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In the top-down holographic model of QCD based on D4/D8-branes in type IIA string theory and some
of the bottom-up models, the low energy effective theory of mesons is described by a five-dimensional
Yang-Mills-Chern-Simons theory in a certain curved background with two boundaries. The five-
dimensional Chern-Simons term plays a crucial role in reproducing the correct chiral anomaly in four-
dimensional massless QCD. However, there are some subtle ambiguities in the definition of the
Chern-Simons term for the cases with topologically nontrivial gauge bundles, which include the
configurations with baryons. In particular, for the cases with three flavors, it was pointed out by Hata
and Murata that the naive Chern-Simons term does not lead to an important constraint on the baryon
spectrum, which is needed to pick out the correct baryon spectrum observed in nature. In this paper, we
propose a formulation of a well-defined Chern-Simons term which can be used for the cases with baryons,
and show that it recovers the correct baryon constraint as well as the chiral anomaly in QCD.

DOI: 10.1103/PhysRevD.95.126007

I. INTRODUCTION

The gauge/gravity duality provides a powerful method to
study strongly coupled gauge theories using theories with
gravity [1-3]. One of its surprising features is that the
space-time dimensions of the gravity side are higher than
those of the corresponding gauge theory. For this reason
this type of duality is called holographic duality. It has been
applied to QCD and there have been a lot of successes in
revealing the properties of QCD and physics of hadrons.'
The holographic dual description of QCD (or QCD-like
theory) is called holographic QCD. A common feature of
the holographic models is that the meson effective action is
given as a five-dimensional gauge theory embedded in a
certain curved background.

In this paper, our main focus is on the five-dimensional
Chern-Simons (CS) term’

Scs = CL ws(A), (L.1)

where C is a constant and ws(A) is the CS five-form
that satisfies dws(A) = tr(F?). The explicit form of the CS
five-form is

*pakhang.lau@yukawa.kyoto-u.ac.jp

sugimoto @yukawa.kyoto-u.ac.jp

'See [4] for a recent review.

Here, the gauge field A is a one-form and its field strength
F=dA+AANA is a two-form that take values in the anti-
Hermitian matrices. We often omit the symbol “A” for the wedge
products of the differential forms.
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It appears in the meson effective action in the top-down
holographic model of QCD proposed in [5]° and some of
the bottom-up models (see, e.g., [7-10]). In these models,
the effective theory of mesons is described by a five-
dimensional U(N;) Yang-Mills-Chern-Simons (YM-CS)
action on a curved space-time Ms, where N is the number
of massless quarks, and the coefficient of the CS term is
related to the number of colors N, by

__iN,
C 24x%

(1.3)

The normalizable modes of the five-dimensional U(N)
gauge field A correspond to the degrees of freedom of a
tower of vector and axial vector mesons (such as rho
meson, omega meson, a; meson, etc.) as well as the
massless pions.* It has been shown that the masses as well
as coupling constants for low-lying mesons read off from
the five-dimensional YM-CS theory turn out to be in

3See [6] for a review.
In this paper, we consider the cases with massless quarks. See
[11] for the proposals to include quark masses.
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reasonably good agreement with the experimental data and
provide some predictions for the unknown parameters.

The CS term plays crucial roles in many aspects in
holographic QCD. First of all, the chiral anomaly in
QCD is correctly reproduced due to the CS term. In fact,
the five-dimensional expression of the Wess-Zumino-
Witten (WZW) term in QCD [12—-14] has a direct physical
interpretation in terms of the five-dimensional CS term in
holographic QCD [5]. Furthermore, some of the decay
modes of the omega meson (v — 7% and w — 72°7*77)
are induced by terms generated from the CS term.
Surprisingly, the structure of the interaction terms for these
decay modes predicted by holographic QCD agrees with
that of the Gell-Mann—Sharp—Wagner model [ 15], whichisa
phenomenological model proposed to reproduce the exper-
imental data of the omega meson decay [16] (see also [9]).
The CS term is also important in the analysis of baryons. Due
to the CS term, it can be shown that the baryon number is
equal to the instanton number defined on a time slice [5].
When the vector (and axial-vector) mesons are integrated
out, the five-dimensional YM-CS action reduces to the
action of the Skyrme model [5,16]. The Skyrme model was
proposed by Skyrme to describe baryons as topological
solitons called Skyrmions [17]. The pion field in the soliton
has a nontrivial winding number representing an element of
the homotopy group 7z3(U(N)) = Z. The relation between
the instanton number for the five-dimensional gauge field
and the winding number carried by the pion field is precisely
that proposed by Atiyah and Manton [18] in an attempt to
obtain approximate Skyrmion solutions by using instanton
solutions.

However, there are some subtle ambiguities in the
definition of the CS term. In the explicit expression of
the CS term in (1.1) with (1.2), we have implicitly assumed
that the gauge field A is a globally well-defined one-form
on the five-dimensional space-time Ms. This is, however,
not always possible when the gauge configuration with a
given boundary condition is topologically nontrivial,
including the cases with baryons. In such cases, it is
necessary to cover the five-dimensional space-time Mj
by multiple patches on which the gauge field is well
defined. One might naively think that the CS term can
be defined as just a sum of the CS term defined on each
patch. However, this approach does not work, because it
depends on the choice of the gauge, and some additional
terms are needed to make it well defined. Related to this
issue, a problem was pointed out by Hata and Murata in
[19]. They tried to analyze the spectrum of baryons in the
case with N, = 3, generalizing the analysis for Ny = 2 in
[20], and claimed that a constraint needed to get the correct
baryon spectrum [see (2.29)] cannot be obtained by using
the naive CS term. They proposed a new CS term that
gives the correct constraint, but it does not reproduce the
chiral anomaly of QCD. Our main goal is to propose a well-
defined CS term that solves all these problems.
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The paper is organized as follows. We start with
reviewing the problems in more detail while fixing our
notation in Sec. II. Our proposal for the well-defined CS
term is given in Sec. III. In Sec. IV, we revisit the analysis
of the effective action for the collective coordinates of the
soliton solution representing baryons and show that the
correct constraint is obtained from the new CS term.
Section V gives a summary and outlook.

