
MIT Open Access Articles

OpenMC: A State-of-the-Art Monte Carlo 
Code for Research and Development

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Romano, Paul K., Nicholas E. Horelik, Bryan R. Herman, Adam G. Nelson, Benoit 
Forget, and Kord Smith. “OpenMC: A State-of-the-Art Monte Carlo Code for Research and 
Development.” Edited by D. Caruge, C. Calvin, C.M. Diop, F. Malvagi, and J.-C. Trama. SNA + MC 
2013 - Joint International Conference on Supercomputing in Nuclear Applications + Monte Carlo 
(2014).

As Published: http://dx.doi.org/10.1051/snamc/201406016

Publisher: EDP Sciences

Persistent URL: http://hdl.handle.net/1721.1/109853

Version: Author's final manuscript: final author's manuscript post peer review, without 
publisher's formatting or copy editing

Terms of use: Creative Commons Attribution-Noncommercial-Share Alike

https://libraries.mit.edu/forms/dspace-oa-articles.html
http://hdl.handle.net/1721.1/109853
http://creativecommons.org/licenses/by-nc-sa/4.0/


OpenMC: A State-of-the-Art Monte Carlo Code for Research and Development

Paul K. Romano1, Nicholas E. Horelik1, Bryan R. Herman1, Adam G. Nelson2, Benoit Forget1, and Kord Smith1

1Massachusetts Institute of Technology, Department of Nuclear Science and Engineering, 77 Massachusetts Avenue, Cambridge, MA 02139
2University of Michigan, Department of Nuclear Engineering and Radiological Sciences, 2355 Bonisteel Boulevard, Ann Arbor, MI 48104

This paper gives an overview of OpenMC, an open source Monte Carlo particle transport code recently developed at

the Massachusetts Institute of Technology. OpenMC uses continuous-energy cross sections and a constructive solid

geometry representation, enabling high-fidelity modeling of nuclear reactors and other systems. Modern, portable

input/output file formats are used in OpenMC: XML for input, and HDF5 for output. High performance parallel

algorithms in OpenMC have demonstrated near-linear scaling to over 100,000 processors on modern supercomputers.

Other topics discussed in this paper include plotting, CMFD acceleration, variance reduction, eigenvalue calculations,

and software development processes.

KEYWORDS: Monte Carlo, neutron transport, OpenMC, parallel, XML, HDF5

I. Introduction

OpenMC is a relatively young Monte Carlo particle transport

code, having been developed starting in 2011 and first released

to the public in December 2012. While the code does not

benefit from decades of experience and feedback from users

as do other popular Monte Carlo codes such as MCNP(1) and

TRIPOLI,(2) it nevertheless possesses a number of features that

may be very attractive to both users and developers.

Development of OpenMC was spearheaded by the Com-

putational Reactor Physics Group (CRPG) at Massachusetts

Institute of Technology (MIT) as part of a project to develop

scalable parallel algorithms for future exascale supercomputers.

While this was the original focus of the code development ef-

forts, there are now a wide variety of research and development

efforts underway using OpenMC.(3–6) In the last year, the devel-

opment team has also grown to span multiple organizations.

Various aspects of the OpenMC code have been described

previously.(3, 7) However, due to the developmental nature of

the code, many changes have been, and continue to be, made.

The objective of the present work is to give a fairly complete

and up-to-date overview of the present capabilities and features

of OpenMC.

II. Methods

1. Physics

At the present time, OpenMC is capable of simulating only

neutrons either in fixed source1 or k-eigenvalue problems. The

data governing the interaction of neutrons with various nuclei

are represented using the ACE format(8) which is also used by

MCNP and Serpent.(9) ACE-format data can be generated with

the NJOY nuclear data processing system(10) which converts

1Subcritical multiplication problems are not yet supported.

raw ENDF/B data into a representation that is suitable for use in

a Monte Carlo code. The use of a standard cross section format

allows for a direct comparison of OpenMC with other codes

since the same cross section libraries can be used. However,

the downside is that the implementation of physical methods

is necessarily limited by the data that is available in the ACE

format.

An indexing technique(11) based on pointers is used to speed

up energy grid searches when calculating cross sections. For

problems with tens of nuclides or less, the indexing technique

provides a considerable performance benefit with modest ad-

ditional memory requirements. However, with hundreds of

nuclides in a problem, the memory requirements may become

too prohibitive. As a result, alternative energy grid treatments

are now being explored.

