MIT
Libraries | D>pace@MIT

MIT Open Access Articles

Quantitative test of general theories of the intrinsic laser linewidth

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Cerjan, Alexander, Adi Pick, Y. D. Chong, Steven G. Johnson, and A. Douglas Stone.
“Quantitative Test of General Theories of the Intrinsic Laser Linewidth.” Optics Express 23, no.
22 (October 21, 2015): 28316.

As Published: http://dx.doi.org/10.1364/0e.23.028316

Publisher: Optical Society of America

Persistent URL: http://hdl.handle.net/1721.1/110190

Version: Original manuscript: author’s manuscript prior to formal peer review

Terms of use: Creative Commons Attribution-Noncommercial-Share Alike

I I I .
I I Massachusetts Institute of Technology


https://libraries.mit.edu/forms/dspace-oa-articles.html
http://hdl.handle.net/1721.1/110190
http://creativecommons.org/licenses/by-nc-sa/4.0/

arXiv:1505.01884v2 [physics.optics] 12 Jun 2015

Quantitativetest of general theories of
theintrinsic laser linewidth

Alexander Cerjant, Adi Pick?, Y. D. Chong?®, Steven G. Johnson?, and
A. Douglas Stonel*
1Department of Applied Physics, Yale University, New Ha@amnecticut 06520, USA
2Department of Physics, Harvard University, Cambridge, Mashusetts 02138, USA
3School of Physical and Mathematical Sciences, Nanyangitéatical University,
Singapore 637371, Singapore
4Department of Mathematics, Massachusetts Institute dfriidogy, Cambridge,
Massachusetts 02139, USA

Abstract: We perform a first-principles calculation of the quantumited
laser linewidth, testing the predictions of recently depeld theories of
the laser linewidth based on fluctuations about the knowadstetate laser
solutions against traditional forms of the Schawlow-Towlieewidth. The
numerical study is based on finite-difference time-domeitutations of the
semiclassical Maxwell-Bloch lasing equations, augmentgd Langevin
force terms, and includes the effects of dispersion, lodsesto the open
boundary of the laser cavity, and non-linear coupling betwthe amplitude
and phase fluctuations (factor). We find quantitative agreement between
the numerical results and the predictions of the noisy stesateab initio
laser theory (N-SALT), both in the variation of the linewidivith output
power, as well as the emergence of side-peaks due to relaxacillations.
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1. Introduction

The most important property of lasers not captured by sessatal theories, which treat the
fields via Maxwell's equations, is the intrinsic laser lirndtln due to quantum fluctuations.
Above the laser threshold these fluctuations cause a diffusithe phase of the emitted laser
signal, leading to a broadening of the observed line, whichld/have zero width within semi-
classical theory. The magnitude of this linewidth deperutsnithe geometry of the laser cav-
ity as well as upon the output power of the laser, and was fastutated by Schawlow and
Townes [1], and the standard formula arising from their wahle “Schawlow-Townes” (ST)
linewidth, is
R )2

2P @

whereay is the central frequency of the emitted laser lightis the decay rate of the passive
cavity resonance corresponding to the laser mode Paisdhe output power. (Schwalow and
Townes actually found twice this value in their original Wowhich assumed the laser was near
threshold, but it was quickly recognized that far aboveshotd only the phase fluctuations
were important, reducing the linewidth by a factor of twa).subsequent decades, improved
theoretical analyses allowed for the discovery of four gigant corrections to this formula. The
o factor arises from the coupling between intensity and pflasaations, and takes different
forms depending on the nature of the gain medium. For atorediarit was first recognized by
Lax [2] and tends to be relatively small; for semiconductedia its importance was realized by
Henry [3[4], and in this context it typically dominates theedt phase fluctuation terms found
by Schawlow and Townes, and is called the Hearfactor. A second correction arises from
relaxing the assumption of complete inversion of the gaidioma used by Schawlow-Townes;

dwsT =



this incomplete inversion factor accounts for the actuahber of inverted gain atoms|[2]. A
third and particularly interesting correction is the Petenn factor, which describes the effect
of the openness of the cavity and the consequent non-omtiadigoof the lasing modes[54-9].
Each of these correctiorincreasesthe linewidth from the ST value, which it is natural to
regard as a lower bound. However, there exists a fourth ctiore often referred to as the
“bad-cavity” factor, which leads to eeductionin the laser linewidth. This correction is only
appreciable when the cavity decay rayg,is fast enough (Q is low enough) thg ~ vy,
where the latter is the dephasing rate of the polarizatiagh@fjain medium, which determines
the gain bandwidth ]2, 10=14]. Hence it is appreciable whaim glispersion is significant.
This correction was first interpreted as a slowing of pha#fieisdon due to atomic memory
effects[2,10,11], and subsequently an alternative inégation was pointed out: the dispersion
reduces the group velocity of the light within the cavityadéng to an increase in the effective
cavity Q and a narrowing of the ST linewidth due to the activediam [12]. More recently,
superradiant gain media have been proposed as a way of hsitgdtl-cavity factor to achieve
ultralow linewidth lasers [15-19].

However none of the previous linewidth theories have tet&idly the space-dependence
of the electric fields and the non-linear spatial hole-tugreffect in lasers, which greatly af-
fects the stimulated and spontaneous emission rates etatiffpoints in the cavity. Recently, a
steady-statab initio laser theory (SALT)[[20=22] has been developed which trétspatial
degrees of freedom essentially exactly, even in the casautiimode lasing. For single-mode
lasing the validity of the theory only requires that>> y,wherey; is the non-radiative relax-
ation rate of the lasing transition; for multimode lasing tonditiony; < A, whereA is the
free spectral range of the resonator, is also required R-Sbsequently ab initio linewidth
theories, based on fluctuations in the fields around the SAltisns, have led to general-
ized linewidth formulas which should be more accurate tha&mtriginal ST linewidth formula
with the four previous corrections included as independeuitiplicative factors, as is typi-
cally done. The first works of this type used a scattering mé&drmulation of the quantum
fluctuations and input-output theofy [25] 26], which captlicorrectly the generalization of the
Petermann and bad-cavity factors, but not that of the alpldarecomplete inversion factors.
The linewidth is expressed in terms of the residue of th@tpgble in the scattering matrix and
leads to analytic formulas in terms of the SALT solutionsiyMecently Picket al. [27] have
derived a more general analytic formula for the linewidty applying a coupled mode noise
analysis to the SALT solutions. This formula agrees withrésults of [25, 26] but goes beyond
them to include correctly more generaland incomplete inversions factors. We will refer to
this generalized theory, which includes noise effects,&ANT (SALT plus noise). We believe
that the N-SALT linewidth formula quantitatively predidtee laser linewidth (far above thresh-
old) including all corrections in an appropriately genaed form, and in that sense represents
completely the effects of spontaneous emission on the lassvidth. We test this hypothesis
in the current work by direct integration of the laser equagiwith noise.