II. PUZZLE

A. The model

Our starting point is the five-dimensional U(N ;) YM-CS
action given by

S5dim = Sym + Scs» (2.1)

with Scg as defined in (1.1) and the kinetic term for the
gauge field

Sy = —& / «(F A +F), (2.2)
2 Jug

where k is a constant and * is the Hodge star in five-
dimensional space-time Ms. Although the details of the
metric on M5 are not important in our main purpose, we use
the following form of the metric for explicit calculations:

ds® = 4(k(2)k(2)n,,dx"dx + k(z)2dz?),  (2.3)
where x* (4 = 0, 1, 2, 3) are the coordinates for the four-
dimensional Minkowski space-time and z is the coordinate
for the fifth direction. Then, the Hodge dual of the field
strength two-form F is

k(z k(z
xF = —(T)F“Zeﬂwgdx”dx”dx" + %F"”eﬂwgdx”dx"dz,
(2.4)
where €,,,, is the totally antisymmetric tensor in four-

dimensional Minkowski space with €53 = +1, and the
Lorentz indices are raised and lowered by the Minkowski
metric (n,,) = (n"*) = diag(—1,1,1,1). Then, the YM
action (2.2) is written as

1-
Sym = K/ d*xdztr (E k(z)F,, F*" + k(z)FﬂzFl‘Z) (2.5)

The meson effective action in [5] is given by (2.1) with
k(z) = (142273 and k(z) = 1 + 2.

The boundary of M5 is a disjoint union of the four-
dimensional edges at z - 400 and z — —o0:

*Note that the asymptotic region at |x*| — oo is not regarded as
the boundary. In order to avoid confusion, we compactify the x*
directions in the following discussion.

126007-2
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oMs =M™ U (=m), (2.6)

where Mf‘iw) = M5|,_, ., and the minus sign in front of

M‘(t_m) means the orientation is reversed. The boundary

values of the gauge field pulled back on Mf‘im, denoted

as A, (= lim,_, A,dx"), are interpreted as the exter-
nal gauge fields associated with the chiral symmetry
U(Nf)LxU(Nf)R in QCD.6 More precisely, we set
Ai = Al 1o Where A+ and A_ are the external gauge
fields associated with U(N;)z and U(Ny);, respectively.
Because the gauge field at the boundary is fixed, the
gauge symmetry of the system consists of the gauge
transformation that acts trivially at the boundaries. The
gauge transformation at z — oo corresponds to that
of the chiral symmetry. Note that the CS term (1.1) is
not invariant under the gauge transformation that acts
nontrivially at the boundary. In fact, the infinitesimal gauge
transformation of the CS term with §,A = dA + [A, A] =
D AA is

OpScs = C(/ wzlt(/A\+aA+) _/ w}‘([\_,g_))
Mi%»oo) Mi—oo)

(2.7)
where A, = A, and
wy(AA) =tr <Ad <AdA + %A3> > . (2.8)
Here, we have used the formula
Saws(A) = doy(A.A) + O(A?), (2.9)

and the Stokes’ theorem.” (2.7) precisely agrees with the
chiral anomaly in QCD.8

B. Problems of the CS term
In order to illustrate the problem clearly, let us compac-
tify the time and x!~3 directions, and consider the case that
the topology of the space-time is equivalent to

Ms=5"x S xR, (2.10)

where S! is the compactified time direction, S is the
compactified x!~? directions and R is the z direction.” As

®The axial U(1) subgroup of U(Ny), x U(Ny)g is anomalous.
This anomaly can also be seen in string theory as discussed in [5],
but we will not discuss it here.
See the Appendix for our notations and useful formulas.
See, e.g., a textbook [21] for a review of anomaly.
°To be more precise, we add the boundary points {z — +co}
to R and treat the z direction as a closed interval I = [—c0, +00].
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shown in [5], the baryon number np is given by the
instanton number on a time slice (see also Sec. III D for
a derivation):

1
ny = Q/SMRH(FQ). (2.11)

When the gauge field A is a globally well-defined one-form
on M5, using the formula

tr(F?) = dws(A), (2.12)

with the CS three-form
1 2
w3(A) =tr (AF - §A3> =tr (AdA + §A3>, (2.13)

and the Stokes’ theorem, (2.11) can be rewritten as

=g ([0 [ls) @14

This expression inevitably vanishes if we impose the
boundary condition A|._, . = 0. Therefore, if we adopt
the identification A, = A| .+co in the previous subsec-
tion, the globally well-defined gauge field A can describe
only the ng = 0 sector of the gauge configuration, when
the external gauge fields Ai are turned off. This is
clearly restricting the gauge configurations too much. As
usual in gauge theory, we should include the gauge
configurations defined on topologically nontrivial gauge
bundles.

In order to describe gauge configurations with nonzero
baryon number, we cover the space-time manifold M5 with
two patches as

Ms = M5 UM%, (2.15)

where M7 are chosen to be M3 ={(x*,z) e Ms|+z>—¢}
with a small positive parameter ¢. The intersection of the
two patches is

0)

M; N M{ = Mi X (—e, +e), (2.16)

where Mf‘o) = {(¥,z) € Ms|z =0} = S! x $°. In the fol-
lowing, we understand ¢ as an infinitesimal parameter and
take the limit ¢ — O at the end of the calculations. The
picture in the ¢ — O limit is depicted in Fig. 1. The gauge
configuration is defined by the gauge field A, defined on

126007-3
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FIG. 1. The five-dimensional space-time Ms5.

each patch M Silo and connected by the gluing condition on
the intersection as
A, =A"=hA_h" + hdh™!

(on M35 NMI), (2.17)

where h is a U(Nj)-valued function defined on the

intersection M3 N M{. The external gauge fields A, are
now related to the boundary values of the gauge fields
AL as

A:t = A:t|z—>:too' (218)
The gauge transformation is given by
AL =AY =g.AL 07 +90dgst, h—gihg”', (2.19)

where g, are U(N)-valued functions on M3 The boun-
dary values of the gauge functions . = g. |, corre-
spond to those of the (gauged) chiral symmetry as
(9-.9+) € UNy)p x U(Ny)g.

In this setup, it is possible to have gauge configurations
with nonzero baryon number. In fact, (2.11) gives

1
_ —-1\3
ny =5 /S wr((hdh™)?)] (2.20)

for the case with A, = 0. The baryon number (2.20) is
equivalent to the winding number given as an element of
73(U(Ny)) = Z represented by the U(N ;)-valued function
h|._, restricted at a time slice.

