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ABSTRACT

This is a supplement to the Letter of Singer et al., in which we demonstrated a rapid algorithm for obtaining joint
3D estimates of sky location and luminosity distance from observations of binary neutron star mergers with
Advanced LIGO and Virgo. We argued that combining the reconstructed volumes with positions and redshifts of
possible host galaxies can provide large-aperture but small field of view instruments with a manageable list of
targets to search for optical or infrared emission. In this Supplement, we document the new HEALPix-based file
format for 3D localizations of gravitational-wave transients. We include Python sample code to show the reader
how to perform simple manipulations of the 3D sky maps and extract ranked lists of likely host galaxies. Finally,
we include mathematical details of the rapid volume reconstruction algorithm.

Key words: catalogs – galaxies: distances and redshifts – gravitational waves – surveys

1. OUTLINE OF THIS SUPPLEMENT

In Singer et al. (2016), we discussed the measurement of
luminosity distances of compact binary coalescence (CBC)
events using the Advanced Laser Interferometer Gravitational-
wave Observatory (LIGO) and Virgo ground-based interfero-
metric gravitational-wave (GW) detectors. In the Letter, an
algorithm was introduced for rapidly extracting directionally
dependent distance estimates from GW observations and
illustrated the typical 3D shape of GW volume reconstructions
during early Advanced LIGO. Finally, we argued that the 3D
structure and distance information can be leveraged to guide
searches of likely nearby host galaxies for X-ray, optical, and
infrared counterparts of binary neutron star (BNS) mergers.

This Supplement provides the following supporting mat-
erial. First, in Section 2, we document a file format for the
rapid transmission of 3D volume reconstructions in GW
alerts. It is based on and is backward-compatible with the 2D
localization formation that we introduced in Singer et al.
(2014) and that was employed in GW alerts that were sent in
Advanced LIGOʼs first observing run (O1; Abbott
et al. 2016). Second, in Section 3, we describe the online
data release, which provides a browsable collection of
simulated 3D sky maps. Third, in Section 4, we provide a
Python primer for performing basic operations on 3D sky
maps, all the way through selecting a list of the most likely

host galaxies. In Section 5, we provide additional details of
the position reconstruction algorithm. Finally, in Section 6,
we show that the algorithm produces faithful representations
of the full 3D probability distributions.
The reader who is interested in leveraging GW distance

information for planning electromagnetic (EM) follow-up
observations or performing archival research needs only
consult Sections 2 and 4.

2. 3D LOCALIZATION FILE FORMAT

The 3D localization for a single GW candidate is stored as a
Flexible Image Transport System (FITS; Wells et al. 1981) file.
The FITS file contains a single binary table (Cotton et al. 1995)
that represents a Hierarchical Equal Area isoLatitude Pixeliza-
tion (HEALPix; Górski et al. 2005) all-sky image. The table has
four floating-point columns, listed in Table 1, which represent
four channels of the HEALPix image. The first column, PROB, is
simply the probability that the source is contained within the
pixel i that is centered on the direction ni, the same as in the 2D
localization format. The second and third columns, DISTMU and
DISTSTD, are the ansatz location and scale parameters,
respectively. The fourth column, DISTNORM, is the ansatz
normalization coefficient, included for convenience.
In pixels on the sky that contain very little probability,

sometimes the conditional distance distribution cannot be
represented using the ansatz. This is signaled by DIS-
TMU=¥, DISTSIGMA = 1, and DISTNORM = 0.
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The FITS header, an example of which is shown in Table 2,
provides metadata including the UTC time of the GW trigger
and the list of GW instruments that contributed to the
localization. The header also provides values for DISTMEAN
and DISTSTD, respectively, being the posterior mean and
standard deviation of distance marginalized over the whole sky.