Adding Langevin noise to the steady-state lasing solutions gain medium of two-level
atoms was shown i [27] to lead to a set of non-linear couplederequations for the time-
dependent fluctuations around the SALT steady-state. Btialuof the noise-averaged field
correlation functions from these equations gives the N-Blalser linewidth in the form:

R &8 J 1M (x, )] [ W) 20 [ Im(e(x, co)] i | @o(x) 2dx
OUN-SALT =%p — o de 5 1
| W5(x) (£(x. c0) + B 5 ) X

where,(x) is the the semiclassical lasing field inside of the cavitynfrom SALT, normal-
ized such thaf @3dx = 1, and the integral is over the cavity regi@(x) is the total dielectric
function of the passive cavity plus gain medium, assumed teebe homogeneously broad-

a%), (2



ened two-level atoms, ansh(x) and D(x) are the number of excited atoms and the atomic
inversion respectively (generalization to multi-leveljltirtransition atoms is straightforward
within SALT and N-SALT, se€[[28.29])x is the generalized factor [27], which can be cal-
culated analytically from knowledge afiy(x),e(x) [27]. This formula is derived under the
conditions thad wy.sat < v, A This equation reduces to the separable corrections disdus
above in the appropriate limits [26,27], but show that ingrahthe incomplete inversion, Peter-
mann, and bad-cavity linewidth corrections cannot be cmisid independent from each other
or of the cavity decay rate.

Here, we test the predictions of the N-SALT linewidth formabainst the Schawlow-Townes
linewidth formula, including all the relevant correctiomg directly integrating the laser equa-
tions using the Finite Difference Time Domain (FDTD) methottluding the quantum fluc-
tuations using the method proposed by Drummond and RaygrdBd employing the time-
stepping method proposed by Bidégaray [31]. Many previmuserical studies of spontaneous
emission in laser cavities have implemented the noise basé&dowledge of the lasing mode
structure [[32=35]. However, these studies did not havesacttethe above-threshold lasing-
mode profiles, which can differ significantly from the passoavity modes used e.g. in cal-
culating the traditional Petermann factor. In our approaetwill not make a particular modal
ansatz. Hofmann and Hess derived FDTD-based noisy lasuragieqs similar to ours for appli-
cations to semiconductors, but the analysis made furtisenastions not valid above the lasing
threshold[[35]. The effects of fluctuations in the electrgmetic fields due to thermal noise has
also been previously studied using the FDTD algorithm [3]-these effects are necessary
to include when studying the noise properties of maserstwrdong wavelength lasers, but
can be safely neglected at optical frequencies, where thietapeous emission events being
considered here dominate the noise of the laser. The agpusad in this manuscript is similar
to that used by Andreasex al. [40-+42], both in the equations used and in the analytic neetho
to extract the signal’s linewidth. However unlike thoselieastudies([[40=42] we will analyze
the linewidth far above threshold where it can be compareatjatively to previous proposed
formulas. To our knowledge this is the first study of this type this end, we will be consid-
ering relatively simple and small laser cavities, allowirgjto achieve the spectral resolution
necessary to resolve the narrow laser linewidths far abmv&asing threshold.

The outline of the remainder of this paper is as follows. In.Bewe demonstrate the equiv-
alence of the macroscopic picture of the N-SALT linewidtmfiolla with the microscopic pic-
ture used by Drummond and Raymer. In $éc. 3 we review the ieqsatnd numerical method
used in the FDTD algorithm to simulate a noisy gain mediunpbedito a laser cavity. Sed 4
presents the methodologies for extracting a linewidth ftbmresultant noisy signal in both
the frequency and time domains. The results of our studyisemdgn Sec[b, including the di-
rect comparison between the Schawlow-Townes and N-SAlewlidth predictions in a simple
laser cavity with single mode lasing, in single mode lasétk arelatively largex factor, and
in the case of multimode lasing, particularly near the sddasing threshold. Summary and
concluding remarks are given in SEEL. 6.

2. Microscopic and macroscopic noise equivalence

There are two different ways of incorporating the effectspdntaneous emission on the electric
field inside of the laser cavity, either by using the fluctoatdissipation theorem alongside the
wave equation, or by including spontaneous emission intitraia degrees of freedom, which
are coupled non-linearly to the wave equation. In this seatie will explicitly demonstrate the
equivalence of these two methods, which we term the macpasemd microscopic perspec-
tives respectively, as the derivation of the N-SALT linethigéquation uses the former method,
while the Langevin equations augmenting the FDTD simutetiase the latter. This section



also serves as a proof that despite the non-equilibriunteatuthe laser, with power flowing
in and light flowing out, the system does reach a point of Btglwherein the fluctuations of
the electric field can be appropriately treated with the €élatbn-dissipation theorem.

The derivation of the N-SALT equation incorporates all of thoise due to the quantum
fluctuations in the gain medium directly into the wave ecuats([27]

[0 x 0 x —w?(w,Eo)| E = w?(¢(w,E) — &(w,Eq)) E +Fs, Q)

wheree(w, E) is the full dielectric function of the cavity and gain medipaiw, Eo) is the
non-linear saturated dielectric function of the cavity laaéed using the semiclassical lasing
modeEq(x) = /1Py (x), wherel is the lasing mode intensity, arfi is a random noise source
corresponding to the spontaneous emission from the gaimumed he first term on the right
hand side of Eq[{3) corresponds to the effective sourcedaladtuations in the field leading
to fluctuations in the saturation of the gain medium, while #econd term corresponds to
spontaneous emission contributing directly to noise ineleetric field. The inclusion of the
full space-dependent non-linearity of the active cavitglelitric function above threshold in
the noise term is a key feature distinguishing N-SALT frorayious linewidth theories. The
autocorrelation of the random noise source is assumed tivee directly by the fluctuation-
dissipation theorem,

(F&(x, w)Fs(X, ') = 2hw*im[g(w, Eo)] coth(%(x)) dx—x)d(w—aw), (4)
wheref(x) = (1/hap) In(N1(x)/N2(x)) is the effective (negative) inverse temperature of the
inverted gain medium, withl; andN, are the number of atoms in the ground and excited atomic
levels respectively. (Note that [g(w, Ep)] < O in the inverted state, so that the correlation
remains positive).

In this treatment of the noise in the laser field due to spadaa emission, the atomic de-
grees of freedom have been completely integrated out, anfiutttuation-dissipation theorem
has been invoked from a macroscopic perspective, relatiagatitocorrelation of the noise
source to the imaginary part of the material response fonaind a temperature dependent
term. The hyperbolic cotangent factor arrises as a sum ofse{&instein distribution and a
factor of 1/2 from the quantum zero-point fluctuations, which is why th&ecorrelation does
not vanish in the zero temperature lim& - ). However, it was shown by Henry and Kazari-
nov that the contributions from the zero-point fluctuatioaacel in the linewidth formula[43]
(a simpler, semiclassical proof of this is in Réf.][27]), easisuch it is convenient to explic-
itly subtract this contribution, allowing for the effectitemperature of the gain medium to be
determined by relative occupations of the atomic levelsmising the lasing transition,

o522 10
(x)

whereD(x) = No(x) — N1(x) is the number of inverted atoms. Thus, for the laser systems
considered here, Eq.l(4) can be written as
(F&(x, w)Fs(X, ') = 4hw*img(x, w)] [% coth<h_abTB(X)) - ﬂ d(x—x)d(w— ). (6)

In contrast to this macroscopic picture, many traditiohalories of the noise due to spon-
taneous emission from the gain media begin by treating tmgéen forces on the quantum
operators of individual gain atoms and building up an undeding of the total noise this gen-
erates in the electric field, a more microscopic viewpaoiiB[2 44]. We will demonstrate the



equivalence of these two methods by deriving the total Laimgerce on the polarization from
the microscopic perspective. For a two-level atomic gailioma, the evolution equation for
the off-diagonal matrix element of tleeth atom,péi'), including the Langevin forcé',gg)) (t),is
given by,
@) — — (v +ioo@ )+ 19 g Ex@ 14 F@ 7

atpm()— (VL‘H%)PH()"‘ h (X 7)+ (p)()a ()
in which w; is the atomic transition frequenay, is the dephasing rate, aifds the dipole cou-
pling matrix element. Furthermore, the evolution of theeirsion for that atomg(@), including

the Langevin forcel,'Eg; (t), is given by

2 *
ad® = yj(dg" —d) + Z0-EX® 1) (057" — psT) + T (3 1) ®)

Wheredéo'> is the inversion of therth atom in the absence of any electric field. Finally, the wave
equation for the electric field can be written in this contexexplicitly including the coupling
between the field and each individual gain atom (see Eqs8)Yard (5.55) in Ref[[44]),

(0% Ox —ahec] E(x,w) = 4Tag0 Y 5(x —x(@)pl®), 9)
a

in which we have approximated that the electric field is ¢estiilg at frequencies close to the
semiclassical lasing frequenayy, and retained only the positive frequency components for
both the electric field and atomic polarization. Our aim idétermine the form of the effective
total Langevin force on the electric field by solving EqS. &nd [8) for the polarization and
inversion, insert these expressions into the wave equadiuch collect the resulting Langevin
force terms.