"For simplicity, we have assumed here that A, are well-
defined U(Ns)-valued one-forms on M3 . This is always the case
for a static gauge configuration and a small perturbation around it,
because the gauge bundle over $? is trivial due to 7, (U(N)) = 0.
A counterexample is a gauge configuration with nonzero in-
stanton number defined on S! x S3, which looks like a baryon
configuration with the time and z directions interchanged.
General gauge configurations may be described by introducing
more patches to have good covering of M5, though we will not
discuss the details here.

PHYSICAL REVIEW D 95, 126007 (2017)

The question now is how to define the CS term in this
setup. While the CS term is supposed to give the correct
chiral anomaly, we should make sure that it is invariant (up
to a 2z shift) under the gauge transformations with g, =1
that act trivially at the boundary. One can immediately see
that a naive expression like

(.

does not work. This is one of the reasons that the naive CS
term has to be modified.

Another approach is to insist on a globally well-defined
gauge field A, and modify the relation between the
boundary values of the gauge field and the external gauge
field associated with the chiral symmetry. This can be
achieved from the above description by the gauge trans-
formation (2.19) with g, = h, satisfying h, hhZ! =1 on
M35 N M{. Then, the gauge field A defined as

os(a)+ [ as(a).

5 M

(2.21)

A=A on ME (2.22)

is a globally well-defined one-form on M5, because the
gluing condition (2.17) implies Ai’j = A" on the inter-
section M3 N MgL. In this case, because of the relation
(2.18), the boundary values of the gauge field A are not

equal to the external gauge fields Ai, but related by the
gauge transformation as

(2.23)

where h, = hy| It is important to note that a gauge

z—=+oo"
configuration is specified by the pair (A, fzi) Two gauge
configurations with the same gauge field (A,h.) and
(A, h'y) can be physically inequivalent when /. and 7,
are different.

It is easy to see that, with the identification (2.23), the
expressions for the baryon number (2.14) and (2.20) are
identical. When the external gauge fields are turned off, the
boundary values of the gauge field are given by A|

7=t —

fzidfzil and the baryon number (2.14) is given by the
difference of the winding number carried by fz+ and h_ as

ny == /S (i) = we((hai ). (2.24

Therefore, for the gauge configurations with nonzero
baryon number, 4, cannot be trivial and the gauge field
A does not vanish at the boundaries.

One might think that the naive CS term (1.1) can be used
for this globally well-defined gauge field A. However, this
CS term depends on the choice of the gauge, since (1.1) is
not invariant under the gauge transformation that changes

126007-4



CHERN-SIMONS FIVE-FORM AND HOLOGRAPHIC BARYONS

the boundary values. To see this, consider a gauge trans-
formation
A — AY,

il’:t - (gil'i)lzqioo’ (225)

with a U(N)-valued function g on Ms. This gauge trans-
formation does not act on the external gauge fields A and
hence the gauge configurations (A, i) and (A, gh.) are
physically equivalent. The problem is that ws(A) and ws(AY)
are not equal [see (A16)] and it is not clear which one we
should use. Moreover, the naive CS term (1.1) does not
reproduce the expression (2.7) for the chiral anomaly.
Because of the boundary condition (2.23), the relation
between the boundary values of the gauge function g in
the gauge transformation A — A9 and the gauge function for
the gauged chiral symmetry g, is modified as

~ ~

9+ = (hi ghi—)

(2.26)

7=t

Then, the transformation (A, %) — (A%, k) induces A —>A'§’j
as desired. For the infinitesimal gauge transformation
with g=1-A and j,=1-A,, (2.26) gives A, =
(hi'Ahy)|._ 1o and hence the infinitesimal gauge trans-
formation of the naive CS term (1.1) is

AoA Al AR
OpScs = C(A(+m) a)i(h+A+h+1,A+ )
4

_ / w;(;;_A_iq:l,Aé—))
)

4

(2.27)

which does not agree with (2.7) in general.

In addition to these issues, there is a more practical
problem of the CS term pointed out by Hata and Murata in
[19]. They studied the spectrum of baryons in holographic
QCD with N, = 3. The analysis is similar to that for the
three-flavor Skyrme model. In the Skyrme model, baryons
are represented as topological solitons called Skyrmions in
a theory of pions. There are collective coordinates corre-
sponding to the SU(3) rotation (for N, =3) of the
Skyrmion solution, which are denoted by a € SU(3).
(See Sec. IV C.) It has been shown that the WZW term gives

.Nan/ -1
S =—i drtr(tga™'0,a), 2.28
Wzw e (tga™'0ia),  (2.28)

which leads to a constraint

w(ae™®) = y(a) exp (iN L e), (2.29)

2V/3

on the wave function y(a) for the (lluantum mechanics of
the collective coordinates [22—28].1 Here,

"See also a textbook [21] for a review.

PHYSICAL REVIEW D 95, 126007 (2017)

1
1

~2/3

ty (2.30)

-2

is the eighth generator of the SU(3) algebra. This constraint
is crucial to obtain the baryon spectrum consistent with the
experiments. Since the WZW term can be derived from the
CS term in holographic QCD [5], it is natural to expect that
the CS term plays a similar role. However, it was claimed
that the contribution from the CS term vanishes and the
constraint (2.29) cannot be reproduced, by using the naive
CS term (1.1) in a certain gauge. In order to get the correct
constraint (2.29), they proposed to use the CS term of the
form

siM — ¢ / w(F), (2.31)
Mg

where M is a six-dimensional manifold with OMg = M.
Although they succeeded in recovering the correct con-
straint by using this new CS term, it is also problematic.
First, as emphasized above, M5 has boundaries and the
meaning of “OM¢ = M5” is not clear, because OMs = Jisa
necessary condition to have such Mg. Furthermore, this
term is manifestly gauge invariant and it does not recover
the chiral anomaly (2.7).

III. PROPOSAL
In this section, we propose a new CS term that solves all

the problems discussed in the previous section.

