 — 2/2*) from (2) gives

n-1 log% <€ —mye log (Wﬂikﬂ) — e log (m"rikﬂ) — 7 log (ﬂ'ﬁjk“) +O( k2 )

e2n?® 23k/2

-~

21/;.’:“ ;1/§k+1 ;ﬁm
Recalling (26) gives the two upper bounds
E[Z7] . O(ﬁ’_“_’) {—m log(mz:25+1/e) + 3/25*1;  (a)
(EZ)2 24k/3 —mee log(mesd*t1/e) +2/25.  (B)
Recall (10) that Bmax = 7/2%; thus (A) implies that E[Z2]/(EZ)? is exponentially small in n for

27ies 2 Bmax, OF symmetrically for 2m¢r > Bmax. However (B) implies that E[Z2]/(EZ)? is expo-
nentially small in 7 for 7¢¢ > 4/(k2F), and combining gives the result. O

n~!log

Proposition 4.5. Any global mazimizer of ;® on ;A must be an interior stationary point.

Proof. Lem. 4.4 shows that the maximum cannot be obtained on the boundary where density of frees
in either coordinate is Bmax, so it remains to show that the maximizer must be a strictly positive
measure on supp . For this we argue similarly as in the proof of Propn. 3.10. If ;h = (5h, 5h) € A
is defined by 5h(7) = h(g')1{¢! = z® 3%} and h(!)1{¢! = D 5%} for h € A and z € {0, 1}, then
clearly ,®(,h) = ®(h), so Propn. 3.10 implies
{(6,z®¢) : & € suppy} S supph, {(8,z@®8): 6 € supp @} S supph for z = 0,1.
In the following we write 7, s, z,y for elements of {0,1}.
1. If supp h does not contain 75 or 7 then T(,®)(h;d) > 0 for
- d=2 d-2
8 = Xy e [{(Z 22 200} — 1{(25 22001
- k=1 5 k=1—j k-1 . . -
(d/k)‘f = Doywt [1{(:: ﬁk—l ), (;f ::1 ::Ik-l-.’i )}-2- 1{(:; Zﬁk-l )}] with j = 15_2_1-"
6 =Yg yue[H{Ty, 37} —2- Ly}l
2. If supp k does not contain 52 or I} then T(,®)(h;8) > 0 for
. d—2 d—1
§ = X el 1{(2 2 550700} — 122 2200 ))),
2 - k=2 k-1
(d/k)‘i = Zz,y#f[l{( f;f —t-;:f -.;;k-—2 )} - 1{(§; ;ik—l )}]’
_ B = Tyl M550 381 ~ 15, 5001
3. If supp h does not contain any of %, 3f, £¥ then T(,;®)(h;d) > 0 for
6 =1{(f220)), (35 #ama)} - 2- 1{(H)),

2f £2d—1 12\ §¢2 ggd—2 ££d
(d/k)8 = 1{(£2 2 70)} + 2- 1{(22 2570} + ((2d/k) — 3)1{(25)} — (2d/k) - 1{(Z50)},

df = 1{g} +2- 1{E} + (24— H1F) - 24 1{F).
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It follows by symmetry considerations that supp h = .#2, hence any maximizer h of o® must be
positive on supp ¢ since otherwise T,®(h;3h — h) would be positive. 0

Lemma 4.6. The pair frozen model tree recursions on measures q = (g, §) have the unique solution
q=q"®q" in the regime ¢({££,rf,r}) S 27%, (oo + d11)/(do1 + G10) = 1 + O(k/2*/2).

Proof. The pair frozen model tree recursions are as follows. Write ¢— = qoo + 11, G~ = Go1 + G10-
By assumption, g— = (1 + €)gx with |e| S k/2*/2. The clause recursions are

q= = qoo = 611 = (2/2k) (d:)k_l, q:# = 601 = Qio = (2/2k) (d#)k—la
Grs = Gor = Gaz = (2/2%) [(g=)F"1 — (g=)F1 = (g2)F 1],
der = dro = Ge1 = (2/2F) [(4r)*! — (¢=)%"1 = (g)F1],
Ges = 1= 2[G= + G + Gt + Gex) = 1 — 2[Goo + Gos + Gor + dro] = 1 — O(27F).
The variable recursions are (with ¢ the normalizing constant)
Eges = (Gee) Y,
¢Gro = éGr1 = (Ger + Ger)® ! — (G22)%7),  dor = éd1r = (Ger + Gre)? = (Gee) ¥,
¢doo = ¢411 = (G= + Gt + Ger + @)1 — (Ger + Gee)® " — (Ger + Gee)? ! + (Ge)*!
édor = ¢G10 = (Gz + Gre + Ger + Gee)? 1 — (Ges + Gee)® ™) — (Ger + Gee)? 7 + (Gee)? 7L
By the assumption that || < k/2¥/2, the clause recursions give grs = (2/2%)[1 + O(k/2%)] = Ger,
and therefore from the variable recursions we must have grs = (1 + 8)g¢r with |§] < 2. But then
the clause recursions give |Grs — Gsr| < 6k/4%, consequently
Gee 1+ O(6dk/4*) — (Ges)® " /(Grs + Ger)? 1 2 jok
= —d—1/( A = =1+ O(6k*/2%),
qrs 1 = (Gee)?1/(des + Gire)? 1
proving that the recursion contracts to § = 0, i.e. grr = G¢r and §rs = Gzr. Similarly, the clause
recursions give §- = g = O(ek/4¥), and substituting this into the variable recursions then gives
G=/g+ = 1 + O(ek?/2F), so we also have contraction to € = 0, §= = §x = Grr/2.
It remains to show (qrr, Grs, G2¢) = (%, 4(1 — §), (1 — ¢)?) with § = ¢*. To this end write

4 = Qrr + Grs = 4400 + 2oz, G = Grx/q = Goo/(2d00 + doz)-
Writing Q = (¢/2)*"!, Q = (¢/2)¥*, and Q* = (4*/2)*~?, we have

d-1 i
TR, Wi = das + 2dor + doo = 1 — 20+ QQ,
d-1 where W2 = Gee + Gor = 1 - 3Q +2QQ,
and1—¢ = (0,1, 1) W) Ws = Ges = 1 — 4Q + 4QQ
{(2,—3,1), wa-1) 3= e ‘
By assumption, = = j—d*|) $ 1, so Q + O(zk/4*) = Q* = Q + O(zk/4*) and conse-
quently W91 + O(zdk/4%)] = (W*)?-1. It follows that

l-¢g=

1-¢ _ 1-4¢ _©02-1,WH . .
1+ O(k2/2F) _ 1+ O(@k2/2%)  ((4,—4,1),(W*)&Ty 1
implying that the recursion contracts to £ = 0, ¢ = § = ¢* as claimed. O

Proof of Propn. 4.5. By Propn. 4.5 and Lem. 3.6, any maximizer h of ,® on 3A corresponds to
some solution k of the Bethe recursions for the pair 0/1/f auxiliary model. We now show that A
must satisfy the symmetries (20): that i 1s, h(oi) = h(m’ ), where o now indicates the outgoing pair
of variable-to-clause messages, and z or 1/ indicates the incoming pair of clause-to-variable messages.
Let Z- = {%, £} and 2, = {%, }£}, and write 9; = ZL U %% and Z = 2,. Analogously to the
first-moment symmetries that were seen directly from the Bethe recursions, in the pair model it is
easily seen that

h(Z) = k(%) and h(&) = h(&%) foralloe #,z e {0,1}.



24 J. DING, A. SLY, AND N. SUN

Further, the 0/1 symmetry in the clause factors implies A(7) = h(—7) and h(r) = h(—7) for any
T € #2. It remains to prove ) )
k(&) = k(&) forze{o,1}.
Estimates on messages. The number of clauses incident to any variable which are free in either
coordinate is < mk/2¥, while an easy a priori estimate implies that the number of fully-rigid clauses
which are non-forcing is = m. Recalling (24) then gives
h(g2¥) h(%) ’

where the last inequality follows because all the % factor weights involved in the application of
(24) are 1 — O(k/2%). ) )

We now estimate the ratio 4 = h(3)/h(%%). Another application of (24) gives

7 ({00,061\d 7 rto00e\d _ 1¢ 0t \d, 7cof\d

& M- h(foo,of;) = R(1%™)* — h((000ny) " + A ()

k/2 2 > [1-O(k/2%)]

i

v

—a = 2 7{00,0£}\d d 2/, of \d, 7rof\d
1= Mo h(}n,ﬁi) - h({oc;,gf}) - h({ll,if}) + h(%)
where we have used the symmetry h(%) = h(£,) noted above. The ratio 4 is given by the same
expression with d — 1 in place of d. Writing A® for the product measure with marginals h, the

Bethe recursions give
éhi"(gg = 525il®(9k—1), Zp i"(gg) = 525}."®('%k—1\@k—1)’ 2 i”(g; = (1 - O(k/2k))h®('%k_l)1

where the last estimate uses (37). Thus fz(}ggﬁ{) = [1+ % + O(£)]h(1%9%}), and so
e p({oooehya-1 i
= 0 _ ot SO _ 007291 00N 60 1 4 Ok, (38)
(11) h({O0,0f})

where the last step uses the assumption that h lies in 3A.

