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Abstract

In conjunction with a tertiary amine coinitiator, eosin, a photoreducible dye, has been shown to 

successfully circumvent oxygen inhibition in radical photopolymerization reactions. However, the 

role of O2 in the initiation and polymerization processes remains inconclusive. Here, we employ a 

UV-Vis/FT-NIR analytical tool for real-time, simultaneous monitoring of chromophore and 

monomer reactive group concentrations to investigate the eosin-activated photopolymerization of 

PEGDA-based hydrogels under ambient conditions. First, we address the challenges associated 

with spectroscopic monitoring of the polymerization of hydrogels using UV-Vis and FT-NIR, 

proposing metrics for quantifying the extent of signal loss from reflection and scattering, and 

showing their relation to microgelation and network formation. Second, having established a 

method for extracting kinetic information by eliminating the effects of changing refractive index 

and scattering, the coupled UV-Vis/FT-NIR system is applied to the study of eosin-activated 

photopolymerization of PEGDA in the presence of O2. Analysis of the inhibition time, rate of 

polymerization, and rate of eosin consumption under ambient and purged conditions indicates that 

regeneration of eosin in the presence of oxygen and consumption of oxygen occur via a nonchain 

process. This suggests that the uniquely high O2 resilience is due to alternative processes such as 

energy transfer from photo-activated eosin to oxygen. Uncovering the intricacies of the role of O2 

in eosin-mediated initiation aids the design of O2 resistant free radical polymerization systems 

relevant to photonics, optoelectronics, biomaterials, and biosensing.
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Introduction

Free radical, light-induced polymerization reactions are an essential and commonly used 

tool in a wide range of industries including microelectronics, laser imaging, and the 

production of coatings and adhesives.1,2 Photopolymerization offers advantages in 

comparison with alternative methods such as thermal or redox initiation, including short 

reaction times, ambient reaction temperatures, and spatial and temporal control.2 As a result, 

increasingly diverse reactions have been developed to initiate polymerization reactions with 

light. Visible-light initiation, in particular, has attracted significant interest because of 

growth in the fields of biomaterials and electronics, where initiation using UV light is 

sometimes undesirable or impractical. Rational design of improved systems for visible-light 

initiation is challenging since the identification of key criteria depends on the elucidation of 

often-complex mechanisms. We apply coupled UV-Vis/FT-NIR real-time spectroscopy 

towards the elucidation of the mechanistic complexities of the light-induced, chain-growth 

polymerization of poly(ethylene glycol) diacrylate (PEGDA) hydrogels initiated by eosin in 

the presence of triethanolamine (TEA) and oxygen. This chemistry has been used in a 

variety of applications, including lithography,3 3D printing,4 biomaterials,5,6 and 

biosensing.7–9

Eosin/amine formulations have been shown to initiate polymerization in spite of a 1000-fold 

excess of oxygen.10 However, the mechanism through which eosin is able to overcome large 

excess O2 concentrations is controversial. The mechanism of oxygen inhibition when using 

typical photocleaving chromophores is well known; O2 reacts with initiating and 

propagating radicals to produce peroxy radicals that are relatively unreactive towards the 

monomer vinyl groups,11,12 and, thus, have the effect of terminating the reaction. Solutions 

to O2 inhibition include purging with inert gases, adding antioxidants and oxygen sensitizers 

(molecules that transfer their triplet energy to triplet oxygen), or adding hydrogen donors 

(amines, cyclic N-vinylamides, thiols) to promote chain peroxidation through which reactive 

radicals are regenerated from peroxy radicals.12 The mechanism of oxygen inhibition with 

non-cleaving chromophores is more complex than that of photocleaving chromophores 

because of the competition between an increased number of photochemical and 

photophysical reaction pathways. A possible route through which eosin is regenerated via 

hydrogen abstraction by peroxy radicals from the semiquinone form of eosin (EH·) has been 

proposed.10,13 However, recent theoretical evidence suggests that despite its kinetic 

feasibility, this reaction alone appears insufficient to explain eosin’s extraordinary resistance 

to excess O2.14

Spectroscopic techniques enable the measurement of reaction kinetics by providing the 

ability to track the absorbance of light by reactants a function of time as a polymerization 

reaction proceeds. An early approach to monitoring polymerization kinetics was to take 

discrete, periodic measurements of a reaction mixture.15 Real-time monitoring of 
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polymerization, and particularly monomer conversion using FTIR, has since become 

routine.16,17 In the UV-visible range, absorbance and fluorescence spectroscopy have been 

employed previously to investigate initiator (dye) regeneration. Slower rates of absorbance 

and fluorescence decay have been associated with regeneration.18,19 In situ UV-Vis and FT-

IR spectroscopy have been used separately to monitor the copolymerization of furan and 

thiophene; UV-Vis spectra were used to determine the relative incorporation of thiophene 

and furan into the polymer based on the characteristic absorption bands of polyfuran and 

polythiophene.20 Decker performed separate measurements with real-time UV-Vis and IR 

spectroscopy to study the kinetics of UV-initiator photolysis and polymerization, 

respectively.21

In some systems, light also interacts with the polymer product via non-absorptive processes 

so that optical measurements contain additional information related to polymer 

structure.22–26 UV-Vis spectroscopy has been used to measure photoinitiator consumption 

and track changes in refractive index during polymerization reactions.27 Kang et al. 