To leading orderp,; will oscillate at the lasing frequencsy, and if we approximate this as
its only frequency component, we can solve for

_d@ .
(@) d 6.

il apt
- 9-ExX"w & r(@
P = R — vy 0 T

—_— , 10
wo—watiy. P 9
where the electric field is assumed to be a constant over thieneoof the atom ax(?). The
fluctuation dissipation theorem states that the strengtheofluctuations is proportional to the
strength of the dissipative terms. Thus, for the Class A afabBrs considered herg, <y, ,

S0 FES)) () < FES)(t), and we can safely ignore the fluctuations in the atomic sieer Thus,

we can insert Eq[{10) into Eq.1(9),

[0x 0 x —afec] E(x, w) = 4mef Y 5(x—x)
a

—d@(0-E(x(?), w) jglent (@

. : 11
Al — wa+iy)  wo—oa+iy, @ (1)

Equation [(1]1) allows for the identification of the spontameaoise in the polarizatiom®y,
USing EQKB) and noting thﬁs: —47T(‘)2PN’ as

i@ @t r(a)

mumnzgaa_wma;zgﬁﬂ(mmy (12)



We can now directly calculate the correlation function & #pontaneous noise in the polariza-
tion using the correlation of the atomic Langevin folcel [44]

OB ) = |y 0+ @) + D (df — ()| sopdt-t),  (13)

in which each atom is taken to only be in equilibrium with igservoir[[10]. Note that the only
place the non-equilibrium nature of the reservoir comes ivia the term(d(®)) = pg, — p%,.
Since no higher moments or correlations enter the calowlaii is safe to define an effective
temperature for the system which can be negative via thigioael and apply the fluctuation-
dissipation theorem. Note also th@f“)) contains the non-linear effect of gain saturation and
spectral hole burning when calculated by the FDTD methodrgbelow.

By assuming that the inversion is relatively stationary,cae identify the same frequency
auto-correlation of the noise ds [45]

(' (@)r B (@) = yi (1+ (d @) 84p, (14)

in which we have again dropped the noise source proporttongl to be consistent with the
approximation neglecting fluctuations in the inversion matove. This allows us to solve for

ZGZVL

T / _
<PN(Xvw)PN(X ,W)) = (osb_wa)z'i‘yi

N2 (X)3(x —X), (15)
where the number of atoms in the upper lasing stétéx) has been identified using,

Np(x) — % S 8(x—x@)(1+ (d)). (16)

Upon substitution of the imaginary part of the dielectrindtion,

_4m®®  yD(x)

Imle] = , 17
“ A (0—w)?+y? )

we can identify the same frequency auto-correlation of tiisensourcé-s as
(Pl w)Fs(' ) = Brafimie] 2 ) 8(c-x). (18)

Finally, noting that the different frequency auto-cortia function can be found as [45],

(FLx @)Fs(X, @) = o (FL(x 0)Fs(x, ) 8(00~ ) (19)
and using the definition of the temperature factor given in @&, we recover the expected
auto-correlation of the random noise source given in[BqWth this, we have verified that the
microscopic and macroscopic methods of treating the fltictogin the gain medium produce
identical results, which allows us to use a microscopic rhofithe gain medium in our FDTD
simulations to test the predictions of the N-SALT theory.

3. FDTD equations

Having now demonstrated the equivalence of the microscapit macroscopic fluctuation
models, in this section we show how to include the microscdjictuations of the gain



medium within an FDTD simulation of a laser. The FDTD algomit has been known since
the 1960s[[46] and is ubiquitous across many fields of study. [4owever, only a few pre-
vious works have used the algorithm to study the noise inrdagii--42], and none (to our
knowledge) have studied the linewidth far above the ladimgshold as we do here. For this
reason we will briefly review the simulated equations hefte WMaxwell-Bloch equations for
a two level atomic gain medium in a one dimensional cavitylamritten as

d c[d 6\ d, 6 _ ok

SE=S [&Bn+4n<\70) EYRNeTY )], (20)
d d

q A (21)
d . 0

g = (i) 3y — =EaDn R, (22)
d 20_ . . _0D

100 =~ ¥)(Pn—Dop) + T=En((dy)" = Jy) + Fn, (23)

whereE,, andBy, are the electric and magnetic field densities at the spaitialtionx, within
the lasing cavity\y is the volume associated with each grid poiit,is the total atomic off-
diagonal density matrix element (related to the polaragtivith a positive frequency compo-
nent,Dy, is the inversion of thé\, atoms at the spatial locatioq, Do, is the inversion in the
absence of an electric field and plays the role of the effegivmp strength in this theory, and
Fr@ and Fn(D> are the Langevin forces experienced by the atomic off-diagjdensity matrix
element and inversion respectively. The choicgpfor the total off-diagonal density matrix
element is made for ease of comparison with Drummond and Baymho usel;, to denote
the same quantity, and is defined as

In(x) =3 pby)3(x— X)) = Nopa1(¥). (24)

The Langevin forces can be written &s][30],

R =&/ —2i6E0dn + &7 /Yo (Dn+ No) + &N /YoraNn, (25)

v D . B It (1/2)
AP =26 | AL (N, — Z20D) + 163y En— I En) — 2pp1n i
2 Nn Nn
—2[eMa el ] R (26)
n

in which y»; is the pumping rate from lower levél) to |2) and is given by,

_ Y (. Don
o= (14507, @)

andyr =y, — /2 is the pure dephasing rate. Randomness is introducedythtbe stochastic
variablesé, which are complex except f(iéd) € R, and satisfy([30]

EOED 1) = 8t —t') dmd; (28)

Many of the terms in Eqs[[(26=26) stem from resolving thenditea of the operator order-
ing when reducing operator equations to c-number equatiéowever, for studying the laser
linewidth above threshold, the difference caused by thibiguoity is minimal, as the addition



or removal of a spontaneous emission event is negligiblearptesence of the large number of
gain atoms necessary for lasing to occur. Thus most of teesestare expected to be negligible,
an assumption which we cheakposterioriafter retaining the leading terms:

FrEJ) :Ergp) W(Dn + Nn) + Er'(IN) \V/ V21,nNn7 (29)
D
<20 [ (o Oono,) @)

2 Nn

Finally, in accordance with the discussion in the previaegtion, the thermal fluctuations of
the electric and magnetic fields have been neglected.