Finite-range effect of changed incoming message. We now show iz(f‘,) = h({‘,) for z € {0,1}. The
effect propagates through clauses which in the second copy are as described in the proof of Thm. 3.7:
that is, in the second copy, exactly one descendant variable sends message f, and the evaluation of
all the incoming 0/1 messages (of which there are k — 2 or k — 1 depending on whether the parent
variable sends f or not) under the clause literals is identically 0 or 1. The mean of the branching
process is bounded as in (28) and (29) except that we must now condition on the pair spin 7; on
the edge preceding the clause.

We now explain the rather delicate case where the clause is forcing to its parent variable in the
first coordinate. Conditioned on spin 71 = % on the preceding edge, the probability of having a
clause as described above is (using (24) and (38))

KV (00Y (% — 1)i (ZE)®
< (2/2 )h(:.:)(k ) l)h(n)h (gk—2) < (k/2k)h(§)/h(§) < (k/4k)
(2/2%)h($2) hO(ZF~\Dg—1)

and this is < d~! so the propagation through clauses started from 7 = 9 is subcritical. The
calculations for the remaining cases of 7, are similar but easier, and so are left to the reader. We
therefore see that h satisfies the symmetries (20), and so corresponds to a solution g = (g, §) of the
pair frozen model recursions. By (37) and (38) this solution falls in the regime of Lem. 4.6, which
uniquely identifies k as 3h. O
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4.2. A priori rigidity estimate. Recalling Lem. 4.2, let ;Z denote the contribution to Z2 from
the near-identical regime h € ;A. In this subsection we prove

Proposition 4.7. For k > ko, dipa < d < dybg, and n = no(k), E[Z] < EZ.

Lemma 4.8. Given a frozen configuration n, for 1 < j < k let mv; count the number of clauses
incident to exactly j n-free variables, and write voo =1 —vo —v,. Let m; count the number of
n-forcing clauses, and let v denote the fraction of rigid variables which are n-forced at most k¥/?
times. Then for k = ko, n = ng(k) it holds that

E[Zns; (24)°] < (EZ) exp{—10nk?/2*} for Q4 = {vz2 < k6%

E[Z,g; (8)°] < (EZ) exp{—10nk2/2/2}  for Qp = { |1 — m¢/(m - 2k/2F)| < 27/

and v < k?/2K2

Proof. As in the proof of Lem. 3.9, let pfo,.,l denote the probability of vg,11 with respect to a
uniformly random matching between clause half-edges and variable half-edges with density 8 of
frees. Conditioned on all fully-rigid clauses being satisfied, the number m; of forcing clauses is
distributed Bin(mug,d) with 9 = 2k/(2%¥ — 2). Conditioned on my, the probability of having -
fraction of the rigid variables forced < k/2 times is

afn (7) = B(Si% HF; < K2} = npy| 52, F = my),  F; ~ Bin(d, )
(where 0 < o < 1 may be arbitrarily chosen). We therefore bound
E[Zngivaz, m ] < 2707 (5) D (1 2/25)™® by e(mi) 8, (7).
vo+vi=l—ve2
1 — kp, together with our estimate (26) that EZ = 0(/2"),
(EZ) exp{O(nk/2)} >, Py, binmus(me) al, (7).
v+ =1—-rz2
Summing over my,y and simply upper bounding me.'y binmy,,9(ms) afn, () <1 yields the bound

on E[Z,g;(£24)°], recalling that the typical value of mvsy is < mk?8%. To bound E[Z,g; (Q5)7],
we first estimate

binmy,,s(ms) < exp{—n2~%3} on the event |1 — my/(m - 2k/2%)| > 2/,

On the complementary event |1 — m¢/(m - 2k/2¥)| < 27%/8, in the above expression for ag,, (7) we
can set o = my/(ndp) = (2/2¥)[1 + O(27*/%)], and apply the local cLT to bound

afh(v) <exp{-npH(v|7)} with¥ = P(Bin(d,a) < k%) < 27F exp{O(k'/? log k)}
< exp{—nk52/2k/2}  for v > k2/2%/2.

Combining these estimates gives the bound on E[Z,g; (25)¢]. O

From the trivial bound 1 >
E[Z,g; V22, ms,7] <

We now decompose Z2 = Y} Z?[«] where Z?[r] denotes the contribution from empirical measure
7 on {0,1,£}2. For j = 1,2 we write 7/ for the projection of = onto the j-th coordinate, e.g.
1 - 1
n! = (mo_, 1., 7s.), and we decompose Z = Y1 Z[r'].

Lemma 4.9. It holds for k > ko and n > no(k) that for any empirical measure 7 on {0, 1, £}2 with
max{r}, 72} < Bmax and A = nx(n* # 72) < n/2+/2,

E[Z%[x]] < e~"2"*EZ + 2-2*/O(E[Z[x']] + E[Z[x])).

Proof. Write p = nr_ and 8 =m;_=1—p. Given any 7! € {0,1,£}V, the number of choices for
for which |{v : 7' # 5%}| < n/2¥/2 is (crudely) upper bounded by exp{O(nk/2*/2)} even in absence of
satisfiability constraints. Combining with Lem. 4.8 gives E[Z2[r]; (p)°] < (EZ) exp{—5nk?/2"/?},
so we hereafter restrict consideration to the event 2pg.

For the remainder of the proof let w = (7!,1?) be a fized spin configuration with empirical
measure 7, and for w € {0,1,£}? write V,, = {v e V : w, = w}. Decompose Qg as the disjoint union
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of events Qg o where & = (1,71, m4,7) is defined as in the statement of Lem. 4.8 with respect to
1. Let Z = Vi \Vir= and |%| = npe = nmp» + nnye, and write Fs for the event that exactly nped
m @ are n'-forced < k'/2 times. We then bound

E[Z?[x]); 8] < ZIE [Z[x); 9B,z Z c®® ¢ P(n? valid | 7! valid, Qp 2, F5)
s

T
where c{f'"’"s = (np'y) (np(l - 7)) and cf = ( np ) < 2"‘6,

nped / \npe(1 —9) NMer
(the factor 2"P€ in c3'™ % counts all the mappings #Z — {rr*,rf}).
Constraints on clauaes incident to {rr*,rf}-variables.
On the event Fj there must be at least npe[8 + (k'/2 + 1)(1 — 8)] > npe(2 — §) = m;(2) clauses
n'-forcing to Z. Let Q. denote the event that each such clause is incident to at least one other
.%—variable; then {n? valid} € Q. Consider Z-incident half-edges (of which there are at most ndpe)
that are matched to any of the mkyy — ms clause-incident half-edges that are non-n!-forcing: this
matching is uniformly random and ndpe/(mkvy — ms) < 2¢, so
pr™? =P(Q:|n' valid, 5.z, Fr)
SP(Dy>0Va < mf(.%) | Yaey Dg = (mkvy — mg)2€),
with D, independent random vana.bles distributed as
Bin(k — 1, 2¢) for a < mg, Bin(k, 2¢) for a > m;.
Note that for any realization of (D, : a < m¢(%)),
P30 D, = (mkvy — ms)2¢| (Dq : a < mi(Z)))
P(Za o Da (mkVo - mf)2e)
therefore p=®° < [1 — (1 — 2¢)F—1]™ (‘Q) < (4ke)™@), Combining with ¢"™’ and rearranging gives

(np) ! log(cF ™ pI™?) < y [H() + (£) log(£)] + (1 — ) [H (D) + L= 10g ]
+ edlogy + €(1 — d) log e + O(elog k)
< elog(y + €) + O(elog k),

where we have used the trivial inequality H(z) + zlogc < log(1 + ¢) < c. Recall € < 272 by as-
sumption, and v < k2/2%/2 by the restriction to g, therefore

ch@ApT®8 < exp{—npe(k/2) log 2[1 — O(k~* log k)]}. (40)
Recalling ¢ < 2" we see that

<1 (39)

E[Z[~'}; Q5] _ E[Z[r']; Q5] _ E[Z[r']; 5]

21, 1.
€ > 2§ then E[Z°[r]; Q5] < onekf3—np S on(etARs S 9Bk/s

Forcing of £r-variables.

