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Abstract

We describe the red phosphorescence exhibited by a class of structurally simple 

benzo[2,1,3]thiadiazoles at room temperature. The photophysical properties of these molecules in 

deoxygenated cyclohexane, including their absorption spectra, steady-state photoluminescence and 

excitation spectra, and phosphorescence lifetimes, are presented. Time-dependent density 

functional theory (TD-DFT) calculations were carried out to better understand the electronic 

excited states of these benzo[2,1,3]thiadiazoles and why they are capable of phosphorescence.

Graphical Abstract

INTRODUCTION

Molecules capable of phosphorescence at room temperature have been utilized in a variety 

of technologies, most notably in light-emitting diodes (LEDs) for next-generation electronic 

displays.
1,2 Organometallic complexes containing platinum or iridium are often bright 

phosphorescent emitters because spin-orbit coupling induced by these heavy metal atoms 
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bypass the quantum mechanical restrictions that prevent intersystem crossing (ISC) from 

occurring.
3
 Non-metallated organic molecules are also capable of ISC and are commonly 

investigated as triplet photosensitizers.
4
 However, other classes of such materials may also 

produce phosphorescence at room temperature. For example, phosphorescent emission 

under ambient conditions has been observed from organic molecules dispersed in polymeric 

hosts
5–9

, zeolites,
10

 and various classes of non-metallated solids, including halogenated 

benzophenones
11

 and benzaldehydes,
12,13

 carbazole-containing materials,
14,15

 naphthalene 

diimides,
16

 persulfurated aromatics,
17–19

 and tellurophenes.
20,21

 However, observing 

measurable phosphorescence from metal-free organic molecules dissolved in liquids at room 

temperature is often a challenging feat due to rapid non-radiative dissipation of a triplet 

state’s energy under these conditions. As a result, few non-metallated organic molecules are 

known to produce significant phosphorescence in solution at room temperature.
22–25

Benzo[2,1,3]thiadiazoles constitute a category of heteroaromatic molecules that are widely 

used in the development of fluorescent π-conjugated organic materials.
26

 We herein present 

the room-temperature red phosphorescence exhibited by four benzo[2,1,3]thiadiazoles in 

cyclohexane and describe their corresponding excited-state electronic properties using 

computational methods.

RESULTS AND DISCUSSION

Our study was prompted by the observation of room-temperature phosphorescence from 4,7-

dibromo-5,6-bis(tetradecyloxy)benzo[2,1,3]thiadiazole (1-Br, Figure 1a) and 4,7-diiodo-5,6-

bis(tetradecyloxy)benzo[2,1,3]thiadiazole (1-I, Figure 1d), both of which are heteroaromatic 

linkers our laboratory has used to construct fluorescent semiconducting polymers.
27,28

 The 

absorption spectra of these two molecules in cyclohexane at 50 μM are primarily confined to 

the ultraviolet region and under aerobic conditions these solutions exhibit extremely weak 

blue fluorescence when excited at λex = 370 nm. However, after deoxygenation with N2 gas, 

1-Br and 1-I demonstrate profoundly red-shifted emission maxima at λmax = 642 nm and 

λmax = 643 nm, respectively (Figures 1b and 1e). We assigned these unexpected red 

emissions as phosphorescence
29

 as a result of the large downconversions of absorbed energy 

that results from ISC as well as the oxygen quenching of the long-lived triplet states. The 

phosphorescence quantum yields (ΦP) of 1-Br and 1-I in degassed cyclohexane are 0.55% 

and 0.59%, respectively. Excitation spectra monitored at λem = 575 nm confirm that 

phosphorescence originates from 1-Br and 1-I by matching the structure of their 

corresponding absorption spectra (Figures 1c and 1f).

Because phosphorescence requires molecules to undergo ISC, the resulting 

photoluminescence lifetimes (τP) often occur on microsecond or millisecond time scales. 