presented a method for determining the chemical cross-link density in real time using UV-

Vis spectroscopy.28 Reed and colleagues developed an online technique for monitoring 

molar mass during polymerization reactions that operates through the continuous withdrawal 

of a small stream of sample that is diluted with solvent and routed through light scattering, 

refractometry and viscometry detectors in series.29,30

Recently, Aguirre-Soto et al. demonstrated a custom coupled UV-Vis/FT-NIR apparatus 

(Fig. 1) that permits simultaneous monitoring of the concentrations of the absorbing initiator 

and the monomer reactive groups in situ without the need for sample extraction.31 This dual 

monitoring technique was used to study the polymerization of bulk methacrylate monomers 

initiated by camphorquinone and amine. In this system, spectral changes were solely due to 

electronic and vibrational transitions without contributions from non-absorptive processes.

Here, we employ dual UV-Vis/FT-NIR monitoring to examine the role of oxygen in a 

radical polymerization reaction by quantifying the eosin concentration using its π-π* 

transition and the monomer vinyl group conversion using the vinyl group NIR overtone 

band (Fig. 1b and c). Previous studies have been limited to monitoring either double bond 

conversion10 or photoinitiator consumption13 in examining the role of oxygen in this 

hydrogel-forming reaction. The advantage of using a set-up that allows for simultaneous 

monitoring of the chromophore consumption and the monomer conversion is that it becomes 

possible to measure how the chromophore is consumed specifically during the inhibition 

period. In order to achieve this goal, it was necessary to address the challenge of signal loss 

due to optical attenuation from time-dependent refraction and scattering of the UV-Vis 

probing beam (i.e. non-absorptive processes). We present a signal deconvolution strategy for 

quantifying the optical attenuation and eosin’s absorbance. We then analyze the data to 

determine the duration of the inhibition period, the rates of eosin consumption in different 

stages of the reaction, and the rate of polymerization. Furthermore, we show for the first 

time how UV-Vis attenuation kinetics provide information about the formation of 

hydrophobic PEGDA-rich microgels, heterogeneities, and swelling during the hydrogel 

polymerization.
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Experimental section

Materials

Poly(ethylene glycol) diacrylate (average Mn 575), triethanolamine (TEA), 1-vinyl-2-

pyrrolidone (VP), and 2′,4′,5′,7′-tetrabromofluorescein disodium salt (eosin Y; E) were 

purchased from Sigma Aldrich. Distilled water was used.

Preparation of monomer solutions

Monomer solutions were prepared with 420 mM PEGDA, 35 mM VP, 210 mM TEA, and 5 

μM eosin Y in DI water (equivalent to 21.6% PEGDA, 2.8% TEA, 0.4% VP, 75.2% water 

by volume). In the case of the purged samples, argon was bubbled through the solution for 5 

minutes prior to transfer to the cuvettes for polymerization. These samples were 

polymerized under Nitrogen flow (8 psi). Between three and five replicates were performed 

at each condition.

Coupled UV-Vis and FT-NIR monitoring set-up

Dual pathlength (10 × 2 mm) PMMA cuvettes (UVette, Eppendorf, Hauppauge, NY) with 

transmission in the 220–1600 nm range were used inside a modified UVette adapter 

(Eppendorf, Hauppauge, NY) with custom optical apertures. The 10 mm pathlength was 

used for UV-Vis probing based on the molar absorptivities of eosin and the vinyl groups, 

while the 2 mm pathlength was used for NIR probing, i.e. to allow detection of the low vinyl 

group concentration from the noise and the broad H2O bands. H2O combination bands at 

1450 nm and 1950 nm broaden the baseline, as shown in Fig. 1c. The sample volume was 50 

μL, which results in sample dimensions of 2 mm × 10 mm × 2.5 mm, where the latter is the 

thickness in the direction of the excitation light from the LED. At the initial eosin 

concentrations used, the 2.5 mm depth ensures operation within the thin-film approximation 

in all experiments. Samples were placed inside a CUV-ALL-UV 4-Way Cuvette Holder 

(Ocean Optics, Dunedin, FL) with SMA connectors for fiber integration. Fiber optic cables 

were connected perpendicularly for UV-Vis and FT-NIR analysis at the same z-plane of ~ 

1.25 mm (half the depth of the sample).