OpenMC is capable of faithfully simulating all nuclear reac-

tions producing secondary neutrons, including (n, 2n), (n, 3n),
fission, and level inelastic scattering, according to the various

secondary energy and angle distribution laws in the ACE format

data. Photon transport capability has not yet been implemented,

and thus OpenMC does not explicitly track photon production

resulting from (n, γ) or fission reactions.

To properly treat scattering kinematics when the target nu-

cleus is not at rest, OpenMC uses a free gas approximation(12)

wherein the velocities of the target nuclei are sampled from

a Maxwellian distribution. For thermal neutrons scattering

from bound molecules such as hydrogen or deuterium in water,

graphite, beryllium, etc., the free gas approximation will not

accurately capture the scattering kinematics and S (α, β,T ) scat-

tering law data must be used. The S (α, β,T ) data are given on

ACE files separate from the normal nuclide data. To account

for self-shielding in the unresolved resonance range, OpenMC

uses the probability table method.(13) Probability tables are

included in the ACE data for many nuclides.

The method of successive generations(14) is used to solve

 

 
DOI: 10.1051/
C© Owned by the authors, published by EDP Sciences, 2014

/2014
 SNA + MC 2013, 0

snamc 0
(2014)6016

6016

Article available at http://sna-and-mc-2013-proceedings.edpsciences.org or http://dx.doi.org/10.1051/snamc/201406016

http://sna-and-mc-2013-proceedings.edpsciences.org
http://dx.doi.org/10.1051/snamc/201406016


k-eigenvalue problems. The user also has the option to group

multiple generations into a “batch” to reduce correlation be-

tween realizations of the tally random variables.(15) Like

MCNP, OpenMC keeps track of the collision, absorption, and

track-length estimators of ke f f and then calculates a minimum-

variance combined estimator based on the covariance matrix

of the three single estimators. To assess convergence of the

source distribution, the user can also define a mesh over which

the Shannon entropy should be calculated.

2. Geometry

In order to model arbitrarily complex geometric objects,

OpenMC uses a constructive solid geometry representation.

In the current implementation, closed volumes, or cells, can be

represented as the intersection of multiple half-spaces. Each
half-space is in turn defined as the positive or negative side of a

plane or quadratic surface. This allows curved surfaces such as

spheres and cylinders to be modeled exactly with no error due

to mesh discretization. Most geometries of interest in particle

transport can be modeled with first and second-order surfaces

with the exception of some exotic geometries, e.g., a torus in a

fusion system where a fourth-order equation is required. The

restriction of closed volumes to only those that are formed by

the intersection of surfaces (so-called simple cells) results in

greater simplicity of the geometry implementation. However,

the burden is shifted to the user who may then need to break up

certain closed volumes into multiple cells.

In addition to the simple geometry constructs described

above, OpenMC provides constructs that allow the user to

model a two or three-dimensional structured mesh consisting

of quadrilaterals. These constructs are useful for modeling

the core and assembly layout in a variety of commercial and

research reactor designs. As in MCNP and Serpent, these re-

peated structures are handled through the use of universes, a
collection of cells occupying all of space that may be substi-

tuted within another closed volume. A universe may also be

translated and/or rotated. Transmitting, vacuum, or reflective

boundary conditions can be applied to any surface, thus giving

the user full flexibility in the treatment of boundaries.

2.1. Geometry Plotting

Currently two different plotting capabilities are available in

OpenMC. The first is a 2D raster plotting capability that allows

the user to visualize the geometry along a cut plane. Plots

can be colored by unique material or cell, and users have the

option to selectively include/exclude certain regions. The 2D

plot is written to a portable pixmap (.ppm) file which is natively

viewable on many Linux distributions. Since the PPM file is

uncompressed, an image converting utility can significantly

reduce the size of the plot by converting it to a compressed

format such as portable network graphics (.png). Figure 1

shows a 2D raster plot of a model of the Advanced Test Reactor

(ATR).

In addition to 2D raster plotting, a new plotting capability

has been added to OpenMC that allows for the visualization of

geometry in 3D using standard viewers such as ParaView(16)

Figure 1: Cross-sectional view of a section of an OpenMC model
of the Advanced Test Reactor (ATR).

and VisIt.(17) By specifying a uniform rectilinear grid of vox-

els (analogous to image pixels), users can produce a binary

file containing the cell or material ids for each cell in the grid.

