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In the top-down holographic model of QCD based on D4/D8-branes in type IIA string theory and some
of the bottom-up models, the low energy effective theory of mesons is described by a five-dimensional
Yang-Mills-Chern-Simons theory in a certain curved background with two boundaries. The five-
dimensional Chern-Simons term plays a crucial role in reproducing the correct chiral anomaly in four-
dimensional massless QCD. However, there are some subtle ambiguities in the definition of the
Chern-Simons term for the cases with topologically nontrivial gauge bundles, which include the
configurations with baryons. In particular, for the cases with three flavors, it was pointed out by Hata
and Murata that the naive Chern-Simons term does not lead to an important constraint on the baryon
spectrum, which is needed to pick out the correct baryon spectrum observed in nature. In this paper, we
propose a formulation of a well-defined Chern-Simons term which can be used for the cases with baryons,
and show that it recovers the correct baryon constraint as well as the chiral anomaly in QCD.

DOI: 10.1103/PhysRevD.95.126007

I. INTRODUCTION

The gauge/gravity duality provides a powerful method to
study strongly coupled gauge theories using theories with
gravity [1–3]. One of its surprising features is that the
space-time dimensions of the gravity side are higher than
those of the corresponding gauge theory. For this reason
this type of duality is called holographic duality. It has been
applied to QCD and there have been a lot of successes in
revealing the properties of QCD and physics of hadrons.1

The holographic dual description of QCD (or QCD-like
theory) is called holographic QCD. A common feature of
the holographic models is that the meson effective action is
given as a five-dimensional gauge theory embedded in a
certain curved background.
In this paper, our main focus is on the five-dimensional

Chern-Simons (CS) term2

SCS ¼ C
Z
M5

ω5ðAÞ; ð1:1Þ

where C is a constant and ω5ðAÞ is the CS five-form
that satisfies dω5ðAÞ ¼ trðF3Þ. The explicit form of the CS
five-form is

ω5ðAÞ≡ tr

�
AF2 −

1

2
A3F þ 1

10
A5

�

¼ tr

�
AdAdAþ 3

2
A3dAþ 3

5
A5

�
: ð1:2Þ

It appears in the meson effective action in the top-down
holographic model of QCD proposed in [5]3 and some of
the bottom-up models (see, e.g., [7–10]). In these models,
the effective theory of mesons is described by a five-
dimensional UðNfÞ Yang-Mills-Chern-Simons (YM-CS)
action on a curved space-timeM5, where Nf is the number
of massless quarks, and the coefficient of the CS term is
related to the number of colors Nc by

C ¼ iNc

24π2
: ð1:3Þ

The normalizable modes of the five-dimensional UðNfÞ
gauge field A correspond to the degrees of freedom of a
tower of vector and axial vector mesons (such as rho
meson, omega meson, a1 meson, etc.) as well as the
massless pions.4 It has been shown that the masses as well
as coupling constants for low-lying mesons read off from
the five-dimensional YM-CS theory turn out to be in

*pakhang.lau@yukawa.kyoto‑u.ac.jp
†sugimoto@yukawa.kyoto‑u.ac.jp
1See [4] for a recent review.
2Here, the gauge field A is a one-form and its field strength

F ¼ dAþ A ∧ A is a two-form that take values in the anti-
Hermitian matrices. We often omit the symbol “∧” for the wedge
products of the differential forms.

3See [6] for a review.
4In this paper, we consider the cases with massless quarks. See

[11] for the proposals to include quark masses.
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reasonably good agreement with the experimental data and
provide some predictions for the unknown parameters.
The CS term plays crucial roles in many aspects in