A fiber optic coupled UV-Vis spectrophotometer (USB4000-FL Miniature Fiber Optic 

Spectrometer, Ocean Optics, Dunedin, FL) was used to monitor absorbance within the 350–

1000 nm range. A UV-Vis-NIR light source was used to emit the probing beam (DH-Mini, 

Ocean Optics, Dunedin, FL). The UV-Vis probing light was fed into the cuvette holder via a 

600 μm solarization resistant fiber optic cable (QP-600-1-SR, Ocean Optics, Dunedin, FL), 

and a 50 μm receiving fiber optic cable (P50-1-Vis-NIR, Ocean Optics, Dunedin, FL) was 

connected to the UV-Vis spectrometer. The collimating lens in the cuvette holder and the 

~<1 mm diameter pinhole limit the set of incidence angles of the UV-Vis probing beam in 

this set-up. The acquisition time for the UV-Vis spectrometer was set to ~ 0.5 s (50 ms 

integration time, 10 scans to average) and a boxcar width of 4 was used. A water reference 

spectrum was collected prior to every experiment. Eosin-free solutions consisting of 

PEGDA, VP, and TEA showed no absorption in the UV-Vis region. Only the water peaks 

overlap slightly with the R-C=C-H NIR band. The UV-Vis probing light was adjusted to the 

same initial threshold intensity before every experiment.
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A fiber optic coupled FT-NIR spectrometer (Nicolet Magna-IR Series II, Thermo Scientific, 

West Palm Beach, FL) was used to track the vinyl group concentration. FT-NIR spectra 

were collected with a resolution of 8, a gain of 1, and an optical aperture of 10 with 4 scans 

at each time point. Acquisition time for the FT-NIR was between 0.5 and 3 s. Two 1000 μm 

fibers were used to feed the NIR probing light from the spectrometer to the sample, and 

from the sample back into the InGaAs detector. The FT-NIR spectrometer has a built-in 

white lamp as probing light source.

A high power fiber coupled multi-wavelength light-emitting diode (LED) light source 

including a green 500 nm LED (FC8-LED, Prizmatix, Southfield, MI) was used to excite 

eosin and initiate the polymerization from above the sample. Irradiance (power density) was 

controlled with a built-in potentiometer and measured with a radiometer (6253, International 

Light Technologies, Peabody, MA) within the 400–700 nm range. A 3D printed cap was 

placed on top of the cuvette to restrict the curing light to the sample volume. Negative 

controls were taken by removal of the initiating 500 nm LED to confirm that the 

polymerization is not initiated by either the UV-Vis or the NIR probing beams, within the 

timescale of the polymerization observed with the LED.

Processing of UV-Vis Spectra

As a result of the polymerization reaction, a significant portion of the UV-Vis probing signal 

is lost due to attenuation by refraction and scattering, as observed in Fig. 2. Hence, for each 

time point, baselines were fit to 10 points at each end of the wavelength range of interest: 

430–650 nm. The absorbance value at the wavelength corresponding to eosin’s maximum 

absorbance (λmax= 523 nm) was then monitored as a function of time, subtracting the time-

dependent baseline drift.

In addition, to find the ‘kinetically useful’ region of the UV-Vis absorbance data, the ratio of 

the baseline-corrected absorbance at 500 nm to the absorbance at 523 nm (A500/A523) was 

analyzed. 496 nm is the actual maximum in the LED emission spectrum (see Fig. 2b), but 

the difference between the intensity at 496 and 500 nm is minimal. When the A500/A523 

ratio changes substantially, it is an indication that the signal loss from the UV-Vis probing 

light source is so high that the contamination from the activating LED light (from above) 

becomes significant. The time point that separates the ‘kinetically useful’ from the signal-

limited data was located by fitting a spline to the ratio as a function of time and then 

calculating the maximum second derivative. To ensure that the signal loss does not interfere 

with the measurement of eosin concentration via its absorbance, the end point of the useful 

regime was determined by finding the maximum of the second derivative of the absorbance 

at 523 nm and then fitting 80% of the absorbance data between the end of the inhibition 

period and the second derivative maximum. The maximum second derivative of the 

absorbance at 523 nm occurs before the change in the ratio of the absorbance at 500 nm and 

523 nm. Fitting 80% of the data in this regime serves as an added precaution against 

inadvertently misinterpreting artifacts resulting from signal loss. Single exponentials were fit 

to the inhibition periods and the periods immediately following the onset of polymerization.
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Processing of FT-NIR Spectra

The vinyl group concentration was determined by integrating the peak area between 6229 

and 6128.8 cm−1 for the first overtone of the =C-H bond(s) associated with the acrylate 

group centered at 6180 cm−1 (1618 nm) using the built-in function in the OMNIC software.

The inhibition times were determined by first plotting the conversion, defined as (A0-A)/A0, 

as a function of time. The time for which the conversion value remained within the noise 

level of the FT-NIR detector is considered as the inhibition time, and was determined 

numerically. The longest time for which a value of 0 was calculated for the conversion was 

used as the starting point in an iterative fitting procedure, in which second order polynomials 

were fit to the subsequent 200 data points (~130 seconds). This time was also used as the 

initial guess to find the root (the inhibition time). This fitting procedure was performed 

iteratively until the difference between two consecutive roots was < 0.1 seconds. Second 

order polynomials were used in the fitting procedure in order to balance the effects of noise 

and nonlinearity. The fitting would otherwise have been restricted to smaller range.

The polymerization rate was determined by differentiating the function generated by fitting 

a smoothing spline with a smoothing parameter of 1×10−5 to the raw conversion data 

starting at the root, found through the iterative process. The smoothing parameter was 

selected so that the spline captured trends in the data without capturing the noise (larger 

values resulted in the spline being fit to signal noise). The resulting derivative was 

multiplied by the initial vinyl group concentration to give the rate of polymerization (Rp). 