These files are created with the same raster method used by the

2D plotter in OpenMC, where a ’find_cell’ routine is called

to determine the attributes of the geometry at each voxel cen-

ter. Since this ’find_cell’ routine is the same one used during

simulation, the voxel information produced by this method is

representative of the actual simulation geometry, limited only

by the user-specified granularity of the voxels.

Once the voxel binary file is produced, users can process the

data into a standard 3D datafile and visualize however desired.

For convenience, a Python utility is provided to convert voxel

files into either SILO(18) or VTK(19) files that can be viewed in

many well-established 3D data visualization tools. The example

provided by this utility easily enables users to write custom

scripts that section geometry features or mask specific cells or

materials. For example, Figure 2 and Figure 3 show plots of a

PWR grid spacer and burnable absorber pin, respectively, with

various materials and features clipped for easy inspection of

the geometry.

Figure 2: 3D plot of a grid spacer in the BEAVRS benchmark(20)

as shown in ParaView.

 Web of Conferences

06016-p.2



Figure 3: 3D plot of a burnable absorber pin in the BEAVRS
benchmark as shown in ParaView.

3. Tallies

OpenMC has a flexible, low-overhead tally system which en-

ables users to obtain physical results of interest. Tallies are

defined by combinations of filters and scores, borrowing ter-

minology from a paper by Sutton et al.(21) Each filter limits

what events can score to the tally based on the attributes of

the particle. For example, a filter could limit scoring events to

particles traveling within a specified cell or a specified range of

pre-collision energies. A full and up-to-date list of filters which

may be applied to tallies can be found in the OpenMC User’s

Guide.(22) Each score identifies an actual physical quantity to

be scored upon an event which matches the specified filters.

Some examples of valid scores include the flux, fission reaction

rate, neutron production rate, or local energy deposition from

fission. In addition to a set of defined scores, it is also possible

to obtain reaction rates for an arbitrary MT value. Users also

have the option of scoring tallies for specific nuclides within

a material. If no nuclides are specified, macroscopic cross

sections for the material are used in determining scores.

With filters for pre- and post-collision energy and scoring

functions for scattering and fission production, it is possible

to use OpenMC to generate cross sections with user-defined

group structures. The coarse mesh finite difference (CMFD)

solver within OpenMC, discussed at length later, uses the tally

system directly to obtain multi-group cross sections.

All tallies are scored using a track-length estimator by default.

However, for tallies requiring post-collision attributes of the

particle, e.g., scattering moments, a collision estimator is used

instead. Users can also explicitly specify that the track-length

or collision estimator should be used for a given tally.

Historically, some Monte Carlo codes have suffered severe

performance penalties when tallying a large number of quanti-

ties.(23) Care must be taken to ensure that a tally system scales

well with the total number of tally bins. In OpenMC, a mapping

technique is used that allows for a fast determination of what

tally/bin combinations need to be scored to a given particle’s

phase space coordinates. For each discrete filter variable, a list

is stored that contains the tally/bin combinations that could be

scored to for each value of the filter variable. If a particle is in

cell n, the mapping would identify what tally/bin combinations

specify cell n for the cell filter variable. In this manner, it is not

necessary to check the phase space variables against each tally.

Note that this technique only applies to discrete filter variables

and cannot be applied to energy bins. For energy filters, it is

necessary to perform a binary search on the specified grid.

4. Parallelism

OpenMC is capable of running in parallel using the message

passing interface (MPI). Particles within a batch are divided

equally among processes such that each processor has approx-

imately the same amount of work to perform. Results of a

parallel calculation are reproducible, i.e. the same result is

given regardless of the number of processors that is used. At

the time of writing, an implementation of shared-memory par-

allelism via the OpenMP API is still under development.