Now suppose € < B: the number of choices for 7% is then < exp{O(nk/2¥)}, so combining with

Lem. 4.8 gives in this case E[Z?[x]; (24)°] < (EZ) exp{— 5nk2/2"} Therefore we restrict consider-

ation hereafter to the event 4. On Q4, consider the event Qs 2 {n? vahd} that every fr-variable

is n-forced, conditioned on {n! valid, 2p z, F5,Q@r}. A clause can be n?-forcing to an fr-variable
in precisely one of two ways:

1. For v € V;_ let A, count the number of clauses a € dv that are incident to no n!-free variables
besides v. A clause a € dv of this type will be n2-forcing to v for certain arrangements of literals
and of spins rr, rr* among the neighbors u € da\v; since v € V;_ the clause a is conditioned not to
be n!-forcing. Conditioning on {n! valid, p z, Fj, Q:} gives information about the arrangement
of n? only with regards to the n'-forcing clauses, so the matching between %Z-incident half-
edges with half-edges incident to non-p!-forcing clauses remains uniformly random. Since the
number of edges joining non-n!-forcing clauses to n!-rigid variables is =< mk, we conclude that
n?-forcing arrangements of clause a will occur with conditional probability < ek/2%. Moreover
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this estimate remains valid even after conditioning on a subset of such clauses, since the total
number of clauses incident to free variables is negligible compared with mk.

2. In the myso clauses incident to more than one n'-free variable, the conditioning so far gives no
information about the arrangement of the literals. Therefore, in each such clause distinguish
a uniformly random edge to be potentially n*-forcing. For v € V;_ let A, denote the number
of such edges incident to v, and write m, = Zuev,_ Ay € mysy. A clause a € dv of this type
is n?-forcing to v for certain arrangements of literals and of spins rr,fr among the neighbors
u € da\v. In particular, at least one neighbor u € da\v is n!-free, therefore must have spin fr
in the pair model. Thus p?-forcing arrangements of @ will occur with conditional probability
< (k/2)(m¢er/B). Moreover this estimate remains valid even after conditioning on a subset of
such clauses — due to the restriction to event Q4 we have m, < ndB2k9(), and this is negligible
compared with the total number ndf of half-edges leaving V;_.

Crudely bounding A, < d, there exists a uniform constant C such that

pT™¢ = P(Qs |1 valid, a0, F5, e, %) < E[ [] {1- (1- 55) (- S22) "}
vEVer

Let B, (By)vey;_ be i.i.d. Bin(d, m,/(ndB)) random variables; we can compute the above by replacing
Ay with B, and conditioning on 3} .,, By = m,. We then claim that removing this conditioning
costs at most e2("™:), that is to say,
\z,0 . Cek\d Ckmgy\B) 1n7er

pp™ s 201 - (1- ) B{(1- 57) ]
If m¢r > n/(logn) this is immediate from the local CLT; otherwise it follows by arguing as in (39).
Recalling E[(1 — z)Bn(@P)] = (1 — pz)? we see that

pp™® < Olnmee) (-‘-lszf + d;c’:r 3 —%?)mr < KOO (¢ 4 mryg)mes,

Again recalling H(z) + zlogc < log(1 + ¢) < ¢ we bound ¢F®°pl®? < pOMmt)enbe, Now assume
by symmetry that msr < 7re: then 2ne > npe + nmer = A and ceps < k99, Combining with (40)
then gives that

E[Z[r'); 28] _ E[Z[r']; 25]

if 10e < B then E[Z%[]; Q5] < Tt

O

concluding the proof.
Proof of Propn. {.7. Follows from Lem. 4.9. a
Proof of Thm. 4.1. Follows by combining Propns. 4.3 and 4.7.

a

5. NEGATIVE-DEFINITENESS OF FREE ENERGY HESSIANS
In this section we prove Thm. 2.
Proposition 5.1. The Hessians H®(*h) and H,®(3h) are negative-definite.

5.1. Derivatives of the Bethe functional. Let h € A° with h and h both symmetric, and let
& be any signed measure on supp ¢ (not necessarily symmetric) with h + 36 € A° for sufficiently
small |s|. Then

k3@ (h + 36)|s=0 = —k{(8/h)?);, — d{(8/R)*);, + dk{(6/R)*)x

where a/b denotes the vector given by coordinate-wise division of a by b, and {->)r, denotes integration
with respect to measure h, e.g. {(§/h)®); = X, 6(c)%/h(0).
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Given fixed marginals §, ((5/h)2>h is minimized by 8(&) = h(¢)d~! T2, Xo; With X chosen
to satisfy the margin constraint — which, after a little algebra, becomes the vector equation
AW =dMI+(d- 1)M]x where H = diag(h) and M denotes the stochastic matrix

M, = h(o)~ lzh(g)l{(ﬂl,az) = (0,0')}. (41)

If such x exists, then the minimal value of ((J/h)z)h subject to marginals 6 is (§,Xx). De-
fine analogously the stochastic matrix M corresponding to h: if both L =1+ (d—1)M and
L =1+ (k—1)M are non-singular, then the maximum of k 02&(h + nd)|y=0 over all § with mar-
ginal § is given by
~dk 8 [(HL)™ + (AL)™ - Y8 = —dk (H-Y25)tF(H1/25)

where F = (FY2LA-12)~1 4 (AV2LA-12)"1 —I. It is clear from (41) that M and M are k-
reversible, therefore F is symmetric. Since ), 8(c) = 0 we consider only the action F’ of F on the
space of vectors orthogonal to &1/2. At a global maximizer we know F’ to be negative-semidefinite,
so if det F' # O then it is in fact negative-definite. Thus let M M, M,, M denote the Markov
transition matrices corresponding (via (41)) to *h, *h , 2h respectively. In §5.2 we will prove
that the matrices

L=I+(d-1)M, Ly=I+(d-1)My,

L=I+(k-1)M, Ly=T+(k—-1)M,, ) (42)

L=I-(d-1)(k-1)MM, Ly=I-(d-1)(k—-1)M2M;

are all non-singular. Propn. 5.1 then follows by noting that F = HY2[-1LL-1F-1/2,

5.2. Calculation of transition matrices. Recall the notation ¢=¢*, ¢g =1-¢= =2k and
vr =1 — v =< 2%, Recalling (24) that h*(c) is proportional to A%A%, we record here that
ot 00 f0 1f 11 f1  #f
=21 +gve)] P x (qv dur 200 v Gur 2¢r0r gev ) (43)
Lemma 5.2. The eigenvalues of M counted with geometric multiplicity are
eigen(M) = (1,1,1, A, A, =\, —A)  with A = 2-3%/2,
The matriz M, is given by MQM; consequently both L and L, are non-singular.

Proof. The transition matrix M € R77 is block _diagonal with blocks m¢, mo, my where my¢ is the
one-dimensional identity matrix (the action of M on {££}), and for z = 0,1 the matrix m, € R3*3
gives action of M on {xf,zz,fz}. Recalling the definition (41), the entries of M are straightfor-
wardly calculated from (22), (23), and (24): for example,

Ger@re +Ge0)*%  _  we o Lt
(Ger + Gee)31 — (Gre)?! 1—0d1 " T1—g
where the last step uses (13). We therefore find mp = m; = m where

24 rr ir

rt(].—a a(l_b) ab) with {aEvr(1+Qf)/(l_qf)=2—ks

‘[il = rr l—-a a 0 .
e\ 1 0 0 b= (2v:g¢)/(vg) < 47F

which has eigen() = (1,ab"/2, —ab!/2). Thus eigen(M) = (1, eigen(th), eigen(th)) is as stated above.
Since 3h = *h ® *h, clearly M2 = M ® M, so the lemma is proved. O

Lemma 5.3. There erist (explicit) irreducible h-reversible transition matrices MO, M?* such that

= [M° + M1)/2, M, = [M° ® M° + M ® M']/2. The eigenvalues of M counted with geomet-
ric @ultzplzczty are eigen(M®) = (1, )z, ..., A7) with 252|\;] S 1 for all i > 2; consequently both L
and L2 are non-singular.

Moo,00 =
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Proof. Clearly Mn.,, = Mfr,., = 1{o = rf}, and it is straightforward to calculate that
14+ v,
1—v,
The remaining entries of M are easily determined by R-reversibility (see (43)): with v = vy /v =< 27
and € = 2¢¢/¢ =< 27F, we calculate

M1111=1—Mﬁrf=55<k =27k

-'40 df(l £f b4 rr fr b4
4 [ B2 w2 b o 18y 1 e e
M= o A/z A/z b where ™ by _ = 1 0 0 0
A | W2 ’ it §) = = 1 00 0

i a‘/2 a'2 & £ 1-6 0 O 6
(h € R3*3 while &,b € R®*!). Now consider decomposing M = 27* 3, M(L) where M(L) is the
transition matrix corresponding to A(:|L): there are only two possibilities M°, M?* for M(L),
depending on whether L; @ L, = 0,1. Since 3h(2) =273 L *h(s! | L)*h(6? | L), we conclude
M, = [M°® M° + M* ® MY)/2.
The entries of each matrix M?® are easily read from M except the ones giving the transition
probabilities within {0f,1f}. We calculate these from (15) to find that

ot 00 £0 11 11 1 b3 4
or [ MBis., 0 0 1Bty v ey d-ey

00 0 0 0 1 0 0 0

R 10 0 0 O 1 0 0 0
M= 1| 13Bihgee v v BBt 0 0 d-e

1 1 0 0 0 0 0 0

£1 1 0 0 0 0 0 0

P {-8 0 0 i(1-8 0 0 &

where B = v /(1 — q¢ — 2v; — qfv,) Then M is defined by exchanging the roles of 0 and 1.