The Maxwell-Bloch equations can then be discretized foringhe FDTD algorithm fol-
lowing the weak coupling method proposed by Bidégalray,[8tdlving the atomic variables
simultaneously with the magnetic field, but at the same aphitations as the electric field
so as to avoid solving a non-linear equation. Furthermoie,useful to separate the real and
imaginary components of the atomic off-diagonal densityrinalement,J; = jﬁl) + ijﬁz),
resulting in

Enlt 1) —En(t) + S o) (@it ) - it y)

c Vo 2
+Bm%GHlt;Bn1@+Q]’ -
Boiz(tiyy) =B 1(t_g)+ %( (Enta(ti) — En(ti)), (32)
%“H§%—<§ﬂ—%M)1Pn+ﬁf*(§ﬁ+%M>UMﬁ%ﬂa (33)

whereuy, = (Dp, j,(11>, j,(12>) is the vector of the atomic variables, = (yHDO’n,O, 0) is the pump-
ing vector,l is the 3x3 identity matrix is a matrix which contains the coupling information
between the atomic variables,

-y 0 —2E(b)
M = 0 -y Wa : (34)
%En(ti) —Wa YL
andfy is the Langevin force vector, whose elements are
Y D
=268/ (o= 22704y, )
fro =& . /yp(Dn(t N + &% /yornN 36
n2=¢&n"/¥p( n(l,%)‘f' h) + én Y21,nNn, (36)
fns =& | /YP(Dn(t_3) +No) + &°'/Yornln. (37)

where we have renumbered the random varia&‘@swhich continue to satisfy Eq._(R8), but
are now real, rather than complex, and introduced a facta@r 8 in this conversion process
(except forErgl) , which was real to begin with). Here we have used the final@ppration that
the Langevin force vector only depends upon the inversiaheatprevious time step, rather
than the average of the previous and current time steps wiuald result in a non-linear equa-
tion [42]. This is justified for the simulations performed@®ecause the inversio, is many



orders of magnitude smaller than the total number of atdimsand thus these inversion depen-
dent terms will have minimal impact upon the overall stréngftthe noise. For the discretized
Langevin forces, the stochastic variab{é@ are chosen from a standard uniform distribution,
and then renormalized to satisfy

1
(& )& (1)) = 58} Gmda. (38)
Eqs[31-3FF can now be readily evaluated numerically.

4. Linewidth analysis

Broadly speaking there are two main ways of extracting anlidth from a noisy signal; by
either fitting a curve to the frequency domain data or catoueahe cross-correlation of the
time domain data [48]. Here we will use both methods an comflzem; first we calculate
a linewidth from the spectral data and then confirm this lidéwby calculating(g(t)@(t)),
whereq(t) is the phase of the electric field.

4.1. Frequency-domain analysis

To analyze the spectrum of the electric field output from téty, E(w), and find a linewidth,
we will use the method proposed by Andreaseal. [42], and fit the spectrum to a Lorentzian
through the use of an error function. We assume that the ilsaentzian,

oA @
L(w) = (?) (RS (39)

wheres s the half-width half-maximum of the noiséweptp = 2s. The Lorentz error function
can then be defined as

Ler(w) = /:L(w’)dw/ = (2'%5) arctan(w_swo) . (40)

As such, this integration can be carried out numericallgatly uponE(w), and then fit to
Eqg. (40). For all of the data shown in this paper the curvenfitiis carried out using itera-
tive least squares estimation. Performing this integnatémuires knowledge of the lasing fre-
guency,wn, which is known from the semiclassical SALT calculation wéwer, the presence
of noise results in a slight shift of the semiclassical lgsiequency([3], and the slightly differ-
ent discretization schemes used between the SALT and FDIEDIatons yield an additional
shift in the lasing frequency, which together lead to a gligbhifted integrated spectrum, both
horizontally and vertically. As such it is useful to inclutieo other fitting parameters in the
Lorentz error function,

er(w) = <2'%S> arctan<%%+d> +c, (41)

whered plays the role of the horizontal offset ands the vertical offset. Using this correction,
the calculated linewidths are robust to the choiceugfso long as the curve fitting algorithm
converges.

An example of this process can be seen in Eg. 1, where thedefél shows the spectrum
of the output electric field for a dielectric slab cavity. Tanepute the power spectrum, or tech-
nically the periodograni[48] of the noisy signal, we chop #limulated time-domain field
E(t) into ~ 10 pieces and perform a discrete-time Fourier transformRDT49] on each
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Fig. 1. (a) Intensity spectrum of the output electric fieldhoh = 3 dielectric slab cavity,
shown in the schematic. The simulation parameters for thigycare y, = .5, wy = 424,

yj =.01,8 =2x 109 Na = 10, and the cavity is uniformly pumped & = 0.275
which is close to 5 times the threshold lasing pumgfy, = 0.0488. The rates quoted
here are given in units af/L, while the intensity is given in SALT units ofé#/(R%y, Vi
and the number and inversion of gain atoms are given in theTSAlits of 4782/ (Ry, ).

(b) Plot of the fitted Lorentz error function (red line) andmnmerically integrated FDTD
data (blue dots) of the simulation shown in (a). The specésblution for the simulated
data in (a) and (b) islw = 1.96 x 10~°. The analytic curve fit parameters are found using
MATLAB's curve fitting algorithms.

constituent piece, and then ensemble-average the r@stﬁiectraﬂé(wﬂz using Bartlett’s
method [48]. The right panel shows the Lorentz error functiotegral calculated numeri-
cally and fit against the analytic curve. The resulting liftttv predicted by this method is
dwrpTD = 2.22 x 1074, which is around an order of magnitude larger than the réisolof the
resultant spectrajw = 1.96 x 105, given in units ofc/L.

4.2. Time-domain confirmation

This calculation can be independently confirmed by calaudhe autocorrelation of the output
electric field as a function of time and expressing this asmatfan of the phase correlation,
which is defined in terms of the linewidth of the signal. Wrifithe output electric field as

E(t) = Ccoqwt + @(t)), (42)

The autocorrelation of the electric fielBgg(dt) = (E(t + ot)E(t)), can then be written as

2
Ree(dt) = (E2(t) cog wdt + ¢(5t))) — (% sin(2wt + 2¢(t)) sin(wdt + d@(dt))), (43)
where the double angle formula has been used in finding tlemdeerm on the right hand side,
andd@(ot) = @(t + ot) — @(t). By assuming that the phase shdip(dt) is uncorrelated with
the phasep(t), we can separate the correlations, note that the seconétemages to zero, and
again apply a trigonometric identity, resulting in

Ree(ot) = %2 [cog wadt)(cogd@(dt))) — sin(wdt)(sin(d¢p(dt)))] . (44)

This assumption that the phase shdtp is uncorrelated with the instantaneous phages
analogous to assuming that the gain medium has no memouwt,edfel is consistent with the
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Fig. 2. Plot of the autocorrelation of the electric field slatad numerically for the same
parameter used in Figl] 1 (blue line) and the analytic preictor the envelope of the
autocorrelation given in the second factor in EqJ (46) (gréee). The fast oscillations in
the numerically simulated electric field are at the lasimgjfrencywy, which is much faster
than the other time scales in the problem and leads to theslyepacked curve shown in
blue. Quantities are normalized, and plotted in unité @dt.

earlier assumption that the bad-cavity factor is unity f@ systems studied here. The second
term in Eq. [4%) averages to zero as well, as the phase sleifually likely to be positive or
negative. Finally, the cosine of the phase shift can be Tadpanded, and noting the definition
of the linewidth,

(5¢?(dt)) = dwdt, (45)

the electric field autocorrelation can be written as

2
%cos(wét) 1999 | oty (46)

REE(5t) = 5
showing that in the presence of phase diffusion, the cdioel&hould decrease linearly for
small ot.

