
MIT Open Access Articles

Quantitative test of general theories of the intrinsic laser linewidth

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Cerjan, Alexander, Adi Pick, Y. D. Chong, Steven G. Johnson, and A. Douglas Stone. 
“Quantitative Test of General Theories of the Intrinsic Laser Linewidth.” Optics Express 23, no. 
22 (October 21, 2015): 28316.

As Published: http://dx.doi.org/10.1364/oe.23.028316

Publisher: Optical Society of America

Persistent URL: http://hdl.handle.net/1721.1/110190

Version: Original manuscript: author's manuscript prior to formal peer review

Terms of use: Creative Commons Attribution-Noncommercial-Share Alike

https://libraries.mit.edu/forms/dspace-oa-articles.html
http://hdl.handle.net/1721.1/110190
http://creativecommons.org/licenses/by-nc-sa/4.0/


ar
X

iv
:1

50
5.

01
88

4v
2 

 [p
hy

si
cs

.o
pt

ic
s]

  1
2 

Ju
n 

20
15

Quantitative test of general theories of
the intrinsic laser linewidth

Alexander Cerjan1, Adi Pick2, Y. D. Chong3, Steven G. Johnson4, and
A. Douglas Stone1,∗

1Department of Applied Physics, Yale University, New Haven,Connecticut 06520, USA
2Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA

3School of Physical and Mathematical Sciences, Nanyang Technological University,
Singapore 637371, Singapore

4Department of Mathematics, Massachusetts Institute of Technology, Cambridge,
Massachusetts 02139, USA

Abstract: We perform a first-principles calculation of the quantum-limited
laser linewidth, testing the predictions of recently developed theories of
the laser linewidth based on fluctuations about the known steady-state laser
solutions against traditional forms of the Schawlow-Townes linewidth. The
numerical study is based on finite-difference time-domain simulations of the
semiclassical Maxwell-Bloch lasing equations, augmentedwith Langevin
force terms, and includes the effects of dispersion, lossesdue to the open
boundary of the laser cavity, and non-linear coupling between the amplitude
and phase fluctuations (α factor). We find quantitative agreement between
the numerical results and the predictions of the noisy steady-stateab initio
laser theory (N-SALT), both in the variation of the linewidth with output
power, as well as the emergence of side-peaks due to relaxation oscillations.
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1. Introduction

The most important property of lasers not captured by semiclassical theories, which treat the
fields via Maxwell’s equations, is the intrinsic laser linewidth due to quantum fluctuations.
Above the laser threshold these fluctuations cause a diffusion in the phase of the emitted laser
signal, leading to a broadening of the observed line, which would have zero width within semi-
classical theory. The magnitude of this linewidth depends upon the geometry of the laser cav-
ity as well as upon the output power of the laser, and was first calculated by Schawlow and
Townes [1], and the standard formula arising from their work, the “Schawlow-Townes” (ST)
linewidth, is

δωST =
h̄ω0γ2

c

2P
(1)

whereω0 is the central frequency of the emitted laser light,γc is the decay rate of the passive
cavity resonance corresponding to the laser mode, andP is the output power. (Schwalow and
Townes actually found twice this value in their original work, which assumed the laser was near
threshold, but it was quickly recognized that far above threshold only the phase fluctuations
were important, reducing the linewidth by a factor of two). In subsequent decades, improved
theoretical analyses allowed for the discovery of four significant corrections to this formula. The
α factor arises from the coupling between intensity and phasefluctuations, and takes different
forms depending on the nature of the gain medium. For atomic media it was first recognized by
Lax [2] and tends to be relatively small; for semiconductor media its importance was realized by
Henry [3,4], and in this context it typically dominates the direct phase fluctuation terms found
by Schawlow and Townes, and is called the Henryα factor. A second correction arises from
relaxing the assumption of complete inversion of the gain medium used by Schawlow-Townes;



this incomplete inversion factor accounts for the actual number of inverted gain atoms [2]. A
third and particularly interesting correction is the Petermann factor, which describes the effect
of the openness of the cavity and the consequent non-orthogonality of the lasing modes [5–9].
Each of these correctionsincreasesthe linewidth from the ST value, which it is natural to
regard as a lower bound. However, there exists a fourth correction, often referred to as the
“bad-cavity” factor, which leads to areductionin the laser linewidth. This correction is only
appreciable when the cavity decay rate,γ0 is fast enough (Q is low enough) thatγ0 ∼ γ⊥,
where the latter is the dephasing rate of the polarization ofthe gain medium, which determines
the gain bandwidth [2, 10–14]. Hence it is appreciable when gain dispersion is significant.
This correction was first interpreted as a slowing of phase diffusion due to atomic memory
effects [2,10,11], and subsequently an alternative interpretation was pointed out: the dispersion
reduces the group velocity of the light within the cavity, leading to an increase in the effective
cavity Q and a narrowing of the ST linewidth due to the active medium [12]. More recently,
superradiant gain media have been proposed as a way of using the bad-cavity factor to achieve
ultralow linewidth lasers [15–19].

However none of the previous linewidth theories have treated fully the space-dependence
of the electric fields and the non-linear spatial hole-burning effect in lasers, which greatly af-
fects the stimulated and spontaneous emission rates at different points in the cavity. Recently, a
steady-stateab initio laser theory (SALT) [20–22] has been developed which treatsthe spatial
degrees of freedom essentially exactly, even in the case of multimode lasing. For single-mode
lasing the validity of the theory only requires thatγ⊥ ≫ γ‖,whereγ‖ is the non-radiative relax-
ation rate of the lasing transition; for multimode lasing the conditionγ‖ ≪ ∆, where∆ is the
free spectral range of the resonator, is also required [22–24]. Subsequently ab initio linewidth
theories, based on fluctuations in the fields around the SALT solutions, have led to general-
ized linewidth formulas which should be more accurate than the original ST linewidth formula
with the four previous corrections included as independentmultiplicative factors, as is typi-
cally done. The first works of this type used a scattering matrix formulation of the quantum
fluctuations and input-output theory [25,26], which captured correctly the generalization of the
Petermann and bad-cavity factors, but not that of the alpha and incomplete inversion factors.
The linewidth is expressed in terms of the residue of the lasing pole in the scattering matrix and
leads to analytic formulas in terms of the SALT solutions. Very recently Picket al. [27] have
derived a more general analytic formula for the linewidth, by applying a coupled mode noise
analysis to the SALT solutions. This formula agrees with theresults of [25,26] but goes beyond
them to include correctly more generalα and incomplete inversions factors. We will refer to
this generalized theory, which includes noise effects, as N-SALT (SALT plus noise). We believe
that the N-SALT linewidth formula quantitatively predictsthe laser linewidth (far above thresh-
old) including all corrections in an appropriately generalized form, and in that sense represents
completely the effects of spontaneous emission on the laserlinewidth. We test this hypothesis
in the current work by direct integration of the laser equations with noise.

Adding Langevin noise to the steady-state lasing solutionsfor a gain medium of two-level
atoms was shown in [27] to lead to a set of non-linear coupled mode equations for the time-
dependent fluctuations around the SALT steady-state. Evaluation of the noise-averaged field
correlation functions from these equations gives the N-SALT laser linewidth in the form:

δωN-SALT =
h̄ω0

2P

ω2
0

∫

Im[ε(x,ω0)]|ψψψ0(x)|2dx
∫

Im[ε(x,ω0)]
N2(x)
D(x) |ψψψ0(x)|2dx

∣

∣

∫

ψψψ2
0(x)

(

ε(x,ω0)+
ω0
2

dε
dω |ω0

)

dx
∣

∣

2 (1+ α̃2), (2)

whereψψψ0(x) is the the semiclassical lasing field inside of the cavity found from SALT, normal-
ized such that

∫

ψψψ2
0dx = 1, and the integral is over the cavity region.ε(x) is the total dielectric

function of the passive cavity plus gain medium, assumed here to be homogeneously broad-



ened two-level atoms, andN2(x) andD(x) are the number of excited atoms and the atomic
inversion respectively (generalization to multi-level, multi-transition atoms is straightforward
within SALT and N-SALT, see [28, 29]).̃α is the generalizedα factor [27], which can be cal-
culated analytically from knowledge ofψψψ0(x),ε(x) [27]. This formula is derived under the
conditions thatδωN-SALT ≪ γ‖,∆. This equation reduces to the separable corrections discussed
above in the appropriate limits [26,27], but show that in general the incomplete inversion, Peter-
mann, and bad-cavity linewidth corrections cannot be considered independent from each other
or of the cavity decay rate.