A substantial amount of research and development related

to OpenMC has focused on scalable parallel algorithms. This

R&D has culminated in the development of two algorithms

which have enabled nearly linear scaling to over 100,000 pro-

cesses. The first algorithm is related to the collection and

sampling of fission sites, which are stored in an array known as

the fission bank. The algorithm forgoes a typical master-slave

communication pattern in favor of nearest-neighbor exchanges

of fission/source sites. A derivation and analysis of the algo-

rithm complexity is given in Romano and Forget;(24) the salient

point is that nearest-neighbor exchanges, in the context of this

algorithm, have an expected communication cost O(
√

N/p)
whereas the computational work scales as O(N/p). Thus, arbi-
trarily good scaling can be achieved. Previous scaling results

were reported in (7) for the Jaguar supercomputer at Oak Ridge

National Laboratory. Those results alongside with new scaling

results on the Intrepid Blue Gene/P supercomputer at Argonne

National Laboratory are shown in Figure 4.

2
2

2
4

2
6

2
8

2
10

2
12

2
14

2
16

2
18

Number of Processors

10
3

10
4

10
5

10
6

10
7

10
8

10
9

P
a
rt
ic
le
s
p
e
r
s
e
c
o
n
d

Cray XK6 Observed

Cray XK6 Ideal

Blue Gene/P Observed

Blue Gene/P Ideal

Figure 4: Parallel scaling for the Monte Carlo Performance
Benchmark on the Cray XK6 (Jaguar) and Blue Gene/P (In-
trepid) supercomputers.

While the novel fission bank algorithm substantially reduces

communication between fission generations, it is still necessary

SNA + MC 2013

06016-p.3



to combine tally results from multiple processors which might

entail significant network communication. The communica-

tion associated with synchronizing tallies across processors is

proportional to both the number of processors and the number

of tally bins. Thus, for problems with very large tally require-

ments, and hence large computational requirements, this source

of communication can erode parallel efficiency. It was shown

in(25) that by grouping realizations of tally random variables

over successive generations rather than over multiple proces-

sors, the communication associated with tallies can be reduced

dramatically. While the reported sample means will not change

when this technique is employed, the variance of the sample

mean will in general be different. However, the expected value

of the variance remains the same. A user input option is avail-

able in OpenMC that modifies the grouping of tally results to

reduce overall communication.

5. Variance Reduction

Extensive variance reduction techniques are not yet available

in OpenMC. However, a survival biasing method has been

implemented that can, under certain circumstances, increase

the figure-of-merit in a simulation. When survival biasing is

used, absorption never occurs explicitly and instead, a particle’s

weight is reduced by the probability that it would have been

absorbed at each collision. Survival biasing is not turned on by

default in OpenMC, but can be enabled by the user. The weight

cutoff and survival weight are also adjustable parameters in the

user input.

For k-eigenvalue problems, users can optionally use the uni-

form fission site method(15) on a Cartesian mesh to help flatten

the distribution of variance in problems with non-uniform parti-

cle densities. The effectiveness of this method as implemented

in OpenMC is discussed at greater length in.(3) One limitation

currently is that the implementation assumes that the volume

of fuel in each mesh cell is equal.

6. CMFD Acceleration

The coarse mesh finite difference (CMFD) method has been

widely applied in deterministic nodal diffusion calculations

to reduce the number of fission source iterations. Recently,

CMFD has been applied to reactor calculations using multi-

group Monte Carlo(26) to accelerate convergence of the fission

source. The CMFD acceleration method has been integrated

into OpenMC. CMFD acceleration works by solving the multi-

group neutron diffusion equation after each Monte Carlo batch

to obtain a better estimate of the global fission source. This

process can be characterized by three steps:

1. Compute diffusion parameters by preserving OpenMC

neutron balance on a coarse mesh.

2. Solve the multi-group neutron diffusion equation to obtain

fission source distribution.

3. Force Monte Carlo to use fission source distribution from

Step 2 by modifying source weights.

In order to use CMFD acceleration, the user needs to spec-

ify the mesh over which to calculate multi-group cross sec-

tions. Solution of the linear system of diffusion equations relies

on PETSc,(27) and so OpenMC must be compiled against the

PETSc libraries.

III. Design and Development

OpenMC is written in standard Fortran 2008. While C and C++

were considered as other possible languages for development,

ultimately Fortran 2008 was chosen due toMIT’s research focus

on parallel algorithms coupled with the availability of co-array

features in the Fortran 2008 standard. For input processing,

OpenMC relies on a modified version of the xml-fortran(28)

parser. Almost all important data are encapsulated in derived

types. While object-oriented features are available in Fortran

2008, their use in OpenMC is largely precluded by limited

compiler support.