holographic QCD. First of all, the chiral anomaly in
QCD is correctly reproduced due to the CS term. In fact,
the five-dimensional expression of the Wess-Zumino-
Witten (WZW) term in QCD [12–14] has a direct physical
interpretation in terms of the five-dimensional CS term in
holographic QCD [5]. Furthermore, some of the decay
modes of the omega meson (ω → π0γ and ω → π0πþπ−)
are induced by terms generated from the CS term.
Surprisingly, the structure of the interaction terms for these
decay modes predicted by holographic QCD agrees with
that of theGell-Mann–Sharp–Wagnermodel [15],which is a
phenomenological model proposed to reproduce the exper-
imental data of the omega meson decay [16] (see also [9]).
TheCS term is also important in the analysis of baryons.Due
to the CS term, it can be shown that the baryon number is
equal to the instanton number defined on a time slice [5].
When the vector (and axial-vector) mesons are integrated
out, the five-dimensional YM-CS action reduces to the
action of the Skyrme model [5,16]. The Skyrme model was
proposed by Skyrme to describe baryons as topological
solitons called Skyrmions [17]. The pion field in the soliton
has a nontrivial winding number representing an element of
the homotopy group π3ðUðNfÞÞ≃ Z. The relation between
the instanton number for the five-dimensional gauge field
and thewinding number carried by the pion field is precisely
that proposed by Atiyah and Manton [18] in an attempt to
obtain approximate Skyrmion solutions by using instanton
solutions.
However, there are some subtle ambiguities in the

definition of the CS term. In the explicit expression of
the CS term in (1.1) with (1.2), we have implicitly assumed
that the gauge field A is a globally well-defined one-form
on the five-dimensional space-time M5. This is, however,
not always possible when the gauge configuration with a
given boundary condition is topologically nontrivial,
including the cases with baryons. In such cases, it is
necessary to cover the five-dimensional space-time M5

by multiple patches on which the gauge field is well
defined. One might naively think that the CS term can
be defined as just a sum of the CS term defined on each
patch. However, this approach does not work, because it
depends on the choice of the gauge, and some additional
terms are needed to make it well defined. Related to this
issue, a problem was pointed out by Hata and Murata in
[19]. They tried to analyze the spectrum of baryons in the
case with Nf ¼ 3, generalizing the analysis for Nf ¼ 2 in
[20], and claimed that a constraint needed to get the correct
baryon spectrum [see (2.29)] cannot be obtained by using
the naive CS term. They proposed a new CS term that
gives the correct constraint, but it does not reproduce the
chiral anomaly of QCD. Our main goal is to propose a well-
defined CS term that solves all these problems.

The paper is organized as follows. We start with
reviewing the problems in more detail while fixing our
notation in Sec. II. Our proposal for the well-defined CS
term is given in Sec. III. In Sec. IV, we revisit the analysis
of the effective action for the collective coordinates of the
soliton solution representing baryons and show that the
correct constraint is obtained from the new CS term.
Section V gives a summary and outlook.

II. PUZZLE

A. The model

Our starting point is the five-dimensionalUðNfÞYM-CS
action given by

S5 dim ¼ SYM þ SCS; ð2:1Þ
with SCS as defined in (1.1) and the kinetic term for the
gauge field

SYM ¼ −
κ

2

Z
M5

trðF ∧ �FÞ; ð2:2Þ

where κ is a constant and * is the Hodge star in five-
dimensional space-time M5. Although the details of the
metric onM5 are not important in our main purpose, we use
the following form of the metric for explicit calculations:

ds2 ¼ 4ðkðzÞ~kðzÞημνdxμdxν þ ~kðzÞ2dz2Þ; ð2:3Þ
where xμ (μ ¼ 0, 1, 2, 3) are the coordinates for the four-
dimensional Minkowski space-time and z is the coordinate
for the fifth direction. Then, the Hodge dual of the field
strength two-form F is

�F ¼ −
kðzÞ
3

Fμ
zϵμνρσdxνdxρdxσ þ

~kðzÞ
2

Fμνϵμνρσdxρdxσdz;

ð2:4Þ
where ϵμνρσ is the totally antisymmetric tensor in four-
dimensional Minkowski space with ϵ0123 ¼ þ1, and the
Lorentz indices are raised and lowered by the Minkowski
metric ðημνÞ ¼ ðημνÞ ¼ diagð−1; 1; 1; 1Þ. Then, the YM
action (2.2) is written as