Here, we test the predictions of the N-SALT linewidth formula against the Schawlow-Townes
linewidth formula, including all the relevant correctionsby directly integrating the laser equa-
tions using the Finite Difference Time Domain (FDTD) method, including the quantum fluc-
tuations using the method proposed by Drummond and Raymer [30], and employing the time-
stepping method proposed by Bidégaray [31]. Many previousnumerical studies of spontaneous
emission in laser cavities have implemented the noise basedon knowledge of the lasing mode
structure [32–35]. However, these studies did not have access to the above-threshold lasing-
mode profiles, which can differ significantly from the passive cavity modes used e.g. in cal-
culating the traditional Petermann factor. In our approachwe will not make a particular modal
ansatz. Hofmann and Hess derived FDTD-based noisy lasing equations similar to ours for appli-
cations to semiconductors, but the analysis made further assumptions not valid above the lasing
threshold [36]. The effects of fluctuations in the electromagnetic fields due to thermal noise has
also been previously studied using the FDTD algorithm [37–39]; these effects are necessary
to include when studying the noise properties of masers or other long wavelength lasers, but
can be safely neglected at optical frequencies, where the spontaneous emission events being
considered here dominate the noise of the laser. The approach used in this manuscript is similar
to that used by Andreasenet al. [40–42], both in the equations used and in the analytic method
to extract the signal’s linewidth. However unlike those earlier studies [40–42] we will analyze
the linewidth far above threshold where it can be compared quantitatively to previous proposed
formulas. To our knowledge this is the first study of this type. To this end, we will be consid-
ering relatively simple and small laser cavities, allowingus to achieve the spectral resolution
necessary to resolve the narrow laser linewidths far above the lasing threshold.

The outline of the remainder of this paper is as follows. In Sec. 2 we demonstrate the equiv-
alence of the macroscopic picture of the N-SALT linewidth formula with the microscopic pic-
ture used by Drummond and Raymer. In Sec. 3 we review the equations and numerical method
used in the FDTD algorithm to simulate a noisy gain medium coupled to a laser cavity. Sec. 4
presents the methodologies for extracting a linewidth fromthe resultant noisy signal in both
the frequency and time domains. The results of our study are given in Sec. 5, including the di-
rect comparison between the Schawlow-Townes and N-SALT linewidth predictions in a simple
laser cavity with single mode lasing, in single mode lasers with a relatively largeα factor, and
in the case of multimode lasing, particularly near the second lasing threshold. Summary and
concluding remarks are given in Sec. 6.

2. Microscopic and macroscopic noise equivalence

There are two different ways of incorporating the effects ofspontaneous emission on the electric
field inside of the laser cavity, either by using the fluctuation-dissipation theorem alongside the
wave equation, or by including spontaneous emission in the atomic degrees of freedom, which
are coupled non-linearly to the wave equation. In this section we will explicitly demonstrate the
equivalence of these two methods, which we term the macroscopic and microscopic perspec-
tives respectively, as the derivation of the N-SALT linewidth equation uses the former method,
while the Langevin equations augmenting the FDTD simulations use the latter. This section



also serves as a proof that despite the non-equilibrium nature of the laser, with power flowing
in and light flowing out, the system does reach a point of stability wherein the fluctuations of
the electric field can be appropriately treated with the fluctuation-dissipation theorem.

The derivation of the N-SALT equation incorporates all of the noise due to the quantum
fluctuations in the gain medium directly into the wave equation as [27]

[

∇×∇×−ω2ε(ω ,E0)
]

E = ω2 (ε(ω ,E)− ε(ω ,E0))E+FS, (3)

whereε(ω ,E) is the full dielectric function of the cavity and gain medium, ε(ω ,E0) is the
non-linear saturated dielectric function of the cavity evaluated using the semiclassical lasing
modeE0(x) =

√
Iψψψ0(x), whereI is the lasing mode intensity, andFS is a random noise source

corresponding to the spontaneous emission from the gain medium. The first term on the right
hand side of Eq. (3) corresponds to the effective source due to fluctuations in the field leading
to fluctuations in the saturation of the gain medium, while the second term corresponds to
spontaneous emission contributing directly to noise in theelectric field. The inclusion of the
full space-dependent non-linearity of the active cavity dielectric function above threshold in
the noise term is a key feature distinguishing N-SALT from previous linewidth theories. The
autocorrelation of the random noise source is assumed to be given directly by the fluctuation-
dissipation theorem,

〈F†
S(x,ω)FS(x

′,ω ′)〉= 2h̄ω4Im[ε(ω ,E0)]coth

(

h̄ωβ (x)
2

)

δ (x− x′)δ (ω −ω ′), (4)

whereβ (x) = (1/h̄ω0) ln(N1(x)/N2(x)) is the effective (negative) inverse temperature of the
inverted gain medium, withN1 andN2 are the number of atoms in the ground and excited atomic
levels respectively. (Note that Im[ε(ω ,E0)] < 0 in the inverted state, so that the correlation
remains positive).

In this treatment of the noise in the laser field due to spontaneous emission, the atomic de-
grees of freedom have been completely integrated out, and the fluctuation-dissipation theorem
has been invoked from a macroscopic perspective, relating the autocorrelation of the noise
source to the imaginary part of the material response function and a temperature dependent
term. The hyperbolic cotangent factor arrises as a sum of a Bose-Einstein distribution and a
factor of 1/2 from the quantum zero-point fluctuations, which is why the auto-correlation does
not vanish in the zero temperature limit (β → ∞). However, it was shown by Henry and Kazari-
nov that the contributions from the zero-point fluctuationscancel in the linewidth formula [43]
(a simpler, semiclassical proof of this is in Ref. [27]), andas such it is convenient to explic-
itly subtract this contribution, allowing for the effective temperature of the gain medium to be
determined by relative occupations of the atomic levels comprising the lasing transition,

1
2

[

coth

(

h̄ω0β (x)
2

)

−1

]

=−N2(x)
D(x)

, (5)

whereD(x) = N2(x)−N1(x) is the number of inverted atoms. Thus, for the laser systems
considered here, Eq. (4) can be written as

〈F†
S(x,ω)FS(x

′,ω ′)〉= 4h̄ω4Im[ε(x,ω)]

[

1
2

coth

(

h̄ω0β (x)
2

)

− 1
2

]

δ (x− x′)δ (ω −ω ′). (6)

In contrast to this macroscopic picture, many traditional theories of the noise due to spon-
taneous emission from the gain media begin by treating the Langevin forces on the quantum
operators of individual gain atoms and building up an understanding of the total noise this gen-
erates in the electric field, a more microscopic viewpoint [2, 30, 44]. We will demonstrate the



equivalence of these two methods by deriving the total Langevin force on the polarization from
the microscopic perspective. For a two-level atomic gain medium, the evolution equation for

the off-diagonal matrix element of theαth atom,ρ (α)
21 , including the Langevin force,Γ(α)

(ρ)(t), is
given by,

∂tρ
(α)
21 (t) =−(γ⊥+ iωa)ρ

(α)
21 (t)+

id(α)

h̄
θθθ ·E(x(α), t)+Γ(α)

(ρ)(t), (7)

in whichωa is the atomic transition frequency,γ⊥ is the dephasing rate, andθθθ is the dipole cou-
pling matrix element. Furthermore, the evolution of the inversion for that atom,d(α), including

the Langevin force,Γ(α)
(d) (t), is given by

∂td
(α) = γ‖(d

(α)
0 −d(α))+

2
ih̄

θθθ ·E(x(α), t)(ρ (α)∗
21 −ρ (α)

21 )+Γ(α)
(d) (t) (8)

whered(α)
0 is the inversion of theαth atom in the absence of any electric field. Finally, the wave

equation for the electric field can be written in this contextby explicitly including the coupling
between the field and each individual gain atom (see Eqs. (5.48) and (5.55) in Ref. [44]),

[

∇×∇×−ω2
0εc
]

E(x,ω) = 4πω2
0θθθ ∑

α
δ (x− x(α))ρ (α)

21 , (9)

in which we have approximated that the electric field is oscillating at frequencies close to the
semiclassical lasing frequency,ω0, and retained only the positive frequency components for
both the electric field and atomic polarization. Our aim is todetermine the form of the effective
total Langevin force on the electric field by solving Eqs. (7)and (8) for the polarization and
inversion, insert these expressions into the wave equation, and collect the resulting Langevin
force terms.