1. Compilation and Installation

OpenMC has been successfully compiled with the gfortran,

Intel, PGI, Cray, and IBM compilers on various platforms/ar-

chitectures including several Linux distributions, Mac OS X,

and Windows 7. On Windows, OpenMC can be compiled using

gfortran within cygwin or the MinGW port of gcc. Recently, a

binary package has been available for Debian derivatives via

an Ubuntu Personal Package Archive (PPA). By installing from

the binary package, the package manager ensures that all de-

pendencies, e.g., MPI, are satisfied, and the user is spared the

trouble of building the code.

2. Input/Output

2.1. Input

OpenMC uses Extensible Markup Language (XML) for all

user input files. The use of XML enables developers to make

changes to the user input format easily, adding or modifying

options, and the xml-fortran parser within OpenMC gracefully

handles the changes with little effort from the developer. Users

are free to form their input files as they wish, as long as the

overall structure of the files is well-formed and the content

conforms to the specification of the file.

Another notable difference between OpenMC and many

other transport codes is that the input is divided into multi-

ple files rather than one file. The following files are required

for every simulation:

• settings.xml – describes all simulation parameters, e.g.,

how many particles to run and the starting source, and

other options that can be turned on or off.

• materials.xml – describes the composition of all materials

in the model by their constituent elements/nuclides and

densities. Natural elements are automatically expanded

into individual nuclides by their natural abundance.

• geometry.xml – describes the model geometry using con-

structive solid geometry primitives (second-order surfaces,

cells, universes, lattices) and assigns materials to cells.

 Web of Conferences

06016-p.4



In addition to these three basic inputs, there are a number of

optional XML files:

• tallies.xml – specifies what physical quantities the user

wants tallied during the simulation.

• plots.xml – describes parameters for 2D or 3D plots that

are created when OpenMC is run in plotting mode.

• cmfd.xml – describes geometry and execution parameters

for coarse mesh finite difference acceleration.

As one example of the XML format, Figure 5 shows the materi-

als.xml describing two materials used in the U233-MET-FAST-

002 benchmark from the International Handbook of Evaluated

Criticality Safety Benchmark Experiments.(29)

<?xml version="1.0"?>
<materials>

<default_xs>70c</default_xs>

<material id="1">
<density value="18.644" units="g/cm3" />
<nuclide name="U-233" ao="4.7312e-2" />
<nuclide name="U-234" ao="5.2770e-4" />
<nuclide name="U-238" ao="3.3015e-4" />
</material>

<material id="2">
<density value="18.80" units="g/cm3" />
<nuclide name="U-235" ao="4.4892e-2" />
<nuclide name="U-238" ao="3.2340e-3" />
</material>

</materials>

Figure 5: Material XML file for benchmark model U233-MET-
FAST-002.

A set of schemata based on the RELAX NG schema lan-

guage(30) makes it possible to verify not only that an input file

is well-formed but also that it has the correct tags, attributes, and

datatypes. There are two ways that input files can be checked

for conformance against the schemata. The first method is

post-validation where an input file is checked against a corre-

sponding schema using a tool such as jing.(31) A more elegant

method to check conformance is real-time validation with an

editor such as GNU Emacs. When using GNU Emacs to write

an input file, the input is continually checked against a corre-

sponding schema (based on the root element in the document).

If any errors are found, they are highlighted in red giving the

user immediate visual feedback. Figure 6 shows an example of

an input file being validated against a schema in GNU Emacs.

2.2. Output

When a simulation in OpenMC completes, a number of output

files are written to disk. The number and format of these files

depends on how the code was compiled and what options are

given in the user input. The most common output files include:

1. tallies.out – plain text ASCII file listing the mean and

standard deviation (or confidence interval half-width) for

each tally bin. For simple problems with only a few tallies,

this file is likely adequate for analyzing results.

Figure 6: Example of an XML input file in GNU Emacs being
validated against a corresponding RELAX NG schema in real-
time. Errors in the input are automatically highlighted in red.

2. State point files – binary files containing all the infor-

mation needed either to determine confidence intervals

for tallies or to restart the run completely. By default,

one state point file is written at the end of the simulation,

but the user can specify particular batches at which state

points should be written.

In addition to these files, numerous other output files may be

generated at the request of the user or upon hitting an error in

the code.

