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Abstract

We implement new techniques involving Artin fans to study the realizability of tropical
stable maps in superabundant combinatorial types. Our approach is to understand the
skeleton of a fundamental object in logarithmic Gromov–Witten theory—the stack of
prestable maps to the Artin fan. This is used to examine the structure of the locus of
realizable tropical curves and derive three principal consequences. First, we prove a
realizability theorem for limits of families of tropical stable maps. Second, we extend the
sufficiency of Speyer’s well-spacedness condition to the case of curves with good
reduction. Finally, we demonstrate the existence of liftable genus 1 superabundant
tropical curves that violate the well-spacedness condition.

1 Background
Central to the application of tropical techniques to questions in algebraic geometry are
so-called lifting theorems. Given a “synthetic” tropical object, such as a weighted balanced
polyhedral complex, one must understand whether this object is the tropicalization of an
algebraic variety.Wedeal in this paperwith the case of curves. The tropical lifting question
in this setting asks,when does an embedded tropical curve inRn arise as the tropicalization
of an algebraic curve in a torus over a nonarchimedean field? This question becomes highly
nontrivial in the so-called superabundant case and has been the primary obstacle to the
application of tropical curve counting techniques in high genus settings. A tropical curve
in R

n encodes the combinatorial data in a degenerate logarithmic stable map to a toric
variety. If the tropical curve is superabundant, i.e., if the tropical deformation space is larger
than expected, the obstruction group of this degenerate logarithmic map is nonzero. As
a result, such a map may not deform and the tropical curve may fail to be realizable. See
Sect. 2.2 for a precise definition of superabundance. The earliest realization theorems for
superabundant curves are due to Speyer, who observed a subtle combinatorial condition
guaranteeing the realizability of superabundant genus 1 tropical curves [31]. While there
has been substantial additionalwork in the intervening years, the general question remains
mysterious [7,15,19,23–25,29,34].
In this note, we use recent technical breakthroughs in nonarchimedean geometry and

the theory of logarithmicmaps to provide a conceptual framework in which the realizabil-
ity question may be approached. To demonstrate the efficacy of this framework, we use
it to give simple proofs of three new results for lifting tropical curves. The same frame-

© The Author(s) 2017. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium,
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and
indicate if changes were made.

0123456789().,–: vol

http://crossmark.crossref.org/dialog/?doi=10.1186/s40687-017-0101-5&domain=pdf
http://creativecommons.org/licenses/by/4.0/


Ranganathan ResMath Sci (2017) 4:11 Page 2 of 18

work provides new insight into the structure of realizability conditionsmore globally—the
locus of realizable tropical curves is given by a union of bend loci of a collection of tropical
polynomials in the edge lengths of the tropical curve.

1.1 Statement of results

All valued fields appearing in this paper will have equicharacteristic zero. Throughout,
the symbol � will be used to denote an abstract tropical curve.1 We say that a param-
eterized tropical curve [� → R

n] is realizable if there exists a smooth curve C over a
nonarchimedean field and a map [C → G

n
m] whose tropicalization is [� → R

n].

Theorem A Let [�t → R
n] for t ∈ [0, 1) be a continuously varying family of parameter-

ized tropical curves. Let [�1 → R
n] denote the limit of this family in the moduli space of

parameterized tropical curves. If [�t → R
n] is realizable for all t ∈ [0, 1), then the limiting

map [�1 → R
n] is realizable.

Our next result extends the reach of Speyer’s well-spacedness condition to the case of
elliptic curves with good stable reduction, see Definition 3.2. Let � be a tropical curve of
genus 1 with a unique genus 1 vertex, so in particular the underlying graph of � is a tree.
Denote by �̂ the tropical curve obtained by first replacing the genus 1 vertex with a genus
0 vertex and then adding a self-loop of length 1 at v.

Theorem B Let [� → R
n] be a parameterized tropical curve of genus 1 with a unique

genus 1 vertex v. Assume that the star of v in [�̂ → R
r] is realizable. If [� → R

n] is
well-spaced, then [� → R

n] is realizable.

Theworkof Speyer shows that thewell-spacedness condition is sufficient for realizability
of tropical genus 1 curves. He also proves that this condition is also necessary, with the
restriction that the curve is trivalent. The following result shows that outside the trivalent
case, well-spacedness can be violated. This complements Baker, Payne, and Rabinoff’s
generalization of Speyer’s condition [7, Theorem 6.9].

Theorem C Let n ≥ 3. There exist superabundant parameterized genus 1 tropical curves
[� → R

n] that lift to algebraic curves but violate the well-spacedness condition.

The new point of view taken in this paper is to attempt to understand the realizability
locus inside the moduli space of all parameterized tropical curves as a global tropical
geometric object. We do so by studying a fundamental object in logarithmic Gromov–
Witten theory—the space of logarithmic prestable maps to the Artin fan. This is inspired
by the insights of Abramovich–Wise, Gross–Siebert, and Ulirsch. By synthesizing these
ideas, we are led to the following result.
Let X be a toric variety with fan �, and let L ◦

� (X) denote the moduli space of maps
from smooth pointed genus g curves into X with fixed contact orders with the toric
boundary along smooth marked points. In Sect. 2.2 a generalized extended cone complex
T�(�) is constructedwhichparameterizes tropical stablemapswith the analogousdiscrete

1We useC ,C , and� to denote families of curves, single curves and tropical curves, respectively, choosing notation that
best approximates the shape of these objects as found in the wild. We thank Dan Abramovich for this most creative of
suggestions.