This trend can be observed in Fig. 2 for the same simulaticshawn in Fig[l, where the
prediction forReg(dt) is evaluated usingw found by the frequency domain method from
the previous section and E.{46) (green line), and nunbricalculated (blue line). The fast
oscillations seen in the numerical data are duevtit > 1, and are predicted by the theory
derived above. The semi-quantitative agreement seen betilue frequency domain linewidth
prediction and the time domain prediction calculated heogides a consistency check, though
we will use the frequency domain method for the remaindenetilculations performed here.

5. Results

To test the predictions of the N-SALT linewidth, given ELQ),(@ith the Schawlow-Townes
linewidth [1], we first study the simple one-dimensionahgie-sided dielectric slab cavity,
n= 3, used in the previous two sections in FIgs. 1[dnd 2. Here se¢he “fully-corrected” form

of the Schawlow-Townes linewidth as the point of comparjsamich includes the Petermann
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Fig. 3. (Left panel) Plot showing the linewidth predictiogisen by the N-SALT given in
Eq. [2) (green), corrected Schawlow-Townes theory givelgn(47) (blue), integral form
of the Chong-Stone linewidth formula given in EG.{(48) (aye)y and FDTD simulations
(magenta) for a uniformly pumped, dielectric slab cavitghai = 3, wy = 424, vy, =
5,y =.01,0=2x10"7 andNa = 10*. All of the linewidth formulas are evaluated
using the spatially dependent integral definition of the @ogiven by Eq.[(51). (Right
panel) Plot of the same data shown on a log-log scale, wigteate lines for strict inverse
power dependenc® 1, provided for comparison (black dashed). Schematic irtse's
the cavity geometry. The rates and frequency are given s ofi¢/L, the number of atoms
in the cavity is given in terms of the SALT units ofd?/(Ry, ), and the output power is
given in the SALT units of 82/(R?y, y;).

factor, bad-cavity correction, and Henmyfactor, and is given by,

_ 2

Rany? (No\ |/ 1@o(x)[2dx || 1
5 (corr) _ c (_) J 1%0 1—|—C{2, 47
st 2P \D /| [gh(x)dx | |1+529E|, ) “n

where@y(x) is the passive cavity resonance corresponding to the lasoug, the spatial av-
erage of the inversion and occupation of the upper lasing sadenoted ab = [ D(x)dx,
the spatially averaged inversion is used to calculate tldedaaity factor, andx is the Henry

a factor. The first term in parentheses of Hq.l(47) correspomdse cavity-averaged incom-
plete inversion factor and the second corresponds to tleerRann factor [5,26]. The quantities
Po(x), @o(x), D(x), ande(x) are calculated using SALT, while the FDTD linewidths are ex-
tracted using the method described in §ed. 4.1, and run forgdntime steps to average together
at least six resulting spectra using Bartlett's method.tRerchosen parameteys~ y placing

it on the border between Class A and Class B lasers [50], enseagh to the former that no
relaxation oscillation side-peaks are seen in the regudrectra.

As can be seen in the left panel of Fig. 3, excellent quaivia@greement is seen between
the N-SALT prediction (green line) and the linewidths measuthrough direct integration
of the noisy Maxwell-Bloch equations (magenta triangleg)ile both results differ from the
corrected Schawlow-Townes theory (blue line). This digarey is shown to be more than a
simple scaling factor in the right panel of Fig. 3, where thme data is plotted on a log-log
scale, and it can be seen that the power law narrowing ofribev/ldth with respect to the output
power differs between the N-SALT and corrected Schawlow+Tes linewidth predictions.
Somewhat surprisingly only the N-SALT and FDTD results aenclose tdP—* (black dashed
lines), the others are show a measurably faster narrowing.

To understand the source of this discrepancy, we also pto€tiong-Stone linewidth [25]



calculated using its integral form [26],

My (@) (e f Im[e(x, w)]| @o(x) [2x)*
2P [ W300) £+ 5 Gla) x|

D

where we have neglected the vanishingly small boundary {sem [26]). The Chong-Stone
linewidth formula is derived through considering the bebawf the SALT-based scattering
matrix of the cavity, and thus is able to account correctlydlh effects stemming from the
cavity; it gives the proper cavity decay rate above threshahd the same Petermann factor,
and bad-cavity correction as N-SALT. However, it does naivjate an accurate treatment of
the fluctuations inside the gain medium, particularly atogk fluctuations, and thus is unable
to find thea factor and finds an inaccurate, cavity-averaged incompieézsion factor similar
to conventional theories. For the dielectric slab cavitidsd here, the detuning of the lasing
mode from the atomic transition is very small, such thak 1. Thus the significant discrep-
ancy between the N-SALT and FDTD results and the Chong-Spoadiction indicates that
the largest source of discrepancy lies in the treatmentefritbomplete inversion factor. The
ratio of the N-SALT and Chong-Stone linewidth predictionghe limit thatd = a = 0 can be

written as _
docs 2 [ D(x)|o(x)|2dx
dan-satt [ Na(X)[o(x)[2dx

However, for the two-level atomic gain media simulated h#re number of atoms in the ex-
cited atomic level is nearly constaNp ~ N; ~ N/2, allowing for this ratio to be expressed

as

dawcs _ [D(X)|¢o(x)|dx

dun-sar [ |@o(x)[2dx [D(x)dx’

In absolute terms, the fluctuations My, N;, andD are all of the same magnitude, but as
D(x) = No(X) — N1 (X) < Ny, its spatial variation is much larger on a relative scale@amhot be
neglected, leading to a significant discrepancy betweeNtSALT/FDTD and Chong-Stone
linewidth predictions. Note that the approximation of sglanvariance of the occupation of
the upper lasing level does not necessarily hold when cerieigl more realistic gain media,
with more than two levels, and is a result of the well knowrficlifity in pumping a two-level
medium past the transparency point to achieve lasing. Hemtie residual discrepancy be-
tween Chong-Stone and the corrected ST prediction indicii@t the incomplete inversion
factor only accounts for roughly half the discrepancy, dreremainder (Petermann and bad-
cavity effects) would be present in lasers with more thanlevels.

The implications of the relation expressed in Hq.l (50) camhaerstood graphically from
Fig.[4, where the left panel shows the steady-state inverBigx), within the cavity for dif-
ferent values of the output power generated by the cavitytlaa right panel shows the spatial
dependence of the lasing mode profig,(x)|, for the same values of the output power. As
the pump on the gain mediumy, is increased, the amplitude of the field within the cavity in
creases, as does the output power. However, due to spdgabbming in the gain medium, the
impact of the higher field intensity within the cavity is nettfuniformly in the inversion; thus
the average inversion within the cavity still increasesh@spump is ramped, mostly due to the
positions near the mirror in the cavity where the electrildfie very weak, while the weighted
average of the inversion with the field intensity remainstre¢ly constant, as the inversion
where the field intensity is maximized stays relatively ¢ansas the pump is increased. Thus
as noted, we do expect to see the corrected Schawlow-Towdestaong-Stone linewidth pre-
dictions decrease faster thayiP, as is observed in the right panel of Hig. 3, as both the output
power,P, and spatially averaged inversioB, increase as the pump strendth, is increased

S (1+a?), (48)

(49)

(50)
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Fig. 4. (Left panel) Plot of the steady-state inversibrix), as a function of the location
in the cavity for three different values of the output powRe- 0.524 (blue),P = 1.252
(green), and® = 3.116 (red). These values correspond to the first, sixth, agldteznth
data points shown in Fif] 3. Strong spatial hole-burningeensn the inversion due to the
lasing mode. Schematic depicts the cavity from Elg. 3. (Rpgimel) Plot of the normalized
spatial profile of the lasing modéyp(x)|, as a function of position in the cavity for the
same three values of the output power shown in the left pdiel.output power is given
in dimensionless SALT units ofé? /(R%y, yip)-

(see Eq.(48)). In contrast, the integral of the inversioigived against the field intensity, used
in the N-SALT linewidth prediction, does not change as thenpus increased. Thus, even
for the two-level atomic gain medium studied here, N-SALVegi a good 1P line narrowing.
Siegman has previously suggested that the incompletesiovefactor might lead to deviations
from the strict inverse dependence of the laser linewidtinutpe output power, but was unable
to test this hypothesis [51].