To leading order,ρ21 will oscillate at the lasing frequency,ω0, and if we approximate this as
its only frequency component, we can solve for

ρ (α)
21 =

−d(α)

h̄(ω0−ωa+ iγ⊥)
θθθ · Ẽ(x(α),ω)+

ieiω0t

ω0−ωa+ iγ⊥
Γ(α)
(ρ) , (10)

where the electric field is assumed to be a constant over the volume of the atom atx(α). The
fluctuation dissipation theorem states that the strength ofthe fluctuations is proportional to the
strength of the dissipative terms. Thus, for the Class A and Blasers considered here,γ‖ ≪ γ⊥,

soΓ(α)
(d) (t)≪ Γ(α)

(ρ)(t), and we can safely ignore the fluctuations in the atomic inversion. Thus,
we can insert Eq. (10) into Eq. (9),

[

∇×∇×−ω2
0εc
]

E(x,ω) = 4πω2
0θθθ ∑

α
δ (x− x(α))

[

−d(α)(θθθ ·E(x(α),ω)

h̄(ω0−ωa+ iγ⊥)
+

ieiω0t

ω0−ωa+ iγ⊥
Γ(α)
(ρ)

]

. (11)

Equation (11) allows for the identification of the spontaneous noise in the polarization,PN,
using Eq. (3) and noting thatFS=−4πω2PN, as

PN(x,ω) = ∑
α

δ (x− x(α))
iθθθeiω0t

ω0−ωa+ iγ⊥
Γ(α)
(ρ)(ω). (12)



We can now directly calculate the correlation function of the spontaneous noise in the polariza-
tion using the correlation of the atomic Langevin force [44],

〈Γ(α)
(ρ)(t)Γ

(β )†
(ρ) (t ′)〉=

[

γ⊥(1+ 〈d(α)〉)+
γ‖
2
(dα

0 −〈d(α)〉)
]

δαβ δ (t − t ′), (13)

in which each atom is taken to only be in equilibrium with its reservoir [10]. Note that the only
place the non-equilibrium nature of the reservoir comes in is via the term〈d(α)〉 = ρα

22−ρα
11.

Since no higher moments or correlations enter the calculation, it is safe to define an effective
temperature for the system which can be negative via this relation and apply the fluctuation-
dissipation theorem. Note also that〈d(α)〉 contains the non-linear effect of gain saturation and
spectral hole burning when calculated by the FDTD method given below.

By assuming that the inversion is relatively stationary, wecan identify the same frequency
auto-correlation of the noise as [45]

〈Γ(α)
(ρ)(ω)Γ(β )†

(ρ) (ω)〉= γ⊥(1+ 〈d(α)〉)δαβ , (14)

in which we have again dropped the noise source proportionalto γ‖, to be consistent with the
approximation neglecting fluctuations in the inversion made above. This allows us to solve for

〈P†
N(x,ω)PN(x′,ω)〉= 2θθθ2γ⊥

(ω0−ωa)2+ γ2
⊥

N2(x)δ (x− x′), (15)

where the number of atoms in the upper lasing state,N2(x) has been identified using,

N2(x) =
1
2 ∑

α
δ (x− x(α))(1+ 〈d(α)〉). (16)

Upon substitution of the imaginary part of the dielectric function,

Im[ε] =−4πθθθ2

h̄
γ⊥D(x)

(ω −ωa)2+ γ2
⊥
, (17)

we can identify the same frequency auto-correlation of the noise sourceFS as

〈F†
S(x,ω)FS(x′,ω)〉= 8πω4

0h̄Im[ε]
N2(x)
D(x)

δ (x− x′). (18)

Finally, noting that the different frequency auto-correlation function can be found as [45],

〈F†
S(x,ω)FS(x′,ω ′)〉= 1

2π
〈F†

S(x,ω)FS(x′,ω)〉δ (ω −ω ′) (19)

and using the definition of the temperature factor given in Eq. (5), we recover the expected
auto-correlation of the random noise source given in Eq. (6). With this, we have verified that the
microscopic and macroscopic methods of treating the fluctuations in the gain medium produce
identical results, which allows us to use a microscopic model of the gain medium in our FDTD
simulations to test the predictions of the N-SALT theory.

3. FDTD equations

Having now demonstrated the equivalence of the microscopicand macroscopic fluctuation
models, in this section we show how to include the microscopic fluctuations of the gain



medium within an FDTD simulation of a laser. The FDTD algorithm has been known since
the 1960s [46] and is ubiquitous across many fields of study [47]. However, only a few pre-
vious works have used the algorithm to study the noise in lasers [40–42], and none (to our
knowledge) have studied the linewidth far above the lasing threshold as we do here. For this
reason we will briefly review the simulated equations here. The Maxwell-Bloch equations for
a two level atomic gain medium in a one dimensional cavity canbe written as

d
dt

En =
c2

εc

[

d
dx

Bn+4π
(

θ
V0

)

d
dt

(

J−n +(J−n )
∗)
]

, (20)

d
dt

Bn =
d
dx

En, (21)

d
dt

J−n =− (γ⊥+ iωa)J
−
n − θ

ih̄
EnDn+F(J)

n , (22)

d
dt

Dn =− γ‖(Dn−D0,n)+
2θ
ih̄

En((J
−
n )∗− J−n )+F(D)

n , (23)

whereEn andBn are the electric and magnetic field densities at the spatial locationxn within
the lasing cavity,V0 is the volume associated with each grid point,J−n is the total atomic off-
diagonal density matrix element (related to the polarization) with a positive frequency compo-
nent,Dn is the inversion of theNn atoms at the spatial locationxn, D0,n is the inversion in the
absence of an electric field and plays the role of the effective pump strength in this theory, and

F (J)
n andF (D)

n are the Langevin forces experienced by the atomic off-diagonal density matrix
element and inversion respectively. The choice ofJn for the total off-diagonal density matrix
element is made for ease of comparison with Drummond and Raymer, who useJ−n to denote
the same quantity, and is defined as

Jn(x) = ∑
α

ρ (α)
21 δ (x− x(α)) = Nnρ21(x). (24)

The Langevin forces can be written as [30],

F (J)
n =ξ (J)

n

√

−2iθEnJ−n + ξ (P)
n

√

γP(Dn+Nn)+ ξ (N)
n
√

γ21,nNn, (25)

F (D)
n =2ξ (D)

n

[ γ‖
2
(Nn−

D0,n

Nn
Dn)+ iθ (J−n En− J+n En)−2γ21,n

J+n J−n
Nn

](1/2)

−2
[

ξ (N)
n J+n + ξ (N)∗

n J−n
]

√

γ21,n

Nn
, (26)

in whichγ21 is the pumping rate from lower level|1〉 to |2〉 and is given by,

γ21,n =
γ‖
2

(

1+
D0,n

Nn

)

, (27)

andγP = γ⊥−γ‖/2 is the pure dephasing rate. Randomness is introduced through the stochastic

variablesξ , which are complex except forξ (d)
n ∈ R, and satisfy [30]

〈ξ (i)
n (t)ξ ( j)

m (t ′)〉= δ (t − t ′)δnmδi j . (28)

Many of the terms in Eqs. (25–26) stem from resolving the dilemma of the operator order-
ing when reducing operator equations to c-number equations. However, for studying the laser
linewidth above threshold, the difference caused by this ambiguity is minimal, as the addition



or removal of a spontaneous emission event is negligible in the presence of the large number of
gain atoms necessary for lasing to occur. Thus most of these terms are expected to be negligible,
an assumption which we checka posterioriafter retaining the leading terms:

F (J)
n =ξ (P)

n

√

γP(Dn+Nn)+ ξ (N)
n
√

γ21,nNn, (29)

F (D)
n =2ξ (D)

n

√

γ‖
2

(

Nn−
D0,n

Nn
Dn

)

. (30)

Finally, in accordance with the discussion in the previous section, the thermal fluctuations of
the electric and magnetic fields have been neglected.