We see in particular that M° and M! are h-reversible,” so, writing H = diag(h), the matrix
7Y 2M=H~Y/2 is symmetric and hence orthogonally diagonalizable. Let u be a left eigenvector of
M= with eigenvalue A, such that « has norm 1 and is orthogonal to the constant vector 1. Suppose
2K|A| > 1: the eigenvalue equations

AUgy = YU-gf, Algzr = €Y U—gf,

Auge = (6 — ey)(uor + u1e) + dues
imply |ug| S (2%]A|)~! < 1 for all o ¢ rf, so using |Juf = 1, {u,1) = 0 we conclude |uge| = |use| =<1
with |uos + use| S (2F|A])~1. The elgenva.lue equation for uor gives |A| = |Auoe] S B + (2F|A])7Y;
rearranging and recalling B < 2™* then gives 2¥|A|2 < )| + 1 < 2 which proves the lemma. EI

Lemma 5.4. The matrices L and Ly are non-singular.

Proof. For A € .# write hy = (h14)/h(A), the stationary distribution » conditioned on A. The
vectors _ _ _ _ _ _

uy = ha U2 = (h.ﬂo + hﬂx)/z hffy uz = hﬂo hﬂl
are left eigenvectors of M with eigenvalue 1 such that (w; = u;/ R'/2)3_, forms an oorthogonal basis for
the 1-eigenspace of the symmetrized matrix § = HY/2M A1/ Deﬁne likewise § = HY2MH-V/2; if
w is orthogonal to this 1-eigenspace, then Lem. 5.2 implies llthS | = O(llth]j) O(2~3%/2 ||w||) 50
it remains to consider the action of S5 on the 1-eigenspace of S. Clearly u{M = u}, and u§M =0

TTo see this without explicit calculation of M?#, simply observe that (by symmetry) each h(-| L) has marginal h,
and so from (41) we have h(d)MZ,, = 25 h(&| L1 ® Lz = z) = h{o")
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by symmetry. Since kg is simply the indicator of ££, clearly [lwa| = ||hee/RY?| = h(££)~Y/2 = 2¥/2;
and we calculate . )
ubMM =M =(1/4 0 0 1/4 0 0 0)+0(27%), .

therefore ||w§S$’[|/]|w2|| = [ (ubM M) /RV?|/ws| = 27%/2. It follows that MM (equivalently SS) can
have no eigenvalue with absolute value =< 1/(dk), hence L is non-singular.

For1<i,j<3let 'w,g = w; ® wj, and note that if w is orthogonal to the span of (w11, w12, wa1)
then [wtS2S82|| = O(2-3%/2)|lw|. Next note that
D a (W RUL[MOQM° + M QMY  ui® (ubM 5
wi2s252 = ( ! 2)[ 2’-11/2 ] = -1 BS': ) =w§®(w§S),

50 [[wtyS282))/|wiz] = |wiS|/llws] = 27/2. Since w2527 and 21525 are orthogonal,
l(awsz + bwn )*S28al? _ |alPlwizS28l? + Plwh S25207 _ o -kso
lawz + bwa: |2 (laf? + [[?) w2}l

for any a,b € C (not both zero). It follows that M, M, (equivalently $,5,) can have no eigenvalue
with absolute value = 1/(dk), proving that L is also non-singular. ]

Proof of Propn. 5.1. As shown in §5.1 the result follows by verifying that the matrices defined in
(42) are non-singular, which is done by the lemmas of §5.2. O

Proof of Thm. 2. Recall (Defn. 3.5) that Z is the sum of Z(h) over probability measures h = (h, k)
on supp¢ such that g = (g,§) = (nh,mh) is integer-valued, and lies in the kernel of matrix
Ha = (H -g ). Let *Z denote the contribution to Z from (non-normalized) measures g within
euclidean distance n1/2logn of *g. Thm. 3.7 and Propn. 5.1 together give EZ = [1 + o(n~1)] E[*Z].
By Lem. 6.6, the integer matrix Ha defines a surjection

L'={6eR™P¥:(§1)=(5,1)=0} to {§eR*:(3,1)=0},

so L= L' n (ker Ha) N Z*"PP¥ is an ($ + § — § — 1)-dimensional lattice with spacings =; 1. The
measures g contributing to *Z are given by the intersection of the ball {||g — *g| < n/2logn} with
an affine translation of L. The expansion (18) then shows that E[*Z] defines a convergent Riemann
sum, therefore E[*Z] = exp{n ®(*h)} as claimed.

In the pair partition function Z?, let 3Z denote the contribution from (non-normalized) measures
og within euclidean distance n}2logn of the independent-copies local maximizer 3g = *g ®*g.
Recall from the statement of Lem. 4.2 that ;Z denotes the contribution to Z2 from the near-

identical measures ;A. Decompose

72 ( near-independent ) ( near-identical

contribution 3Z contribution 5Z ) + (remainder), (44)

and note that for dihg < d < dybd, Thm. 4.1 and Propn. 5.1 together imply that the expectation of
the remainder is a negligible fraction of E[Z2):
E[Z?] = [1 + o(n™")] (E[3Z] + E[;Z]).

Repeating the argument above gives E[3Z) =, exp{n (;2(3h))} =k (EZ)?, and combining with
Propn. 4.7 gives the conclusion E[Z2] <, (EZ)? + nCM) (EZ). O

6. FROM CONSTANT TO HIGH PROBABILITY

In this section we prove Thm. 3. Recall from the proof of Thm. 2 that *Z denotes the contribution
to the auxiliary model partition function on (G,L) from configurations whose non-normalized
empirical measure g = (nh, mh) lies within euclidean distance n'/2logn of *g. The main result of
this section is the following
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Proposition 6.1. For k > kg, there exists a constant Cy such that
limsup Varlog(*Z + ¢EZ) < Cj,

n—co
for alldypg < d < d. and all € < €.
The proposition easily implies a strengthened version of the second part of Thm. 3:
Theorem 6.2. For k 2 ko and djpqg < d < ds, limgliminf, .o P(*Z > ¢EZ) = 1.

Proof. Write L = L(e) = log(*Z + ¢EZ). For dipq < d < d. we have E[(*Z)?] = (EZ)?, so there
exists a constant § = §(k,d) > 0 for which P(*Z > §EZ) > 4. Consequently

EL > (1 - 8)log(eEZ) + dlog((e + 6)EZ) = log(eEZ) + dlog(1 + &/e).

On the other hand, *Z < ¢EZ if and only if L < log(2¢[EZ), which for small € > 0 is much less
than the lower bound on EL. Applying Chebychev’s inequality and Propn. 6.1 therefore gives

. ] Var L Ch
1 *Z < < < .
imsupP("Z < ¢EZ) < limsup 770 5 EZ))2 < [5log(1 + o/¢) — log 21

Taking n — o0 followed by ¢ | 0 proves the theorem. O

We shall prove Propn. 6.1 by controlling the increments of the Doob martingale of the random
variable L = log(*Z + ¢EZ) with respect to the edge-revealing filtration (%;)i1gi<m for the graph
Gn ~ Gnak- We will show that the variance of L has two dominant components: the first is an
“independent-copies contribution” coming from pair configurations with empirical measure near
sh =*h ®*h, which we will show in this section to be <x 1. The other dominant component
in the variance of L is an “identical-copies contribution” coming from pair configurations with
empirical measure near {3h,3h}, which we will easily see to be exponentially small in n simply by
the assumption d < d,. In [DSS13] we demonstrate how to control the identical-copies contribution
assuming only that the first moment is bounded below by a large constant.

6.1. Doob martingale and coupling argument. We shall prove Propn. 6.1 in a slightly more
general setting, for application in [DSS13]. Given a parameter w(n), let

W= (am—w(n)+la fees@m)
be the last w(n) clauses in G. Let G = G\W be the graph with these clauses removed.

Proposition 6.3. For k = ko and w(n) <i logn, there exists a constant Cj. such that
lim sup Varlog(E[*Z | G1] + ¢EZ) < C)
n—00

for alldpg <d < d. and all € < €.

Remark 6.4. Propn. 6.1 follows trivially from Propn. 6.3 by taking w(n) = 0. We use Propn. 6.1
only in the present paper. However the methods of Propn. 6.3 will be applied in [DSS13] to prove
a sharper bound on the threshold fluctuations.