3. DATA RELEASE

An online data release provides a browsable catalog of
simulated 3D GW localizations. One may select events from
O1 or Advanced LIGOʼs second observing run (O2). Events
may be sorted by detector network (a one- or two-letter
combination consisting of “H” for LIGO Hanford Observatory,

Table 1
HEALPix Columns

FITS Name Symbol Units Description

PROB ρi pixel−1 Probability that the source is contained in pixel i, centered on the direction ni

DISTMU miˆ Mpc Ansatz location parameter of conditional distance distribution in direction ni, or ¥ if invalid

DISTSIGMA siˆ Mpc Ansatz scale parameter of conditional distance distribution in direction ni, or 1 if invalid
DISTNORM Nî Mpc−2 Ansatz normalization coefficient, or 0 if invalid

Table 2
Example FITS Header

Key Value Comment

HDU 0

SIMPLE T conforms to FITS standard
BITPIX 8 array data type
NAXIS 0 number of array dimensions
EXTEND T

HDU 1

XTENSION ’BINTABLE’ binary table extension
BITPIX 8 array data type
NAXIS 2 number of array dimensions
NAXIS1 16384 length of dimension 1
NAXIS2 3072 length of dimension 2
PCOUNT 0 number of group parameters
GCOUNT 1 number of groups
TFIELDS 4 number of table fields
TTYPE1 ’PROB’
TFORM1 ’1024E’
TUNIT1 ’pix-1’
TTYPE2 ’DISTMU’
TFORM2 ’1024E’
TUNIT2 ’Mpc’
TTYPE3 ’DISTSIGMA’
TFORM3 ’1024E’
TUNIT3 ’Mpc’
TTYPE4 ’DISTNORM’
TFORM4 ’1024E’
TUNIT4 ’Mpc-2’
PIXTYPE ’HEALPIX’ HEALPIX pixelisation
ORDERING ’NESTED’ Pixel ordering scheme, either RING or NESTED
COORDSYS ’C’ Ecliptic, Galactic or Celestial (equatorial)
EXTNAME ’xtension’ name of this binary table extension
NSIDE 512 Resolution parameter of HEALPIX
FIRSTPIX 0 First pixel # (0 based)
LASTPIX 3145727 Last pixel # (0 based)
INDXSCHM ’IMPLICIT’ Indexing: IMPLICIT or EXPLICIT
OBJECT ’coinc_event:coinc_event_id:18951’ Unique identifier for this event
INSTRUME ’H1, L1’ Instruments that triggered this event
DATE-OBS ’2010-09-03T06:12:26.60324’ UTC date of the observation
MJD-OBS 55442.2586412414 modified Julian date of the observation
DATE ’2015-04-13T10:17:11’ UTC date of file creation
CREATOR ’bayestar_localize_coincs.py’ Program that created this file
DISTMEAN 68.54061620909769 Posterior mean distance in Mpc
DISTSTD 17.14006463067744 Posterior standard deviation of distance in Mpc
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“L” for LIGO Livingston Observatory, “V” for Virgo), 90%
credible volume in Mpc3, 90% credible area in deg2, or
supernova (SN). For each event, a BAYESian TriAngulation
and Rapid localization (BAYESTAR) or LALInference FITS
file may be downloaded. A screen shot of the data release is
shown in Figure 1.

4. PYTHON EXAMPLE CODE

In this section, we provide some Python sample code to perform
some simple manipulations of 3D sky maps. The triple greater-
than signs >>>( ) and triple-dots (...) are the Python interactive
prompt; the reader should type everything on the line after these.

4.1. Python Environment

These examples will work in Python 2.7 and later on Linux
or UNIX systems. If the reader does not already have a Python
environment of preference, we suggest the Anaconda Python
distribution14 for desktop use or the lightweight Miniconda
variant15 for computing clusters. Only the Astropy, Healpy,
and Numpy packages are essential for working with the 3D
localizations, but the examples below will also use Matplotlib,
Scipy, and Astroquery. All of these packages can be installed
with Pip16:

pip install astropy astroquery healpy matplotlib scipy$

4.2. Reading Sky Maps

For all of the samples below, start by importing the Healpy for
working with HEALPix files, the Numpy for vector operations,
Matplotlib for plotting, and Scipy for probability functions:

python
healpy as hp
numpy as np

matplotlib pyplot as plt
scipy stats norm






$
import
import
from import
from . import

Next, select download an example sky map from the data
release. In this example, we use the simulated event that is
shown in Figures1 and 2 of Singer et al. (2016). A convenient
way to download it is using Astropy’s download_file utility,
which will retrieve the file and cache it locally:

astropy utils data download file
url
https dcc ligo org P1500071 public

18951 bayestar fits gz
filename download file url cache True

//






= ¢ ¢
+ ¢ ¢

= =

from . . import _

: . .