The Maxwell-Bloch equations can then be discretized for usein the FDTD algorithm fol-
lowing the weak coupling method proposed by Bidégaray [31], evolving the atomic variables
simultaneously with the magnetic field, but at the same spatial locations as the electric field
so as to avoid solving a non-linear equation. Furthermore, it is useful to separate the real and

imaginary components of the atomic off-diagonal density matrix element,J−n = j(1)n + i j (2)n ,
resulting in

En(ti+1) =En(ti)+
c2∆t
εc

[

8π
(

θ
V0

)

(

ωa j(2)n (ti+ 1
2
)− γ⊥ j(1)n (ti+ 1

2
)
)

+
Bn+ 1

2
(ti+ 1

2
)−Bn− 1

2
(ti+ 1

2
)

∆x

]

, (31)

Bn+ 1
2
(ti+ 1

2
) =Bn+ 1

2
(ti− 1

2
)+

∆t
∆x

(En+1(ti)−En(ti)) , (32)

un(ti+ 1
2
) =

(

1
∆t

I − 1
2

M

)−1[

dn+ fn+

(

1
∆t

I +
1
2

M

)

un(ti− 1
2
)

]

, (33)

whereun = (Dn, j(1)n , j(2)n ) is the vector of the atomic variables,dn = (γ‖D0,n,0,0) is the pump-
ing vector,I is the 3x3 identity matrix,M is a matrix which contains the coupling information
between the atomic variables,

M =





−γ‖ 0 − 4θ
h̄ En(ti)

0 −γ⊥ ωa
θ
h̄ En(ti) −ωa −γ⊥



 , (34)

andfn is the Langevin force vector, whose elements are

fn,1 =2ξ (1)
n

√

γ‖
2
(Nn−

D0,n

Nn
Dn(ti− 1

2
)), (35)

fn,2 =ξ (2)
n

√

γP(Dn(ti− 1
2
)+Nn)+ ξ (3)

n
√

γ21,nNn, (36)

fn,3 =ξ (4)
n

√

γP(Dn(ti− 1
2
)+Nn)+ ξ (5)

n
√

γ21,nNn. (37)

where we have renumbered the random variablesξ (i)
n , which continue to satisfy Eq. (28), but

are now real, rather than complex, and introduced a factor of2−1/2 in this conversion process

(except forξ (1)
n , which was real to begin with). Here we have used the final approximation that

the Langevin force vector only depends upon the inversion atthe previous time step, rather
than the average of the previous and current time steps whichwould result in a non-linear equa-
tion [42]. This is justified for the simulations performed here because the inversion,dn, is many



orders of magnitude smaller than the total number of atoms,Nn, and thus these inversion depen-
dent terms will have minimal impact upon the overall strength of the noise. For the discretized

Langevin forces, the stochastic variablesξ (k)
n are chosen from a standard uniform distribution,

and then renormalized to satisfy

〈ξ (k)
n (ti)ξ

(l)
m (t j)〉=

1
∆t

δi j δnmδkl . (38)

Eqs. 31-37 can now be readily evaluated numerically.

4. Linewidth analysis

Broadly speaking there are two main ways of extracting a linewidth from a noisy signal; by
either fitting a curve to the frequency domain data or calculating the cross-correlation of the
time domain data [48]. Here we will use both methods an compare them; first we calculate
a linewidth from the spectral data and then confirm this linewidth by calculating〈φ(t ′)φ(t)〉,
whereφ(t) is the phase of the electric field.

4.1. Frequency-domain analysis

To analyze the spectrum of the electric field output from the cavity, E(ω), and find a linewidth,
we will use the method proposed by Andreasenet al. [42], and fit the spectrum to a Lorentzian
through the use of an error function. We assume that the noiseis Lorentzian,

L(ω) =

(

2A
π

)

s2

(ω −ω0)2+ s2 (39)

wheres is the half-width half-maximum of the noise,δωFDTD = 2s. The Lorentz error function
can then be defined as

LEF(ω) =

∫ ω

ω0

L(ω ′)dω ′ =

(

2As
π

)

arctan

(

ω −ω0

s

)

. (40)

As such, this integration can be carried out numerically directly uponE(ω), and then fit to
Eq. (40). For all of the data shown in this paper the curve fitting is carried out using itera-
tive least squares estimation. Performing this integration requires knowledge of the lasing fre-
quency,ω0, which is known from the semiclassical SALT calculation. However, the presence
of noise results in a slight shift of the semiclassical lasing frequency [3], and the slightly differ-
ent discretization schemes used between the SALT and FDTD calculations yield an additional
shift in the lasing frequency, which together lead to a slightly shifted integrated spectrum, both
horizontally and vertically. As such it is useful to includetwo other fitting parameters in the
Lorentz error function,

L′
EF(ω) =

(

2As
π

)

arctan

(

ω −ω0+d
s

)

+ c, (41)

whered plays the role of the horizontal offset andc is the vertical offset. Using this correction,
the calculated linewidths are robust to the choice ofω0 so long as the curve fitting algorithm
converges.

An example of this process can be seen in Fig. 1, where the leftpanel shows the spectrum
of the output electric field for a dielectric slab cavity. To compute the power spectrum, or tech-
nically the periodogram [48] of the noisy signal, we chop thesimulated time-domain field
E(t) into ∼ 10 pieces and perform a discrete-time Fourier transform (DTFT) [49] on each
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Fig. 1. (a) Intensity spectrum of the output electric field ofann= 3 dielectric slab cavity,
shown in the schematic. The simulation parameters for the cavity areγ⊥ = .5, ωa = 42.4,
γ‖ = .01, θ = 2× 10−9, NA = 1010, and the cavity is uniformly pumped atD0 = 0.275
which is close to 5 times the threshold lasing pump ofD0,thr = 0.0488. The rates quoted
here are given in units ofc/L, while the intensity is given in SALT units of 4θ 2/(h̄2γ⊥γ‖),
and the number and inversion of gain atoms are given in the SALT units of 4πθ 2/(h̄γ⊥).
(b) Plot of the fitted Lorentz error function (red line) and numerically integrated FDTD
data (blue dots) of the simulation shown in (a). The spectralresolution for the simulated
data in (a) and (b) isdω = 1.96×10−5. The analytic curve fit parameters are found using
MATLAB’s curve fitting algorithms.

constituent piece, and then ensemble-average the resulting spectra|Ê(ω)|2 using Bartlett’s
method [48]. The right panel shows the Lorentz error function integral calculated numeri-
cally and fit against the analytic curve. The resulting linewidth predicted by this method is
δωFDTD = 2.22×10−4, which is around an order of magnitude larger than the resolution of the
resultant spectra,dω = 1.96×10−5, given in units ofc/L.

4.2. Time-domain confirmation

This calculation can be independently confirmed by calculating the autocorrelation of the output
electric field as a function of time and expressing this as a function of the phase correlation,
which is defined in terms of the linewidth of the signal. Writing the output electric field as

E(t) =Ccos(ωt +φ(t)), (42)

The autocorrelation of the electric field,REE(δ t) = 〈E(t + δ t)E(t)〉, can then be written as

REE(δ t) = 〈E2(t)cos(ωδ t + δφ(δ t))〉− 〈C
2

2
sin(2ωt+2φ(t))sin(ωδ t + δφ(δ t))〉, (43)

where the double angle formula has been used in finding the second term on the right hand side,
andδφ(δ t) = φ(t + δ t)− φ(t). By assuming that the phase shiftδφ(δ t) is uncorrelated with
the phaseφ(t), we can separate the correlations, note that the second termaverages to zero, and
again apply a trigonometric identity, resulting in

REE(δ t) =
C2

2
[cos(ωδ t)〈cos(δφ(δ t))〉− sin(ωδ t)〈sin(δφ(δ t))〉] . (44)

This assumption that the phase shift,δφ is uncorrelated with the instantaneous phase,φ , is
analogous to assuming that the gain medium has no memory effect, and is consistent with the



0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

R
E
E
(

t)

Time (units of δωδt)

Fig. 2. Plot of the autocorrelation of the electric field simulated numerically for the same
parameter used in Fig. 1 (blue line) and the analytic prediction for the envelope of the
autocorrelation given in the second factor in Eq. (46) (green line). The fast oscillations in
the numerically simulated electric field are at the lasing frequencyω0, which is much faster
than the other time scales in the problem and leads to the densely packed curve shown in
blue. Quantities are normalized, and plotted in units ofδωδ t.

earlier assumption that the bad-cavity factor is unity for the systems studied here. The second
term in Eq. (44) averages to zero as well, as the phase shift isequally likely to be positive or
negative. Finally, the cosine of the phase shift can be Taylor expanded, and noting the definition
of the linewidth,

〈δφ2(δ t)〉= δωδ t, (45)

the electric field autocorrelation can be written as

REE(δ t) =
C2

2
cos(ωδ t)

[

1− δωδ t
2

+O(δ t2)

]

, (46)

showing that in the presence of phase diffusion, the correlation should decrease linearly for
smallδ t.