Ranganathan ResMath Sci (2017) 4:11 Page 3 of 18

data. The generalized cone complex T ◦
�(�) is the complement of the extended faces and

parameterizes maps from tropical curves where all edge lengths are finite.

Theorem D There is a continuous tropicalization map

trop : L ◦
� (X)

an → T ◦
�(�),

compatible with evaluation maps and forgetful maps to the moduli space of curves. The
locus in T ◦

�(X) parameterizing the set of realizable tropical curves is a closed polyhedral
set. If σ ◦ ∈ T ◦

�(X) is the relative interior of a cell, after passing to a finite cover of σ ◦ by
the interior of a cone σ̃ ◦, the locus of realizable curves in σ̃ ◦ is the union of bend loci of
collections of tropical polynomials.

1.2 Further discussion

A number of experts have made the informal observation that the condition appearing
in Speyer’s realizability theorem—that the minimum of a collection of numbers occurs
at least twice—resembles the tropical variety of a tropical ideal. We view Theorem D as
giving a simple and rigorous explanation for this phenomenon.
While the proof of our lifting theoremsonly relies on compactness of the realizable locus,

the tropical structure is useful for applications to enumerative geometry.This is illustrated,
for instance, by the results of Len and the author [20], in which the polyhedral structure
of the realizability locus is used to derive multiplicities for tropical curve counting.
TheaboveTheoremDalso contributes to the studyof tropicalmoduli spaces,whichhave

received considerable interest in recent years. These results have aimed at an improved
conceptual understanding of information contained in tropical moduli spaces, including
applications to enumerative geometry [10,11,28] and to the geometry and topology of
moduli spaces [9,12,13]. The novelty of the present paper is that the tropicalization of
L ◦

� (X) is studied as the tropicalization of a map to a certain toroidal stack—the stack of
prestable maps to the Artin fan. This is in sharp contrast to recent results on tropicaliza-
tions for moduli spaces, which have used toroidal structures on the spaces themselves.
The well-spacedness condition has inspired a great deal of research. However, to our

knowledge, the results of Baker–Payne–Rabinoff [7, Theorem 6.9] are the only known
nontrivial necessary conditions for realizability for nonmaximally degenerate tropical
curves, although it may be possible to extract such conditions using the methods of [19].
By studying the limits of nonsuperabundant families of curves and applying Theorem A,
one can obtain sufficient conditions for lifting tropical curves in nonmaximally degenerate
situations, i.e., when vertices carry nonzero genus. Furthermore, Theorem B exhibits the
first instance of a sufficient condition for the realizability for nonmaximally degenerate
superabundant curves.
In addition to the work of Baker–Payne–Rabinoff mentioned above, Katz extracts a

number of necessary conditions for realizability. These stem from interpreting the log-
arithmic tangent–obstruction complex for maps to toric varieties combinatorially for
degenerate maps [19]. A similar approach is used by Cheung, Fantini, Park, and Ulirsch to
prove that in a large range of cases, nonsuperabundance is a sufficient condition for real-
izability [15]. Note, however, that limits of nonsuperabundant tropical curves can often
become superabundant. As a result, Theorem A extends the reach of these theorems as
well.
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An implicit goal of this paper is to demonstrate the usefulness of the perspective on trop-
icalization arising from logarithmic prestable maps to Artin fans arising from the work
of Abramovich, Ulirsch, and Wise [5,37,38] and the insights of Gross and Siebert [17].
Indeed, accepting this technical input, the reader will note that the proofs of our realiz-
ability theorems follow from reductions to existing theorems in tropical geometry.
The first part of this project [28], which was a chapter in author’s doctoral dissertation,

studies the tropicalization of the moduli space of logarithmic maps to toric varieties in
genus 0, and it is in this sense that the present paper is a sequel. Superabundance never
appears in the genus 0 setting, and the analogue of Theorem D can be used to derive a
number of consequences concerning the geometry of the space of maps. We refer to loc.
cit. for details. We also note that a similar polyhedrality result as above has been proved
by Tony Yu in the context of nonarchimedean analytic Gromov–Witten theory using
methods that are quite different from ours [40,41].

Remark 1.1 In themonths betweenwhen the first version of this paper appeared on arχ iv
and the final publication, there has been additional progress on tropical realizability. The
framework established here has been used by Jensen and the author to prove realization
theorems for superabundant tropical curves in the “chain of cycles” combinatorial type,
in arbitrary genus. This has in turn found applications in Brill–Noether theory, see [18,
Theorems A & B].

Prerequisites

Weassume familiaritywith the fundamental concepts ofBerkovichgeometry and logarith-
mic structures. A rapid overview of the relevant concepts may be found in the preceding
article [28, Section 2]. We refer the reader to two excellent recent surveys in this area by
Abramovich, Chen, and their collaborators [3,4].

2 Tropicalization for maps and their moduli
2.1 Logarithmic stable maps

Our central object of study is themoduli space of genus g curves in a projective toric variety
X in a fixed curve class, meeting each torus invariant divisor Dρ at marked points with
prescribed contact orders. We work with the compactification of this space of ramified
curves, provided by the Abramovich–Chen–Gross–Siebert theory of logarithmic stable
maps [2,14,17].
Let X be a projective toric variety with dense torus T , corresponding to a fan � in the

vector space NR spanned by the cocharacters of T . Fix integers g and n. We study the
moduli spaceL (X) of families of minimal stable logarithmic morphisms

f : (C, p1, . . . , pn) → X,

from nodal pointed genus g curves (C, p1, . . . , pn).