. . . _ . .
_ ,

(
)

( )

The new 3D localization format is backward-compatible
with the 2D format introduced in Singer et al. (2014). By
default, when we read the HEALPix file with Healpy (or any
other common-place HEALPix library or tool), we get just the
first layer, the probability sky map:

prob hp read map filename = . _ ( )

To read both the probability layer and the three additional
distance layers, we need to pass the optional field = parameter

to Healpy:

prob distmu distsigma distnorm hp read map
filename field 0 1 2 3

 =
=

, , , . _
. . . , , , ,

(
[ ])

or slightly more concisely:

prob distmu distsigma distnorm hp read map
filename field 4

 =
=

, , , . _
. . . , range

(
( ))

Last, it will be useful for subsequent Healpy calls to have the
HEALPix resolution on hand:

npix prob
npix

3145728
nside hp npix2nside npix
nside

512







=

=

len

.

( )

( )

4.3. 2D Probability in a Given Line of Sight

In this example, we compute the 2D probability per steradian
or per deg2 that the source is in a given direction. Let’s take as
an example the following equatorial coordinates:

ra dec 137 8 39 9 = -, . , .

which, coincidentally, happen to be the true simulated position
to the source.
Healpy uses “physicist’s” spherical coordinates (θ, f), with

q pÎ 0,[ ] being the colatitude from the north celestial pole in
radians, and f pÎ 0, 2[ ) being the right ascension in radians.
We convert

theta 0 5 np pi np deg2rad dec
phi np deg2rad ra




= * -
=

. . .
.

( )
( )

Next, we use Healpy to look up the index of the HEALPix
pixel that contains that direction:

ipix hp ang2pix nside theta phi
ipix

2582288




= . , ,( )

Healpy will tell us the area per pixel in steradians at the
current HEALPix resolution:

pixarea hp nside2pixarea nside
pixarea

3 994741635118857e 06




= .

.

( )

–
or in deg2:

pixarea deg2 hp nside2pixarea nside degrees True
pixarea deg2

0 013113963206424481




= =_ . ,
_

.

( )

All that is left to do is look up the probability contained
within pixel ipix and (if desired) divide by the area per pixel
to obtain the probability per steradian:

dp dA prob ipix pixarea
dp dA

7 4387317043042076




=_
_

.

[ ]

or the probability per deg2:

dp dA deg2 prob ipix pixarea deg2
dp dA deg2

0 0022659672582507331




=_ _ _
_ _

.

[ ]

4.4. Conditional Distance Distribution along a Line of Sight

Next, we calculate the conditional distance distribution along
a given line of sight, which is the probability per unit distance
under the assumption that the source is in a given direction. We
will use the same sky position as in the example above. We lay

14 https://www.continuum.io/anaconda
15 http://conda.pydata.org/miniconda.html
16 https://pip.pypa.io
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out a grid in distance along that line of sight:

r np linspace 0 150 = . ,( )

Then, we plug everything into the ansatz distribution:

dp dr r 2 distnorm ipix norm
distmu ipix distsigma ipix pdf r

 = * * * *_
. . . , .

[ ] (
[ ] [ ]) ( )

Finally, we plot the result:

plt plot r dp dr
plt xlabel distance Mpc
plt ylabel prob Mpc 1
plt show






¢ ¢
¢ - ¢

. , _

.

. $ $

.

( )
( ␣( ) )
( ␣ { } )

()

4.5. Probability per Unit Volume at a Point

Now, we calculate the probability density per Mpc3 at a
point. We will use the same right ascension and declination as
above and a distance of 74.8 Mpc:

r 74 8 = .

Finally,

dp dV prob ipix distnorm ipix norm
distmu ipix distsigma ipix pdf r pixarea
dp dV

3 1173200109121657e 05





= * *_
. . . , .

_
.

[ ] [ ] (
[ ] [ ]) ( )

–

4.6. Marginal Distance Distribution Integrated over the Sky

As our next example, we compute the marginal distance
distribution, the probability density per unit distance integrated
over the entire sky:

r np linspace 0 150
dp dr np sum prob rr 2 distnorm

norm distmu distsigma pdf rr rr r




=
= * * * *

*

. ,
_ .

. . . , . for in

( )
[ (

( ) ( )) ]

Finally, we plot the result:

plt plot r dp dr
plt xlabel distance Mpc
plt ylabel prob Mpc 1
plt show






¢ ¢
¢ - ¢

. , _

.