This trend can be observed in Fig. 2 for the same simulation asshown in Fig. 1, where the
prediction forREE(δ t) is evaluated usingδω found by the frequency domain method from
the previous section and Eq. (46) (green line), and numerically calculated (blue line). The fast
oscillations seen in the numerical data are due toωδ t ≫ 1, and are predicted by the theory
derived above. The semi-quantitative agreement seen between the frequency domain linewidth
prediction and the time domain prediction calculated here provides a consistency check, though
we will use the frequency domain method for the remainder of the calculations performed here.

5. Results

To test the predictions of the N-SALT linewidth, given Eq. (2), with the Schawlow-Townes
linewidth [1], we first study the simple one-dimensional, single-sided dielectric slab cavity,
n= 3, used in the previous two sections in Figs. 1 and 2. Here, we use the “fully-corrected” form
of the Schawlow-Townes linewidth as the point of comparison, which includes the Petermann
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Fig. 3. (Left panel) Plot showing the linewidth predictionsgiven by the N-SALT given in
Eq. (2) (green), corrected Schawlow-Townes theory given inEq. (47) (blue), integral form
of the Chong-Stone linewidth formula given in Eq. (48) (orange), and FDTD simulations
(magenta) for a uniformly pumped, dielectric slab cavity with n = 3, ωa = 42.4, γ⊥ =
.5, γ‖ = .01, θ = 2× 10−9, andNA = 1010. All of the linewidth formulas are evaluated
using the spatially dependent integral definition of the power given by Eq. (51). (Right
panel) Plot of the same data shown on a log-log scale, with reference lines for strict inverse
power dependence,P−1, provided for comparison (black dashed). Schematic inset shows
the cavity geometry. The rates and frequency are given in units ofc/L, the number of atoms
in the cavity is given in terms of the SALT units of 4πθ 2/(h̄γ⊥), and the output power is
given in the SALT units of 4θ 2/(h̄2γ⊥γ‖).

factor, bad-cavity correction, and Henryα factor, and is given by,

δω(corr)
ST =

h̄ω0γ2
c

2P

(

N̄2

D̄

)∣

∣

∣

∣

∫ |φφφ0(x)|2dx
∫

φφφ2
0(x)dx

∣

∣

∣

∣

2
∣

∣

∣

∣

∣

1

1+ ω0
2ε

∂ε
∂ω |ω0

∣

∣

∣

∣

∣

2

(1+α2), (47)

whereφφφ 0(x) is the passive cavity resonance corresponding to the lasingmode, the spatial av-
erage of the inversion and occupation of the upper lasing state is denoted as̄D =

∫

D(x)dx,
the spatially averaged inversion is used to calculate the bad-cavity factor, andα is the Henry
α factor. The first term in parentheses of Eq. (47) correspondsto the cavity-averaged incom-
plete inversion factor and the second corresponds to the Petermann factor [5,26]. The quantities
ψψψ0(x), φφφ 0(x), D(x), andε(x) are calculated using SALT, while the FDTD linewidths are ex-
tracted using the method described in Sec. 4.1, and run for enough time steps to average together
at least six resulting spectra using Bartlett’s method. Forthe chosen parametersγc ∼ γ‖ placing
it on the border between Class A and Class B lasers [50], closeenough to the former that no
relaxation oscillation side-peaks are seen in the resulting spectra.

As can be seen in the left panel of Fig. 3, excellent quantitative agreement is seen between
the N-SALT prediction (green line) and the linewidths measured through direct integration
of the noisy Maxwell-Bloch equations (magenta triangles),while both results differ from the
corrected Schawlow-Townes theory (blue line). This discrepancy is shown to be more than a
simple scaling factor in the right panel of Fig. 3, where the same data is plotted on a log-log
scale, and it can be seen that the power law narrowing of the linewidth with respect to the output
power differs between the N-SALT and corrected Schawlow-Townes linewidth predictions.
Somewhat surprisingly only the N-SALT and FDTD results are very close toP−1 (black dashed
lines), the others are show a measurably faster narrowing.

To understand the source of this discrepancy, we also plot the Chong-Stone linewidth [25]



calculated using its integral form [26],

δωCS=
h̄ω0

2P

(

N̄2

D̄

)

(

ω0
∫

Im[ε(x,ω0)]|ψψψ0(x)|2dx
)2

∣

∣

∫

ψψψ2
0(x)

(

ε + ω0
2

dε
dω |ω0

)

dx
∣

∣

2 (1+α2), (48)

where we have neglected the vanishingly small boundary term(see [26]). The Chong-Stone
linewidth formula is derived through considering the behavior of the SALT-based scattering
matrix of the cavity, and thus is able to account correctly for all effects stemming from the
cavity; it gives the proper cavity decay rate above threshold, and the same Petermann factor,
and bad-cavity correction as N-SALT. However, it does not provide an accurate treatment of
the fluctuations inside the gain medium, particularly amplitude fluctuations, and thus is unable
to find theα factor and finds an inaccurate, cavity-averaged incompleteinversion factor similar
to conventional theories. For the dielectric slab cavity studied here, the detuning of the lasing
mode from the atomic transition is very small, such thatα ≪ 1. Thus the significant discrep-
ancy between the N-SALT and FDTD results and the Chong-Stoneprediction indicates that
the largest source of discrepancy lies in the treatment of the incomplete inversion factor. The
ratio of the N-SALT and Chong-Stone linewidth predictions in the limit thatα̃ = α = 0 can be
written as

δωCS

δωN-SALT
=

N̄2
D̄

∫

D(x)|ψψψ0(x)|2dx
∫

N2(x)|ψψψ0(x)|2dx
. (49)

However, for the two-level atomic gain media simulated here, the number of atoms in the ex-
cited atomic level is nearly constantN2 ≈ N1 ≈ N/2, allowing for this ratio to be expressed
as

δωCS

δωN-SALT
=

∫

D(x)|ψψψ0(x)|2dx
∫ |ψψψ0(x)|2dx

∫

D(x)dx
. (50)

In absolute terms, the fluctuations inN2, N1, and D are all of the same magnitude, but as
D(x) =N2(x)−N1(x)≪N2, its spatial variation is much larger on a relative scale andcannot be
neglected, leading to a significant discrepancy between theN-SALT/FDTD and Chong-Stone
linewidth predictions. Note that the approximation of spatial invariance of the occupation of
the upper lasing level does not necessarily hold when considering more realistic gain media,
with more than two levels, and is a result of the well known difficulty in pumping a two-level
medium past the transparency point to achieve lasing. However the residual discrepancy be-
tween Chong-Stone and the corrected ST prediction indicates that the incomplete inversion
factor only accounts for roughly half the discrepancy, and the remainder (Petermann and bad-
cavity effects) would be present in lasers with more than twolevels.

The implications of the relation expressed in Eq. (50) can beunderstood graphically from
Fig. 4, where the left panel shows the steady-state inversion, D(x), within the cavity for dif-
ferent values of the output power generated by the cavity, and the right panel shows the spatial
dependence of the lasing mode profile,|ψψψ0(x)|, for the same values of the output power. As
the pump on the gain medium,D0, is increased, the amplitude of the field within the cavity in-
creases, as does the output power. However, due to spatial hole-burning in the gain medium, the
impact of the higher field intensity within the cavity is not felt uniformly in the inversion; thus
the average inversion within the cavity still increases as the pump is ramped, mostly due to the
positions near the mirror in the cavity where the electric field is very weak, while the weighted
average of the inversion with the field intensity remains relatively constant, as the inversion
where the field intensity is maximized stays relatively constant as the pump is increased. Thus
as noted, we do expect to see the corrected Schawlow-Townes and Chong-Stone linewidth pre-
dictions decrease faster than 1/P, as is observed in the right panel of Fig. 3, as both the output
power,P, andspatially averaged inversion,̄D, increase as the pump strength,D0, is increased
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Fig. 4. (Left panel) Plot of the steady-state inversion,D(x), as a function of the location
in the cavity for three different values of the output power,P = 0.524 (blue),P = 1.252
(green), andP = 3.116 (red). These values correspond to the first, sixth, and eighteenth
data points shown in Fig. 3. Strong spatial hole-burning is seen in the inversion due to the
lasing mode. Schematic depicts the cavity from Fig. 3. (Right panel) Plot of the normalized
spatial profile of the lasing mode,|ψ0(x)|, as a function of position in the cavity for the
same three values of the output power shown in the left panel.The output power is given
in dimensionless SALT units of 4θ 2/(h̄2γ⊥γ‖).