We note that it is important in these comparisons to caleutlé output power from its
fundamental definition via Poynting’s theorem[52],

P~ 2 [ m[e(0) Eal) e )

where this equation is given in Gaussian uriiis(x) = /I 5(x) is the unnormalized lasing
mode, and is the mode intensity. Performing this calculation reli@sfimding the correct
space-dependent quantities, which can be obtained usihd.S&e quantitative agreement
seen between the N-SALT linewidth prediction and the FDTidwations shown in Fid.l3 pro-
vides independent confirmation that this is the correct fdation of the output power to use.
However, in many treatments of laser emisson, which do et tthe full space dependence,
the output power is calculated using[10]

Pst = yenha, (52)

wherenis the average number of photons in the cavity. Using thimfofrpower calculation can
introduce a substantial error; using the corrected Schawlmvnes theory with this spatially
averaged power for the parameters of Elg. 3, leads to a ldthwdughly a factor of two larger
than the N-SALT and FDTD results. Thus we see that it is @itio use all of the spatial

information in the field€y(x) andD(x) obtained from SALT in order to quantitatively predict
the laser linewidth.
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Fig. 5. (Left panel) Plot showing the linewidth predictiogisen by the N-SALT (green
line), corrected Schawlow-Townes theory (blue line), aBd B simulations (red diamonds
and magenta triangles) for a uniformly pumped, dielectdb savity withn =3, wy = 42.4,

yL =5,y =.04,6 =4x10% andNa = 10', as shown in the schematic. The results
of the new FDTD simulations are shown as red diamonds, anglated alongside the
FDTD results from Fig[13, shown as magenta triangles. (Rjgirtel) Plot showing the
linewidth predictions given by the N-SALT (green line), caked N-SALT prediction from
Fig.[3 (magenta dashed line), corrected Schawlow-Towresryh(blue line), and FDTD
simulations (cyan squares) for a uniformly pumped, dielestab cavity withn =3, wa =
424,y = .25,y =.02,6 = 2x 1079, andNa = 10'°. The rates and frequency are given
in units ofc/L, the number of atoms in the cavity is given in terms of the SAdlts of
482/ (Ry, ), and the output power is given in the SALT units &% (R%y, Wi)-

5.1. linewidth scaling relations

The overall intensity of the electric field enters directiya the linewidth formulas only through
the output power, Eq_(51). SALT demonstrates that the idef@ld can be written in terms of
dimensionless unit€o(x) = (h,/yY]/20)EsaLt(x) [22,53], and thus the output power can
also be written as,

ﬁ2
P= < 4";—![) %/Im[_g(X)HESALT(XHZdX. (53)

This is how the dimension-full parameters stemming frompraperties of the gain medium
directly enter into all of the linewidth formulas discusseste. In particular we can rewrite the
N-SALT linewidth in SALT units as,

462 ) Ry o J Im[e]|go|?dx [ Im(e] 12| o |2dx

Pyiy ) Poar ([ (e+D |, dx)

(1+a2), (54)

OUN-SALT = <

wherePsa T is the output power calculated using the electric field messin SALT units.
Using SALT units and the stationary inversion approximaiioplies powerful scaling re-
lations between lasing solutions at different gain mediamameter value$ [20, 22]. Similarly,
Eq. (53) implies various scaling relations for the linewidt separates out the dependence of
the intrinsic laser linewidth upo8, yj, and the leading dependence upenand thus predicts
that the linewidth should obey a set of scaling relations.éx@mple maintaining the ratio of
yH/G2 should yield the same linewidth, and keeping the raﬂq‘/ez constant should result
in only very modest changes in the linewidth (changyngonly changes the strength of the
bad-cavity correction). These predictions are confirmeBBYD simulations. In the left panel



of Fig.[3, the linewidth is calculated via FDTD for a diffeteralue ofy, and6 than in Fig. 3,
while keeping the rati%/e2 to that in Fig[B. The resulting FDTD linewidth (red diamonds
plotted alongside magenta triangles from [Elg. 3) is seeretméntical. This serves as a vali-
dation of the FDTD simulations shown here, &g/ enter into the equations in a non-trivial
manner from which the scaling relations are not apparent.

In practice however checking these scaling relation mayiffiewdt, as the total relaxation
rate of the inversiony), can be written as a sum of contributions from spontaneoussémn
and non-radiative decay,

Y| = Yspont Yhr, (55)
in which the spontaneous decay rate can be writteh as [54],
4atsw3nH?
Yspon= %7 (56)

where ats is the fine structure constant amghon is seen to be exactly dependent up@h
Thus, in the limit of an atomic gain media without a non-rége&decay channel available
from the upper level to the ground state, the ratioy‘pfe2 in the linewidth does not yield
any new information as these two parameters are not indepértdowever, this analysis does
verify the intuitive statement that the laser linewidthiaié reduced if the non-radiative decay
rate is substantially larger than the spontaneous emigkoay rate, decreasing the overall
significance of spontaneous emission to the system, asltt&eeratio of62/yH that appears
in Eq. (52) will be reduced.

As noted, the scaling of the linewidth with the ral;igng/G2 is not exact as there is an
additional dependence gn in the bad cavity factor oncg ~ y; . In the right panel of Fid.15,
the ratio ofyLyH/G2 is held constant and equal to that in the left panel of the éigbuty, is
decreased so as to make the bad-cavity factor significaifiiyeht from unity. Thus instead of
remaining constant the linewidth decreases, in this caseumhly a factor of 23. However it
is possible to account for this failure of scaling by inchglia further approximate scaling by
noting that wherw, ~ wy > v, , we can express the bad-cavity factor as

1
9300 (e + P o) X

Using this, we can rescale the N-SALT linewidth predictignB,,,/B2 4 calculated using the
simple form on the right-hand side of EQ.157) (magenta dééhe). With the additional rescal-
ing the N-SALT linewidth for the parameters of the left panelv agrees with the N-SALT
prediction for the new gain media parameters in the righepégreen line) and quantitatively
agree with the FDTD simulations (cyan squares). This alsie® that the N-SALT form of
the bad-cavity factor correctly reduces to previously kn@approximations 2, 12,713], at least
for the parameters chosen here.