. $ $

.

( )
( ␣( ) )
( ␣ { } )

()

Figure 1. Screen shot of data release page.
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4.7. Ranked List of Galaxies

As our final example, we will generate a ranked list of galaxies.
For the purpose of this demonstration, we will use the 2MASS

Redshift Survey (2MRS; Huchra et al. 2012) because it is a flux-
limited all-sky spectroscopic redshift catalog. This greatly
simplifies the issues of completeness, sky coverage, and accuracy
of redshift estimates. First, download the entire catalog from
VizieR (Ochsenbein et al. 2000) using Astroquery:

astroquery vizier Vizier
Vizier ROW LIMIT 1
cat Vizier get catalogs J ApJS 199 26 table3





= -
= ¢ ¢

from . import
. _

, . _ ( )

According to Tully (2015), the 2MRS luminosity function is
well fit by a Schechter function with a cutoff absolute
magnitude of * = -M 23.55K and a power-law index of
αK=−1. We find the maximum absolute magnitude MK

max

for a completeness fraction of 0.5:

scipy special gammaincinv
completeness 0 5
alpha 1 0
MK star 23 55
MK max MK star 2 5 np log10
gammaincinv alpha 2 completeness
MK max

23 947936347387156









=
= -

= -
= + *

+

-

from . import
.

.
_ .
_ _ . .

. . . ,
_

.

(
( ))

We select only galaxies with positive redshifts and absolute
magnitudes greater than MK

max :

astropy cosmology WMAP9 as cosmo
astropy table Column
astropy units as u
astropy constants as c

z u Quantity cat cz c c to
u dimensionless unscaled
MK cat Ktmag cosmo distmod z
keep z 0 MK MK max
cat cat keep
z z keep












= ¢ ¢

= ¢ ¢ -
= > <

=
=

from . import
from . import
import .
import .

. . .
. . . . _

.
& _

( ( [ ]) ) (
)

[ ] ( )
( ) ( )

[ ]
[ ]

Then, we calculate the luminosity distance and HEALPix
index of each galaxy:

r cosmo luminosity distance z to Mpc value
theta 0 5 np pi cat DEJ2000 to rad value
phi cat RAJ2000 to rad value
ipix hp ang2pix nside theta phi






= ¢ ¢
= * - ¢ ¢ ¢ ¢

= ¢ ¢ ¢ ¢
=

. _ . .

. . _ . .

_ . .
. , ,

( ) ( )
[ ] ( )

[ ] ( )
( )

We find the probability density per unit volume at the
position of each galaxy:

dp dV prob ipix distnorm ipix norm
distmu ipix distsigma ipix pdf r pixarea

 = * *_
. . . , .

[ ] [ ] (
[ ] [ ]) ( )

Finally, we sort the galaxies by descending probability
density and take the top 50:

top50 cat np flipud np argsort dp dV 50
top50 RAJ2000 DEJ2000 Ktmag

Table masked True length 50
RAJ2000 DEJ2000 Ktmag

deg deg mag
float64 float64 float32

344 01190 36 36136 8 772
343 81122 36 67177 9 958
137 19089 38 60788 9 566
334 86545 29 39581 9 835
359 81589 46 88923 9 307
0 00695 47 27456 9 499

123 16494 16 05073 9 727
341 26642 33 99616 9 799
339 33075 34 44790 9 204
137 27219 35 90259 10 822
188 13953 68 53886 9 609
339 01483 33 97575 10 032




=
¢ ¢ ¢ ¢ ¢ ¢

< = = >

--------- --------- -------

-

-

-
-

. . _ :

_ , _ ,

_ _

. . .

. . .

. . .

. . .

. . .

. . .. . . . . . . . .

. . .

. . .

. . .

. . .

. . .

. . .

[ ( ( ))][ ]
[ ]

5. VOLUME RECONSTRUCTION ALGORITHM

The volume reconstruction algorithm consists of a compu-
tationally trivial postprocessing stage that is added to the two
established LIGO/Virgo methods for localization of CBC
events, the BAYESTAR rapid triangulation code (Singer et al.
2014; Singer 2015), and the LALInference parameter estima-
tion pipeline (Aasi et al. 2013).
The conditional mean and standard deviation of distance are

extracted from BAYESTAR as described in Section 5.1 and
from LALInference as explained in Section 5.2 below. Then,
the mean and standard deviation are converted to the ansatz
parameters as described in Section 5.3.