Time-dependent transient photoluminescence spectroscopy was employed to determine if 

deoxygenated solutions of 1-Br and 1-I in cyclohexane possess such long lifetimes. Under 

these conditions, the photoluminescence of each sample undergo monoexponential decays 

on the microsecond-time scale (Figure 2). By fitting the intensities of the delayed responses 

to a first-order kinetic model with respect to time, the data reveal that 1-Br and 1-I possess 

τP of 2.8 μs and 3.6 μs, respectively.
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Following these results, we hypothesized that 1-Br and 1-I may be undergoing ISC and 

phosphorescence as a result of the influence of the heavy halides on their electronic 

properties. To investigate this possibility, we synthesized dichloride 1-Cl and examined its 

photophysical properties in cyclohexane. 1-Cl was accessed by reacting 5,6-

bis(tetradecyloxy)benzo[2,1,3]thiadiazole with N-chlorosuccinimide in the presence of 

iron(III) chloride (Scheme 1). Although it possesses an absorption spectrum similar to those 

of 1-Br and 1-I, 1-Cl primarily demonstrates blue fluorescence at λmax = 424 nm with 

almost no red emission under deoxygenated conditions (Figure 3). Our results support the 

possibility that phosphorescence is facilitated by a heavy atom effect induced by the 

bromides and iodides in 1-Br and 1-I, respectively (see Calculations).

We next investigated if previously unreported benzo[2,1,3]thiadiazoles are also 

phosphorescent. In particular, we prepared the molecules 5,6-

bis(hexadecylthio)benzo[2,1,3]thiadiazole (2-H)
30

 and 4,7-dibromo-5,6-

bis(hexadecylthio)benzo[2,1,3]thiadiazole (2-Br), the syntheses of which are presented in 

Scheme 2. To construct 2-H, two equivalents of 1-hexadecanethiol were directly coupled 

with 5,6-dibromobenzo[2,1,3]thiadiazole using the palladium-catalyzed methodology 

developed by Itoh and Mase.
31

 2-Br was subsequently synthesized via iodine-catalyzed 

bromination of 2-H.

The absorption and photoluminescence spectra of 50 μM solutions of 2-H and 2-Br in 

cyclohexane are displayed in Figures 4b and 4e. The solutions of 2-H and 2-Br absorb only 

in the UV and blue regions, but produce red emissions after deoxygenation with N2 gas. 2-H 
and 2-Br thus demonstrate phosphorescence with maxima at λmax = 624 nm and λmax = 667 

nm, respectively, with corresponding excitation spectra resembling their absorption profiles 

(Figure 4c and 4f). In the case of 2-H, the excitation spectrum fully matches its absorption 

spectrum at much lower concentrations (i.e. 2.6 μM), an observation which is most likely the 

result of an inner-filter effect occurring at 50 μM. Both molecules also possess values of ΦP 

similar to those of 1-Br and 1-I (0.70% for 2-H and 0.50% for 2-Br) in cyclohexane. 

Transient photoluminescence data indicate that τP is 5.4 μs for 2-H and 3.4 μs for 2-Br 
(Figures 4g and 4h). A summary of the photophysical properties of the four phosphorescent 

molecules described thus far is presented in Table 1.

CALCULATIONS

We next performed a computational analysis of the electronic excited states of the studied 

benzo[2,1,3]thiadiazoles in order to determine potential phosphorescence pathways. After 

ground state geometry optimization of model structures 1-Cl*, 1-Br*, and 1-I*, for which 

the large tetradecyloxy groups are replaced with propoxy substituents for computational 

efficiency, we carried out time-dependent density functional theory (TD-DFT) calculations 

to determine a mechanism for ISC. Throughout our analysis, we assume that internal 

conversion to S1 always occurs prior to ISC (Kasha’s rule).
33

 For each molecule, two triplet 

states (T1 and T2) lie below the energy level of S1 and thus provide thermodynamically 

favorable routes for ISC (Figure 5a). We subsequently characterized the excited states of the 

molecules using Kohn-Sham orbitals to depict the electronic configurational descriptions of 

the S1, T1, and T2 states of each molecule (Figure 5b). We observe that, in all three 
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molecules, the S1, T1, and T2 states can all be described as symmetric π → π* 

configurations. S1 and T1 are ≥88% described by a HOMO → LUMO configuration, while 

T2 corresponds to a HOMO–1 → LUMO configuration (≥85% character). Because the 

transition symmetry of S1 does not change during conversion to one of the lower-energy 

triplet states, ISC is most likely to be an inefficient process unless perturbations from one or 

more heavy atoms are introduced.
34

 We conclude that ISC from S1 to T2 or T1 could be 

facilitated by the heavy bromides and iodides through second-order perturbations such as a 

spin-orbit-vibronic interaction.
35

 The lighter chlorides of 1-Cl* likely do not carry a large 

enough atomic number to enable ISC in this manner, which explains why fluorescence 

dominates the photoluminescence spectrum of 1-Cl.