Write Lt = L(G',e) = E[*Z|G'] + ¢EZ. Consider forming G step by step as follows. Start
with n isolated vertices, each equipped with d incident half-edges. For each 1 < i < m, choose a
uniformly random set of k¥ unmatched half-edges, and join these into the i-th clause a; (the clause
is also assigned random literals). Let & = (&;i)ogicm be the filtration generated by this clause-
revealing process. The Doob martingale of L! with respect to & is the process (E[L' | %;])1<i<mt
and we have the Doob variance decomposition

denote this Var; Lt

m! - N
Var L' = Y E[(B[L!| %] ~ E[L'| Fi1))?]

i=1



32 J. DING, A. SLY, AND N. SUN

To prove Propn. 6.1 we control the incremental fluctuations Var; LT, beginning a coupling ar-
gument. Let G be a random (d, k)-regular graph, and let A be the clauses with indices between
max{i,m' — k + 1} and m'. Let J¢ be the set of variable-incident half-edges involved in the clauses
A. Let G be another random (d, k)-regular graph which agrees with G, except that we randomly
resample an independent arrangement A of clauses on J¢:

A’ = (a'ma.x{i,m'—k+1}a seeyQt),

A= (é’max{i,m'—k+l}! ceey émf).
Write % = 0(&Fj,am1) = o(ay, . ..,a5, % ,a,1), and write E; for expectation conditioned on .%;.
Then the random variable E[L! | &;] — E[L' | £;_,] is equidistributed as

Ei-1A where A = L(G,¢) — L(G,¢).
The law of (G, G”) depends on i, but is the same for all i < m! — k + 1, so it follows from Jensen’s
inequality that for all such ¢ we have
Var; L' = E[(Ei-1A)%] < E[(Emt—£A)?] < E[Eqt_i(A%)].

Recall E,,t_, means that we condition on the graph G° with clauses (a1,...,an,t_g), as well as
on (J¥,a,,t), then average over the possible arrangements of (A4, A) on a set J of k? half-edges.
Form!—k+l<igsmt | #|=m-i+1)k< k2,’so E;—1 averages over a smaller set of possible
(A, A). However, since the number of possible (4, A) is always <x 1, we can afford to replace the
average by a sum: thus, for all 1 < i < m!, we have

2
Var; L' = E[(Ei-18)7] < 3 E[(L(G° U4, - L(G° U 4,¢)) ]
AA
where the sum is over all arrangements of clauses (4, A) on a set of k2 half-edges. Write
X(A)=E[*Z(G)|G' = G\W = G° U A].
Then summing over 1 < i < m! we have
VarL' < m! STE[V(4, 4] where V(4, A) = log 2 + £Z.
A X(A)+eEZ

From now on we fix (4, A) and abbreviate X = X (4), X = X(4), V = V(4, A). The remainder
of this section is devoted to proving

limsupnE[V?] <x 1, (45)
n—
which implies Propn. 6.3.

6.2. Fourier decomposition. Consider the graph G° with clauses (ai,...,a,1_;). Its unmatched
variable-incident half-edges are partitioned into J¢ (the k? half-edges that will participate in the
clauses A or A) and # (the remaining half-edges, which will participate in the clauses W).
We shall define a certain local neighborhood T of the half-edges in J¢, such that G% = G°\T is
a graph with unmatched half-edges in disjoint sets %" (as before) and % (leaves of T' without %#/);
see Fig. 3.° We will then define a certain T-measurable event B with probability on the order of
1/n (roughly speaking, the event that T contains a cycle). On the event B¢, which occurs with
probability close to one, we bound
) _ (X - X)?
Vig @EZ)?

On the event B¢ we bound V2 differently; this will be explained in (47) below.

(46)

8Each unmatched half-edge is incident to a variable, and does not include a clause.
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Let Yw(gy ) be the indicator that the clauses W are satisfied by the configuration g,. Write
¥ =% v W and let *Z%[gg] be the partition function on G? given boundary conditions gg . Let

k(gq|ay) be the partition function on T' U A given boundary conditions gg. Then
*Z =) Uw(oy) ), slagloy) *2%eg].
274 Zou

The same expansion holds for *Z except that « is replaced by &, referring to the partition function

on T u A. Then
X =E['Z|G\W] = Z Play) Z k(eglow) Z’(eg]

where P denotes the average of ¥y over the p0551b111t1es of W.

Write h = (h h) for the Bethe fixed point corresponding to the first moment maximizer *h. We
will see (Lem. 6.5 below) that in the graph G? the distribution of the boundary spins g, is very close
to the product measure p(g4 ) where the o, (v € %) are independent and identically distributed
according to h. Take (by,...,by«) to be an orthonormal basis for L2(#,h) with by = 1. Then

the product functions
bo(ea) = [] bowylew) (s€ [#)%)

ue%
form an orthonormal basis for the space L?(.#%,p), and for any f in this space we denote its

Fourier coefficients
fr(s)=L{f,byp = ZP(U%)f(G%)bs(U%)

Recall that 7 denotes a pair (¢!, g2). By an abuse of notation we also write p for the product mea-
sure on 7, p(r) = p(a')p(c?). The functions by (74 ) = by (gl )bs2(cy,) form an orthonormal
basis for L2 (#*% ,p) and define a Fourier transform on that ¢ space. By Plancherel’s identity,

X = ) %lay) ),x" (slaw) F [slay)-

Let X be the contribution in the above expansion from g§ = @ (meaning that s is identically one).
On the event B we bound

Ve (10 X+eEZ | Xo+eEZ |\ Xo +e]EZ)2
B Xo+eEZ ' ° X, 1 EZ & © X +¢EZ
X = Xo) + (X —Xo)? |, (X — Xo)?
. 3 2.
(EZ) min{Xg, X5}
We next expand the squared terms in (46) and (47) and separate out the “independent-copies” and

“identical-copies” contributions. Abbreviate D = X — X. Then (46) expands as
w

<3 (47)

D? = Y 9(ey)Bley) D, (x — #)klay)(x - R) ek |c¥) :2°[ra]-
oy w®(1g|Ty)
= Z ?(zy) Z @®(zq |1y )22’ [zs] (48)

where ,Z° denotes the pair partmon function on G°. In the manner of (4—1) we decompose ,2?
into a near-independent contribution 5Z?, a near-identical contribution 327, and a remainder term
which has expectation o(n~1) E[Z2]. Substituting into the above expansion gives the corresponding
decomposition of D?:

2 _ { near-independent near-identical .
D? = ( contribution 1D ) + (contribution ;D + (remainder). (49)
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An analogous expansion holds for each squared term in (47). In each case the remainder term has
expectation o(n~!) E[Z2] uniformly over diba < d < dybq, and so can be ignored. The near-identical
contribution has expectation o(n~!) E[Z?] uniformly over the integers djpq < d < dypa, and so can
be ignored for the main result of this paper. In related work [D5513] we will show how to control
these terms closer to the threshold, yielding a sharper bound on the threshold fluctuations.

NAS ,

| G° (unmatched edges ¥, #)
{ G is G° with A, W
|
]
|

T (k* disjoint trees)

b4k

G is G° with A, W

...........

-] a a -] -]
m9 clauses (each degree k)

FIGURE 3. G° = graph with clauses a1, ...,ai—1; G° = G°\T (gray)

Let Bj(X') denote the ball of graph distance £ about ¢ in the graph G°; the leaves of By(¢")
are half-edges incident to variables (£ odd) or clauses (£ even). We shall fix a maximum depth 2¢
(where ¢ will eventually be a large constant depending on €) and set T = B3, (¢") where

¢ = min{ {t} U £> 1:either Bj,n ¥ # @, or
- B3, does not consist of |¢'| disjoint trees | |’
With this definition, % can only intersect T in its leaves, which are variable-incident half-edges at
distance 2¢' from J#. Recall % denotes the leaves of T without #. Let Er denote expectation

conditioned on T. Applying this to (43) and (49), the near-independent contribution to Er[D?]
can be expressed as

(50)

F(zalew)

Er[3Z°[rs]]
* H T
Er[3D] = Z ¢®(IW) Z W®(qu lzw) —= =L p(ze ),
£ & p(za)
=2 7P%@y) D, @ (s'lay) =" (Pled)F" (s', |ry). (51)
Zw sl,s!
We emphasize that @ = k — £ and F depend on T although for convenience we have suppressed it
from the notation.

6.3. Expansion of partition function. We now estimate the Fourier coefficients of the function
[F appearing in (51): recalling that 74 = (14,Ty),

]FA(§.11§2|I-)V) = Z ]ET[;Za[ZW]]bgl.g?(I‘?/)'
T
We begin by estimating Er[Z%[gg]]. Note this depends on T only through the numbers n?, m?
of clauses in G?, which are determined by T. Denote v =n —n? (the number of variables in T'),
p=m —m? (the number of clauses in T u W) and note v + u <k, logn.