1
V7 |-

B (57)

5.2. relaxation oscillation sidebands

In Class B lasers, fluctuations in the amplitude of the eileéigld undergo relaxation oscilla-
tions while decaying to the steady-state. These relaxasaillations give rise to side-peaks in
the spectrum of the output intensity and in this section wiedegmonstrate that the N-SALT is
able to correctly reproduce the location and size of thetegeakd[27]. It has been known for
many decades that the relaxation oscillation frequenagases as the laser is pumped further
above threshold [55], but previous studies did not take amimount the spatial variation in the
gain saturation, which was shown [27] to play an importafe io quantitatively predicting



the laser linewidth in Se€] 5. Using the spatial lasing moddilps and inversion calculated
using SALT, N-SALT demonstrates that the output intensitgctrum is dependent upon the
total local decay raté [27],

v

(o — wa)?+y?

which contains contributions from both the non-radiatieeay rate of the inversiory, as
well as the local rate of stimulated emission given by theosdderm in Eq.[{58). N-SALT
yields two main results for the effects of relaxation ostitins on the linewidth. First, that
relaxation oscillation side peaks will appear for cavitidmse parameters satisfy the inequality
dn-saLT < Y| < [ A(x)dx, in which

Vo) =y, (1+ |ESALT<x>|2> , (58)

(59)

Ax)=2l Re[ () ] ,

2] W5(x) (£ + 2 o5l ) dX
wherel is the intensity of the electric field, as defined above.

Second, N-SALT gives an explicit form for the output inténsipectrum in the presence of
relaxation oscillations (witlr = 0):

OWN-sALT OuN-sALT
| ) — 60
Sv-saT(w) e (50-N-725ALT)2+ w?(1-R(w))?+ R(w)? 0
: AX)Y(X)
R(w) = dx, (61)
/ w2+ (5‘*“723‘” + V(X))2
A M
Rw) = | 0y (P45 + ) (62)

W2+ (&w.zsm n y(x))z

The second term in Ef. B0 describes the side peaks due tatielaoscillations. In Fid.]6
we show the output intensity spectrum of a dielectric slabtggumped above the first lasing
threshold, in the parameter regime where side peaks aretexpéach of the plots shows a
comparison between the N-SALT prediction (red line) andRBa D simulations (blue line)
for increasing values of the pump, (a) to (c). As can be seai three plots, excellent quan-
titative agreement is seen between the simulated spectmdrtha N-SALT prediction. To re-
iterate, N-SALT has no free parameters, so the agreementhse is a demonstration of a
first principles test of N-SALT. As can be see in the FDTD siatians, there are additional
peaks in the spectrum at a distance of twice the relaxatioiia®n frequency from the cen-
tral peak. In principle N-SALT can be used to predict thesditaahal side-peaks as well. Fi-
nally, relaxation oscillations are proportional to the aiguroot of the decay rate of the cavity,
wro ~ +/(1/L) [ y(x)dx, thus we expect for the side peaks seen in the spectrum to anae
from the central peak as the rate of stimulated emissioreasss due to an increasing pump.
As the pump is increased from FIg. 6(a) to Fiyj. 6(c) we obserastly this behavior in both
the FDTD simulations and N-SALT results, verifying this gietion.

5.3. large alpha factor

The o factor accounts for the phase fluctuations due to changdeirsusceptibility of the
gain medium from intensity fluctuations, and is known to beejiarge in semiconductor gain
material, where it is referred to as the Hemryfactor. The N-SALT linewidth theory is quite
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Fig. 6. Plots showing a comparison between the N-SALT ptixfi¢red) and FDTD simu-
lations (blue) of the intensity spectrum for increasinguesl of the pumpDg, for a single-
sided, dielectric slab cavity with= 1.5, wa =40.7,y, =1,y = 0.0025,6 =6x 10717,
andNa = 100, (a) Dg = 0.18, (b)Dg = 0.28, (c) Do = 0.38. As can be seen, increasing
the pump value increases the rate of stimulated emissiorgasingy(x), Eq.[58, resulting
in increasing separation between the relaxation oschagide peaks and the central las-
ing frequency. In all three panels of F[d. 6, the central dietpy, ay, chosen to evaluate
Eqg. [60) is the central frequency found by the FDTD simulatidntensity is plotted on
a log scale in arbitrary units, rates are given in unitcdf, and the inversion and total
number of atoms are given in SALT units ofi@? /Ry, .

general in its derivation, and can be used to predict theviih of semiconductor lasers given
the appropriate form of the electric susceptibility. Ho@evmplementing an FDTD simulation
algorithm appropriate for semiconductor gain media islengling even in the absence of the
effects of stimulated emission [56-160]. Here, we test th8ALT linewidth predictions using
two-level atomic gain media; the appropriatefactor in this case was first derived by Lax

as [2],

o= 2% (63)

48

For the simulations here, we choose the atomic transitegquiency almost exactly in between
the two proximal cavity resonances, and decrgasehus increasingrg. However N-SALT
predicts a generalized factor, &, which is sensitive to the spatial hole-burning of the gain
medium and the non-Hermitian nature of the lasing mode, andust to the distance of the
lasing mode from the center of the gain curve. From fef. [2The single mode case it take the
form:

Im[Cy4]
ReCiy)’
where the complex coefficien®;,, determine the relaxation rate of modal fluctuations away

from the steady-state lasing values. These coefficientsadcelated from the SALT solutions
according to:

a:

(64)

iy [ 2 (x) ‘?Sxmdx
CUV = N Wy de ) (65)
wa“(X) (8+ 7%“"#) dx

wherey , (x) is the spatial profile of theith lasing mode, still power normalizef wﬁ(x)dx =

1. Furthermore, it was found in Sec. 7A-B in Piek al. [27], that the spatial profile of the
first threshold lasing mode changes discontinuously asdksiye cavity dielectric constant is
increased, jumping when the first lasing mode switches frampmassive cavity resonance to
the next as different resonances enter and leave the bathdofithe gain medium. Near these
discontinuities, a large deviation betweegmandd can be observed, and we will exploit this
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Fig. 7. Plot of the linewidth versus the output power for asided dielectric slab cavity,
n = 3.5, showing the comparison between the N-SALT linewidth jmtgsh (green line),
the N-SALT linewidth without arx factor (cyan line), the N-SALT linewidth using Lax’s
a factor (blue line), and the FDTD simulation results (magdriingles). Excellent quanti-
tative agreement is seen between the FDTD simulations a&ncbtfnect N-SALT linewidth
prediction, confirming the form of the factor derived by Piclt al.[27]. For the two-level
gain medium used herey = 183, y, = 0.05,y| = 0.01,6 = 4 x 1079, andNa = 100,
and results in the total system haviaé = 2.56, while@? ~ 0.66. Frequencies and rates
are given in units o€/L, while the atomic values are given in SALT units gi@? /Ry, .

phenomenon in the simulations below while maintaining ateinof refraction similar to that
of GaAs, usingh = 3.5 for the dielectric slab cavity studied here.

In Fig.[@ we show the results of a comparison between the NTSiklewidth predictions
using three differentr factors,a? = 0 (cyan line),&? ~ 0.66 (green line), and3 = 2.56 (blue
line), with direct FDTD simulation (magenta triangles). WWed excellent agreement between
the correct N-SALT linewidth calculated usirig and the FDTD simulations, demonstrating
that this is the correct form of the factor. These simulations also verify that the Langevin
noise model used in the FDTD simulations implicitly contathe physical effects that yield
the a factor. While thea factor for many semiconductor lasing materials is deteeaiax-
perimentally [61], rather than analytically, these resitftdicate that the physical origins of
the phenomenon are effected by the geometry of the cavityttendpatial profile of the las-
ing mode. Furthermore, this suggests that using fabricagohniques to control the index of
refraction of semiconductor based laser cavities shoddavefbr the engineering of different
linewidth enhancement factors.