Figure 6 displays the excited-state energy level diagrams for 2-H* and 2-Br*, model 

systems where the long alkyl chains of the thioethers have been replaced with propylthio 

groups (Figure 6a).
36

 The corresponding Kohn-Sham orbitals for S1, T1, and T2 are shown 

in Figure 6b. Unlike the other phosphors, 2-H does not possess heavy halides that can enable 

ISC. However, the S1 transition of 2-H* is an (n,π*) state in which most of the orbital 

density is concentrated at the sulfur atoms of the alkylthio groups. T1 is best represented as a 

(π,π*) state composed of a linear combination of configurations of HOMO–1 → LUMO 

(49% character, (π,π*)) and HOMO–2 → LUMO (44% character, (n,π*)). T2, on the other 

hand, is a mix of mostly an (n,π*) state with minority (π,π*) character represented by two 

configurations: HOMO → LUMO (81% character, (n,π*)) and HOMO–3 → LUMO (15% 

character, (π,π*)). In this case, ISC is most likely possible by coupling a change in the spin 

angular momentum of the excited-state electron with the difference in the transition 

symmetries of the S1 and T1 manifolds (El-Sayed’s rule).
37

 Similarly, S1 of 2-Br* is an 

(n,π*) state,
38

 whereas T1 is a (π,π*) state and T2 is mostly (n,π*). Thus, we conclude that a 

difference in angular orbital momentum between excited states can also lead to ISC.

CONCLUSION

To conclude, we have presented a set of structurally simple benzo[2,1,3]thiadiazoles with 

unusual phosphorescent emissions at room temperature. The rare solution-phase 

photophysical properties of these species provide a new direction aimed at uncovering new 

classes of metal-free organic phosphorescent materials. We are currently seeking to discover 

new molecular motifs and realize their potential as the active components of inexpensive 

LEDs and other optoelectronic technologies.

EXPERIMENTAL SECTION

Materials and Instrumentation

Unless otherwise stated, all solvents and reagents were used as purchased. Anhydrous 

toluene was obtained from a solvent purification system and stored over activated 3 Å 

molecular sieves. HPLC-grade cyclohexane was the solvent in all photophysical studies. 5,6-

dibromobenzo[2,1,3]thiadiazole was purchased from TCI Chemical Company and used 

without further purification. 1-I was synthesized according to a literature procedure.
28 

Column chromatography was carried out using silica gel (Aldrich, 60 Å pore size, 230–400 

mesh) and thin layer chromatography (TLC) was performed with silica gel TLC plates (J. T. 
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Baker). NMR spectra (1H: 400 MHz, 13C: 101 MHz) were obtained with CDCl3 as the 

solvent and were referenced relative to resonances corresponding to CDCl3 (1H: δ = 7.26 

ppm; 13C: δ = 77.16 ppm). NMR spectra were referenced relative to resonances 

corresponding to the solvent (1H: δ = 7.26 ppm; 13C: δ = 77.16 ppm). Peak multiplicities are 

designated as singlet (“s”), triplet (“t”), or multiplet (“m”). High-resolution mass 

spectrometry (HRMS) measurements were carried out in direct analysis in real time (DART) 

or with electrospray ionization (ESI) in positive mode using a Fourier transform-ion 

cyclotron resonance mass spectrometer.

All absorption spectra were measured with a UV/vis spectrophotometer under aerobic 

conditions. Photoluminescence spectra and excitation spectra were obtained with a 

spectrofluorometer employing a 450 W xenon short-arc lamp. Excitation and emission 

bandpass slits were set at 3 nm and 5 nm, respectively, and data were acquired with the 

excitation beam and detector oriented at a right angle. Photoluminescence spectra were 

corrected to account for wavelength-dependent responses by the detector, while excitation 

spectra were referenced relative to variations in the lamp intensity with wavelength. 

Phosphorescence quantum yields were measured using the relative method suggested by 

Brouwer
39

 with all absorbances at the excitation wavelength maintained below 0.05 to 

prevent inner-filter effects from occurring. For these photoluminescence measurements, 

screw-top quartz cuvettes covered with a septum cap were used to hold solutions and were 

deoxygenated by purging them with N2 gas for about 10 minutes to induce 

phosphorescence. For best results, solutions analyzed by spectroscopy were not exposed to 

UV radiation during the deoxygenation process.