SATISFIABILITY THRESHOLD FOR RANDOM REGULAR NAE-SAT 35

It is most convenient here to work with the non-normalized empirical measures g = (g, §). The

associated non-normalized marginal edge counts are given by

H¢ empirical marginal of variable-incident half-edges,

H§ empirical marginal of clause-incident half-edges,
where H, H are the marginalization matrices corresponding to ¢, ¢ as defined in §3.3. The empirical
measure g can contribute to Er[Z°[gg]] only if

{§,1) =12, {(§,1) = m?, and Hg— Hg = H%>

where (g,1) indicates the total mass of g, and H2# denotes the non-normalized edge empirical
measure associated to gg . The contribution to Er[Z?[g4]] from such g is given by

w-92(5) () (%)

(with multi-index notation). In the leading exponential term Z(g) behaves exactly as EZ (h),

E(g) = exp{n’®(g/n’) + Ox(u + v)}, (52)
so we see immediately that the dominant contribution to E[Z°[gg]] comes from near *g. The
following lemma. gives a more precise analysis:

Lemma 6.5. Fiz g4 and assume there exists a signed measure § = (8,8) such that
6,1)=v, (§,1) = p, and HS — H6 = HZ®
(where § depends on g4, and is non-zero only on the support of p). Then
d
izl 1+ 0,(LpE") (53)
Proof. Let g run over empirical measures contributing to the expected partition function EZ on a
(d, k)-regular graph with n variables and m clauses. Away from the simplex boundary, the empirical

measures contributing to Ex[Z%[gs]] are parametrized by g — 8. Then, writing (a)s for the falling
factorial a!/(a — b)!, some algebra gives

1/e c
2o-8) 2T [ m (ndha] [ @)s @ (H*g)""] 'i"i“'(*"l/@é(fﬁ/@)s].
Sg) 22 [() (m)u ()| | (9)°(9)° (Ho)gs || 7% (R)™

[
—_ —_—

——

s e(9,9) ()

(The above uses multi-index notation, so for example (g); indicates the product of (§(¢)) é&) OVer
& € supp¢.) Using the relation (34) between *h and the Bethe fixed point h = (h, h) we have

r(0) = plag), c=[:2Y*/7)- 2VE = exp(v°@} - HOVE. (54)
The factor s does not depend on (g, ), and we note
2 2 o —*gl + |6
|3 — 1| <k (V "7'1“) < "ﬂll, Ie(g, 6) _ ll <k ll “1("9 :“l ” "1)

Let B denote the subset of measures g within euclidean distance n'/2log n of *g: since we established
that ® has negative-definite Hessian around *g,
ET[Za[Qg/]] - deB E(g - 6)
(/M) EZ 2.geB Z(g)
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Then, by the preceding calculations, the right-hand side above equals
. Z(g)e(g, 0 4 o1 1
s 7(6) Xgen £(9)(9:9) _ 7(9) (1+ O(II Illl/zgn))
c 2geB E(9) n

from which (53) easily follows. O
Lem. 6.5 applies for any factor model with free energy attaining a local maximum at *g with
negative-definite Hessian. In particular, it applies to both the first- and second-moment versions of
the auxiliary model. We now show how to construct the required measures 4 for the pair auxiliary

model (the construction for the first-moment version being similar but simpler). The construction
is based on the following

Lemma 6.6. For any 7,7’ € A2,
(a) There exists a signed measure § = 6,_» such that

suppé < Supp o9, (3, 1>=0, and Hé=1,-1,.
(b) There exists a signed, integer-valued measure 8 =6, such that
suppd < supp o, (3, 1)=0, and Bé=1,-1..

Proof. (a) Let H; be the first-moment version of H , so that H= Iiﬁ ® Hl. Define a graph on .4
by putting an edge between o and o’ if there exists a signed (but not necessarily integer-valued)
measure § = 8, such that

suppd < supp @, (6, 1>=0, and Hé=1,—1,.

We will show that the graph is connected, hence complete. Since & = (££¢) and &’ = (00%) are both
valid variable configurations, we see that £f is connected to 00, and likewise to 11. Next, since

¢ = (00%,0£%7%) and ¢ = (003,0£%°3)
are both valid, 00 is connected to 0f, and likewise 11 to 1f. Finally note that if
& = 1{(£0,0£%"1)} — 21{(00%,0£42)} + 1{003, 0£4~3}

then H15 = 1¢0 — 100, S0 00 is connected to £0, and likewise 11 to £1, which proves that the graph
on .# is connected. The claim for H = H) ® H; follows straightforwardly since we can go from 7
to 7/ first by changing ¢! to (o), then changing o2 to (¢2)’, using the above manipulations.

(b) Define a graph on .# 2 by putting an edge between 7 and 7 if the required &,_ exists, where we
emphasize that here d,_, is required to be integer-valued. We will show that the graph is connected,
hence complete. In this proof we will write 7 = i0 = (%, 0) where % is the (pair) variable-to-clause
message, and o is the (pair) clause-to-variable message.

Suppose 7 = i0 and 7 = #'0 = (¢/,££). Let ¥ = (££,££). Then both (7*~1,7) and (7*~1,7') are
valid clause configurations, so 7,7’ are connected.

Next suppose 7 = i0 = (%,0f) and 7" = 40" = (%, £f). Let ¥ = (1£,££). Then (7*71,7) is a valid
clause configuration if we take the clause to have all the same literals. On the other hand, (7*~1,7")
is a valid clause configuration if we take the clause to have all the same literals except in the first
coordinate. It follows that 7, 7" are connected.

By the same reasoning, any 7 = %0 is connected to 7 = (¢,££). Then 7” is in turn connected to
7 = (¢/,££), which is connected to 7/ = (¢, 0’). This proves our claim that that the graph on .#2
is complete. 0

Fix a reference spin 7, say 7 = (5',52%) = (££,££). Lem. 6.6b implies we can find signed integer
measures 6" and 8% such that
@v,1y =1, (8,1) =0, H&™ — A6 =qd1;

@ =0, L1y=1 A& - A = —k1, (55)
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(Note in the pair auxiliary model for NAE-SAT, we may trivially take 6¥3 (1) to be the indicator
of = (¢1,6?%) = (££9, ££9) with §¥* identically zero; and likewise take 8°'(7) to be the indicator
of 7 = (&!,82%) = (££*, ££*) with §° identically zero. In a more general setting, the statement of
Lem. 6.6h suffices to construct measures satisfying (55).) One can then check that

6 =v8"™ +pd® - ) 6,5 (56)
ye¥

satisfies the conditions of Lem. 6.5 (using that —vd + pk = nd — m%k = |#]). It follows that in
the pair auxiliary model,

ET[EZB[ZQ/]] — (1 + Ok([lTl + |71¥//2|] 10gn)> p(I@’)E[;Z],

and since IE[ZZ] =k (EZ)? we see that E]‘[zza[_g/]] =i Er[2°[c} JEr[Z°[3])-

Now write Z°[-, 0] for the sum of Z%[gq,ay] over all g4 with gy fixed. We can find & with
||6|]1 <k |T| such that Hé — HS = H2«. If g contributes to Z°[-, g4, then g — & contributes to
Z%[aq,ay], so we conclude

Er(2’low 2] = (1+0c(EL0E%) ) otea)Br{ 220 201l 7

The analogous expansion holds for the second-moment version Er[5Z%[z4,T4]], and so
Fr(slry) ZI.,, Er[3Z°[rq, T3 ])bs(r2)
Fr(2|ry) Er[32°[ z ]

Recall that (1,by)p is simply the indicator that s = @, so we see that the higher-order Fourier

coefficients of F are small. The following lemma yields a more precise analysis of these coefficients

under the assumption that &k divides |%|, which includes the typical case where T consists of &k
disjoint trees not involving #'.

Lemma 6.7. If k divides |% |, then for a constant C. there exist coefficients §; = (§j(0))s, indezed
by 0 < j < Ck, such that [l Sk n~"/? and

Er(2°[ge]) ¢ o g3+ S H £, (logn)®
e Erlo ] - LW R o) @

where ¢ = 1 + 0,(1) and does not depend on gy .
Proof. In this case a particularly simple choice of § satisfies H§ — B = H2%: take

8= 6% = (1Z|/K)6 = 3 boua,
ue%
which is a signed integer measure by the assumption that k divides |%|. Notice that 6% can be
expressed as a linear function of HZ%:

8% = Z HZ% (6)8°, where 6° =k~16% - 6777, (60)

Tllogn
= (1,b)p + Ok (I—ng—) (58)

3=0

Let G’ be a graph with n? = n — v variables and w(n) clauses missing, so that there is a set %" of
unmatched variable-incident half-edges of size w(n)k. Let Z’[-, 04 ] denote the partition function
on G’ subject to gy . Write B’ for the set of non-normalized empirical measures g that contribute
to Z'[-,ax] and lie within distance n'/2logn of *g. Then, with § = 2%, a similar calculation as
in Lem. 6.5 gives

ET[Za[Q'.%:ZW]] _ ZQEB’ E(g - 0) _s ploy) deB’ E(g)e(g,9)
VMIE[Z [ oy]] Lgen E(9) c Ygep =@)

(61)
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We now make a more precise expansion of the term e(g, d): it is a product of ratios (a)s/(*a)®
where *a =k n, |a — *a| < n}/2logn, and b <j |%|. For each ratio we estimate

b-1 _ 2
@/ = [[a-ifa) =1- 2= 1, o, (208,

i=0 2(*a)
—* 2(q — *a)2 3 3
/o =1+ R Ear oS0,
2 _* b3 ] 3
a1 S22 - o ),

Let A(g) = (A(g), A(d)) and B(g) = (B(g), B(9)) be defined by

101822 (050 2]