Remark 2.1 Minimality is a condition on the characteristic monoids of the logarithmic
structure on the base of the family of maps. The reader may think about this concept as
follows.A logarithmic stablemap [f : C → X] is a stablemap in the categoryof logarithmic
schemes. Consequently, given a logarithmic scheme S, the moduli problem returns the
collection of isomorphism classes of logarithmic stable maps over the base logarithmic
scheme S. However, algebraic stacks are defined over the category of schemes rather than
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logarithmic schemes. A crucial and beautiful technical achievement ofAbramovich, Chen,
Gross, and Siebert was to identify an algebraic stackL (X) that represented a logarithmic
moduli problem—the moduli problem for minimal maps. Given a scheme S without a
chosen logarithmic structure and a map S → L (X), there is a minimal logarithmic
structureMS that can be placed on S, returning a diagram in the logarithmic category

C X

(S,MS),

which is a family of logarithmic stable maps. Families obtained by such logarithmic struc-
tures are referred to asminimal logarithmic stablemaps. The algebraic stackL (X) carries
a universal logarithmic structure, and it is by pulling back this structure that we obtain
the minimal logarithmic structureMS as above. One can thus interpret this moduli space
L (X) as a parameter space for minimal logarithmic stable maps and thus as a stack over
the category of schemes. Given a different logarithmic structure M ′

S on S, the universal
property of minimality ensures that any map (S,M ′

S) → L (X) factors uniquely through
aminimal family.We refer the reader to [17, Section 1] for an explicit description of these
monoids and to [2, Section 2] for a conceptual discussion.

Stability for logarithmic maps amounts to stability of the underlying map—all con-
tracted rational components must have at least 3 special points, and all contracted elliptic
components must have at least 1 special point. We will also fix the contact orders on C .
The contact order will be recorded by a function

c : {p1, . . . , pn} → �(N),

where�(N) denotes the integral points of the fan�. If c(pi) = e ·vρ where vρ is a primitive
generator of the ray corresponding to Dρ , then the curve has contact order e along Dρ

at pi. Note that by Fulton–Sturmfels’ description of the Chow cohomology of a complete
toric variety asMinkowski weights [16], the data of c determine an operational curve class
f�[C] ∈ A1(X ;Z).
We package the discrete data by the symbol � = (g, n, c). Let L�(X) denote the mod-

uli space of minimal logarithmic maps carrying discrete data �, and let L ◦
� (X) be the

locus on which the logarithmic structure is trivial. The following result is established by
Abramovich–Chen [2, Section 5] and Gross–Siebert [17, Corollary 4.2].

Theorem 2.2 The moduli spaceL�(X) of minimal logarithmic stable maps with discrete
data � is a proper logarithmic algebraic stack with projective coarse moduli space.

Note that in this paper, we will often work with logarithmic maps over valuation rings
Spec(R) that are not discretely valued. The natural logarithmic structure in this case is
coherent, but not fine. In this case, one may approximate R by sub-DVR’s and pass to
a limit, see [5, Appendix A.1]. Alternatively, in Theorem A, one can pass to a subse-
quence of [0, 1) converging to 1, parameterizing tropical maps with rational edge lengths.
This will eliminate the need to work with maps over nondiscrete valuation rings in the
sequel.
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2.2 Tropical stable maps

The purpose of this section is to construct a parameter space for tropical stable maps,
which will serve as the target of our tropicalization map.

Definition 2.3 A prestable n-pointed tropical curve of genus g , denoted �, is a finite
graph G(�) and three additional data:

(1) To each edge of e ∈ G(�), a length �(e) ∈ R≥0 � {∞} such that if e is a marked leaf
edge, �(e) = ∞.

(2) To every vertex v ∈ G(�) a genus g(v) ∈ Z≥0.
(3) A labeling of a subset of the 1-valent genus 0 vertices of � by the set {p1, . . . , pn}.
The genus of � is defined to be

g(�) = h1(�) +
∑

v∈�
g(v).

The tropical curve � is made into a topological space as follows. Each edge e of finite
length �(e) is identified with [0, �(e)]. Marked leaf edges are metrized as [0,∞]. Unmarked
edges e with �(e) = ∞ are topologized as two glued intervals [0,∞] �∞ [0,∞]. We will
refer to a curve � whose lengths are finite away from the marked leaves as smooth.

Informally, � is often thought of as being a metric space away from the infinite points
and as a space with a “singular” metric when including the infinite points.

Remark 2.4 The terminology of “smooth” here is motivated by the following fact. Given
a tropical curve �, one can consider any family C of marked prestable curves over a
valuation ring Spec(R), such that the skeleton ofC is �. The general fiberCη of this family
is smooth if and only if the nonleaf edge lengths of � are all finite, i.e., if � is smooth in the
above sense. To see this, consider an edge e of� corresponding to a node q ofC0. Formally
locally near q, the total family may be described as xy = f , where f ∈ R, and the valuation
of f is identified with the length of e. The valuation of f is infinity if and only if f is zero.
In turn f is zero if and only if the node q persists in the generic fiber of C , see [1,7].

Recall that a morphism φ : �1 → �2 between polyhedral complexes is a map on the
underlying point sets such that each polyhedron in �1 is mapped to a polyhedron in �2.

Definition 2.5 A tropical stable map from a smooth tropical curve is a continuous
and proper morphism of polyhedral complexes

f : (�, {p1, . . . , pn}) → (�, ∂�)

where (�, {p1, . . . , pn}) is a smooth n-marked abstract tropical curve, such that the follow-
ing conditions are satisfied.