To obtain transient photoluminescence lifetime measurements, a sample was placed in a 

quartz tube (6-mm outer diameter, 4-mm inner diameter) and sealed with a small septum. 

The solution was then deoxygenated via purging with N2 gas for about 5 minutes. A 170 μJ 

pulsed 337 nm N2 laser was used as the excitation source with photoluminescence detected 

using a silicon detector coupled to a 400 nm longpass optical filter. The resulting time-

dependent photoluminescence data were recorded with an oscilloscope. Some residual laser 

signal is present as the prompt component of these decays and were not considered in our 

analysis. To extract the lifetime, data past this artificial prompt signal (i.e. after 1 μs) was 

subjected to a linear fit on the logarithmic scale.

Electronic Structure Calculations

Molecules were built and molecular mechanics were used to minimize geometries using 

Avogadro.
40

 TD-DFT calculations were performed using the ORCA software package.
41–43 

First, geometries were optimized using the AccOpt standard calculation level implemented 

in ORCA (BP86 functional,
44

 ORCA default basis 4: TZVP(2d) for all non-hydrogens, and 

TZV(p) for hydrogens
45

). Numerical frequencies were then calculated to determine that 

geometries represented minima on the potential energy surface. Using the optimized 

geometries, TD-DFT calculations
42

 were carried out using the same bases, with the PBE0 

functional
46

 and increased grid accuracy, and the resolution of identity chain-of-spheres 

module, RIJCOSX,
43

 was used to reduce the computational cost of the calculations. The 

first 10 excited state levels and their excitation profiles were calculated for each molecule at 
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the ground state geometry, for both singlet and triplet states, affording a first-order 

description of the energetic landscape. Electronic configuration descriptions of the relevant 

excited states (S1, T1, and T2) were visualized using Kohn-Sham orbitals depicted using the 

Avogadro software with extended ORCA support. All simulated molecules were treated 

without solvation (i.e. gas phase).

4,7-Dichloro-5,6-bis(tetradecyloxy)benzo[2,1,3]thiadiazole (1-Cl)—To an oven-

dried 2-neck 100 mL round-bottom flask equipped with a magnetic stir bar and condenser 

were combined 5,6-bis(tetradecyloxy)benzo[2,1,3]thiadiazole
27

 (300 mg, 0.535 mmol), N-

chlorosuccinimide (157 mg, 1.18 mmol), and anhydrous CHCl3 (30 mL). FeCl3 (101 mg, 

0.628 mmol) was added to the stirring solution under a stream of argon. The reaction was 

stirred under argon at 50 °C for 72 h. The reaction mixture was cooled to room temperature, 

diluted with 30 mL CHCl3, and poured into 50 mL H2O. The organic layer was washed with 

100 mL NaHCO3 (aq.) and 100 mL saturated NaCl(aq.), dried with MgSO4, filtered, and 

evaporated. The brown crude product was subjected to column chromatography (1:1 

CHCl3:hexanes) to furnish 1-Cl as a white solid (117 mg, 35% yield). Rf = 0.38 (SiO2 TLC, 

1:1 CHCl3:hexanes). 1H NMR (400 MHz, CDCl3): δ 4.18 (t, J = 6.7 Hz, 4H), 1.87 (m, 4H), 

1.53 (m, 4H), 1.40–1.26 (m, 40H), 0.88 (t, J = 7.0 Hz, 6H). 13C NMR (101 MHz, CDCl3): δ 

153.3, 149.8, 116.4, 75.4, 32.1, 30.4, 29.86, 29.85, 29.84, 29.82, 29.79, 29.76, 29.6, 29.5, 

26.1, 22.9, 14.3. HRMS (ESI) m/z calculated for C34H58Cl2N2O2S [M + H]+: 629.3669, 

found: 629.3687.

4,7-Dibromo-5,6-bis(tetradecyloxy)benzo[2,1,3]thiadiazole (1-Br)—Compound 1-
Br was synthesized as reported by Bouffard and Swager,

27
 but with modified purification. 

To a 50 mL round-bottom flask equipped with magnetic stirbar were combined 5,6-

bis(tetradecyloxy)benzo[2,1,3]thiadiazole (300 mg, 0.535 mmol), CH2Cl2 (15 mL), and 

AcOH (7 mL). To this solution was added Br2 (528 mg, 0.169 mmol, 0.17 mL) dropwise. 