State point files are the primary means of obtaining, inter-

preting, and post-processing tally results. By itself, a state

point file is not very useful since it is in an arbitrary binary

format. However, a Python module, statepoint.py, is available

that makes it easy and intuitive to extract and visualize tally

results. In addition, a graphical user interface built on top of

the statepoint.py module and PyQt provides mesh tally plotting.

Figure 7 shows a screenshot of the PyQt mesh tally plotting

application. Alternatively, a separate Python utility is provided

to process mesh tallies from statepoints into VTK or SILO files.

For example, Figure 8 shows a 3D visualization of a mesh tally

in ParaView.

Figure 7: Example of PyQt mesh tally plotting application dis-
playing a radial flux distribution.

SNA + MC 2013

06016-p.5



Figure 8: Example of a 3D visualization of a mesh tally using
ParaView.

State point files (and other binary files) can be written either

in a raw binary format or in HDF5 format.(32) While the HDF5

format should be preferred and ensures portability across dif-

ferent architectures, the former is made available to ensure that

users can take advantage of state point capabilities even on

systems where HDF5 is unavailable.

One recent capability added to OpenMC is the ability to

create particle restart files. These files contain a particle’s

attributes at birth, as well as the random number seed used to

start its history, and are created whenever OpenMC hits a “fatal

error” related to geometry tracking causing it to abort. This

allows the particle history to be simulated in order to better

determine what caused OpenMC to abort unexpectedly.

3. Documentation

Extensive documentation for the OpenMC code is available

online at http://mit-crpg.github.io/openmc. The doc-

umentation consists of the following major pieces:

• Release notes describing what changes were made be-

tween subsequent releases, what new features were intro-

duced, what bugs were fixed, and what platforms the code

is known to run on.

• A theory and methodology section describing in detail

the algorithms used for geometry, cross sections, random

number generation, physics, tallies, k-eigenvalue calcula-

tions, and parallelization in OpenMC including derivations

of key equations. This section contains a wealth of infor-

mation and should be the first stop for anyone wondering

how the code works.

• A user’s guide that describes how to build and install

OpenMC, how to write XML input files and the various el-

ements available, how to post-process results and visualize

data, and a troubleshooting guide.

• A developer’s guide that contains a description of impor-

tant data structures and variables, a style guide for devel-

opers active on the master branch OpenMC, and binary

file format specifications.

In addition to the online documentation, users and developers

can discuss various issues on separate Google Groups mailing

lists.

All documentation for OpenMC is written in a markup lan-

guage called reStructuredText. This markup format can be

parsed and translated by Sphinx(33) to produce documentation

as a website (.html), a PDF, or various other formats.

4. Version Control and Workflow

All version control of OpenMC and its documentation is han-

dled through the git distributed revision control system. In

addition to git, the web-based hosting service GitHub is used to

provide a central host, issue/milestone tracking, workflow con-

trol via pull requests, a wiki, and documentation hosting. The

combination of git and GitHub enables developers to maintain

high productivity in collaborating with one another, testing out

new ideas, and documenting their work.

Active development on OpenMC is conducted using an

integration-manager workflow as described by Chacon.(34) This

workflow works particularly well with the GitHub hosting ser-

vice that is used by OpenMC. On GitHub, each developer

can easily fork a project creating their own public copy of

the OpenMC repository. They are then free to make whatever

changes and modifications they wish and are not required to

have any special access on the original repository. If a devel-

oper wants their changes to be merged into the official project,

they can issue a pull request — at this point, the person desig-

nated as the integration manager then reviews the request and,

if the changes are acceptable, merges it in. Figure 9 illustrates

the general integration-manager workflow.

mit-crpg/openmc
master

gh-pages

ideabranch1

ideabranch2

paulromano/openmc
master

stages

tallyserver

paulromano/openmc-private
master

private-research

bhermanmit/openmc
master

cmfd

diffusion

bhermanmit/openmc-private
master

awesome-innovation

nhorelik/openmc
master

energy

energy2

nhorelik/openmc-private
master

money-making-idea

Integration
Manager

Figure 9: Integration manager workflow pattern used in
OpenMC development.

IV. Licensing

OpenMC is licensed under the MIT/X open source license. This

permissive license allows any user to copy, modify, redistribute,

and even sell the software if they so wish. Unlike copyleft

licenses such as the GNU General Public License, it does not

require that modifications to the code be released under the

same license, and thus commercial entities are free to use any

part of the code within their own proprietary software without

having to release it for free.