The intercept of the spline was also calculated and found to agree with the value determined 

through iteratively fitting a second order polynomial. While differential scanning 

calorimetry (DSC) gives a more precise quantification of Rp, we are interested in finding Rp 

trends in response to perturbations, such as the presence of oxygen. The conclusions derived 

from the trends should hold using the conversion data from the FT-NIR.

Dynamic Photorheology

Dynamic Mechanical Analysis in shear mode was performed in a 4400 Ares Rheometer (TA 

Instruments, adapted for in-situ fiber optic coupled LED photopolymerization experiments). 

Frequency and strain sweeps were performed for the initial solution and the final hydrogel 

material to confirm that we are in the viscoelastic region. The storage (elastic) and loss 

(viscous) moduli were then determined by a dynamic time sweep with an 8 mm diameter 

plate and a sample thickness of 500 μm at a frequency of 0.5 rad/s and 1% strain. Irradiation 

with the 500 nm LED at 3.7 mW/cm2 was performed to match the conditions in the UV-

Vis/FT-NIR instrument. It was confirmed that there was no significant evaporation at these 

conditions through a comparison of the results with those obtained using an oil layer around 

the sample. A crossover determination was not possible for the formulations at these 

conditions.
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Results and Discussion

In-situ UV-Vis monitoring of hydrogel polymerization

Eosin consumption was measured by monitoring the maximum absorbance peak for the 

ground state of eosin at 523 nm. This analysis was complicated by attenuation of the UV-

Vis signal through the sample during the polymerization. As shown in Fig. 2, the baseline 

absorbance increases as the polymerization progresses. This is a result of signal loss caused 

by non-absorptive attenuation, i.e. less probing light reaches the detector with time. 

Eventually, scattered light from the initiating 500 nm LED creates a dip that coincides its 

spectral output. An inversion in the absorbance at the peak fluorescence emission 

wavelength of eosin, 550 nm, also occurs. These effects are caused by time-dependent 

changes in refraction and scattering from the hydrogel. It is necessary to account for these 

phenomena in order to extract reliable information about the time-dependent concentration 

of eosin during the polymerization reaction from the UV-Vis data.

Metrics for quantifying optical attenuation (signal loss)

Non-absorbing processes that attenuate the UV-Vis probing light are scattering, refraction, 

and reflection.27 Polymers are known for having a higher refractive index than their 

precursor monomers; this feature forms the basis for holographic polymer gratings.32 Using 

UV-Vis spectroscopy, Schmitt captured changes in refractive index (n) as wavelength-

independent shifts in light transmission during the bulk polymerization of 50-μm thick 

acrylic monomer films (the absorbance baseline increased and decreased before returning to 

its initial level).27 Ultimately, these baseline shifts were attributed to time-dependent 

fluctuations in scattering and refraction arising from density fluctuations and 

heterogeneities.

While scattering phenomena are diverse and highly complex, we attempt herein to correlate 

the more understood types of scattering that have been observed for polymer solutions, 

including PEGDA in water systems: Mie and Rayleigh scattering.33,34 Mie scattering refers 

to an analytical solution to Maxwell’s equations for a few particle geometries, while 

Rayleigh scattering is a simplification of the Mie solution for the case when the particle size 

is much smaller than the wavelength (≤ 0.1λ).35 It is noteworthy that λ-independent Mie 

scattering has a greater forward component (anisotropic) than λ-dependent Rayleigh 

scattering (isotropic). When we analyzed the baseline shifts for the case of the PEGDA 

hydrogels, we noticed that the absorbance baseline in the blue light region (~430 nm) 

increased more steeply than the absorbance baseline at longer wavelengths, e.g. 650 nm 

(Fig. 2b). This form of wavelength dependence is frequently indicative of Rayleigh 

scattering, for which the intensity of the scattered light scales with the inverse of λ4.36 It is 

known that solutions of PEG oligomers in water can scatter light both with Mie and 

Rayleigh characteristics, depending on the PEG content and molecular weight.33

Furthermore, Small Angle Neutron Scattering (SANS)37,38 and Brillouin scattering39 

measurements have confirmed that PEG-based hydrogels are heterogenous and rich 

structures, especially when polymerized via a chain growth mechanism. Lin-Gibson et al. 

have shown SANS evidence for PEGDMA hydrogels of the formation of mesoscale (1–100 
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nm) clusters and domains, which are associated with the mechanical robustness of these 

PEG-based networks.37,38,40 Hence, it appears that hydrophobic PEGDA-rich domains 

within the hydrophilic polymer network as well as carbon-based links of a macrogel can 

fulfill the length-scale requirement for Rayleigh scattering (~40 nm) in the blue-light region.