The flask was stoppered, wrapped with aluminum foil, and contents were stirred for 2 days. 

The reaction mixture was then poured into 50 mL 5% w/v Na2S2O3•5H2O (aq.) and washed. 

The organic layer was then washed with 2 x 50 mL saturated NaHCO3 (aq.) and 50 mL 

saturated NaCl (aq.), dried with MgSO4, filtered, and evaporated. The crude residue was 

subjected to column chromatography (3:7 CHCl3:hexanes) to yield 1-Br as a white solid 

(244 mg, 64% yield). Characterization data is consistent with those already reported. 1H 

NMR (400 MHz, CDCl3): δ 4.16 (t, J = 6.7 Hz, 4H), 1.88 (m, 4H), 1.53 (m, 4H), 1.38–1.26 

(m, 40H), 0.88 (t, J = 7.0 Hz, 6H).

5,6-Bis(hexadecylthio)benzo[2,1,3]thiadiazole (2-H)—To a 25 mL Schlenk flask 

equipped with a magnetic stirbar were added 5,6-dibromobenzo[2,1,3]thiadiazole (350 mg, 

1.19 mmol), Pd2dba3 (27.3 mg, 29.8 μmol), and XantPhos (34.5 mg, 59.3 μmol). The flask 

was then evacuated and backfilled with argon three times before adding anhydrous toluene 

(6 mL), diisopropylethylamine (2 mL), and 1-hexadecanethiol (954 mg, 1.14 mL, 3.69 

mmol). After purging with argon for 15 minutes at room temperature, the reaction mixture 

was stirred at 80 °C under argon for 19 h. The reaction mixture was then cooled to room 

temperature and filtered. Volatiles were then evaporated in vacuo. The crude residue was 

dissolved in CH2Cl2 and combined with 3 g silica gel. After removal of the solvent, the solid 
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mixture was dry-loaded onto a silica gel column and the product was eluted out with 1:1 

CH2Cl2:hexanes. The recovered product was lastly recrystallized from isopropanol to obtain 

pure 2-H as a light yellow solid (623 mg, 81% yield). Rf = 0.49 (SiO2 TLC, 1:1 

CH2Cl2:hexanes) 1H NMR (400 MHz, CDCl3): δ 7.68 (s, 2H), 3.04 (t, J = 7.4 Hz, 4H), 1.79 

(m, 4H), 1.50 (m, 4H), 1.35–1.25 (m, 48H), 0.87 (t, J = 7.0 Hz, 6H). 13C NMR (101 MHz, 

CDCl3): δ 153.4, 142.3, 116.0, 33.6, 32.1, 29.84, 29.81, 29.78, 29.7, 29.6, 29.5, 29.33, 

29.25, 28.2, 22.8, 14.3. HRMS (DART) m/z calculated for C38H68N2S3 [M + H]+: 

649.4617, found: 649.4617.

4,7-Dibromo-5,6-bis(hexyldecylthio)benzo[2,1,3]thiadiazole (2-Br)—In a 50 mL 

round-bottom flask equipped with a magnetic stirbar, 2-H (100 mg, 0.154 mmol) was 

dissolved in a mixture of CH2Cl2 (15 mL) and AcOH (4 mL) and chilled to 0 °C. To the 

stirring suspension was added I2 (1.75 mg, 7.70 μmol), followed by Br2 (123 mg, 0.770 

mmol, 0.04 mL) dropwise. Contents were warmed to room temperature and stirred in the 

dark for 48 h. The reaction mixture was then poured into 50 mL 5% w/v Na2S2O3•5H2O 

(aq.) and washed with 50 mL saturated NaHCO3 (aq.), and 50 mL saturated NaCl (aq.). The 

organic layer was dried with MgSO4 and filtered. Volatiles were evaporated and the crude 

residue was purified by column chromatography (3:7 CHCl3:hexanes) to obtain 2-Br as a 

light yellow solid (79 mg, 64% yield). Rf = 0.31 (SiO2TLC, 3:7CHCl3:hexanes). 1H NMR 

(400 MHz, CDCl3): δ 3.08 (t, J = 7.4 Hz, 4H), 1.61 (m, 4H), 1.42 (m, 4H), 1.25–1.24 (m, 

48H), 0.88 (t, J = 7.0 Hz, 6H). 13C NMR (101 MHz, CDCl3): δ 153.0, 144.5, 122.6, 38.4, 