 Web of Conferences

06016-p.6



V. Conclusions

OpenMC has been developed from scratch with a focus on high-

performance algorithms and modern software development

practices. While the code is relatively young, it is already

being used in a number of advanced R&D projects including

the Consortium for Advanced Simulation of LWRs and the

ANL Center for Exascale Simulation of Advanced Reactors.

OpenMC is available as free software under an open source

license, enabling wider collaboration within the nuclear science

and engineering community.

Acknowledgments

This research was performed under appointment of the first and

third authors to the Rickover Fellowship Program in Nuclear

Engineering sponsored by Naval Reactors Division of the U.S.

Department of Energy. This work was also supported in part

by the Consortium for Advanced Simulation of Light Water

Reactors, an Energy Innovation Hub for Modeling and Simu-

lation of Nuclear Reactors under U.S. Department of Energy

Contract No. DE-AC05-00OR22725, and by the Office of Ad-

vanced Scientific Computing Research, Office of Science, U.S.

Department of Energy, under Contract DE-AC02-06CH11357.

References

1) F. B. Brown, B. Kiedrowski, and J. Bull, “MCNP5-1.60 Release

Notes,” LA-UR-10-06235, Los Alamos National Laboratory

(2010).

2) C. M. Diop et al., “TRIPOLI-4: A 3D Continuous-Energy Monte

Carlo Transport Code,” Proc. PHYTRA1: First International Con-
ference on Physics and Technology of Reactors and Applications,
Marrakech, Morocco, Mar. 14–16, 2007.

3) P. K. Romano et al., “Progress and Status of the OpenMC Monte

Carlo Code,” Proc. Int. Conf. Mathematics and Computational
Methods Applied to Nuclear Science and Engineering, Sun Valley,

Idaho, May 5–9, 2013.

4) A. G. Nelson and W. R. Martin, “Improved Convergence of

Monte Carlo Generated Multi-Group Scattering Moments,” Proc.
Int. Conf. Mathematics and Computational Methods Applied to
Nuclear Science and Engineering, Sun Valley, Idaho, May 5–9,

2013.

5) A. R. Siegel, K. Smith, P. K. Romano, B. Forget, and K. Felker,

“The effect of load imbalances on the performance of Monte Carlo

codes in LWR analysis,” J. Comput. Phys., 235, 901–911 (2013),

doi:10.1016/j.jcp.2012.06.012.

6) A. R. Siegel, K. Smith, P. K. Romano, B. Forget, and K. Felker,

“Multi-core performance studies of a Monte Carlo neutron trans-

port code,” Int. J. High Perform. Comput. Appl. (2013), Accepted.

7) P. K. Romano and B. Forget, “The OpenMC Monte Carlo Par-

ticle Transport Code,” Ann. Nucl. Energy, 51, 274–281 (2013),

doi:10.1016/j.anucene.2012.06.040.

8) X-5 Monte Carlo Team, “MCNP - A General Monte Carlo

N-Particle Transport Code, Version 5, Volume III: Developer’s

Guide,” LA-CP-03-0284, Los Alamos National Laboratory

(2008).

9) J. Leppänen, “Serpent — a Continuous-energy Monte Carlo

Reactor Physics Burnup Calculation Code, User’s Manual,” VTT

Technical Research Centre of Finland (2012).

10) R. E. MacFarlane, D. W. Muir, R. M. Boicourt, and A. C. Kahler,

“The NJOY Nuclear Data Processing System, Version 2012,” LA-

UR-12-27079, Los Alamos National Laboratory (2012).

11) J. Leppänen, “Two practical methods for unionized energy grid

construction in continuous-energy Monte Carlo neutron transport

calculation,” Ann. Nucl. Energy, 36, 878–885 (2009).

12) T. M. Sutton, T. H. Trumbull, and C. R. Lubitz, “Comparison

of Some Monte Carlo Models for Bound Hydrogen Scattering,”

Proc. Int. Conf. Mathematics, Computational Methods, and Reac-
tor Physics, Saratoga Springs, New York, May 3–7, 2009.

13) L. B. Levitt, “The Probability Table Method for Treating Unre-

solved Neutron Resonances in Monte Carlo Calculations,” Nucl.
Sci. Eng., 49, 450–457 (1972).