(see Eq. (48)). In contrast, the integral of the inversion weighted against the field intensity, used
in the N-SALT linewidth prediction, does not change as the pump is increased. Thus, even
for the two-level atomic gain medium studied here, N-SALT gives a good 1/P line narrowing.
Siegman has previously suggested that the incomplete inversion factor might lead to deviations
from the strict inverse dependence of the laser linewidth upon the output power, but was unable
to test this hypothesis [51].

We note that it is important in these comparisons to calculate the output power from its
fundamental definition via Poynting’s theorem [52],

P=
ω0

2π

∫

Im[−ε(x)]|E0(x)|2dx, (51)

where this equation is given in Gaussian units,E0(x) =
√

Iψψψ0(x) is the unnormalized lasing
mode, andI is the mode intensity. Performing this calculation relies on finding the correct
space-dependent quantities, which can be obtained using SALT. The quantitative agreement
seen between the N-SALT linewidth prediction and the FDTD simulations shown in Fig. 3 pro-
vides independent confirmation that this is the correct formulation of the output power to use.
However, in many treatments of laser emisson, which do not treat the full space dependence,
the output power is calculated using [10]

PST = γcn̄h̄ω0, (52)

wheren̄ is the average number of photons in the cavity. Using this form of power calculation can
introduce a substantial error; using the corrected Schawlow-Townes theory with this spatially
averaged power for the parameters of Fig. 3, leads to a linewidth roughly a factor of two larger
than the N-SALT and FDTD results. Thus we see that it is critical to use all of the spatial
information in the fieldsE0(x) andD(x) obtained from SALT in order to quantitatively predict
the laser linewidth.



0.5 1.0 1.5 2.0 2.5 3.0 3.5
0

1

2

3

4

5

6
N-SALT
Corrected Schawlow-Townes

△ FDTD fr ig. 3
FDTD

Output Power, P

L
in

e
w

id
th

, 
δ
ω

0.5 1.0 1.5 2.0 2.5 3.0 3.5
0

1

2

3

4 N-SALT
Corrected Schawlow-Townes
FDTD

Rescaled N-SALT from Fig. 3

Output Power, P

L
in

e
w

id
th

, 
δ
ω

n=3

×10
-4

×10
-4

Fig. 5. (Left panel) Plot showing the linewidth predictionsgiven by the N-SALT (green
line), corrected Schawlow-Townes theory (blue line), and FDTD simulations (red diamonds
and magenta triangles) for a uniformly pumped, dielectric slab cavity withn=3,ωa= 42.4,
γ⊥ = .5, γ‖ = .04, θ = 4×10−9, andNA = 1010, as shown in the schematic. The results
of the new FDTD simulations are shown as red diamonds, and areplotted alongside the
FDTD results from Fig. 3, shown as magenta triangles. (Rightpanel) Plot showing the
linewidth predictions given by the N-SALT (green line), rescaled N-SALT prediction from
Fig. 3 (magenta dashed line), corrected Schawlow-Townes theory (blue line), and FDTD
simulations (cyan squares) for a uniformly pumped, dielectric slab cavity withn= 3, ωa =
42.4, γ⊥ = .25,γ‖ = .02,θ = 2×10−9, andNA = 1010. The rates and frequency are given
in units of c/L, the number of atoms in the cavity is given in terms of the SALTunits of
4πθ 2/(h̄γ⊥), and the output power is given in the SALT units of 4θ 2/(h̄2γ⊥γ‖).

5.1. linewidth scaling relations

The overall intensity of the electric field enters directly into the linewidth formulas only through
the output power, Eq. (51). SALT demonstrates that the electric field can be written in terms of
dimensionless units,E0(x) = (h̄

√γ⊥γ‖/2θ )ESALT(x) [22, 53], and thus the output power can
also be written as,

P=

(

h̄2γ⊥γ‖
4θ 2

)

ω0

2π

∫

Im[−ε(x)]|ESALT(x)|2dx. (53)

This is how the dimension-full parameters stemming from theproperties of the gain medium
directly enter into all of the linewidth formulas discussedhere. In particular we can rewrite the
N-SALT linewidth in SALT units as,

δωN-SALT =

(

4θ 2

h̄2γ⊥γ‖

)

h̄ω0

2PSALT

ω2
0

∫

Im[ε]|ψψψ0|2dx
∫

Im[ε]N2
D |ψψψ0|2dx

∣

∣

∫

ψψψ2
0

(

ε + ω0
2

dε
dω |ω0

)

dx
∣

∣

2 (1+ α̃2), (54)

wherePSALT is the output power calculated using the electric field measured in SALT units.
Using SALT units and the stationary inversion approximation implies powerful scaling re-

lations between lasing solutions at different gain medium parameter values [20, 22]. Similarly,
Eq. (54) implies various scaling relations for the linewidth. It separates out the dependence of
the intrinsic laser linewidth uponθ , γ‖, and the leading dependence uponγ⊥ and thus predicts
that the linewidth should obey a set of scaling relations. For example maintaining the ratio of
γ‖/θ 2 should yield the same linewidth, and keeping the ratioγ⊥γ‖/θ 2 constant should result
in only very modest changes in the linewidth (changingγ⊥ only changes the strength of the
bad-cavity correction). These predictions are confirmed byFDTD simulations. In the left panel



of Fig. 5, the linewidth is calculated via FDTD for a different value ofγ‖ andθ than in Fig. 3,
while keeping the ratioγ‖/θ 2 to that in Fig. 3. The resulting FDTD linewidth (red diamonds,
plotted alongside magenta triangles from Fig. 3) is seen to be identical. This serves as a vali-
dation of the FDTD simulations shown here, asθ ,γ‖ enter into the equations in a non-trivial
manner from which the scaling relations are not apparent.

In practice however checking these scaling relation may be difficult, as the total relaxation
rate of the inversion,γ‖, can be written as a sum of contributions from spontaneous emission
and non-radiative decay,

γ‖ = γspon+ γnr, (55)

in which the spontaneous decay rate can be written as [54],

γspon=
4α f sω3

anθ 2

3c2 , (56)

whereα f s is the fine structure constant andγspon is seen to be exactly dependent uponθ 2.
Thus, in the limit of an atomic gain media without a non-radiative decay channel available
from the upper level to the ground state, the ratio ofγ‖/θ 2 in the linewidth does not yield
any new information as these two parameters are not independent. However, this analysis does
verify the intuitive statement that the laser linewidth will be reduced if the non-radiative decay
rate is substantially larger than the spontaneous emissiondecay rate, decreasing the overall
significance of spontaneous emission to the system, as the relative ratio ofθ 2/γ‖ that appears
in Eq. (54) will be reduced.

As noted, the scaling of the linewidth with the ratioγ⊥γ‖/θ 2 is not exact as there is an
additional dependence onγ⊥ in the bad cavity factor onceγc ∼ γ⊥. In the right panel of Fig. 5,
the ratio ofγ⊥γ‖/θ 2 is held constant and equal to that in the left panel of the figure, butγ⊥ is
decreased so as to make the bad-cavity factor significantly different from unity. Thus instead of
remaining constant the linewidth decreases, in this case byroughly a factor of 2/3. However it
is possible to account for this failure of scaling by including a further approximate scaling by
noting that whenωa ≈ ω0 ≫ γ⊥, we can express the bad-cavity factor as

B=
1

∣

∣

∫

ψψψ2
0(x)

(

ε + ω0
2

dε
dω |ω0

)

dx
∣

∣

≈
∣

∣

∣

∣

∣

1

1+ γc
2γ⊥

∣

∣

∣

∣

∣

. (57)

Using this, we can rescale the N-SALT linewidth prediction by B2
new/B2

old calculated using the
simple form on the right-hand side of Eq. (57) (magenta dashed line). With the additional rescal-
ing the N-SALT linewidth for the parameters of the left panelnow agrees with the N-SALT
prediction for the new gain media parameters in the right panel (green line) and quantitatively
agree with the FDTD simulations (cyan squares). This also verifies that the N-SALT form of
the bad-cavity factor correctly reduces to previously known approximations [2,12,13], at least
for the parameters chosen here.