SYM ¼ κ

Z
d4xdz tr

�
1

2
~kðzÞFμνFμν þ kðzÞFμzFμ

z

�
: ð2:5Þ

The meson effective action in [5] is given by (2.1) with
~kðzÞ ¼ ð1þ z2Þ−1=3 and kðzÞ ¼ 1þ z2.
The boundary of M5 is a disjoint union of the four-

dimensional edges at z → þ∞ and z → −∞5:

5Note that the asymptotic region at jxμj → ∞ is not regarded as
the boundary. In order to avoid confusion, we compactify the xμ
directions in the following discussion.
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∂M5 ¼ Mðþ∞Þ
4 ∪ ð−Mð−∞Þ

4 Þ; ð2:6Þ

where Mð�∞Þ
4 ≡M5jz→�∞ and the minus sign in front of

Mð−∞Þ
4 means the orientation is reversed. The boundary

values of the gauge field pulled back on Mð�∞Þ
4 , denoted

as Ajz→�∞ð¼ limz→�∞AμdxμÞ, are interpreted as the exter-
nal gauge fields associated with the chiral symmetry
UðNfÞL ×UðNfÞR in QCD.6 More precisely, we set
Â� ¼ Ajz→�∞, where Âþ and Â− are the external gauge
fields associated with UðNfÞR and UðNfÞL, respectively.
Because the gauge field at the boundary is fixed, the
gauge symmetry of the system consists of the gauge
transformation that acts trivially at the boundaries. The
gauge transformation at z → �∞ corresponds to that
of the chiral symmetry. Note that the CS term (1.1) is
not invariant under the gauge transformation that acts
nontrivially at the boundary. In fact, the infinitesimal gauge
transformation of the CS term with δΛA ¼ dΛþ ½A;Λ�≡
DAΛ is

δΛSCS ¼ C

�Z
Mðþ∞Þ

4

ω1
4ðΛ̂þ; ÂþÞ −

Z
Mð−∞Þ

4

ω1
4ðΛ̂−; Â−Þ

�
;

ð2:7Þ

where Λ̂� ≡ Λjz→�∞ and

ω1
4ðΛ; AÞ≡ tr

�
Λd

�
AdAþ 1

2
A3

��
: ð2:8Þ

Here, we have used the formula

δΛω5ðAÞ ¼ dω1
4ðΛ; AÞ þOðΛ2Þ; ð2:9Þ

and the Stokes’ theorem.7 (2.7) precisely agrees with the
chiral anomaly in QCD.8

B. Problems of the CS term

In order to illustrate the problem clearly, let us compac-
tify the time and x1∼3 directions, and consider the case that
the topology of the space-time is equivalent to

M5 ≃ S1 × S3 ×R; ð2:10Þ

where S1 is the compactified time direction, S3 is the
compactified x1∼3 directions and R is the z direction.9 As

shown in [5], the baryon number nB is given by the
instanton number on a time slice (see also Sec. III D for
a derivation):

nB ¼ 1

8π2

Z
S3×R

trðF2Þ: ð2:11Þ

When the gauge field A is a globally well-defined one-form
on M5, using the formula

trðF2Þ ¼ dω3ðAÞ; ð2:12Þ

with the CS three-form

ω3ðAÞ≡ tr

�
AF −

1

3
A3

�
¼ tr

�
AdAþ 2

3
A3

�
; ð2:13Þ

and the Stokes’ theorem, (2.11) can be rewritten as

nB ¼ 1

8π2

�Z
S3
ω3ðAÞjz→þ∞ −

Z
S3
ω3ðAÞjz→−∞

�
: ð2:14Þ

This expression inevitably vanishes if we impose the
boundary condition Ajz→�∞ ¼ 0. Therefore, if we adopt
the identification Â� ¼ Ajz→�∞ in the previous subsec-
tion, the globally well-defined gauge field A can describe
only the nB ¼ 0 sector of the gauge configuration, when
the external gauge fields Â� are turned off. This is
clearly restricting the gauge configurations too much. As
usual in gauge theory, we should include the gauge
configurations defined on topologically nontrivial gauge
bundles.
In order to describe gauge configurations with nonzero

baryon number, we cover the space-time manifoldM5 with
two patches as

M5 ¼ M−
5 ∪ Mþ

5 ; ð2:15Þ

where M�
5 are chosen to be M�

5 ≡fðxμ;zÞ∈M5j�z>−ϵg
with a small positive parameter ϵ. The intersection of the
two patches is