14) J. Lieberoth, “A Monte Carlo Technique to Solve the Static Eigen-

value Problem of the Boltzmann Transport Equation,” Nukleonik,
11, 5, 213–219 (1968).

15) D. J. Kelly, T. M. Sutton, and S. C. Wilson, “MC21 Analysis

of the Nuclear Energy Agency Monte Carlo Performance Bench-

mark Problem,” Proc. PHYSOR – Advances in Reactor Physics –
Linking Research, Industry, and Education, Knoxville, Tennessee,

Apr. 15–20, 2012.

16) A. H. Squillicote, The ParaView Guide: A Parallel Visualization
Application, Kitware, Inc. (2007).

17) VisIt Development Team, “VisIt User’s Manual, Version 1.5,”

UCRL-SM-200449, Lawrence Livermore National Laboratory

(2005).

18) Silo Development Team, “Silo User’s Guide for Version 4.8,”

LLNL-SM-453191, Lawrence Livermore National Laboratory

(2010).

19) Kitware, Inc., VTK User’s Guide, 11th edition, (2010).

20) N. Horelik, B. Herman, B. Forget, and K. Smith, “Benchmark

for Evaluation and Validation of Reactor Simulations (BEAVRS),”

Proc. Int. Conf. Mathematics and Computational Methods Ap-
plied to Nuclear Science and Engineering, Sun Valley, Idaho,

May 5–9, 2013.

21) T. M. Sutton et al., “The MC21 Monte Carlo Transport Code,”

Proc. Joint International Topical Meeting on Mathematics& Com-
putation and Supercomputing in Nuclear Applications, Monterey,

California, Apr. 15–19, 2007.

22) P. K. Romano, “The OpenMC Monte Carlo Code — OpenMC

Documentation,” http://mit-crpg.github.io/openmc, ac-
cessed April 27, 2013.

23) D. V. Veen and J. E. Hoogenboom, “Efficiency Improvement

of Local Power Estimation in the General Purpose Monte Carlo

Code MCNP,” Progress in Nuclear Science and Technology, 2,
866-871 (2011).

24) P. K. Romano and B. Forget, “Parallel Fission Bank Algorithms

in Monte Carlo Criticality Calculations,” Nucl. Sci. Eng., 170, 2,
125–135 (2012).

25) P. K. Romano and B. Forget, “Reducing Parallel Communication

in Monte Carlo Simulations via Batch Statistics,” Trans. Am.
Nucl. Soc., 107, 519–522 (2012).

26) M. J. Lee, H. G. Joo, D. Lee, and K. Smith, “Monte Carlo Reactor

Calculation with Substantially Reduced Number of Cycles,” Proc.
PHYSOR – Advances in Reactor Physics – Linking Research,
Industry, and Education, Knoxville, Tennessee, Apr. 15–20, 2012.

27) S. Balay et al., “PETSc Web page,” http://www.mcs.anl.
gov/petsc, 2013, (accessed April 29, 2013).

28) A. Markus, “XML-Fortran Page,” http://xml-fortran.
sourceforge.net, accessed April 23, 2013.

29) NEA Nuclear Science Committee, “International Handbook of

Evaluated Criticality Safety Benchmark Experiments,” NEA/N-

SC/DOC(95)03, OECD Nuclear Energy Agency (2012).

30) ISO/IEC JTC1/SC34, “Information technology – Document

SNA + MC 2013

06016-p.7



Schema Definition Language (DSDL) – Part 2: Regular-grammar-

based validation – RELAX NG,” ISO/IEC 19757-2:2008, Inter-

national Organization for Standardization (2008).

31) Thai Open Source Software Center Ltd., “Jing - A RELAX

NG validator in Java,” http://www.thaiopensource.com/
relaxng/jing.html, 2012, (accessed April 29, 2013).

32) S. Koranne, “Hierarchical Data Format 5: HDF5,” in Handbook
of Open Source Tools, p. 191–200, Springer US, 2011.

33) G. Brandl, “Sphinx Python Documentation Generator,” http:
//sphinx-doc.org, 2013, (accessed April 29, 2013).

34) S. Chacon, Pro Git, Apress, Berkeley, California (2009).

 Web of Conferences

06016-p.8