Consequently, we can utilize a simplified power law expression to separate the more 

strongly λ-dependent Rayleigh scattering from the relatively λ-independent phenomena 

(Mie scattering, reflection, and refraction) that together can lead to non-absorbing optical 

attenuation and baseline shifts as a result. To account for the wavelength independent 

attenuation as well as the apparent wavelength dependent scattering, the intensity of the 

transmitted UV-Vis probing light (I) can be expressed as follows:

where I0 is the incident irradiance and μT is the extinction or attenuation coefficient. μT can 

be expressed as the sum of the processes that lead to optical attenuation

where the subscripts correspond to the coefficients for scattering, refraction, reflection and 

absorbance, respectively. Since we are dealing with non-absorbing processes, μA = 0. This 

leaves us with the expression:

Expressing the modified equation in terms of absorbance (as obtained from the 

spectrophotometer), which in reality is due to non-absorbing optical attenuation, we obtain

where the calculated ‘absorbance’ by the spectrophotometer in the range of wavelengths 

where no molecules absorb corresponds, in reality, to the μT attenuation coefficient with λ-

dependent and λ-independent components. In order to deconvolute these two components 

we express μS as μ′S(1/λ4), assuming a Rayleigh dependence on wavelength.35

In this case, we observe that light transmission decays as a function of time, as opposed to 

Schmitt’s observations where transmission went through a maximum. This indicates that the 

anisotropic Mie component from the heterogeneities is negligible, i.e. there is no exclusive 

increase in forward scattering. Thus, we can lump all λ-independent components into a 

single term with refraction and reflection, μ′R.
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Assuming the above dependence on wavelength, baselines were fit to the absorbance spectra 

using 10 points at each end of the wavelength range of interest: 430–650 nm. This allows for 

an assessment of the relative contributions of the wavelength independent and dependent 

signal loss in the form of μ′S and μ′R. Fig. 3 shows these coefficients as a function of time 

for the sample represented in Fig. 2. In order to permit a comparison of the contribution of 

the two coefficients, μ′S from the time-dependent baseline fitting was multiplied by the 

wavelength-averaged 1/λ4.

Comparing μ′S and μ′R in Fig. 3a & b, we first show that neither μ′S nor μ′R change during 

the 43 s of inhibition where no monomer is consumed. After 43 s, only the λ-dependent 

scattering (μ′S) increases until 90 s of irradiation, which we propose is due to the very early 

stages of the polymerization where the slight increase in molecular weight allows for the 

formation of PEGDA-rich domains in the mesoscale (tens of nanometers).37,38 Between 90 

and 175 s, both μ′S and μ′R increase almost linearly with time. However, during this period μ

′R increases from 0 to 0.15, whereas μ′S increases from 0.02 to 0.04. After 175 s of 

irradiation, μ′S increases dramatically until the 235 s mark, where it goes through a 

maximum. In contrast, μ′R begins its rapid increase around 200 s.

The contribution from μ′S (3% of the total optical attenuation) becomes negligible after 300 

s of irradiation, as seen in Fig. 3c. This behavior was consistent across all of the samples, 

under different curing light intensities and purging conditions, and suggests that the sub-40 

nm heterogeneities in density and/or refractive index are formed during the first stages of 

hydrogel formation, and then disappear as the hydrogel homogenizes.

We propose that μ′S is initially more important because of the formation of nanogels (sub-40 

nm). As these nanogels swell and begin to interconnect, they form microgels and, ultimately, 

a macrogel. Before this macrogel is swollen by the water, its structural features lead to the 

drastic increase in μ′S and μ′R, where μ′S increases first. Once the macrogel starts to expand 

as the water molecules permeate the crosslinked structure, these secondary sub-40 nm 

features composed of carbon-rich linkages (crosslinks) expand to length-scales that are 

closer in size to the probing wavelengths. Hence, the Rayleigh scattering features essentially 

disappear, thus leading to a decrease in μ′S. This suggests that the point where μ′S goes 

through its maximum corresponds to the point at which the sub-40 nm heterogeneities are 

lost due to swelling of the hydrogel and all that remains is a relatively homogenous hydrogel 

with carbon-rich domains throughout the structure. The differences in the refractive index of 

these carbon-rich domains (nPEG=1.459041, nPEGDMA=1.506342) and the surrounding water 

(n=1.3343) explain the dominant contribution of μ′R to the final optical attenuation, as shown 

in Fig. 3. The time at which μ′S goes through a maximum, for both ambient and purged 

conditions, decreases as the light intensity increases (Table S1), a result of a higher rate of 

polymerization (Rp). The conversion where μ′S is at a maximum was consistently between 

0.27 and 0.37 (Table S2) with varying irradiance, further suggesting that the μ′S maximum is 

related to macrogelation.
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In fact, photorheology experiments (Fig. S3) indicate that the start of the modulus increase 

(outside the initially noisy torque values) coincides with the start of the development of μ′R 

at approximately 100 s, whereas the point in time at which the rate of increase of G′ plateaus 

coincides with the time where μ′S goes through a maximum value (~ 253 s). We propose that 

the correlation between these transitions in mechanical properties and the optical attenuation 

parameters strongly supports the initial formation of nanogels, the subsequent and slow 

transition to microgels, and the ultimate accelerated macrogelation, with the final production 

of a mechanically robust gel with a G′ of around 170 kPa. The buildup in the storage 

modulus correlates with the increase in μ′R, as detailed in Fig. S3.