A. Proposal for the CS term

Using the notation introduced in Sec. II B, our proposal
for the CS term is given by

sv=c(
M;

1 T 47 —1 5
+E o tr((hdh™") )+A§0

wsa)+ [ os(a,)

) (X4(dh_1h, A_)) R

(3.1)

where Ngo) is a five-dimensional manifold satisfying
BNgO) :ME‘O), his a U(N)-valued function on Ngo)
satisfying iz| oy© = h, and

5

1 1
ay(V.A) Eitr<V(A3 ~AF—FA)+5VAVA + V3A)

1 1
—ztr<V(AdA +dAA + A3) —5VAVA- V3A> :

(3.2)

126007-5
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Useful formulas for the CS five-form ws(A) and the four-
form a,(V, A) can be found in Appendix A 3. Note that the
last term in (3.1) can be replaced with

—C/ ay(dhh™' A,). (3.3)
0©

4

using (A19). The third and fourth terms in (3.1) are added
to the naive expression (2.21). The motivation for adding
these terms will soon become clear.

A few comments are in order. In (3.1), we have assumed
the existence of Ngo) and h."* For the case with Mio) =

S' % 8% and h € SU(N;), which is the case of our main

interest, one can choose N go) tobe N go) =D x S?, where D

is a disk satisfying 9D = S!, and then & exists because the
image of h, as a map from S to SU(N ;) at each point in §3,

is contractible in SU(N). The choice of N go) and  does
not matter, due to the standard argument for the WZW
term [13].

This new CS term has the following desired properties:

1. It reduces to (1.1) when # is topologically trivial.

2. It is invariant (up to a 2zZ shift) under the gauge
transformation (2.19) with g, |, — L.

3. It reproduces the correct chiral anomaly in QCD
(2.7) with the identification AL =A,|,_  and
9+ = e™he = gi|z—>:|:oo'

4. TItreduces to the Hata-Murata’s proposal (2.31) when
M does not have boundaries [i.e. Mgim) = (], and
there exists a six-dimensional manifold Mg such that
Ng()) x (—e,e) and OMF =M% U (iNgO)) (see
Fig. 2 for the picture in the limit ¢ — 0).

Let us show these properties one by one.

1. When £ is topologically trivial, i.e. & can be
continuously deformed to h =1, there exists a

U(N)-valued function h on M3 such that h=h

2Fora generic choice of Mgo) and h, the existence of N g(» and

I is not guaranteed. For example, for MA(‘O) = CP?, which is
known to be a nontrivial element of the cobordism group for

oriented closed four-manifolds, Ngo) does not exist. On the other

hand, when Mgo) = S' x M; with M5 a closed oriented three-
manifold M3, there always exists a four-manifold N, satisfying
ON, = M5 and Ngo) can be either D x M5 or S' x Ny. If h is
topologically nontrivial on M3, like the examples with ng # 0
considered in Sec. II B, we should choose N go) = D x Mj so that

h defined on Ngo) can be found. However, if /4 has a nontrivial
winding number as a map from S' to U(N/) at each point in M3,
this is not possible. For this reason, we consider the cases that
does not wind around a nontrivial one-cycle in U(N ) along the

S! direction. For the case of M\ = §*, we can choose N go) to be
a five-dimensional ball and then /1 always exists for N, > 3,

because 7, (U(Ny)) is trivial.

126007-6
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_ NS(O)
M6 M6+

TN

(0)
M,

FIG. 2. The six-dimensional space-time Mg.

on the intersection M3 N MS+ and satisfies the

boundary condition 13|Z_,_oo — 1. Then, we can
obtain a globally well-defined one-form A on Mj5
by defining

_ At (on M3)
A= {A+ on M) (3.4)

We choose Ngo) = M35 U Ng_°°>, where Ng_m) is a

five-dimensional manifold with ON = = M|,

and extend & to N go) by setting }~1| yi-= = L. Then, we
5

obtain

s =c [
M

+/M;
_C<[WSWS(AE)+[W;COS(A+)>

_c A 0s(A), (3.5)

%MJ+A}MM)

5 5

[%tr((izdif‘f) 4 da4(dif1il,A_)D

where (A16) is used.

. Under the gauge transformation (2.19), the CS term

(3.1) is transformed as

s = |
M

osaz) + [ aat)

5 5

1 71 371-1\5

T o tr((A'dh' ™))

+ / a4(dh"'h’,A€-)>, (3.6)
MY

where ' = g, hg~" and /" are U(N)-valued func-
tions on M5 N MJ and N go), respectively, satisfying
H| oNO = '|._o. Note that since g.|,_, are topo-

logically trivial due to the boundary conditions
9+limteo — 1, there exist U(N)-valued functions
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g+ on N go) satisfying g.|,y0 = g=+|,—o and h' can be
5

constructed by i’ = §,hj=!. Then, using (A16),
(A20), (A28) and (A29), one can show that (3.6)
is equal to

(

M3

+/ a4(dh‘1h,A_)>,
MY

+1o (A HE) +/N(°> tr(éi))

5

+%<Agtr(G5_)—[vm)tT(és—)>’

5

osA )+ [ osta) g [ wGai)?)

(3.7)

where G, =dg7'g, and G, = dj:'j.. The first
and second lines are S¢<§" defined in (3.1). The third
and forth lines can be omitted because they take
values in 2zZ.

3. Here, we consider the infinitesimal gauge trans-
formation with g, = 1 — Ai.n In this case, g |, is
again topologically trivial and it suffices to show
property 3 for the cases with g. = 1 on M5 N M,
because of the property 2 shown above. Then, since
the third and fourth terms in (3.1) do not change
under the gauge transformation, the proof of (2.7) is
the same as that reviewed in Sec. IT A.

4. Using the relations OME = M U (N and the
Stokes’ theorem, we obtain

(],
wsa)+ [ asa,)

=c(f, w0+ ],

+ /vg@ (ws(Ay) — ws(A—))>-

doos(A_) + /

"
Mg

aos(a))

6

(3.8)

Now, A, and A_ are related by A, = A" on
Mg N M} 2Ngo) X (—€,+e€). Then, it is easy to
check, using (A16),

[ @s(4,) = os(4)
- [ o)+ [ i)

(3.9)

which shows that SE (2.31) agrees with SEY (3.1).

BSee Sec. I B for the finite transformation.