Define also the averaged versions
ZgenE0)AlG) Lo TgepZ(9)Bl9)
Zg'eB E(g") Zg’eB E(g')
In view of (52), since ® has negative-definite Hessian at *h, we have [[| A*'8| )2 + | B*8| o <k 1/n.
Substituting the above into (61) gives

lET[Z a[g%’g.ﬂ]] _ / s g, avg T9, \2 RAvE (105 n)4
s T = (EIZT 2w 112) |1+ <070, A8 + ((620)2, BV + o (<257 )
Recalling (60), we can express
(8, A*B) = (H%% &) where (o) = (87, A*E).
Meanwhile (62, B®'E) is a sum of terms §%(¢) B*'8(¢) and §%(3)B*'5(6), which can be written as
8 (0)B™E(¢) = (A% ,&5)*  where &(0) = §°(5)[B™%(&)]2,

and similarly §2(&)Bv8(6) = (HZ%,£;)2. The result follows. O

An analogous expansion as (59) holds for the second-moment partition function Er[5Z%[14,,7y]]
with 74 fixed. Lem. 6.7 easily implies bounds on the Fourier coefficients of the function F(z4 |y ) of
(51): for s € [|#|)% write {3} = {ue ¥ : s, # 1}. For s!, 52 € [|.#]]% write {s's?} = {s!} U {s?}.
If {s's%} = {u,u'} for some u # u' in %, the Fourier coefficient captures the quadratic term in (59):

A®VE =

A . 6
F]F‘—/\(?Izﬁz;)c Jz:] 1§ p('r%)bs(’ro;, ){7 (Tu)ﬁ_, (Tu') + Ok ( (105/7;) )
Ci
= Z<§j’ b3(“)>P<€.‘i: ba(u’))p = Og(1/n).
j=1

If [{s's®}| > 3 then the Fourier coefficient no longer captures the quadratic term. Altogether, in
the case k divides |%| we obtain the following in addition to (58):

F~(slzy) . {sk n~! for |{s's?}| > 2

Fr(@lzy) © \gk n=2(logn)f for |{sls?}] > 3. (62)
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6.4. Local neighborhood Fourier coefficients. Let us recall again the definition (50) of the local
neighborhood T of the unmatched J¢" in G° (equipped with random literals), with leaves joining T' to
the graph G? considered in §6.3. Recall also that A, A are arbitrary choices of clauses (with literals)
to place on J¥'. For now we suppress the dependence on gy, and abbreviate k(gg) = k(gy oy )
for the partition function on T u A given boundary configuration gg = (gg,0y). Similarly we
write K(ggy) = K(gg|oy). In this subsection we control the Fourier coefficients w” = (k — £)"
appearing in (51).

Let T denote the event that T consists of |¢| tree components with T'n # = @. Let C° denote
the event that T either contains a single cycle or has a single intersection with # (but not both), but
still consists of |.¢"| components. Lastly let Cy be the event that BS,,_,(J¢) has |¢'| components,
but T = B}, (¢) has |¢| — 1 components (cf. (50)) and is disjoint from #'.

Lemma 6.8. For T e T, w”(s) =0 for all |{s}]| <1; and k" (@)|T takes a constant value £*(2),
which does not depend on T4, the literals on T', or the clauses A. For T € C°, w" (@) = 0.

Proof. On the event T u C°, the graphs T u A and T u A are isomorphic ignoring the literals.
If |{s}| <1 then b, depends at most on the spin of a single edge e€ %. For T € T, using the
symmetry of NAE-SAT one can produce an involution ¢ : gg > &4 on .#% which keeps o, fixed,
is measure-preserving with respect to p, and satisfies k(gg ) = £(d4): set 6y to be oy or —oy
depending on whether the sum of literals along the unique path joining e to « in T u A differs in
parity from the corresponding sum in 7 v A. Then

K (8) = D, P(gq )bs(iaa )nae) = D, Pleg )bs(ae )ilay) = A (s).

o Loy
It is also clear that this value does not depend on g4, proving our claim on T. A similar argument
proves w”" (&) =0 on C°. a

Lemma 6.9. For T € T, w”(s) <k R*(2)/[4%~9%] for all |{s}| = 2.

Proof. Since |{s}| = 2 we may write by(ag ) = f(ou)g(ow) for f = byn) and g = by If u,w
belong in the same connected component of T', arguing as in the proof of Lem. 6.8 gives w”(s) = 0,
so assume they belong to different components. Since T € T we may define the random measure

pr(cy) = plogy )k(ey )/R™ (D), and similarly fr. Then
w”" (ﬁ) =g" (@)([J,T - ﬂT’ fg> =R" (Q)[COV”(f, g) - COV,i(f, g)]1
since Lem. 6.8 implies f has the same expectation with respect to p or /i (and likewise g). Let v,
denote the (unique) path joining u to £ in T, and likewise 7,,. Let N denote the event that on
the path 7 = 4, U v, there exists a clause a such that, among the k — 2 variables in (da)\7, there
exist two variables v/, v” with
Oysa =0pag =1 or Loy @0y =—Lay @ Oyr—q.

Note that N is (T, gq,\(u'w})-measurable, and on this event Covy(f,g) = Covs(f,g) = 0. For any
fixed realization of literals on T the probability (with respect to the law p of the spins on %\{u, w})
that N fails is < 4~(~4) simply by the 0/1 symmetry in p, so we find

" (8)] < 4~¢~D*R" (2) max [bs]% Sk 4~ ¢V R (),
elll]

since the relation ||b,,||g = 1 implies [|bs||2, < (minge ¢ o)™ Sk 1. a

Lemma 6.10. If T € Cy then " (2) = " (D) and
[<* (@) A &*(2)]

I‘W’\(Q)l <k (4k/k0(1))t'
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Proof. Let k°(g4,,0 ) denote the partition function on T given boundary conditions (g¢,2 ¥, Ty ),
and define the random measure
1(ay) = ()" @) D) pleg )5 (@ ax)-
T

If (g ) is the indicator that g is valid for clauses A (likewise ¢ for clauses A) then
@M@) = Y, Plaa)s’(@aex)lt—Dax)] = ()N@) )] k(e = Dler))-
¥

‘_’.% 1.0_',1
By definition of the event Cy,
Wlex) = 1e,0e) [ w0
ec\(¢ "}
where {€/,e"} is the unique pair of edges in J¢ such that B3, (e’) and Bg,(e”) intersect. The graph
T (without A or A’) contains no cycles, so it follows from the symmetry argument of Lem. 6.8 that
the marginal of 1° on each e € J£ does not depend on the literals on T'; further each marginal must

simply be p from the Bethe recursions. It remains to note (arguing as in the proof of Lem. 6.9)
that |u°(0e, oer) — pu°(0e)u(0er)| < 4~ %9 from which we conclude

[1+ 0x(4~*~9)]s"(2) = (x)" (@) ), Plar)uar) = [1 + Ox(4~*)1&" (@)
gxr
(where (p,¢) = (p, {) again by symmetry). O
6.5. Conclusion. We now combine the estimates of §6.3 and §6.4 to conclude the proof:

Proof of Propn. 6.1. Recalling (46) and (47), we will set B to be the union of the events Cy. First
consider (51) for T € T: by Lem. 6.8 there is no contribution from terms s = (8}, 8%) with either
l{s*}| < 1, so we need only consider s with |{s's?}| > 2. The number of choices of s with |{s}| = 2
is (kO(M4k)t. Combining (62) and Lem. 6.9 then gives

E[3D; T] 5 (@laly) | FM(@lry) [ (ROW4):  (logn)O] _ (kOW/by:
(EZ)? =§¢®W){ (4'=/k0<3>7)t} E27 [ no T wh ]S no

i=1,2
Similarly, for T € C°, by Lem. 6.8 there is no contribution from s = @, so (58) gives
E[3D;C°) o |T|logn (logn)PM)
WQP(C)-O];( 2 )S 3
Note B® = T u C° U 2 where P(2) < (logn)°M/n?, so E[3D; R)/(EZ)? < (logn)°M/n2. This
concludes our analysis of (46). Turning to (47), let 3(X — Xg) be the near-independent contribution
to (X — Xg)?: again applying (58),

E[}(X — Xg); B] (logn)°® _ (logn)O)
(EZ)? < P(B) ST R . A
As for the second term in (58), applying (6.10) gives

X = Xo) ] < [ 1 (logm)°®] 1 1 1
[min{Xg,Xg}er ES ;]P(Ct') (4k/k0(l))2t' + nl/2 < n;_—(llk/ko(l))t' <k n

Altogether this proves

2o 1 (ROW/gE)  (logn)OW
E[V?] <k - + eZ + 32

where (logn)9(!) hides a prefactor that can depend on e. By taking ¢ large this is enough to prove
(45), and the result follows as explained in §6.1. O
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7. FROM CLUSTERS TO ASSIGNMENTS
In this final section we prove the main theorem.