A500/A523 ratio as indicator of signal contamination due to scattering

To determine the point at which optical attenuation undermines reliable interpretation of the 

UV-Vis data, the ratio of the baseline-corrected peak height at 500 nm (the wavelength of 

the LED curing light) to the peak height at 523 nm (the wavelength at which the eosin 

absorbance is at a maximum) was tracked. 500 nm was selected as noise from scattered or 

refracted photons from the initiating LED light becomes significant as the UV-Vis probing 

light is increasingly attenuated, accounting for the logarithmic nature of the Beer-Lambert 

law. For example, at 310 s, the baseline at 500 nm is at ~1.5 AU, which translates into only 

3% transmission of the initial UV-Vis probing light. Hence, if the scattered light from the 

initiating LED originally accounted for 1% of the total photons reaching the detector, now it 

would represent at least 20% of the total photons.

A reduction in the absorbance at 500 nm relative to the absorbance at 523 nm indicates that 

light from the LED curing light is reaching the detector, altering the characteristic 

absorbance spectrum for eosin. It is worth noting that as eosin is consumed and the 

absorbance decreases, some peak broadening is expected and, consequently, a change in the 

ratio of the absorbance at 500 nm to that at 523 nm. However, peak broadening would have 

the opposite effect, contributing to a slight increase in the A500/A523 ratio. Fig. 3d shows the 

normalized baseline fitting parameter μ′S and the ratio of the absorbance at 500 nm to 523 

nm. Around 240 seconds, the ratio of the absorbance at 500 nm to the absorbance at 523 nm 

begins a precipitous descent. This closely follows the μ′S maximum at 235 seconds. These 

transition times and the corresponding average vinyl fractional conversions are summarized 

in Tables S1 and S2. Beyond an average vinyl fractional conversion of 0.3, it is difficult to 

reliably determine the absorbance at 523 nm resulting from eosin in its ground state. 

However, it is still possible to draw conclusions from the change in absorbance prior to this 

transition and this analysis demonstrates the wealth of information contained within the UV-

Vis absorbance data, and the significance of being able to correlate this to FT-NIR results.

Correlating eosin consumption with vinyl conversion from FT-NIR

Having established the contribution of non-absorptive attenuation to the absorbance signal 

and identified the point beyond which initiating LED contamination is observed, we can 

interpret the absorbance of ground state eosin in the context of the conversion data and 

identify the regions from which information about eosin consumption can be reliably 

obtained. The first 43 s during which there is no polymerization (the average vinyl fractional 

conversion is 0) is the inhibition period (Fig. 3a & b). During this time, the oxygen present 
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in solution is thought to react with radicals to form peroxy radicals,44 which are essentially 

unreactive towards propagation and thus effectively inhibit the polymerization. Before the 

onset of polymerization, the absorbance at 523 nm decays at a nearly imperceptible rate 

(Fig. 4a). Once the oxygen in the system has been depleted, the polymerization begins and 

the maximum rate is attained immediately. The absorbance at 523 nm begins to decay more 

rapidly with the onset of polymerization. As the polymerization proceeds and the double 

bond conversion increases, the rate of polymerization slows (Fig. S1). This rate reduction 

occurs as the polymer cross-links and a network forms, slightly slowing the diffusion of the 

monomers and propagating radicals into and out from the PEGDA-rich domains.

After 240 s of irradiation, the rate of absorbance decay increases further. As shown in Fig. 2, 

at this point in the polymerization, an increase in the optical attenuation and significant noise 

from the initiating LED are evident. This transition corresponds closely with the maximum 

in the wavelength-dependent parameter μ′S, which occurs at 235 s, further supporting the 

homogenization of the macrogel as the water permeates and the hydrophobic pockets 

become more uniformly distributed, as depicted in the islets of Fig. 2.

Analysis of eosin photobleaching kinetics as a function of vinyl conversion

As previously noted, the rate of absorbance decay accelerates with the onset of 

polymerization. As shown in Fig. 4, this acceleration was captured quantitatively by fitting 

single exponentials to the inhibition period (region 1) and the period immediately following 

the onset of the polymerization (region 2), but prior to the initiating LED contamination and 

the sharp increase in the baseline absorbance (region 3). The single exponentials are shown 

in red and cyan for regions 1 and 2, respectively.

For the representative sample shown throughout, the exponential decay constants during the 

inhibition period (the first 43 s) and the initial polymerization are, respectively 2.3 (± 0.3) × 

10−4 s−1 and 8.5 (± 0.05) × 10−4 s−1. The rate of decay increases 3.8x with the onset of 

polymerization.

The decay constants increase with light intensity for both the inhibition period and initial 

polymerization period under ambient and argon-purged conditions (Fig. S2). As more light 

reaches the sample, more of the eosin is excited from its ground state to its singlet state. 