(TSM1) For each edge e ∈ �, the direction of f (e) is an integral vector. Moreover,
upon restriction to e, f has integral slope we, taken with respect to this integral
direction. This integral slope is referred to as the expansion factor of f along e.

(TSM2) The map f is balanced in the usual sense, i.e., at all points of � the sum of the
derivatives of f in each tangent direction is zero.

(TSM3) The map f is stable. That is, if p ∈ � has valence 2, then the image of Star(v) is
not contained in the relative interior of a single cone of �.
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We will usually suppress the markings from the notation and simply write the map as
[� → �].

The following definition indexes the “deformation class” of a tropical stable map and is
obtained by dropping the data of the lengths of the edges of �.
Definition 2.6 The combinatorial type of a tropical stable map [� → �] is the data

(CT1) The finite graph model G(�) underlying �.
(CT2) For each vertex v ∈ G(�), a cone σv ∈ � containing the image of v.
(CT3) For each edge e, the slope we of f restricted to e and the primitive vector ue in the

direction of f (e).

Definition 2.7 The recession type of a combinatorial type  is obtained from [� → �]
by collapsing all bounded edges of � to a single vertex. That is, � is a single vertex with
genus g and marked edges, and the marked edges are each decorated by a contact order.

The following proposition seems to be well-known to experts, and a formal proof in the
g = 0 case may be found in [25, Proposition 2.1] or [28, Proposition 3.2.1]. We give an
outline of the argument in general.

Proposition 2.8 Let  be the combinatorial type of a tropical stable map. The set of all
tropical curves [� → �] together with an identification with the type  is parameterized
by a cone σ. Further, there are finitely many combinatorial types with fixed recession type.

Proof Fix a combinatorial type  = [� → �] and let V and E be the vertex and bounded
edge sets of �, respectively. To describe a particular tropical map [f ] in this combinatorial
type is to assign to each vi, a point f (vi) in the associated cone σvi and to each edge ej ,
a real edge length �e. In order that these assignments define a continuous and balanced
piecewise-linear map to�, we simply need to force that for every edge e connecting to ve1
and ve2,

f (ve1) − f (ve2) = �ewe.

Here, in keeping with previous notation,we is the vector slope prescribed by the combina-
torial type. In other words, the set of tropical curves is the subcone of

∏
v∈V σv×∏

e∈E R≥0
given by

σ =
{
((f (v)v, (�e)e) ∈

∏

v∈V
σv ×

∏

e∈E
R≥0 : For all e = ve1ve2 ∈ E, ve1 − ve2 = �ewe

}
.

These relations cut out a subcone, and the result follows. The claimed finiteness follows
from the boundedness of combinatorial types for logarithmic maps, as proved in [17,
Section 3.1]. 
�

Following [22, Proposition 2.14], the overvalence of a type  is defined as

ov() =
∑

p:val(p)≥4
val(p) − 3.

The expected dimension of this cone of tropical maps is

dim σ = (dim(�) − 3)(1 − b1(�)) + n − ov(),
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where b1(�) is the first Betti number of the underlying graph of �. This dimension cal-
culation explained, for instance, in [25, Section 1]. Just as in the algebraic case, it can
be deduced from an analysis of the combinatorial tangent–obstruction complex, i.e., the
“abundancy map” in [15, Definition 4.1]. See also [22, Sections 2.4–2.6]. The expected
dimension above is a lower bound for the dimension of σ, but the actual dimension is
often be larger. For instance, if cycles of � are mapped into proper affine subspaces of |�|
of high codimension, the dimension of the actual deformation space will be larger than
the above-expected dimension.

Definition 2.9 A combinatorial type  is said to be superabundant if the dimension of
σ is strictly larger than the expected dimension.

Following [1, Sections 2.3–2.4] there is a natural compactification of any cone σ with
integral structure obtained as follows. Let Sσ be the monoid of integral linear functions
on σ that are nonnegative, i.e., the dual monoid of σ . The cone σ can be recovered as the
space of monoid homomorphisms Hom(Sσ ,R≥0). The canonical compactification of σ is
defined as

σ := Hom(Sσ ,R≥0 � {∞}).
Fixing a combinatorial type , the faces of the extended cone σ parameterize tropical
stable maps where � is possibly singular and the vertices of � map to the extended faces
of �. We will have no need to work with such maps directly, so we leave the precise
formulation to an interested reader.

Definition 2.10 An isomorphism between two tropical stable maps [�1 → �] and
[�2 → �] is an isometry of graphs, commuting with the vertex weights and with the
map:

(�1, p1, . . . , pn) (�2, q1, . . . , qn)

�.

An isomorphism of a stable map with itself is said to be an automorphism. Similarly, an
automorphism of the combinatorial type is an automorphism of the underlying finite
graph G(�) preserving the edge directions, their expansion factors, vertex weights, and
the cones associated with each vertex.

The moduli cones for fixed combinatorial types described above form the local models
for the space of tropical stable maps. The globalization is achieved by what are now
standard techniques, introduced by Abramovich, Caporaso, and Payne [1, Section 4] for
the moduli spaces of curves. In the maps setting, this can be found in [28, Section 3] in the
genus 0 case. The changes in higher genus are not substantive. Given any combinatorial
type , the faces of σ also parameterize maps from tropical curves. A moduli cone σ′

is a face of σ if and only if

(1) The source type G(�′) and ′ is obtained from the source graph G(�) of  by a
(possibly trivial) sequence of edge contractions α : G → G′.