5.1. Volume Reconstruction in BAYESTAR

BAYESTAR (Singer et al. 2014; Singer 2015) is a rapid
position reconstruction algorithm for BNS mergers. Its inputs
are a trio of numbers for each detector: the matched-filter
estimates of the arrival time, phase, and amplitude at each GW
site. It marginalizes over polarization angle, inclination angle,
coalescence time, and distance by performing low-order
Gaussian quadrature integration in a series of nested loops.
The output is a HEALPix all-sky map of posterior probability,
consisting of Npix equal-area pixels.
The BAYESTAR distance prior is a power law of r k, with k

being supplied by the user and normally set to k=2 for a
spatially homogeneous source population. To evaluate the
distances, we run BAYESTAR two more times, with
¢ = +k k 1 and  = +k k 2. The resulting three sky maps are
denoted á ñ1 , á ñr , and á ñr2 . The HEALPix-sampled marginal sky
posterior r̂, conditional mean distance m̂, and conditional
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standard deviation of distance ŝ are then given by

r = á ñ1 , 1ˆ ( )

= á ñ á ñm r 1 , and 2ˆ ( )

= á ñ á ñ -s r m1 . 32 2ˆ ˆ ( )

Finally, the moments m̂ and ŝ are converted to the ansatz
parameters m̂, ŝ, and N̂ using the procedure described in
Section 5.3 below.

BAYESTAR takes about a minute to run (Singer 2015); the
conventional one-dimensional sky map is ready with a
response time of a few minutes. Since we will now run
BAYESTAR three times, the total number of computations will
increase by about a factor of 3. Fortunately, since BAYESTAR
is able to make effective use of many CPU cores, we can offset
the modest increase in computational cost by moving the
analysis to a machine with more cores, resulting in a negligible
overall change in running time.

5.2. Volume Reconstruction in LALInference

LALInference (Aasi et al. 2013) is the Advanced LIGO
Bayesian parameter estimation library. It includes several
algorithms that perform full modeling of the GW signal and
stochastic sampling of the CBC parameter space. The inputs to
LALInference are the GW time series from all of the detectors.
The output is a cloud of sample points drawn from the GW
posterior.

The samples are converted to a smooth multidimensional
probability distribution by clustering them into N disjoint sets,
each consisting of Ni spatially neighboring points, and building
a kernel density estimator (KDE) for each cluster.17 In
Cartesian coordinates, the smoothed distribution is given by a
double sum over the clusters and the samples within each
cluster:

T⎡
⎣⎢

⎤
⎦⎥

å

å

p=

- - -

=

- -

=

-

x C

x X C x X

p W N2

exp
1

2
. 4

i

N

i i i

j

N

ij i ij

1

1 2 1

1

1
i

( ) ∣ ∣

( ) ( ) ( )

Here, Wi is a weight associated with cluster i, and each cluster
is described by its KDE covariance Ci and Ni samples Xij. The
¼∣ ∣ denotes the matrix determinant.
The stochastic sampling takes hours to weeks depending on

the sophistication of the waveform models that are used and on
the treatment of uncertainty in detector calibration. It takes up
to tens of minutes to build the KDE.

We can exactly calculate the conditional mean and standard
deviation of the distance for the KDE posterior. First, we
evaluate Equation (4) at the position =x nr :

⎡
⎣⎢

⎤
⎦⎥å åp=

- -

=

- -

=

np r c N w
r x

c
2 exp

2
, 5

i

N

i i
j

N

ij
ij

i1

1 2 1

1

2i

( ) ( )
( )

( )

with

T= - -n C nc , 6i i
1 1( ) ( )

T= -n C Xx c , and 7ij i ij i
1( ) ( )

T
⎡
⎣
⎢⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦
⎥⎥p

= - -

C
X C Xw

c x

c
W

1

2
exp

1

2
. 8iij

i

i

ij

i
ij ij i

2
1

∣ ∣
( )

We compute the integrals of 1, r, and r2, weighted by np r r2( ) :

ò åá ñ = = á ñ
¥

np r r dr w N1 1 , 9
ij

ij ij i
0

2( ) ( )