From its singlet state, eosin can relax back to its ground state or undergo intersystem 

crossing to its triplet state. Once in its triplet state, eosin can react with itself, oxygen, or 

TEA. The exchange of an electron and proton with TEA produces the semiquinone form of 

eosin and a TEA radical, which can react with a monomer to initiate polymerization or react 

with oxygen to form a peroxy radical. Increasing the light intensity increases the rate at 

which eosin is excited and consequently the rates of the subsequent reactions. Thus, more of 

the eosin is irreversibly photobleached as it is consumed in termination reactions that 

convert it to its leuco form.

The onset of polymerization also has the effect of increasing the decay constant (Fig. S2). 

The decay constants for the initial polymerization are between 3.0–6.3x greater than those 

for the inhibition period. At a curing light intensity of 1.5 mW/cm2, the increase is most 

pronounced with the polymerization decay constant 5.5x higher than the inhibition period 
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decay constant. As the curing light intensity is increased to 3.7, 6.0, and 9.6 mW/cm2, the 

decay constant increases by a factor of 4.5, 3.7 and 3.0, respectively, with the onset of 

polymerization.

For the two higher curing light intensities (6.0 and 9.6 mW/cm2), the average decay constant 

for the polymerization under argon-purged conditions is 1.3–2.1x higher than under ambient 

conditions, whereas at the other curing light intensities used, the polymerization decay 

constants for ambient and purged conditions were similar.

Analysis of the effect of O2: inhibition time and eosin photobleaching

The experiments performed under ambient conditions were conducted in open vessels, 

permitting the diffusion of oxygen into the solution, although, as the polymerization 

progresses and the hydrogel forms, the rate of oxygen diffusion slows. The initial 

concentration of dissolved oxygen should be close to 0.5 mM, the equilibrium concentration 

in water; this is 100x greater than the concentration of eosin. For polymerization to occur, 

the oxygen concentration must be decreased to a level at which radical propagation reactions 

are favored over inhibition reactions. Independent of the curing light intensity, the 

absorbance decreases by 1% during the inhibition period. The consistency of this decrease 

reflects how the oxygen concentration must be reduced below a threshold level for the 

polymerization to proceed.

The slower rate of absorbance decay during the inhibition period suggests that ground state 

eosin is being regenerated in the presence of oxygen. In addition, the less rapid decay of the 

eosin absorbance with the onset of polymerization under ambient conditions relative to 

purged conditions is likely a consequence of the replenishment of oxygen by diffusion as it 

is consumed (the oxygen rate of diffusion takes tens of seconds based on the dimensions of 

the sample and the oxygen diffusivity coefficient in water).45 This effect becomes more 

apparent as the light intensity is increased and the initiation rate and rate of oxygen 

consumption increase.

Slower rates of fluorescence decay have been associated with dye regeneration.19 Xanthene 

dyes, such as eosin, are well known oxygen sensitizers. Oxygen has been reported to react 

with the triplet state of eosin with a rate constant of 1.1×109 M−1s−1.46 The two most 

commonly presented reactions between triplet eosin and oxygen are as follows:47

Of these, the second is considered to be the predominant reaction with a rate constant at least 

two orders of magnitude greater than the first reaction.48 This is one pathway through which 

ground state eosin can be regenerated by oxygen. However, Avens & Bowman have 

presented an alternative route through which eosin can be regenerated:10
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According to this mechanism, the semiquinone eosin (EH·) resulting from the reaction with 

TEA is susceptible to hydrogen abstraction by the peroxy radicals (ROO·) that result from 

the reaction of an initiating TEA radical or propagating radical (here, presented as R·) with 

oxygen. This regenerates the ground state eosin. Whether this reaction or the reaction that 

produces singlet oxygen is primarily responsible for the regeneration of eosin depends on 

the relative concentrations of TEA and oxygen as well as the rate constants for the reactions 

between the triplet state of eosin and oxygen and TEA. The initial concentration of TEA is 

210 mM, 700x the concentration of oxygen. Thus, the probability of a triplet eosin 

encountering TEA is higher. However, the rate constant for the reaction between triplet 

eosin and oxygen is reported to be at least two orders of magnitude higher than that between 

triplet eosin and TEA,46,47 which means that these reactions occur at comparable rates and 

likely both contribute to oxygen regeneration. This would be consistent with Avens & 

Bowman’s suggestion that additional regeneration pathways available to eosin in the 

presence of oxygen, beyond the peroxy radical hydrogen abstraction, may account for its 

ability to overcome 1000-fold excess oxygen as compared with only 100-fold excess 

2,2,6,6-tetramethyl-1-piperidinyloxy (TEMPO) inhibitor.10

Fig. 4b shows the dependence of the inhibition time on the intensity of the initiating LED. 

The linear dependence (slope=−1.07 ± 0.5, R2=0.98) indicates the oxygen is consumed in a 

nonchain process, i.e. that each initiating radical consumes only one oxygen molecule.49 

This is notable as it implies that TEA is not serving as a hydrogen donor to peroxy radicals. 

Due to their reactivity as hydrogen donors, amines, and in particular tertiary amines such as 

TEA, are used as additives to suppress oxygen inhibition.12 In spite of the excess of TEA 

relative to eosin, this analysis suggests that hydrogen donation from TEA does not lead to 

reinitiation of the polymerization, which further implies that hydrogen abstraction processes, 

such as the reaction between peroxy radicals and the semiquinone form of eosin, are not the 

primary pathway through which oxygen inhibition is overcome.