PHYSICAL REVIEW D 95, 126007 (2017)

B. Other useful expressions

It is often more useful to use the globally well-defined
gauge field A defined in (2.22) to describe the CS term.
A similar analysis as in (3.6)—(3.7) shows that the new CS
term (3.1) can be rewritten as

1
ser=c( [ asy+ [ guitertan,)
Ms N
A A 1
+ / au(dh it A) — / Le(nmranys)
M5+oo) N(S—ec) 10

- Aw ay(dh_h~! ,A)>,

where N giw)

(3.10)

are five-dimensional manifolds with
+o0

ONS™) = M|

on N§i°°)

) and hy are the U(Ny)-valued function
satisfying h | oy = /Azi. The relation between
5

the boundary values of the gauge field A and the external
gauge fields A is given by (2.23). The boundary terms in
(3.10) can also be written in terms of the external gauge
fields as

1
st =c( [ asy+ [ guitartan,)
Ms N 10
A 1A A 1
_ -1 _ 1 -1 5
Jm i A = [ getan )
(3.11)

where we have used (A19). This expression makes it clear
that we do not have to modify the CS term for N = 2 and

Ai = 0, because the additional terms in (3.11) vanish in
that case.

The expressions (3.10) and (3.11) can be written in a
more compact notation as

s =c( /. as()+ [ foe(liany)

+/8MS a4(dhh‘1,A))
_ c< [M os(4) + /N Sl—lotr((h‘]dh)s)

—/ a4(dh—1h,A)),
OM;s

where N5 is a five-dimensional manifold with two con-

nected components N5 = Néﬂo) U (—Ng_m)

(3.12)

) satisfying

ONs = 0Ms =M™ U (-M[),  (3.13)
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and his a U(N)-valued function on N with 1, = h| )
4

The external gauge field A in (3.12) is defined on the
boundary &M with the identification A = A| y- The
4

relation to the boundary value (2.23) is written as

Aloy, = A" (3.14)
It is not difficult to show, using (A16), (A21) and (A28),
that this CS term is invariant (up to a 2zZ shift) under the
transformation (2.25), which can be written as
A=A, h—>gh, A-A (315
assuming that g can be extended to Ns.
The transformation corresponding to the chiral sym-
metry discussed around (2.26) is given by
A — AY, A — A

h—h, (3.16)

with
g=(h""gh)|ou, (3.17)

where . = gl corresponds to the chiral symmetry.
Combining this with the inverse of (3.15), we find that the
chiral transformation is also induced by

A—A, h—g'h, A=A%  (3.18)
It is also straightforward to show that the CS term (3.12)

transforms under the transformation (3.16) with (3.17) as

ou(d@-‘@,/i)),

(3.19)

1
st s+ [ Jgei@ary+ |

N OMs

up to the 277 shift, where we have assumed that § can be
extended to Ns. If we consider an infinitesimal chiral
transformation with g =1 — A, then (3.19) reduces to the
formula for chiral anomaly (2.7).

There is another useful expression that generalizes (2.31)
to the cases with a boundary. Note that M5 U (—N5) is a
five-dimensional manifold without boundary. Suppose
there exists a six-dimensional manifold My with OMg =
M5 U (—Nj5) and the gauge field A can be extended to M.
Then, we have

A@, w(F?) = /ws s(A) ~ A 5 ws(A).  (3.20)

Next, we extend the external gauge field A to N5 by

defining A =A"" (on Ns), which reduces to (3.14) at
ONs = OMs. Then, using (A16), we find

PHYSICAL REVIEW D 95, 126007 (2017)

[\’5 ws(A) = [\’5 (ws(A) +%tr((h‘1dh)5)>

+/ ay(dhh™!, A). (3.21)
ONs

Comparing (3.20) and (3.21) with (3.12), we obtain a
simple formula'*

Snew — C<A46 tr(F?) +/NS wS(A)). (3.22)

C. Pion field

The relation between the U(N ;)-valued pion field U(x*)
in the chiral Lagrangian and the five-dimensional gauge
field was proposed in [5,7,18]:

U(x*) = Pexp (— /_ o dzAZ(x”,Z)) (3.23)

[Se]

This formula should be modified as follows.
For the gauge field considered in Sec. III A, the correct
expression is

z=0

U(x") = Pexp (- A AL (o, z)) h()

0
x Pexp (—/ dzA_z(x”,z)).

For the gauge field A in (2.22), this is equivalent to

(3.24)

U(x*) = h7' (x*)Pexp (- / - dzA (x*, z)> h_(x#).

—0

(3.25)

This expression is invariant under the gauge transforma-
tion (2.25).

On the other hand, (3.24) transforms under the gauge
transformation (2.19) as

U) = g (@)U () g-(x) " (3.26)
where g, = gi|._ .., Which is nothing but the chiral
transformation of the pion field. In terms of (3.25),

(3.26) can be easily seen by the transformation (3.16)
or (3.18).

14 .. . . .
A similar expression was suggested in [19] as a quick
remedy to recover the chiral anomaly. Our derivation gives its
precise meaning.
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D. Equations of motion and current

For later use, let us write down the equations of motion
and currents with our new CS term. Since the additional
terms in our new CS term do not affect these equations, the
results in this subsection are not new. Nevertheless, it will
be instructive to show them explicitly. The action (2.1) is
replaced with

S5 dim — SYM + S?:esw. (327)
Here, we use the expression (3.12) for the CS term S¢".

Using (A22) and (A26), an infinitesimal variation of the
action is computed as"

55::/ (5A(=KD,, + F + 3CF?))
Ms

. — FUDUREUA A
+/ tr<5A<—K*F+C< A+AF——A3>>>,
OM; 2

(3.28)

where D, is the covariant derivative defined in (A2), Ais
the external gauge field related to the boundary value of the
gauge field as (3.14), and

F=(h""Fh)|op,. «F = (h™' « Fh)| o,

6A = (h™'6AR)| g, (3.29)

Note here that +F is different from the Hodge dual of F
defined on OMs5. Its explicit form with (2.4) is

uvpo

«F = (—@ (h~'F¥_h)e

3 dx”dx”dx") lows- (3.30)

The first term in (3.28) gives the equations of
motion

—xDy x F +3CF* =0, (3.31)

which is consistent with the boundary condition
SA = 0. The variation with respect to the external gauge

field A at the boundary in (3.28) gives the current three-
form:

—_ ~ A A ~ 1 A
Ji==i (—K*Fi +C <FiAi +ALF, —5A1> ) . (3.32)

where (Hodge dual of) J_ and J, correspond to the
currents of U(Ny), and U(N)g, respectively [29-31].