32.1, 29.84, 29.82, 29.81, 29.79, 29.73, 29.65, 29.5, 29.3, 29.0, 22.8, 14.3. HRMS (DART) 

m/z calculated for C38H66Br2N2S3 M+: 806.2741, found: 806.2734.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Photophysical properties of phosphorescent compounds 1-Br and 1-I in cyclohexane. (a) 1-
Br and (d) 1-I and their appearance in degassed cyclohexane under normal and UV (λ = 365 

nm) lighting. (b) Absorption spectrum and photoluminescence spectra under air and N2 gas 

for 1-Br and (e) 1-I (λex = 370 nm). (c) Phosphorescence excitation spectrum of 1-Br and 

(f) 1-I (λem = 575 nm). Photoluminescence and excitation spectra were measured for 50 μM 

solutions. A small peak attributed to Raman scattering (λmax = 414 nm) of the excitation 

beam by the solvent overlaps with the fluorescence of all phosphorescent samples presented 

in this study and is not considered in our analysis.
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Figure 2. 
Time-dependent photoluminescence decays of (a) 1-Br and (b) 1-I in cyclohexane (50 μM) 

under inert atmosphere and at room temperature.
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Figure 3. 
Absorption and emission spectra of 1-Cl in cyclohexane. Emission spectra (λex = 370 nm) 

are reported for 50 μM samples in aerobic and deoxygenated cyclohexane.
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Figure 4. 
(a) 2-H in cyclohexane with its (b) absorption spectrum and photoluminescence spectra 

under air and N2 gas and (c) phosphorescence excitation spectra at 50 μM and 2.6 μM (λem = 

575 nm). (d–f) 2-Br with its corresponding absorption/photoluminescence spectra (λex = 

370 nm, 50 μM) and phosphorescence excitation spectrum (λem = 600 nm, 50 μM). (g) 

Time-dependent photoluminescence decays for 2-H and (h) 2-Br in deoxygenated 

cyclohexane at 50 μM.
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Figure 5a

Figure 5b

Figure 5. 
(a) Energy level diagrams for propoxy-functionalized derivatives 1-Cl*, 1-Br*, and 1-I* in 

the gas phase. (b) Kohn-Sham orbitals representing the electronic configuration descriptions 

of S1, T1, and T2 for each calculated molecule.
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Figure 6a

Figure 6b

Figure 6. 
(a) Energy level diagrams for 2-H* and 2-Br* in the gas phase. (b) Kohn-Sham orbitals 

representing the electronic configuration description of S1, T1, and T2 manifolds of 2-H* 
and (c) 2-Br* (c). Indicated percentages describe the overall character for each displayed 

transition.
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Scheme 1. 
Synthesis of chlorinated benzo[2,1,3]thiadiazole 1-Cl.
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Scheme 2. 
Syntheses of thioether-functionalized benzo[2,1,3]thiadiazoles 2-H (a) and 2-Br (b)
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Table 1

Summary of photophyscial properties of phosphorescent benzo[2,1,3]thiadiazoles in deoxygenated 

cyclohexane.

Entry λabs,max,a λem,max (nm) τP (μs) ΦP (%)b

1-Br 325, 642 2.8 0.55

1-I 327, 643 3.6 0.59

2-H 382, 624 5.4 0.70

2-Br 347, 667 3.4 0.50

a
Absorption maximum past λ = 300 nm.

b
Measured at λex = 370 nm using 9,10-diphenylanthracene in cyclohexane under air as a standard (ΦPL = 77%).

32

J Org Chem. Author manuscript; available in PMC 2016 June 03.


	Abstract
	Graphical Abstract
	INTRODUCTION
	RESULTS AND DISCUSSION
	CALCULATIONS
	CONCLUSION
	EXPERIMENTAL SECTION
	Materials and Instrumentation
	Electronic Structure Calculations
	4,7-Dichloro-5,6-bis(tetradecyloxy)benzo[2,1,3]thiadiazole (1-Cl)
	4,7-Dibromo-5,6-bis(tetradecyloxy)benzo[2,1,3]thiadiazole (1-Br)
	5,6-Bis(hexadecylthio)benzo[2,1,3]thiadiazole (2-H)
	4,7-Dibromo-5,6-bis(hexyldecylthio)benzo[2,1,3]thiadiazole (2-Br)


	References
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Figure 5
	Figure 6
	Scheme 1
	Scheme 2
	Table 1