Conclusions

Dual UV-Vis/FT-NIR monitoring allows for simultaneous monitoring of chromophore 

(initiator) and monomer reactive group concentrations. Here, we applied this tool to the 

study of the eosin-activated photopolymerization of PEGDA hydrogels. Contributions from 

non-absorptive processes in addition to the absorptive processes of interest in this study 

added a degree of complexity to proper interpretation of the spectral data. We presented a 

strategy for quantifying signal loss associated with microgelation and network formation, 

accounting for both wavelength-dependent and wavelength-independent light attenuating 

processes and introducing metrics for monitoring the extent of signal loss: a wavelength-

dependent baseline fitting parameter, μ′S, and the ratio of the absorbance at the wavelength 

of the initiating LED to the peak absorbance of the photoinitiator. The values of these 

metrics changed markedly when the average vinyl fractional conversion was between 0.3 
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and 0.4, indicating macrogelation. Practically, these metrics were used to establish an upper 

bound for the reliability of the absorbance data. Having established a method for treating the 

data, we demonstrated how the coupled technique could be used effectively to investigate 

oxygen inhibition and dye regeneration. We showed that the consumption of eosin increases 

by a factor of 3 or more following the inhibition period, a finding consistent with previous 

reports of eosin regeneration by oxygen. Finally, we present evidence suggesting that 

hydrogen abstraction from TEA or the semiquinone form of eosin by peroxy radicals does 

not explain the unusual reactivity of the system described here in the presence of oxygen.

As an added benefit, the method of deconvoluting Uv-vis signals arising from absorptive 

and non-absorptive processes also provided information about the time-dependent structural 

richness of the hydrogel as it formed. The underlying principles of the signal loss 

quantification method are generally applicable. This method could be applied to different 

chromophores with appropriate modifications to the wavelength of interest to analyze the 

dynamic morphology of a wide range of polymer networks.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
a) Photograph of fiber optic coupled UV-Vis/FT-NIR set-up for simultaneous monitoring of 

μM concentrations of eosin and mM concentrations of vinyl group concentration from 

poly(ethylene glycol) diacrylate Mn 575 (PEGDA) and 1-vinyl-2-pyrrolidone (VP). 

Activating light from a green LED (λmax = 496 nm) is shone from above and the entire set-

up is encased within an air-excluding case to enable nitrogen-purged polymerization 

reactions. b) Schematic of polymerizing sample inside a cuvette. Pinholes are used to limit 

the set of incidence angles of the UV-Vis probing light and restrict the amount of scattered 

light to the detector. c) UV-Vis absorbance spectrum of eosin (4 μM) and FT-NIR spectrum 

of PEGDA (420 mM) and VP (35 mM) in water obtained simultaneously.
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Fig. 2. 
a) Eosin absorbance spectra, emission of the initiating LED, and the eosin fluorescence 

emission spectrum for an aqueous solution consisting of 420 mM PEGDA, 35 mM VP, 210 

mM TEA, and 5 μM eosin Y irradiated with a 500 nm LED (3.7 mW/cm2) under ambient 

conditions. b) Time-dependent UV-Vis signal loss with baseline shifting and signal 

contamination from the initiating LED and fluorescence emission. The signal loss is due to 

non-absorptive optical attenuation from changes in refractive index and scattering as the 

hydrogels form. This translates into a reduction of the signal-to-noise ratio that leads to the 

formation of the dips coinciding with the maximum of the LED and the eosin fluorescence 

emission spectrum.
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Fig. 3. 
Baseline fitting parameters for a solution of eosin, TEA, PEGDA, and VP illuminated with 

500 nm light (3.7 mW/cm2). a) Baseline fitting parameter, μ′R, representing wavelength-

independent light attenuation processes shown in black and average vinyl fractional 

conversion in gray. b) Baseline fitting parameter, μ′S, representing wavelength-dependent 

light scatter and normalized by the average of 1/λ4 (1/521nm4), shown in black and average 

vinyl fractional conversion in gray. c) The fraction of light attenuating processes represented 

by wavelength-dependent light scattering as a function of time. The sections shaded in gray 

correspond roughly to nanogelation (left) and macrogelation (right) as supported by 

photorheology (SI). d) The normalized baseline fitting parameter, μ′S, shown on a smaller 

scale in black and the ratio of the absorbance at 500 nm to the absorbance of 523 nm. μ′S 

passes through a maximum concurrently with the rapid decline in the ratio.
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Fig. 4. 
a) Single exponentials (dashed lines) were fit to the inhibition period (region 1-red) and to 

the period immediately following the onset of polymerization (region 2-cyan) for a solution 

of eosin, TEA, PEGDA, and VP illuminated with 500 nm light (3.7 mW/cm2) under ambient 

conditions. The black curve is the baseline-corrected absorbance at 523 nm. b) The 

inhibition time has a linear dependence on irradiance, indicating the absence of chain 

peroxidation. Between three and five replicates were performed at each condition.
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