(2) Given any vertex v′ ∈ G(�′) and a vertex v such that α(v) = v′, then the cone σv′ is a
face of σv .
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The moduli space of tropical stable maps is defined to be

T�(�) := lim−→
:stable

(σ, j),

where the objects of the colimit are all combinatorial types of a give recession type. The
maps j range over all identifications of faces, as detailed above, and over automorphisms
of combinatorial types. We will refer to the image of an extended cone σ in the colimit
above as a cell of the generalized cone complex.
The topological space constructed above has the structure of a generalized extended

cone complex in the sense of [1, Section 2]. By forming the union of the images of the
ordinary (i.e., noncompact) cones σ inT�(�), we obtain themoduli spaceT ◦

�(�), param-
eterizing those maps with smooth source graph.

2.3 Prestable tropical maps

For our later study, it will be convenient to relax the stability condition above. A prestable
tropical map to � is a map [� → �] as in Definition 2.5, but possibly violating the
stability condition (TSM3). In other words, [� → �] becomes a stablemap after dropping
finitely many 2-valent vertices from �. There are infinitely many such destabilizations of
any combinatorial type. However, there are no substantive changes to the construction
above—prestable tropical curves of a fixed combinatorial type are still parameterized by a
cone, though of arbitrarily high dimension. Gluing these cones together exactly as above,
we obtain a generalized extended cone complex

Tpre
� (�) := lim−→

:prestable
(σ, j).

In analogy with toroidal embeddings that are locally of finite type, one might regard this
cone complex as being locally of finite type.
The crucial technical connection between the logarithmic maps theory and tropical

geometry comes from an elegant observation of Gross and Siebert which we now recall.
Let [C → X] be a logarithmic stable map over a logarithmic point Spec(P → C). As
explained at the beginning of this section, a map is said to be minimal if the logarithmic
structure given by P on Spec(C) coincides with the logarithmic structure obtained by
pulling back the structure on the moduli spaceL�(X) via the underlying map

Spec(C) → L�(X).

The logarithmic stable map [C → X] has a well-defined combinatorial type. The source
graph � is taken to be the dual graph of C , the vertices map to the cone σ dual to the
stratum containing the generic point of the corresponding component, and the expansion
factors along edges are uniquely determined by the contact order, see [17, Section 1.4]. If
 is the combinatorial type of [C → X], let T denote the corresponding moduli cone
of tropical curves of this combinatorial type and let T(N) be the integral points of this
cone.

Theorem 2.11 (Gross and Siebert [17, Section 1.5]) Let [f : C → X] be a logarithmic
(pre)-stable map over Spec(P → C) with combinatorial type . The map [f ] is minimal if
and only if the dual monoid Hom(P,N) is isomorphic to the monoid T(N).

This result follows from the fact that minimality of the map [f ] can be characterized by
placing constraints on the characteristicmonoids of the base, in this case Spec(P → C). As
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explained in [17, Section 1.6 &Remark 1.21], themap forces certain “minimal constraints”
that every such base monoid has to satisfy. This implies that there is a natural injective
map Hom(P,N) → T(N). The universal property of minimality [17, Proposition 1.24]
forces that, if P is minimal, the map is also surjective and thus an isomorphism.
The same result holds when X replaced with its Artin fanAX = [X/T ].

2.4 Pointwise tropicalization for logarithmic stable maps

Our next goal is to construct a map

trop : L ◦
� (X)

an → T ◦
�(�)

from the analytification of the space of maps from smooth curves with prescribed contact
orders to the space of tropical maps.
Any point x ∈ L ◦

� (X)an may be represented by a map

Spec(K ) → L ◦
� (X),

where K is a valued field extension ofC. After a ramified base change, the existence of the
compactificationL�(X) ofL ◦

� (X) guarantees an extension to

Spec(R) → L�(X),

where R is the valuation ring of K . By pulling back the universal curve and universal map
we obtain a diagram

(C , s1, . . . , sn) X

Spec(R),

f

where the si are horizontal sections determining marked points on the geometric fibers.
By [6, Section 1.4], this choice of model determines a retraction of the analytic generic
fiber onto a tropical curve

C an
η → �,

with a canonical continuous section

� → C an
η .

Similarly, there is a deformation retraction

Xan → �,

of the analytic toric variety onto its skeleton by [26,33]. Composing the section map with
the natural map

C an
η → Xan → �,

we obtain a map [f trop : � → �]. By [28, Theorem 3.3.2], this map is seen to be a tropical
stable map from a smooth tropical curve.

2.5 Tropicalization via the Artin fan

Let X continue to denote a projective toric variety. The Artin fan of X is defined to be the
stack quotientAX = [X/T ].Work ofUlirsch [37,38] asserts that, at the level of underlying
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topological spaces, the generic fiber of the map [X → AX ] is canonically identified with
the extended tropicalization map

Xan → �,

constructed in [26,33]. This is made precise by the following theorem.
Given a scheme or stack Y defined over a valuation ring R, we will use Y an◦ to denote

Raynaud’s generic fiber functor applied to the formal completion of Y along the maximal
ideal of R. See [37,38,40] for background on generic fibers of algebraic stacks. Note that
if Y is proper, the generic fiber coincides with the Berkovich analytification and will drop
the ◦ in the subscript.

Theorem 2.12 ([38, Theorem 1.1]) There is a canonical identification of extended cone
complexes given by μ� : |A (�)an◦ | → N (�), making the diagram

∣∣AX
an◦

∣∣

Xan

�

μ�

trop

Stack Quotient

commute.