Proof of Thm. | for d # d.. By the results of Thm. 3 and Thm. 6.2 it suffices to show that for
k> ko and dipg < d < d., lim,,o P(Z > 0] Z(h) > 0) = 1 holds uniformly over all empirical mea-
sures h € A satisfying ||(nh, mh) — *g]| < n}2logn.

Given an auxiliary model configuration g on the edges of (G, L), our aim is to complete ¢ to
an NAE-SAT solution z on (G, L) (meaning that whenever z, agrees with 7, = my4(g,) whenever
7y # £). Clearly, the potential issue is that setting a free variable may cause a chain of forcings
resulting in an invalid assignment. We therefore let F# = F¥(G, L,g) denote the subset of clauses
a € F such that at least two variables in da are free, and all rigid variables v € da have the same
evaluation Lq, ® 7y = &,."

Let G! = G¥(G, L, ) denote the subgraph of G induced by the free variables together with the
clauses F¥. We claim that ¢ has a valid completion to an NAE-SAT solution provided each connected
component of G* contains at most one cycle. Indeed, in a tree component of G¥ one may choose an
arbitrary root vertex and assign it an arbitrary value — this may cause a chain of forcings, but no
conflict results since there is no cycle. In a unicyclic component C with cycle v, ag,v1,-. ., @n—1,vn
(with indices taken modulo n so vg = wy), setting z,, = —Lq,y, @ £, ensures that all clauses along
the cycle are satisfied. Then, by the preceding argument for tree components, there exists a valid
completion of z to the remainder of C, proving our claim.

Conditioned on Z(h) > 0 we may generate (G,L,g) — where G has the law of G g%, L is
uniformly random, and g has empirical measure h — as follows: start with a set V of n variables
each incident to d half-edges and a set F of m clauses each incident to k half-edges, and place spins
on half-edges according to h and h. Then construct the graph by randomly matching clause and
variable half-edges in breadth-first search manner started from an initial variable o, and respecting
the given spins ¢. It is clear from this construction that up to the time that the process has explored
say n'/3 vertices, the evolution of the spins o on the leaves of the exploration tree is very close to the
Markovian evolution of the Gibbs measure v described in §3.5. In particular, starting from any free
variable v, the exploration of its connected component T, in G! is dominated by a Galton-Watson
branching process with offspring numbers distributed as a random variable 0 < Y < dk with

dk 35 (521) ke [(hoe)* 7 + (hae)*]
2h(££f)

By a standard argument the total size of the Galton-Watson tree has an exponential tail,'® so we

may take C = C(k) such that P(|T}| > Clogn) < n~!0. The probability of seeing more than one

cycle in T, is then crudely < n~%2. Taking a union bound over all free variables shows that with

high probability no component of G contains more than a single cycle, so g corresponds to a true
NAE-SAT solution as claimed. O

EY < dk*h(F*|o) = ££) = < K372k

The above analysis completes the analysis of the SAT-UNSAT transition in the case that the
critical threshold d. (see Propn. 3.11) is non-integer. We conclude by showing that if d. € Z, then
at d = d. the probability that a random NAE-SAT instance (Gp 4k, L) is solvable is asymptotically
bounded away from zero and one.

9f 15, = (£*) we also include a € F¥, and arbitrarily define £, = 0.

10gyppose Y is a non-negative integer random variable with A()\) = logEe*Y <o for some A >0, and
A’(0) =EY < 1. Let (Y;);»1 be a sequence of i.i.d. random variables distributed as Y, and Z, =1+ 37_,(Y; —1).
Then the total size of a Galton-Watson tree with offspring distribution Y has the same law as 7 = inf{n : Zn = 0},
and it is clear that the distribution of 7 has exponential decay: P(r > j) < P(Z; > 1) < etEet%s = /AO-], and
since A'(0) = EY < 1, by considering t > 0 sufficiently small we can find a constant ¢ > 0 such that P(1 > j) <e™%.
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Proof of Thm. 1 for d = d. integer. The probability of solvability is bounded away from zero by
Thm. 2 together with the preceding argument. To see that the probability is bounded away from
one, it suffices to show that E[Z|€¢] < 1 for an event Q¢ of asymptotically positive probability.
We shall take Q¢ to be the event that there is a large (but constant) number of disjoint triangles in
the graph. We show below that each additional triangle decreases the expected partition function
by a constant factor, so that E[Z | Q¢] < 1 for a sufficiently large (but constant) number of cycles.
It is well-known that the number of triangles is asymptotically a non-degenerate Poisson random
variable, so Q¢ has asymptotically positive probability as required.

/\/\/\/\ ai?%lb Ug
u v w v o u v w v

(A) Local neighborhood in Ge-1) (B) Switched neighborhood in Gy

FIGURE 4. Switching argument for case of integer-valued d.

We define recursively a sequence of graphs (G(g))ez0 by the so-called “switching method.” Start
from G(g) = Gn,ax (d = d.). For £ > 1, let v,7’ be a random pair of vertices at distance two in the
hypergraph G(,_1), with common neighbor w. Say v is joined to w by clause b, and let u # w be
another neighbor of v via a different clause a # b. Likewise say v’ is joined to w’ by clause ¥/, and
let »’ # w' be another neighbor of v’ via a different clause o’ # b’ (Fig. 4a). Let G(g) be defined by
making the switching shown in Fig. 4B. The result will follow by showing that for £ bounded by a
large constant, this switching decreases the expected partition function by a constant factor.

FIGURE 5. Local neighborhood in graph G{,, with g, a’ removed

Note that with high probability all previous switchings occur at distance at least say (Iogn)ll 2
away, so it suffices to prove the claim with £ = 1. Consider the graph G* with the clauses a and
a/ removed, leaving unmatched half-edges incident to variables (Fig. 5). Write P* for the marginal
law, with respect to the auxiliary model on G*, for the spins oy, 0y, 0,0, on the unmatched
half-edges incident to u,v,’,v; and write each o as 20 where i is the clause-to-variable message
while o is the variable-to-clause message. (For example, o, will correspond to oy—., in the original
graph versus oy, in the switched graph.) We shall compare the probability for a and a’ to be
satisfied within the original graph versus the switched graph: with r = {0, 1} as above, we claim

P*(oy € Tr,0p €T)[1 +0(1)] = P*(0, €T,0, € T) + 275, (1)
P*(oy € r,0, €1)[1+ 0(1)] = P*(0y € 7,0, ET) (1)
(In the above, the first display concerns clause a while the second concerns a’; in both displays the

left-hand side is relevant to the switched graph while the right is relevant to the original graph.)
Recalling Lem. 6.5, P* is the same up to 1+ o(1) factors as the measure P induced on the local
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neighborhood by taking boundary conditions given by p (on the edges cut by the dashed line in
Fig. 5, without regard to the structure of G*). Under P, clearly oy, 0y, and 0, are mutually
independent. Since v’ has only d — 2 neighbors coming from the rest of the graph, it is slightly
biased towards £, which proves (11).

To prove (1) we need to take two effects into account: first, o, and o, are correlated while o,
and o, are independent; and secondly, as noted in the proof of (i1), marginally o, is slightly more
likely than o, to be £ due to the different structure of the local neighborhood. The correlation
goes in our favor while the marginal bias goes against, and we argue that the former dominates.
Indeed, as we have seen in the proof of Lem. 6.9, there is an event of probability v = 2~2* such
that on this event 0, and o,, must be both rigid (with probability z) or both free (with probability
z), but given the complementary event they are conditionally independent with probability x for
0y to be rigid and probability y for o, to be rigid. Thus P(o, € r) = vz + (1 — )z which implies
zs =1 — z = 27%; likewise and P(0, € r) = 7z + (1 — 7)y which implies y¢ =1 —y =< 27%. Com-
bining, P(0,, 0, € r) — P(0, € r)P(0, € 1) is quadratic in z, and it is straightforward to compute
the derivative and see that it is =< -y (hence positive) for 0 < z < 1. Evaluating at 2z = 1 gives

P(0y,0, € T) — P(0y € T)P(0y € 7) = (1 — 7)(1 — z)(1 — y) = 27%.

As for the marginal bias, note that the increased chance for o, to be free compared with o, comes
from the fact that v receives only d — 2 incoming messages from the rest of the graph: thus oy,
is slightly biased towards £, and this effect can percolate through the chain op—.y, Oyw—ty, Tpymyr to
affect 0,,. However the initial bias on oy is < 47%, and the effect decreases by a factor 2¥ passing
through each step in the chain, so the overall bias is < 27%%. Combining the estimates proves (I).

The result follows from (1) and (11) by noting that in a clause with £ random incoming messages
which are mutually independent except for possible correlation among the first two, the probability
for the clause to be satisfied decreases if the probability for the first two messages to be both rigid
increases. O
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