The variation with respect to & can be absorbed in A, using
the transformation (3.15).
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Then, it is straightforward to check, using the equations of

motion (3.31), that it satisfies the (consistent) anomaly

. 16
equation “:

N, - n 1.
Dy J.= iwd<AidiAi + 5Ajﬁ>. (3.33)
The baryon number current is defined as
1
Jg = N—(trJ+ +trJ_), (3.34)
and the baryon number (for A=0)is
ng :/ JB
53
b L 2
= /s [tr(—kxF))_ % = 8 Jon tr(F*), (3.35)

where we have used the equations of motion (3.31) and
Stokes’ theorem in the last step, reproducing the expression
in (2.11).

IV. APPLICATION TO BARYONS

In this section, we analyze the effective action for the
collective coordinates of the soliton solution corresponding
to baryons. We show that the term (2.28) needed to obtain
the correct constraint (2.29) is reproduced by using the CS
term proposed in the previous section. This statement was
already shown in [19] using (2.31) for the ny = 1 case. As
we have seen in Sec. III B that our CS term reduces to
(2.31) when A = 0, we should recover their result. In our
derivation, we will not use an explicit solution correspond-
ing to a baryon so that it can be generalized to the cases
with ng > 1.

A. Collective coordinates

In this subsection, we work in the Aj = 0 gauge. We
assume there exists a solution of the equations of motion
(3.31) with nonzero baryon number np, denoted as

A = A dxM, (4.1)
where “cl” refers to a classical solutionand M =1, 2, 3, z
is the spatial index. We also assume that this gauge field is
globally well defined and regular everywhere in Ms.

Here, we consider the cases with A, = 0. Then, for a
finite energy solution, the gauge field approaches a pure
gauge configuration near the boundary as

AY > hlans!,

(z > £o0). (4.2)

16See [31] for a detailed discussion on the currents and the
anomaly equations in holographic QCD.
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Because of the condition Ay = 0, hi are time independent.
Without loss of generality, we can assume h%|,__ =1
and A< = ho(x), where hy is a U(N)-valued func-

tion on the S® parametrized by ¥ = (x!, x2, x*) satisfying

7=+

ny = fﬂz A (kg dhy)?). (4.3)

Following [20], we consider a gauge configuration

Ay = VALV + Vo, Vvl (4.4)
with a globally well-defined SU(N ;)-valued function v.”
The idea is as follows. If V is time independent, it can be
regarded as the collective coordinates (coordinates of the
instanton moduli space) corresponding to the global gauge
rotation, since A,; is again a classical solution with the
same energy. A standard procedure of the moduli space
quantization method'® is to promote the collective coor-
dinates to be time-dependent variables and reduce the
system to a quantum mechanics of these variables. To this
end, one should also make a compensating gauge trans-
formation so that the gauge configuration satisfies the
Gauss law equation, which is the equation of motion for Ag:
dt A (=kD4 * F +3CF?) = 0. (4.5)
V in (4.4) contains both the collective coordinates and the
compensating gauge transformation, and it can depend on
the five-dimensional space-time coordinates. We assume
that the initial value of V is 1 and hence its value at a fixed
time is connected to V = 1 by a continuous deformation.
With this choice of the gauge configuration, the asymp-
totic value of the gauge field is
Ay = Vhoy (VA= (z > +o0). (4.6)
The electric fields Fy; (i = 1, 2, 3) are assumed to vanish at
the boundaries z — F=o0. Then, F;|._ o =00A;i|, 10 =0
implies that the asymptotic values of A; should be time
independent, and therefore, since the initial value of V is
assumed to be 1, one has
A > hi@ihcil_l,

(z > +00) (4.7)

"One could consider V to be a U(N 7)-valued function.
However, we only consider the configurations of V that do
not wind around a nontrivial one-cycle of U(N ) along the time
direction in the following (see the footnote on p. 12 for a related
issue) and, at least for such configurations, it is possible to show
that the diagonal U(1) part of the U(N ) does not contribute to
the effective action studied in Sec. IV B and we can restrict V to
be an SU(N)-valued function.

18See, e.g., [32] for a review of this method explained for the
magnetic monopoles.
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for all time. This implies that V has the following
asymptotic values,

Vv

oo =a-(1). V] =ho(X)a (k5 (¥).  (4.8)
with a, (t) being SU(N)-valued functions that depend
only on time.

With the asymptotic expression of the gauge field in

4.7), fzi in (2.23) can be chosen as

ho=1,  hy=hy(x), (4.9)
and the CS term (3.11) is simply
SS = C/ ws(A). (4.10)
Ms

Therefore, the naive CS term is actually the correct one in
this gauge choice.

Let us now consider the Gauss law equation (4.5). With
the expression (4.4), one can easily show that Fyy =
VFS V! and

Foy = Ay = V(FS, — DS@)V-!, (4.11)
where the dot denotes the time derivative, and we have
defined ® =V-'V and D$® = 9,,® + [AS}, ®]. Using
these relations and the fact that AS, is a classical
solution, (4.5) becomes

dt A (DY (D4 ®dt)) = 0, (4.12)
where the covariant derivative acting on @ is D{® =
DS @dxM. In components, (4.12) is given by
DSy (v/=gg"™N g DSl@) = 0. (4.13)
For the background with the metric (2.3), this is written
explicitly as
8"DIDY® + k(z)~' DY (k(z) DID) = 0, (4.14)
where i, j =1, 2, 3.

With the expression (4.8), ®@ has the following asymp-
totic values

@, o = a_(1)a_ (1),

O, o0 = ho(Da ()i (VI (D). (4.15)

Therefore, ® is determined as the solution of the Gauss law
equation (4.12) with the boundary condition (4.15).
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B. Effective action

To obtain the effective action for a.(z), it turns out
to be more convenient to make a gauge transformation
(2.25) using g = V~!. Then, the configuration in (4.4) is
mapped to

Ag=VV=0, Ay =AY, (4.16)
and h in (2.23) is given by
ho=a ()", hy=hy(Xa. ()" (4.17)

Then, the CS term (3.11) is

new

= [ ms [ forta i doast))
(4.18)

Here, N §+°°) is assumed to be N§+°°> =D x §°, and h, and
a, are extended to be functions on it. We can choose 4, and
a, to be constant along the D and S* directions, respec-
tively. Using the relation (A28), one can show that (4.18) is
equivalent to

1 . _
cs = C(/ ws(A) = E/Hw) dttr(allaJr(holdhO)S)).
M;s M,
(4.19)

Although it is a bit more tedious, it is also possible to derive
(4.19) directly from (4.10) by using (A16) with g = V="
The first term on the right-hand side of (4.19) can be
evaluated as follows. The relation (A22) with 6A = ®dt
implies
ws(A) = ws(AY) + 3tr(Ddt(F)?) + dp,(Ddt, AY),
(4.20)

where f, is defined in (A23). The contribution from the
collective coordinates to the CS five-form is

&%W—A%WU

—/ 3t1‘(q)dl‘ FC1 / P4 (Ddt, A° )lz —too
M

- / ﬂ4((bdt’Ad)|z:—oo
M

1
:/ 3tr(CI)dt(F°l)2)+—/ drtr(ai'ay (hy'dhy)?).
M 2 Mg#»oo)

(4.21)

"The integral of tr((V~
using (A31).