We obtain the following as an immediate corollary.

Corollary 2.13 Let f : C → X be a logarithmic stable map with smooth generic fiber
defined over Spec(R), where R is a valuation ring containing C. Let � be the skeleton of C .
Then, the tropicalization of f coincides with the composite map

� → C an
η → Xan → |AX

an◦ |

2.6 Maps toAX

The purpose of this subsection is to establish a “global” version of Corollary 2.13 above.
In [5], Abramovich andWise introduce a stack of prestable logarithmic morphisms to the
Artin fan AX itself. Fixing the discrete data as before, we will use the following result of
theirs.

Theorem 2.14 The stackL pre
� (AX ) is a logarithmically smooth algebraic stack, locally of

finite type, and dimension 3g − 3 + n.

The reader will note that the logarithmic smoothness of this stack is in sharp contrast to
the geometry of L�(X), which satisfies Murphy’s law2 in the sense of Vakil [39]. Indeed,
this remarkable smoothness property was applied in [29] to show that every tropical stable
map arose as the tropicalization of a family of stable maps to the Artin fan.
In [33], Thuillier defines an analytic generic fiber functor (·)� from the category of

schemes, locally of finite type, over trivially valued fields to analytic spaces over trivially
valued fields. It should be regarded as the trivially valued version of Raynaud’s generic

2Taking X = P
n with its toric boundary and � to have transverse contact orders, Murphy’s law for L�(X) follows

immediately from [39, Theorem M1a].
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fiber in the nontrivially valued case. Given a scheme X , points of X� are, by definition,
equivalence classes of maps

Spec(R) → X,

where R is the valuation ring of a valued field extension of the trivially valued base field k .
While the usual Berkovich analytification Xan reflects the properness and separatedness
of X , the analytic generic fiber is always compact and Hausdorff. This is an immediate
consequence of the valuative criteria for properness and separatedness. In [37, Section
5.2], this association X �→ X� is extended to algebraic stacks that are locally of finite type.
We will apply this analytification functor to the stackL pre

� (X).
Any point ofL pre

� (X)� gives rise to a family of logarithmic prestable maps

(C , s1, . . . , sn) AX

Spec(R),

over a valuation ring extendingC. Following the sameprocedure as in the previous section,
passing to skeletons yields a map

trop : L pre
� (AX )� → Tpre

� (�).

On the other hand, the stack L pre
� (X) is a toroidal (i.e., logarithmically smooth) stack in

the lisse-étale topology. There exists a continuous deformation retraction of the analytic
space onto an extended cone complex:

pL : L pre
� (AX )� → �(L pre

� (AX )).

Note that this deformation retraction has been constructed in various closely related
settings in the literature, see [1,33]. We briefly describe the necessary changes in the
setting of Artin stacks. Let X be a toroidal Artin stack. Let U → X be a smooth chart by
a toroidal scheme without self-intersection. Consider the self-product

R = U ×X U ⇒ U,

and note that, since X is toroidal, the arrows above are smooth morphisms. We wish
to use the toric charts of U to obtain charts on R. This is done as follows. Given a
smooth morphism R → U , after shrinking, the étale local structure theorem for smooth
morphisms [32, Tag 039P] yields commutative diagram

R VR Uσ × G
r
m

U VU Uσ .

In the diagram above,VR andVU are opens, and the rightward horizontal arrows are étale.
Thus, we obtain toroidal charts for R. The crucial point is that the torus factors in the
charts for R do not change the skeleton, i.e., the skeletons of U�

σ and (Uσ × G
r
m)� are

canonically identified. The extended skeleton �(X ) of X� can now be constructed via a
colimit of the skeleton for the diagram (R ⇒ U )�. This is carried out using only cosmetic
modifications to the arguments already present in the literature, see [1,33,35,37]. The
remaining details are left to an interested reader.
The main result of this section is the relationship between the generalized extended

cone complexes Tpre
� (�) and �(L pre

� (AX )).
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Theorem 2.15 There is a commutative diagram of continuous morphisms

L
pre
� (AX )� Tpre

� (�)

�(L pre
� (AX )),

trop

pL trop�

where

trop� : �(L pre
� (X)) → Tpre

� (X)

is a finite morphism of generalized extended cone complexes and becomes an isomorphism
upon restriction to any cell of the source.

Proof Consider a point p ∈ L�(AX ) corresponding to a minimal logarithmic map [C →
AX ]. Suppose p is contained inW , the locally closed stratumof the logarithmically smooth
stackL�(AX ) parameterizing maps of combinatorial type . As above, there is a smooth
open neighborhood U → L�(AX ) containing p together with an étale map

U → Uσ ,

whereUσ = Spec(C[Sσ ]) is an affine toric variety. It follows from logarithmic smoothness
of the moduli stack and the definition of the minimal log structure in [17, Section 1.4]
that the monoid Sσ defining Uσ coincides with stalk of the minimal characteristic of
[C → AX ]. Moreover, by Theorem 2.11 there is a natural identification of the cones σ

and σ . Thus, the skeleton ofU� is naturally identified with the extended cone σ . The local
coordinate description of the retraction map [35, Section 6] shows that the retraction

U� → σ

coincides with the pointwise tropicalization map construction in Sect. 2.4. Given a point
of U�, we obtain a family of logarithmic maps over a valuation ring Spec(R). We may
write U� as a disjoint union of sets, indexed by the locally closed W stratum in U to
which such a family specializes. Let σ ◦

 be the closure of the relative interior of σ in its
compactification. The skeleton �(L (AX )) decomposes as

�(L pre
� (AX )) =

⊔

W
σ ◦

W /Aut(W ),

where W is the combinatorial type associated with the generic point of the stratumW .
Similarly, the moduli space of prestable tropical maps decomposes as

Tpre
� (�) =

⊔



σ ◦
/Aut().