5.2. relaxation oscillation sidebands

In Class B lasers, fluctuations in the amplitude of the electric field undergo relaxation oscilla-
tions while decaying to the steady-state. These relaxationoscillations give rise to side-peaks in
the spectrum of the output intensity and in this section we will demonstrate that the N-SALT is
able to correctly reproduce the location and size of these side-peaks [27]. It has been known for
many decades that the relaxation oscillation frequency increases as the laser is pumped further
above threshold [55], but previous studies did not take intoaccount the spatial variation in the
gain saturation, which was shown [27] to play an important role in quantitatively predicting



the laser linewidth in Sec. 5. Using the spatial lasing mode profiles and inversion calculated
using SALT, N-SALT demonstrates that the output intensity spectrum is dependent upon the
total local decay rate [27],

γ(x) = γ‖
(

1+
γ2
⊥

(ω0−ωa)2+ γ2
⊥
|ESALT(x)|2

)

, (58)

which contains contributions from both the non-radiative decay rate of the inversion,γ‖, as
well as the local rate of stimulated emission given by the second term in Eq. (58). N-SALT
yields two main results for the effects of relaxation oscillations on the linewidth. First, that
relaxation oscillation side peaks will appear for cavitieswhose parameters satisfy the inequality
δωN-SALT ≪ γ‖ ≪

∫

A(x)dx, in which

A(x) = 2IRe

[

iω0ψψψ2
0(x)

∂ε(ω0)
∂ I

2
∫

ψψψ2
0(x)

(

ε + ω0
2

dε
dω |ω0

)

dx

]

, (59)

whereI is the intensity of the electric field, as defined above.
Second, N-SALT gives an explicit form for the output intensity spectrum in the presence of

relaxation oscillations (withα = 0):

SN-SALT(ω) =
δωN-SALT

ω2+
(

δωN-SALT
2

)2 +
δωN-SALT

ω2(1−R(ω))2+ R̃(ω)2
, (60)

R(ω) =

∫

A(x)γ(x)

ω2+
(

δωN-SALT
2 + γ(x)

)2 dx, (61)

R̃(ω) =
∫ A(x)γ(x)

(

δωN-SALT
2 + γ(x)

)

ω2+
(

δωN-SALT
2 + γ(x)

)2 dx. (62)

The second term in Eq. 60 describes the side peaks due to relaxation oscillations. In Fig. 6
we show the output intensity spectrum of a dielectric slab cavity pumped above the first lasing
threshold, in the parameter regime where side peaks are expected. Each of the plots shows a
comparison between the N-SALT prediction (red line) and theFDTD simulations (blue line)
for increasing values of the pump, (a) to (c). As can be seen inall three plots, excellent quan-
titative agreement is seen between the simulated spectrum and the N-SALT prediction. To re-
iterate, N-SALT has no free parameters, so the agreement seen here is a demonstration of a
first principles test of N-SALT. As can be see in the FDTD simulations, there are additional
peaks in the spectrum at a distance of twice the relaxation oscillation frequency from the cen-
tral peak. In principle N-SALT can be used to predict these additional side-peaks as well. Fi-
nally, relaxation oscillations are proportional to the square root of the decay rate of the cavity,
ωRO ∼

√

(1/L)
∫

γ(x)dx, thus we expect for the side peaks seen in the spectrum to moveaway
from the central peak as the rate of stimulated emission increases due to an increasing pump.
As the pump is increased from Fig. 6(a) to Fig. 6(c) we observeexactly this behavior in both
the FDTD simulations and N-SALT results, verifying this prediction.

5.3. large alpha factor

The α factor accounts for the phase fluctuations due to changes in the susceptibility of the
gain medium from intensity fluctuations, and is known to be quite large in semiconductor gain
material, where it is referred to as the Henryα factor. The N-SALT linewidth theory is quite
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Fig. 6. Plots showing a comparison between the N-SALT prediction (red) and FDTD simu-
lations (blue) of the intensity spectrum for increasing values of the pump,D0, for a single-
sided, dielectric slab cavity withn= 1.5, ωa = 40.7, γ⊥ = 1, γ‖ = 0.0025,θ = 6×10−10,

andNA = 1010. (a) D0 = 0.18, (b)D0 = 0.28, (c)D0 = 0.38. As can be seen, increasing
the pump value increases the rate of stimulated emission, increasingγ(x), Eq. 58, resulting
in increasing separation between the relaxation oscillation side peaks and the central las-
ing frequency. In all three panels of Fig. 6, the central frequency,ω0, chosen to evaluate
Eq. (60) is the central frequency found by the FDTD simulations. Intensity is plotted on
a log scale in arbitrary units, rates are given in units ofc/L, and the inversion and total
number of atoms are given in SALT units of 4πθ 2/h̄γ⊥.

general in its derivation, and can be used to predict the linewidth of semiconductor lasers given
the appropriate form of the electric susceptibility. However, implementing an FDTD simulation
algorithm appropriate for semiconductor gain media is challenging even in the absence of the
effects of stimulated emission [56–60]. Here, we test the N-SALT linewidth predictions using
two-level atomic gain media; the appropriateα factor in this case was first derived by Lax
as [2],

α0 =
ω0−ωa

γ⊥
. (63)

For the simulations here, we choose the atomic transition frequency almost exactly in between
the two proximal cavity resonances, and decreaseγ⊥, thus increasingα0. However N-SALT
predicts a generalizedα factor, α̃, which is sensitive to the spatial hole-burning of the gain
medium and the non-Hermitian nature of the lasing mode, and not just to the distance of the
lasing mode from the center of the gain curve. From ref. [27] in the single mode case it take the
form:

α̃ =
Im[C11]

Re[C11]
, (64)

where the complex coefficientsCµν determine the relaxation rate of modal fluctuations away
from the steady-state lasing values. These coefficients arecalculated from the SALT solutions
according to:

Cµν =





iωµ
∫

ψψψ2
µ(x)

∂ε(ωµ )
∂ Iν

dx

2
∫

ψψψ2
µ(x)

(

ε + ωµ
2

dε
dω |ωµ

)

dx



 , (65)

whereψψψ µ(x) is the spatial profile of theµ th lasing mode, still power normalized,
∫

ψψψ2
µ(x)dx =

1. Furthermore, it was found in Sec. 7A-B in Picket al. [27], that the spatial profile of the
first threshold lasing mode changes discontinuously as the passive cavity dielectric constant is
increased, jumping when the first lasing mode switches from one passive cavity resonance to
the next as different resonances enter and leave the bandwidth of the gain medium. Near these
discontinuities, a large deviation betweenα0 andα̃ can be observed, and we will exploit this
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Fig. 7. Plot of the linewidth versus the output power for a two-sided dielectric slab cavity,
n = 3.5, showing the comparison between the N-SALT linewidth prediction (green line),
the N-SALT linewidth without anα factor (cyan line), the N-SALT linewidth using Lax’s
α factor (blue line), and the FDTD simulation results (magenta triangles). Excellent quanti-
tative agreement is seen between the FDTD simulations and the correct N-SALT linewidth
prediction, confirming the form of theα factor derived by Picket al.[27]. For the two-level
gain medium used here,ωa = 18.3, γ⊥ = 0.05, γ‖ = 0.01, θ = 4×10−9, andNA = 1010,

and results in the total system havingα2
0 = 2.56, while α̃2 ≈ 0.66. Frequencies and rates

are given in units ofc/L, while the atomic values are given in SALT units of 4πθ 2/h̄γ⊥.

phenomenon in the simulations below while maintaining an index of refraction similar to that
of GaAs, usingn= 3.5 for the dielectric slab cavity studied here.

In Fig. 7 we show the results of a comparison between the N-SALT linewidth predictions
using three differentα factors,α2 = 0 (cyan line),α̃2 ≈ 0.66 (green line), andα2

0 = 2.56 (blue
line), with direct FDTD simulation (magenta triangles). Wefind excellent agreement between
the correct N-SALT linewidth calculated using̃α and the FDTD simulations, demonstrating
that this is the correct form of theα factor. These simulations also verify that the Langevin
noise model used in the FDTD simulations implicitly contains the physical effects that yield
the α factor. While theα factor for many semiconductor lasing materials is determined ex-
perimentally [61], rather than analytically, these results indicate that the physical origins of
the phenomenon are effected by the geometry of the cavity andthe spatial profile of the las-
ing mode. Furthermore, this suggests that using fabrication techniques to control the index of
refraction of semiconductor based laser cavities should allow for the engineering of different
linewidth enhancement factors.