'dV)3) over Ms can be evaluated by

PHYSICAL REVIEW D 95, 126007 (2017)
Substituting this back to (4.19), one obtains

Sgesw = C/ a)S(ACI) + 3C/ dttr((l)(FCI)z). (4.22)
Ms Ms

The field strength for the gauge field (4.16) is

F = F + D{®dr, (4.23)

and the YM part is given as

- K'/ dttr(®DY * F) — K/ dttr(® * F),
Ms oM
(4.24)

Using the fact that A satisfies the equations of motion
(3.31), the total action (3.27) becomes
Ssdim = Ssaim(A%) + 81 + S, (4.25)

where Ss gim (A) is the action evaluated with A = A°!, and
S; and S, are the terms including ®:

S = —K/ dttr(® * F), (4.26)
oM

5= -4 / tr(DIDdr A +(DSDdr)).  (4.27)
Ms

Using the Gauss law equation (4.12), S, can also be
written as

5= % / dite(® « (DSDdr)). (428
OM5

For the background with the metric (2.3), (4.26) and (4.28)
can be written as

S, = 2% / delk()u(@FL e, (429)

S, =« / dxlk()r(@DID)=rE.  (4.30)

Substituting the asymptotic expressions of ® (4.15) into
(4.26), one obtains

S = /a'ttr(a+ an? +a-ta_n), (4.31)

with ng ! defined by
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cl — cl : /?1
ni:A3Ji =+ ”CAZ*F |5 o0

where J¢ are the classical current three-forms given by
(3.32) with A =AY and Ai = 0. The classical quark
number matrix is defined as nf = n + n¢. Its diagonal
elements are interpreted as the number of up quarks, down
quarks, strange quarks, etc., carried by the classical solution
and the trace is the total quark number:

(4.32)

trn§ = N.ng.

(4.33)

C. Relation to Skyrmions
The action of the Skyrme model is written in terms of the

pion field U(x*) discussed in Sec. IIIC. The classical
solution corresponding to the baryon carries nonzero
winding number as an element of z3(U(N;)) =Z. In
the standard approach for Ny = 3, the ansatz for the field
configuration is

U(x*) = a(t)UN(X)a(t)™!, (4.34)
where U (X) € SU(3) is a classical solution representing a
baryon and a(7) € SU(3) is the collective coordinates
corresponding to the SU(3) rotation. The classical solution
is assumed to be of the form

U (3) = <U°® 1),

(4.35)

where Uy (x) is the Skyrmion solution for N, = 2. The
form of the solution (4.35) is natural in the sense that
exciting the components of the mesons with a strange quark
costs more energy than those with only up and down
quarks, when we include the mass term to the Lagrangian.

The pion field (3.25) for our gauge configuration (4.16)
is given by

U) =85! @Pexp (- [ aagn2) o

—o0

(4.36)

and it corresponds to the above ansatz (4.34) with the
identification a (7)) = a_(t) = a(r) and

U (x*) = hy! (X)Pexp (— /+oo dzAS (x*, z)) (4.37)

—o0

Note that, in the infinite volume limit, the pion field is
supposed to approach its vacuum value at spatial infinity,
ie. U(¥)|goc = 1. Since the modes with a, #a_
change the vacuum configuration, they are unphysical in
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the infinite volume limit. For this reason, we impose
a, = a_ hereafter.

Motivated by the ansatz (4.35), we consider embedding a
classical solution for N, = 2 into the U(3) gauge field to
obtain A® for N, = 3, as it was done in [19]. Decomposing
the U(2) gauge field into the SU(2) part and U(1) part as

AV = ASUQ2) 4 AU, (4.38)

the equations of motion (3.31) for N = 2 can be written as

— kD ,*FSY?) 4 6CFVIFSUR) =0,  (4.39)

— kd«FUD) 4+ 3C((FYM)?2  (FSU@)2) = 0.  (4.40)

These equations can be consistently truncated by restricting

F(Sm[f,(z) =0 and F,ll{,g\l,) =0 for M, N =1, 2, 3, z. In this
case, only the U(1) part of the gauge field contributes in
(4.32) and the classical quark number matrix ng for Ny =2
is proportional to the unit matrix. When the solution for
N = 2 is embedded into the U(3) gauge field, ng; is of the

form

N ng
ndl = ¢
e 2

(4.41)
0

which means that, before quantization of the collective
modes a(r), the classical configuration represents a state
with no strangeness and equal number of up and down
quarks.

Imposing a, = a_=a € SU(3), (4.31) becomes

S, = —i/dttr(a‘lézanl)

N, I’lB/ .
d ditr(tga="'a),
\/§ (8 )

which precisely agrees with (2.28). Note that tr(tga'a)
does not appear in S,. To see this, let us assume that a is of

the form a = %) For this, since f; commutes with A
and hy, ® =a"'a = itgé solves the equations (4.12) and
(4.15). Then, it is clear that S, vanishes. Because 0 appears
only in (4.42), the momentum conjugate to @ is

=—i

(4.42)

NCVIB
P, = ,
W

and hence the correct baryon constraint (2.29) is recovered.

(4.43)

V. CONCLUSION AND OUTLOOK

In this paper, we reexamined a puzzle concerned with the
CS term in the five-dimensional meson effective theory of
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holographic QCD. We proposed a modified CS term
and demonstrated that the new action successfully repro-
duces the required baryon constraint as well as the chiral
anomaly.