ò åá ñ = = á ñ
¥

nr p r r dr w r N , 10
ij

ij ij i
0

3( ) ( )

ò åá ñ = = á ñ
¥

nr p r r dr w r N , 11
ij

ij ij i
2

0

4 2( ) ( )

with

á ñ = + +x c a x b1 , 12ij ij i ij
2( ) ( )

á ñ = + + +r x x c a x c b3 2 , 13ij ij ij i ij i
3 2( ) ( ) ( )

á ñ = + + + +r x x c c a x x c b6 3 5 , 14ij ij ij i i ij ij i
2 4 2 2 3( ) ( ) ( )

⎛
⎝
⎜⎜

⎡
⎣⎢

⎤
⎦⎥

⎞
⎠
⎟⎟= +a

x

c

1

2
1 erf

2
, and 15

ij

i

( )

⎡
⎣⎢

⎤
⎦⎥p

=
-

b
c x

c2
exp

2
. 16i ij

i

2

( )

Then á ñ1 , á ñr , and á ñr2 are converted to r̂, m̂, and ŝ using
Equations (1)–(3). Finally, m̂ and ŝ are converted to m̂, ŝ, and
N̂ using the procedure described in Section 5.3 below.

5.3. Method of Moments

For both BAYESTAR and LALInference, the parameters of
the ansatz distribution are extracted using the method of
moments. The ansatz is that the conditional distribution of
distance is described by the function

⎡
⎣⎢

⎤
⎦⎥


ps

m
s

= -
-

n
n

n

n
n

p r
N r

r

r
2

exp
2

for 0. 17

2

2
2( ∣ ) ( )

( )
( ( ))

( )
( )

The nth moment of the distance ansatz is

⎡
⎣⎢

⎤
⎦⎥òm s

ps
m

s
= -

-¥
+r

N r
r r,

2
exp

2
d . 18n n

0

2

2
2( ) ( ) ( )

The conditional mean and standard deviation of the ansatz
distribution are

m s m s=m r, , and 19( ) ( ) ( )

m s m s m s= -s r r, , , . 202 2( ) ( ) ( ) ( )

Our task is, given the conditional mean m̂ and standard
deviation ŝ as measured from the actual posterior probability
distribution, to numerically solve the following system of
equations for m̂ and ŝ:

m s=m r , and 21ˆ ( ˆ ˆ ) ( )

m s m s= -s r r, , . 222 2ˆ ( ˆ ˆ ) ( ˆ ˆ ) ( )

We can reduce this to a single equation by defining z=μ/σ
and m s=ẑ ˆ ˆ . With this substitution, the moments can be
written as

s= - +
+r NQ z x z ,n n

n
2

2( ) ( )17 https://github.com/farr/skyarea
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Figure 2. Comparison between the posterior sample chain, the KDE, and the ansatz distribution. In panel(a), the heat map shows a 2D projection of the KDE. The
black dots are the LALInference posterior samples from which the KDE was built. The top right and bottom left plots show the 1D projections. The dark, smooth,
orange line is the 1D marginal KDE and the dark, purple, stepped line is a 1D histogram of the LALInference posterior samples. The faint lines of the corresponding
colors and styles are the respective 1D cumulative distributions. The bottom right plot is a P–P plot of the 1D cumulative distribution of the KDE vs. the 1D
cumulative histogram of the posterior samples. Panel(b) is the same as panel(a), except that samples from the ansatz distribution are substituted for samples from the
posterior.

Figure 3. Ensemble P–P plot test for the 250 events from the O1 scenario(a) and the 250 events from the O2 scenario(b).
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with

= + + -
= + + + -
= + + + + -

x z z zH z

x z z z z H z

x z z z z z H z

1 ,

3 2 , and

6 3 5 .