5.4. two mode lasing

A final feature of N-SALT linewidth theory is that it predictsthe linewidths in the multimode
steady state, and finds that the linewidths are not independent of one another but couple through
gain saturation. Specifically it predicts that the linewidth of any active lasing mode is affected
by the onset of additional lasing modes at higher pump powers. This coupling phenomenon
occurs through a change in theα factor of each active mode at each subsequent threshold.
Above the second lasing threshold this correction is given by

δω(two−mode)
N-SALT = δω(1)

N-SALT

[

1+
CI

11C
R
22−CI

21C
R
21

CR
11C

R
22−CR

12C
R
21

]

+ δω(2)
N-SALT

[

CR
11C

I
12−CI

11C
R
12

CR
11C

R
22−CR

12C
R
21

]

, (66)
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Fig. 8. Plot showing the modal output intensity as a functionof the gain medium pump
strengthD0, for a two-sided system consisting of two coupled dielectric cavities,n = 3,
with different lengths,L1 = .42L0, andL2 = .5L0, joined together by a region of air,n= 1,
with length Lair = .08L0, whereL0 is the total size of the system, and as shown in the
schematic. This cavity has up to two active lasing modes (redand orange) for the pump
values simulated here, and quantitative agreement is seen between the SALT simulations
(solid lines) and noisy FDTD simulations (squares). A slight offset in the interacting thresh-

old for the second lasing mode is seen between the two simulations, withD(2)
SALT= 0.5077,

while D(2)
FDTD = 0.5282. The inset plot shows the FDTD simulated intensity of the second

lasing mode through its lasing threshold, first showing amplified spontaneous emission,
then super-linear behavior at threshold, and finally linearbehavior above threshold, as ex-
pected. The gain medium was chosen to haveωa = 15,γ⊥ = 0.4, γ‖ = 0.01,θ = 10−9, and

NA = 1010. Frequencies and rates are given in units ofc/L0, while the field quantities and
inversion values are given in SALT units of 4θ 2/h̄2γ⊥γ‖ and 4πθ 2/h̄γ⊥, respectively.

in which δω(i)
N-SALT is the single-mode N-SALT linewidth prediction from Eq. 2, and the su-

perscriptsR andI denote the real and imaginary components of the amplitude relaxation rates
Ci j respectively. Near threshold this analytic expression diverges and is not valid, but N-SALT
dynamical equations can be integrated numerically to calculate the increase in the linewidth
due to the second lasing mode [27].

To study this effect, we used two coupled dielectric cavities as shown in the schematic of
Fig. 8, with the total system open on both ends. By using coupled cavities we create doublets
of resonances, and by then placing the gain frequency centernear one doublet we restrict our-
selves to two mode lasing, which is convenient for the FDTD simulations in particular. The
semiclassical prediction for the modal intensities as a function of the pump strength for this
cavity calculated using SALT (solid lines) is shown in Fig. 8, and compared against the FDTD
simulations (squares), demonstrating quantitative agreement. The inset plot shows the super-
linear behavior through the lasing threshold observed in the FDTD simulations, as the amplified
spontaneous emission yields a coherent lasing signal. We observe excellent quantitative agree-
ment between the N-SALT prediction and the FDTD simulationsfor the linewidth of the first
lasing mode, as shown in Fig. 9. On this scale, the single-mode N-SALT prediction (green) is
very similar to the multi-mode prediction, Eq. 66 (red). However, the inset of Fig. 9 shows the
same set of comparisons through the turn on of the second lasing mode. Unfortunately, while
there is clearly enhanced noise near the second modal threshold, there is not enough resolution
in the FDTD data to compare accurately the single-mode and two-mode N-SALT predictions.
There are two difficulties with the numerical comparison. First, the design of the system, and
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Fig. 9. Comparison of the single mode N-SALT linewidth prediction (green line), two-
mode N-SALT linewidth prediction (red line), and FDTD simulations (magenta triangles)
for the first lasing mode in coupled cavity system from Fig. 8.Inset shows a zoom in of
the same quantities close to the interacting threshold of the second lasing mode. The two

slightly different second mode thresholds are marked in theinset,D(2)
SALT (dashed blue line),

andD(2)
FDTD (dashed cyan line). While the data is too noisy, and the difference between the

single mode and two-mode predictions too small, for the resolution of their differences, we
do observe increased linewidth and variance in our simulations close to the threshold of the
second lasing mode, as expected.

the heirarchy of parameter scales that must be achieved above the floor of the spectral resolu-
tion of the simulation results in a noisy signal. Second, dueto discretization errors, the SALT
and FDTD simulations give slightly different predictions for the location of the second lasing
threshold. Thus, when plotted against the pump strength, weexpect the linewidth increase in
the FDTD simulations to occur at a slightly shifted locationrelative to the N-SALT results, but
the noise makes it difficult to extract this shift.

Although the FDTD simulations are not sensitive enough to observe the small corrections in
the first mode linewidth due to onset of the second mode, thesesimulations are able to validate
the N-SALT linewidth prediction for the second lasing mode.Figure 10 shows a comparison
between the N-SALT prediction and FDTD simulations for the linewidth of the second lasing
mode as a function of the input pump strength. As noted, the offset observed between the
two linewidths is due to the slightly different locations ofthe second mode threshold and if
this difference is subtracted, as is seen in the inset of Fig.10, we see excellent quantitative
agreement between the two sets of simulations.

6. Summary

In this work we have performed a first principles test of the N-SALT linewidth results derived
by Pick et al. [27]. To do this, we used the FDTD algorithm to simulate the Maxwell-Bloch
equations coupled to a set of Langevin noise equations, thusincluding the effects of spon-
taneous emission. We found excellent quantitative agreement between the N-SALT linewidth
predictions and the FDTD simulations, while finding substantial deviations from the ‘fully cor-
rected’ Schawlow-Townes theory, demonstrating that the intertwining of the cavity decay rate,
Petermann factor, incomplete inversion factor, bad-cavity correction and Henryα factor in the
N-SALT linewidth formula is necessary and correct. This comparison was first done in a pa-
rameter range in which the relaxation oscillations were weak (near the Class A boundary).
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Fig. 10. Comparison of the single mode N-SALT linewidth prediction (green line), two-
mode N-SALT linewidth prediction (red line), and FDTD simulations (magenta triangles)
for the second lasing mode in coupled cavity system from Fig.8. Inset shows the same
data except with the FDTD simulations plotted at shifted pump values (cyan triangles) to
account for the slightly different second lasing mode thresholds seen in Fig. 8. Quantitative
agreement between the FDTD and N-SALT linewidth predictions is seen in both versions
of the plot, but the inset demonstrates that most of the discrepancy seen in the outer plot
is due to differences in the output power of the cavity due to the SALT simulations being
further above threshold than the FDTD simulations for the same value of the pumpD0.

Through comparison with the Chong and Stone linewidth theory [25], we demonstrated that
for the small, 20λa ∼ L, cavities studied here, much but not all of the improved agreement
found by N-SALT is due to the proper treatment of the incomplete inversion factor. Next, we
successfully demonstrated that N-SALT gives the correct output intensity spectrum including
relaxation oscillations for Class B lasers, and correctly reproduces the side-peaks due to re-
laxation oscillations. This set of simulations also verified that the side-peaks shift away from
the center of the spectrum as the pump on the gain medium is increased. We then studied the
different predictions for the linewidth enhancement due tothe coupling between intensity and
phase fluctuations, theα factor, and demonstrated that the N-SALT form of theα factor yields
quantitative agreement with the FDTD simulations, while previous forms of theα factor are
shown to disagree. This set of simulations is particularly remarkable, because in the absence of
the N-SALT prediction forα̃, one might conclude that the FDTD simulations do not correctly
capture the effects of theα factor. Instead, it is clear that the FDTD algorithm used does con-
tain all of the relevant physics, and that there can be a significant difference between the various
forms of theα factor. Finally, we demonstrated that the N-SALT theory correctly predicts the
linewidth for multiple active lasing modes.
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