Although we obtained a CS term that can be used for the
topologically nontrivial gauge configurations correspond-
ing to baryons, our construction is not completely general.
For example, the expression (3.12) is applicable only when
N5 and h can be constructed and the gauge field can be
treated as a globally well-defined one-form field on M. For
the expression (3.22), we have to assume the existence of
Mg and N5 as well as an extension of the gauge fields to
these spaces. (See the footnote on p. 12 for further com-
ments.) It would be interesting to investigate an expression
of the CS term that works for more generic situations, as it
was done in [33] for the three-dimensional CS term.

The main motivation for the present work is to solve a
puzzle concerned with baryons in holographic QCD with
N; = 3 and make it applicable to the physics of baryons
including strange quarks. In order to be more realistic, it
would be important to include the mass of the strange
quark. There are already some works along this direction.
(See, e.g., [19,34-38].) We hope our work removes
possible concerns on the validity of the formulation and
provides some new insight into application of holographic
QCD to hyperons.
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APPENDIX: NOTATIONS
AND USEFUL FORMULAS

1. Gauge field, covariant derivative, etc.

In our convention, the gauge field A and its field strength
F = dA + A? are the anti-Hermitian one-form and two-
form, respectively. The gauge transformation is

A= AY=gAg +gdg™" = g(A+dg ' 9)g7",

F— F9=gFg". (A1)

For a general (matrix-valued) n-form «,, we define
D,a, as

DAan = dan =+ Aan - (_l)nanA‘ (AZ)
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It satisfies the Leibniz rule

Da(afn) = (Dpay)f + (=1)"@,Daf,.  (A3)
One can show
D,F =dF + AF —FA =0. (A4)
Note that d and D, are the same in the trace:
dtra, = trda,, = tr(Dya,,). (A5)

The infinitesimal variation of the field strength is

OF = dSA + SAA + ASA + 6A% = D,5A + O(5A%).  (A6)
The infinitesimal gauge transformation with g = ™ is
AA = (A7 = A)|on) = dA+ [A,A] = DyA. (A7)

The following trivial relations that follow from
tr((odd form)?*) = 0 are sometimes useful:

tr(A?) = tr(A*) =0, tr(AFAF) =0. (A8)

2. CS three-form
The CS three-form is defined as

w3(A) Etr<AF—%A3> = tr(AdA+§A3>, (A9)

which satisfies

dws(A) = tr(F?). (A10)
The gauge transformation is
1
3(A%) = w3(A4) =3 u((9dg™")*) - dir(dg~'gA).  (ALl)
The infinitesimal gauge transformation with g = e~ and
6AA = DAA 18
Spw;3(A) = dir(AdA) + O(A?). (A12)
The infinitesimal variation is
Sw3(A) = 2tr(SAF) + dir(5AA) + O(6A%).  (A13)
3. CS five-form
The definition of the CS five-form is
ws(A) =tr| AF? - 1A3F —I—iA5
’ 2 10
343 345
=tr| AdAdA + EA dA + §A , (A14)
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which satisfies

dws(A) = w(F?). (A15)
The gauge transformation is
1
s(A%) = w5(A) + 75 u((9dg™)?)
+day(dg'g, A), (A16)

where
1 3 1 3

1 X 1 ;
= V(A ~AF — FA) + SVAVA + VP4 ).

(A17)
This a4 (V,A) satisfies the following relations:
au(V,£V) =0 (A18)
for any one-form V,
a(dgg", A%) = —au(dg~'g, A), (A19)

and

ay(d(gh)(gh)™", A%) = ay(g(H — G)g~', AY)
= ay(H.A) — ay(G. A)

1/ , 1

~3ur( G*H + GH® — - GHGH

1

+ 5 dr((H = G)(AG = GA)).
(A20)

where G = dg~'gand H = dhh~'. Using (A19) and (A20),
one can also show

as(d(gh)™" (gh). A) = au(dh™'h, A) + as(G. A")

1 1
+ Etr (G3H +GH? - 3 GHGH)

— Sdte((H ~ G)(A"G ~ GA™))),

(A21)
where G = dg~'g and H = dhh™'.
The infinitesimal variation is
Sws(A) = 3tr(SAF?) + dB,(5A, A) + O(5A%), (A22)

where
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(6, A) = tr (5A (FA AF - %A3>> . (A23)

The infinitesimal gauge transformation with g = e

and 0,A = D,A is
Saws(A)on) = dag(dA, A)|on) = dwy(A, A)
= d(3U(AF?) + fa(DaA A)), (A24)

where
1
wi(AA) = tr<Ad <AdA + EA3>>

1
= 5tr(A(zF2 — FA? — AFA — A%F + A%)).
(A25)
The infinitesimal variation of ay(A) is

Say(V,A) = ay(V,A+ 6A) —ay(V,A)

1
= Etr((sA(sz +2VF - (A+ V)’ + A?))

_ %dtr((sA [V.A]) + O(6A2). (A26)

4. WZW
When U = gh, where g and h are U(Nj)-valued
functions, we have

r((U'dU)?) = —(G?) + tr(H?) + 3dar(GH),  (A27)

and

tr((U'dU)®) = —tr(G°) + tr(H°)
1
+ 5dtr (G3H + GH? — 5 GHGH> ,

(A28)

where G=dg ' g, H=dhh~". This formula can also be shown
from (A16) by setting U~'dU=A"" with A= g~ 'dg=—G.

When U = gfh, where g, f and h are U(N)-valued
functions, we have

tr((U~'dU)%)
= —tr(G®) + tr(F°) + tr(H°)
+5dur(f~ (G- F)*fH + f~'(G - F)fH?
—% (f“ (G- F)fH)*+ G*F + GF? —éGFGF)
= —tr(G®) — tw(F?) + tr(H)
+5dtr(G3f(H — F)f~' + Gf(H - F)*f!
—% (Gf(H —EYf")2 + FPH + FH? - ;ﬁHﬁH> ,
(A29)
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where G=dg'g, F=dff™", F=df'f and H =
dhh=!.

An important property is that when M5 is a five-
dimensional closed manifold, the integral

| wwravy)

A30

takes values in 277 and its contribution in the action
can be dropped. When M5 has a boundary, a useful trick to

PHYSICAL REVIEW D 95, 126007 (2017)

evaluate this integral is to find N5 such that ONs = OMs,
i.e. M5 U (—Nj5) is a closed manifold, and extend U to be a
U(N s)-valued function on M5 U (—Ns). If such N5 and U
exist, M5 can be replaced with N5 by using

w(U-1du)) =< / #((U-1dUY), (mod272).
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