The skeleton �(L (AX )) includes naturally into L
pre
� (AX )�, so by composing with the

pointwise tropicalization map trop, we obtain

trop� : �(L pre
� (AX )) → Tpre

� (�).

By the above discussion, trop� is an isomorphism upon restriction to any fixed cell of
�(L�(AX ))). It remains to analyze the strata of these two extended cone complexes. For
this, we recall that given any logarithmic stable map [f : C → AX ], there is a map in
the category of fine but not necessarily saturated logarithmic stacks f us : C → AX by
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the construction in [28, Section 3.6]. In particular, fix an the underlying map [C → AX ].
Given two logarithmic enhancements f1 : C → AX and f2 : C → AX , the maps f us1
and f us2 coincide up to saturation. In local charts, saturation is just the normalization of
a local (nonnormal) toric model. Since the normalization is finite, the saturation is finite.
It follows that for each combinatorial type , there are finitely many strata W having
type . If σ is a cone of Tpre

� (�), the set of cones in trop−1
� (σ) is identified with the

set of minimal logarithmic enhancements of the same underlying map, namely the map
parameterized by the generic point of the stratum of type . In particular, this preimage
is a finite union of cones, each mapping isomorphically onto σ. The result follows. 
�

We derive the first part of Theorem D as a corollary.

Corollary 2.16 There is a continuous tropicalization map

trop : L ◦
� (X)

an → T�(�),

compatible with evaluation maps and forgetful maps to the moduli space of curves.

Proof Consider the sequence of maps

trop : L ◦
� (X)

an → L�(X)� → L
pre
� (AX )� → Tpre

� (�).

Since L�(X) is proper, its formal fiber coincides with its analytification, and first map
is simply the analytification of the inclusion of an open subscheme. The second arrow
is constructed by applying the functor (·)� for stacks to the natural map from L�(X) to
L�(AX ), see [37, Section 5]. The final map is the pointwise tropicalization constructed
in the preceding theorem. The composition is clearly continuous, since each arrow is
continuous. Forgetful morphisms to Mg,n and evaluation maps to X are all logarithmic,
so functoriality follows from Theorem 2.15 above and general results on functoriality for
tropicalization [35, Theorem 1.1].

As a consequence of the theorem, we rephrase the tropical lifting question as follows.

When does a tropical stable map [� → �] lie in the image of the continuous map trop
above?

The next section takes advantage of the continuity of this map to establish the main
applications.

3 Proofs of lifting theorems
3.1 Polyhedrality

Let p = [C → X] be a minimal logarithmic stable map and consider the associated map
[C → AX ]. Let U be a toric neighborhood of [C → AX ] inL

pre
� (AX ). Let Z be the local

model in the smooth topology of the moduli spaceL�(X) near p. After possibly shrinking
Z, the points of the compact analytic spaceZ� correspond to families over valuation rings
of logarithmic stable maps whose special fiber, after composition with X → AX , lies in
U .
LetQ be the stalk of theminimal characteristicmonoid at p. As discussed in the previous

section, the toric neighborhood U above admits an étale map

U → Spec(C[[Q]]) × G
r
m.
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The skeleton ofU� is naturally identifiedwithHom(Q,R≥0). By the results of the previous
section, the locus of realizable tropical curves having the combinatorial type dual to Q is
the image of Z� under the natural morphism

Z� → U� → Hom(Q,R≥0).

The latter map is the retractionmap ofU� onto its skeleton. Thus, on the relative interior
of each cone, the image of Z� identified with the tropicalization of a subvariety of a toric
variety. The fundamental theorem of tropical geometry implies that the image of Z� in
the cone above is polyhedral [36, Theorem 1.1], see also [8,21,27].
Since the realizable locus is polyhedral on the relative interior of each cone, it remains

to show that the image ofL�(X)� in T�(�) under tropicalization is topologically closed.
The analytification of the moduli space of all minimal logarithmic stable mapsL�(X)an is
compact, sinceL�(X) is proper. By continuity of themap trop constructed in the previous
section, its image in Tpre

� (�) is compact. Since the tropical moduli space is Hausdorff, this
image is also closed. A tropical curve is realizable if it is the tropicalization of a family of
logarithmic maps over a valuation ring whose generic fiber carries the trivial logarithmic
structure. In other words, to complete the proof we must identify the image of the locus
of maps carrying trivial logarithmic structure, i.e.,L ◦

� (X)an, inside T
pre
� (�). Let Tpre,◦

� (�)
denote the complement of the extended faces of the generalized extended cone complex
Tpre

� (�). We claim an equality of sets

trop(L ◦
� (X)

an) = trop(L�(X)an) ∩ Tpre,◦
� (�)

To see this, choose any family of stable maps [C → X] over a valuation ring Spec(R)
that tropicalizes to a point of Tpre,◦

� (�). By definition of the latter, this means that C is a
family of nodal curves with a skeleton such that all edge lengths are finite and thus, the
generic fiber Cη is smooth. It follows that logarithmic structure on the base of the generic
fiber of the family [Cη → X] is trivial, and we obtain the set theoretic equality above. The
realizable locus is thus closed in Tpre,◦

� (�), which concludes the proof of Theorem D. 
�

Remark 3.1 The essential content of the above theorem is that the realizability conditions
are given by the bend loci of the equations that describe the moduli space of maps locally.
By Vakil’s Murphy’s law, one should expect these equations to become arbitrarily compli-
cated, and thus one should also expect arbitrarily high complexity on the piecewise-linear
side.