2
2

3
3 2

4
4 2 3

( ) ( )
( ) ( ) ( )
( ) ( ) ( )

The function =Q x xerfc 2 2( ) ( ) is the upper tail of the
normal distribution, p= -P x xexp 2 22( ) ( ) is the normal
distribution function, and H(x)=P(x)/Q(x) is the hazard
function. Then Equations (21) and (22) become

⎜ ⎟
⎛
⎝⎜

⎛
⎝

⎞
⎠

⎞
⎠⎟= + - =f z

s

m
x z x z x z1 0. 23

2

3
2

2 4( ˆ) ˆ
ˆ

( ˆ) ( ˆ) ( ˆ) ( )

The derivative of the left-hand side, ¢f z( ˆ), is given by

⎜ ⎟
⎛
⎝⎜

⎛
⎝

⎞
⎠

⎞
⎠⎟¢ = + ¢

- ¢ - ¢

f z
s

m
x z x z

x z x z x z x z

2 1

24

2

3 3

2 4 2 4

( ˆ) ˆ
ˆ

( ˆ) ( ˆ)

( ˆ) ( ˆ) ( ˆ) ( ˆ) ( )

with

¢ = + - + ¶ -
¢ = + + - + + ¶ -
¢ = + + + -

+ + ¶ -
¶ - =- - + -

x z z H z z H z

x z z zH z z H z

x z z z z H z

z z H z

H z H z z H z

2 ,

3 3 2 2 ,

4 12 3 5

5 ,
and .

z

z

z

z

2

3
2 2

4
3 2

3

( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( )

( ) ( )
( ) ( )( ( ))

We solve Equations (23) and (24) for ẑ using Steffensen’s
method18, an accelerated Newton solver. Starting from an
initial value of =z m s0ˆ ˆ ˆ, the solution converges to machine
precision in 10 iterations.

Finally, we calculate m̂, ŝ, and N as follows:

s
m s

s

=
=

= - -

mx z x z
z

N Q z x z

,
,

.

2 3

2
2

1

ˆ ( ˆ) ( ˆ)
ˆ ˆ ˆ
ˆ ( ( ˆ) ˆ ( ˆ))

In the rare event that the solution does not converge, or yields
an invalid value such that m s m s- <r r, , 02 2( ˆ ˆ ) ( ˆ ˆ ) , we set

m
s
=¥
=
=N

,
1,

0.

ˆ
ˆ
ˆ

6. FAITHFULNESS

The ansatz guarantees that the first two moments of distance
are exactly reproduced along all lines of sight (LOSs).
However, we must ask how accurately the ansatz represents
the 3D posterior as a whole. The P–P plot graphical test,
popularized in the GW parameter estimation literature by
Sidery et al. (2014), compares two populations by plotting their
cumulative distributions against each other. If the two
distributions match, then the result should be a diagonal line.

In our case, we compare the KDE to the LALInference
posterior samples by projecting both the KDE and the posterior

samples along the distribution’s three principal axes, yielding
three P–P tests. As shown in Figure 2(a), the plot is nearly
diagonal, indicating that the KDE is a faithful representation of
the posterior samples. We then compare the KDE with the
ansatz by drawing samples from the ansatz distribution
(Figure 2(b)). Some deviation is perceptible; in the most
extreme cases we find a maximum difference in credible levels
of about 5%. P–P tests of the conditional distance distribution
itself along individual LOSs generally also agree within 5% or
better, except in directions of low probability (small ρi).
We test the statistical self-consistency of the entire ensemble

of simulated events in Figure 3. Here, we show a cumulative
histogram of the number of simulated events whose true 2D
and 3D coordinates are found within a given credible level. We
find that both the 2D sky maps and the 3D ansatz are self-
consistent within a binomial 95% tolerance band due to the
finite sample size of 250 events.
Our interpretation is that the ansatz is a reasonable

approximation of the full 3D posterior, in the sense that a
stated 50% credible volume has a 50%±5% chance of
containing the source. The most obvious alternative to the
ansatz is a densely sampled 3D grid, or a stack of 2D sky maps
for a series of distance shells. Either would be just as
conceptually simple, but computationally cumbersome due to
size. The KDE is an accurate representation of the posterior,
but is expensive to evaluate because it is a sum of 104–105

Gaussians. As a rapidly available data product and as a tool for
real-time observation planning, the ansatz distribution is a
reasonable compromise.

We thank the Aspen Center for Physics and NSF grant
#1066293 for hospitality during the conception, writing, and
editing of this paper. We thank PShawhan and FTombesi for
detailed feedback on the manuscript. The online data release is
available at https://dcc.ligo.org/P1500071/public/html. This
is LIGO document P1500071-v7.
Software: Astropy (Robitaille et al. 2013), GNU Scientific

Library (Galassi & Gough 2009), HEALPix (Górski et al. 2005),
Matplotlib (Hunter 2007), Yt (Turk et al. 2011).
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