5.4. two mode lasing

A final feature of N-SALT linewidth theory is that it predictise linewidths in the multimode
steady state, and finds that the linewidths are not indepgnfilene another but couple through
gain saturation. Specifically it predicts that the linewidf any active lasing mode is affected
by the onset of additional lasing modes at higher pump pawiéris coupling phenomenon
occurs through a change in tlme factor of each active mode at each subsequent threshold.
Above the second lasing threshold this correction is given b

. c C2R —C'202R 2 cRcl,—c!,cR
Seolwo-modg _ 5 (1) 1 11~22 1~21 Sl 11712 — 1112 66
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Fig. 8. Plot showing the modal output intensity as a functiérthe gain medium pump
strengthDy, for a two-sided system consisting of two coupled dieleatavities,n = 3,
with different lengthsL; = .42, andL, = .5L, joined together by a region of air=1,
with length Lgjy = .08Lg, wherelg is the total size of the system, and as shown in the
schematic. This cavity has up to two active lasing modes dretlorange) for the pump
values simulated here, and quantitative agreement is ssareén the SALT simulations
(solid lines) and noisy FDTD simulations (squares). A dligffset in the interacting thresh-
old for the second lasing mode is seen between the two siimatvith D(SZ/E\LT: 0.5077,
while DI(:2I>3TD = 0.5282. The inset plot shows the FDTD simulated intensity efd¢acond
lasing mode through its lasing threshold, first showing degl spontaneous emission,
then super-linear behavior at threshold, and finally linesravior above threshold, as ex-
pected. The gain medium was chosen to haye- 15,y, = 0.4, v = 0.01,6 =10"9, and
Na = 10'0. Frequencies and rates are given in units tfy, while the field quantities and
inversion values are given in SALT units o@ﬁ/h‘zm Yi and 4182 /Ry, , respectively.

in which EQ)S?SALT is the single-mode N-SALT linewidth prediction from Hg. Zdathe su-
perscriptsR andl denote the real and imaginary components of the amplitudeaton rates
Cij respectively. Near threshold this analytic expressioergjes and is not valid, but N-SALT
dynamical equations can be integrated numerically to ¢atleuhe increase in the linewidth
due to the second lasing model[27].

To study this effect, we used two coupled dielectric casis shown in the schematic of
Fig.[8, with the total system open on both ends. By using amliphvities we create doublets
of resonances, and by then placing the gain frequency ceeégrone doublet we restrict our-
selves to two mode lasing, which is convenient for the FDTwations in particular. The
semiclassical prediction for the modal intensities as ation of the pump strength for this
cavity calculated using SALT (solid lines) is shown in Kifyadd compared against the FDTD
simulations (squares), demonstrating quantitative agee¢. The inset plot shows the super-
linear behavior through the lasing threshold observededHBTD simulations, as the amplified
spontaneous emission yields a coherent lasing signal. \8&red excellent quantitative agree-
ment between the N-SALT prediction and the FDTD simulatifomghe linewidth of the first
lasing mode, as shown in Fig. 9. On this scale, the singleeMb@ALT prediction (green) is
very similar to the multi-mode prediction, Hq.166 (red). Hoer, the inset of Fig.]9 shows the
same set of comparisons through the turn on of the secondjlasbde. Unfortunately, while
there is clearly enhanced noise near the second modal thdesere is not enough resolution
in the FDTD data to compare accurately the single-mode anehtewde N-SALT predictions.
There are two difficulties with the numerical comparisonsgithe design of the system, and
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Fig. 9. Comparison of the single mode N-SALT linewidth pctidin (green line), two-
mode N-SALT linewidth prediction (red line), and FDTD simatibns (magenta triangles)
for the first lasing mode in coupled cavity system from Eiglr&et shows a zoom in of
the same quantities close to the interacting thresholdeotétond lasing mode. The two
slightly different second mode thresholds are marked iritTmt,D(SZALT (dashed blue line),
ande;zt),TD (dashed cyan line). While the data is too noisy, and therdiffee between the
single mode and two-mode predictions too small, for theluiem of their differences, we
do observe increased linewidth and variance in our sinoratclose to the threshold of the
second lasing mode, as expected.

the heirarchy of parameter scales that must be achieveddbewloor of the spectral resolu-
tion of the simulation results in a noisy signal. Second, udiscretization errors, the SALT
and FDTD simulations give slightly different predictiors the location of the second lasing
threshold. Thus, when plotted against the pump strengttexpect the linewidth increase in
the FDTD simulations to occur at a slightly shifted locatietative to the N-SALT results, but
the noise makes it difficult to extract this shift.

Although the FDTD simulations are not sensitive enough tgeobe the small corrections in
the first mode linewidth due to onset of the second mode, tigsdations are able to validate
the N-SALT linewidth prediction for the second lasing moB&ure[I0 shows a comparison
between the N-SALT prediction and FDTD simulations for timeWwidth of the second lasing
mode as a function of the input pump strength. As noted, tfeebbbserved between the
two linewidths is due to the slightly different locations thie second mode threshold and if
this difference is subtracted, as is seen in the inset of[Hgwe see excellent quantitative
agreement between the two sets of simulations.

6. Summary

In this work we have performed a first principles test of th&AET linewidth results derived
by Picket al. [27]. To do this, we used the FDTD algorithm to simulate thexMell-Bloch
equations coupled to a set of Langevin noise equations,ittohsding the effects of spon-
taneous emission. We found excellent quantitative agraebetween the N-SALT linewidth
predictions and the FDTD simulations, while finding substdmleviations from the ‘fully cor-
rected’ Schawlow-Townes theory, demonstrating that thertwining of the cavity decay rate,
Petermann factor, incomplete inversion factor, bad-gadtrection and Henrw factor in the
N-SALT linewidth formula is necessary and correct. This pamson was first done in a pa-
rameter range in which the relaxation oscillations were kvgeear the Class A boundary).
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Fig. 10. Comparison of the single mode N-SALT linewidth peddn (green line), two-
mode N-SALT linewidth prediction (red line), and FDTD siratibns (magenta triangles)
for the second lasing mode in coupled cavity system from [8idnset shows the same
data except with the FDTD simulations plotted at shifted puralues (cyan triangles) to
account for the slightly different second lasing mode thodds seen in Fidl]8. Quantitative
agreement between the FDTD and N-SALT linewidth predicimnseen in both versions
of the plot, but the inset demonstrates that most of the eligercy seen in the outer plot
is due to differences in the output power of the cavity duehtoSALT simulations being
further above threshold than the FDTD simulations for threesaalue of the pumpy.

Through comparison with the Chong and Stone linewidth th¢2%5], we demonstrated that
for the small, 2@, ~ L, cavities studied here, much but not all of the improved agrent
found by N-SALT is due to the proper treatment of the incortgplaversion factor. Next, we
successfully demonstrated that N-SALT gives the correiuduntensity spectrum including
relaxation oscillations for Class B lasers, and correatlgroduces the side-peaks due to re-
laxation oscillations. This set of simulations also vedftaat the side-peaks shift away from
the center of the spectrum as the pump on the gain mediumrisased. We then studied the
different predictions for the linewidth enhancement duéheocoupling between intensity and
phase fluctuations, the factor, and demonstrated that the N-SALT form of théactor yields
guantitative agreement with the FDTD simulations, whileyious forms of thex factor are
shown to disagree. This set of simulations is particulatparkable, because in the absence of
the N-SALT prediction fordr, one might conclude that the FDTD simulations do not colyect
capture the effects of the factor. Instead, it is clear that the FDTD algorithm usedsdoen-
tain all of the relevant physics, and that there can be afgigni difference between the various
forms of thea factor. Finally, we demonstrated that the N-SALT theoryreotly predicts the
linewidth for multiple active lasing modes.
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