3.2 Realizability of limits: Theorem A

Let [�t → �] for t ∈ [0, 1) be a continuously varying family of tropical stable maps. We
have an induced moduli map

[0, 1) → T�(�),

whose image lies in the locus of realizable tropical curves. Since the realizable locus is a
closed set, it follows that the limiting map [�1 → �] also lies in this set, and the result
follows immediately. 
�

3.3 Well-spacedness for good reduction

We first recall the definition of Speyer’s well-spacedness condition. Note that any genus
1 abstract tropical curve � has a unique cycle, possibly a single vertex of genus 1 or a
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self-loop at a vertex. A genus 1 tropical stable map [� → �] is said to be superabundant
if the image of the unique cycle L in |�| is contained in a proper affine subspace.

Definition 3.2 Let [f : � → �] be a superabundant genus 1 tropical stable map. Let
H be a hyperplane containing the loop L and consider the subgraph �H , the connected
component of f −1(H ∩ �) containing L. Denote the 1-valent vertices of �H by v1, . . . , vk
and by �i the distance from vi to L. The map f is well-spaced with respect to H if the
minimum of the multiset of distances {�1, . . . , �k} occurs at least twice.
The map f is said to be well-spaced if it is well-spaced with respect to every hyperplane
containing L.

3.4 Proof of Theorem B

Let [f : � → �] be a tropical stable map of genus 1 such that there is a unique point
p ∈ � satisfying g(p) = 1. In other words, the underlying graph of � is a tree. Let �̂t → �

be the tropical stable map obtained by replacing the genus function with one such that
g(p) = 0, and attaching a self-loop at the vertex p, where t ∈ R+ is the length of this
self-loop. By hypothesis, the star of p in the modified map [�t → �] is realizable. By
applying Speyer’s genus 1 realizability theorem [31, Theorem 3.4], we see that for each
value of t > 0, �̂t → � is realizable. Letting t → 0 we obtain a continuous family of
realizable tropical curves whose limit is f . Since the limiting map must be realizable by
Theorem A, the result follows. 
�

Remark 3.3 David Speyer has communicated to us a different approach to the proof of
the above result using techniques akin to those in [31]. We record the argument here, in
case it may be helpful to the reader. Let [� → �] be a tropical stable map and v ∈ � the
genus 1 vertex, and assume Star(v) → � is realizable. Let a1, a2, ..., am be the directions
of the edges pointing outward from v and write

ai = (ai1, ai2, . . . , ain) ∈ Z
n.

Let K be a nonarchimedean field such that the vertices of � map to points of � that are
rational over the value group. Let R be the valuation ring and k the residue field. Since the
link is realizable, we may build an elliptic curve E over k with points z1, z2, ...zm ∈ E(k)
such that

∑
aizi = 0 ∈ En.

Choose a lifting of E to an elliptic curve E over Spec(R) with reduction E over k . By the
arguments of [31, Section 7,8], to lift the map [� → �] we must lift the points {zi} to the
generic fiber of E with prescribed relations, preserving

∑
aizi = 0. This can be done by

mimicking the calculations in Speyer’s original argument, where the lifts of the points zi
lie in the fibers of the reduction map E (R) → E(k). By [30, Theorem 6.4], since we work
in residue characteristic 0, the fibers of this map are isomorphic to the additive group R×.
The calculations are now identical to those in [31, Lemma 8.3] and the result follows.

Remark 3.4 Let� → R
n beagenus1 tropical stablemapas in the statementofTheoremB,

and let p be the genus 1 vertex.We have chosen to formulate the result with the hypothesis
that the star of p in the modified curve �̂ → R

n is realizable rather than placing a
hypothesis on � → R

n itself. This choice has been made because the local realizability of
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H ⊂ R
3

et

et

Fig. 1 A connected component of the intersection of an embedded tropical curve in R
3 with a plane H. The

black vertices indicate the points at which the cycle component leaves H. The edges labeled et and e′
t have

length equal to (1 − t)

�̂ → R
n is often easier to check, since one has an explicit coordinate on the nodal P1 in

the special fiber corresponding to p, c.f. [15, Proposition 2.8]. One could instead impose
that the star of p in � → R

n is realizable, and the result continues to hold, as seen in the
remark above.

3.5 Proof of Theorem C

For the reader’s benefit, a “proof-by-picture” is given in Fig. 1. Let [� → �] be a genus
1 tropical curve whose cycle is contained in a hyperplane H . Assume that this map is
well-spaced. Furthermore, assume that the minimum of the distances in Definition 3.2 is
0 and occurs exactly twice. It follows that there exist two vertices v1 and v2, belonging to
the cycle L, where � leaves H . Choose a path in L between v1 and v2 and any family of
tropical curves [�t → �] for t ∈ [0, 1) such that the distance between v1 and v2 is (1− t).
Observe that for each value of t < 1, the tropical map [�t → �] is well-spaced and thus
realizable by [31, Theorem 3.4]. However, in the limiting map, �1 → �, there is a unique
point on L at which the cycle L leaves the hyperplane H . It follows that the limiting map
cannot be well-spaced. However, the map is realizable by Theorem A. 
�
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