M−
5 ∩ Mþ

5 ≃Mð0Þ
4 × ð−ϵ;þϵÞ; ð2:16Þ

where Mð0Þ
4 ≡ fðxμ; zÞ ∈ M5jz ¼ 0g≃ S1 × S3. In the fol-

lowing, we understand ϵ as an infinitesimal parameter and
take the limit ϵ → 0 at the end of the calculations. The
picture in the ϵ → 0 limit is depicted in Fig. 1. The gauge
configuration is defined by the gauge field A� defined on

6The axialUð1Þ subgroup ofUðNfÞL × UðNfÞR is anomalous.
This anomaly can also be seen in string theory as discussed in [5],
but we will not discuss it here.

7See the Appendix for our notations and useful formulas.
8See, e.g., a textbook [21] for a review of anomaly.
9To be more precise, we add the boundary points fz → �∞g

to R and treat the z direction as a closed interval I ¼ ½−∞;þ∞�.
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each patch M�
5
10 and connected by the gluing condition on

the intersection as

Aþ ¼Ah
−≡hA−h−1þhdh−1 ðonM−

5 ∩Mþ
5 Þ; ð2:17Þ

where h is a UðNfÞ-valued function defined on the
intersection M−

5 ∩ Mþ
5 . The external gauge fields Â� are

now related to the boundary values of the gauge fields
A� as

Â� ≡ A�jz→�∞: ð2:18Þ

The gauge transformation is given by

A�→Ag�
� ≡g�A�g−1� þg�dg−1� ; h→gþhg−1− ; ð2:19Þ

where g� are UðNfÞ-valued functions on M�
5 . The boun-

dary values of the gauge functions ĝ� ≡ g�jz→�∞ corre-
spond to those of the (gauged) chiral symmetry as
ðĝ−; ĝþÞ ∈ UðNfÞL × UðNfÞR.
In this setup, it is possible to have gauge configurations

with nonzero baryon number. In fact, (2.11) gives

nB ¼ 1

24π2

Z
S3
trððhdh−1Þ3Þjz¼0 ð2:20Þ

for the case with Â� ¼ 0. The baryon number (2.20) is
equivalent to the winding number given as an element of
π3ðUðNfÞÞ≃ Z represented by the UðNfÞ-valued function
hjz¼0 restricted at a time slice.

The question now is how to define the CS term in this
setup. While the CS term is supposed to give the correct
chiral anomaly, we should make sure that it is invariant (up
to a 2π shift) under the gauge transformations with ĝ� ¼ 1
that act trivially at the boundary. One can immediately see
that a naive expression like

C

�Z
M−

5

ω5ðA−Þ þ
Z
Mþ

5

ω5ðAþÞ
�
; ð2:21Þ

does not work. This is one of the reasons that the naive CS
term has to be modified.
Another approach is to insist on a globally well-defined

gauge field A, and modify the relation between the
boundary values of the gauge field and the external gauge
field associated with the chiral symmetry. This can be
achieved from the above description by the gauge trans-
formation (2.19) with g� ¼ h� satisfying hþhh−1− ¼ 1 on
M−

5 ∩ Mþ
5 . Then, the gauge field A defined as

A≡ Ah�
� on M�

5 ð2:22Þ

is a globally well-defined one-form on M5, because the
gluing condition (2.17) implies Ahþþ ¼ Ah−− on the inter-
section M−

5 ∩ Mþ
5 . In this case, because of the relation

(2.18), the boundary values of the gauge field A are not
equal to the external gauge fields Â�, but related by the
gauge transformation as

Ajz→�∞ ¼ Âĥ�
� ; ð2:23Þ

where ĥ� ≡ h�jz→�∞. It is important to note that a gauge
configuration is specified by the pair ðA; ĥ�Þ. Two gauge
configurations with the same gauge field ðA; ĥ�Þ and
ðA; ĥ0�Þ can be physically inequivalent when ĥ� and ĥ0�
are different.
It is easy to see that, with the identification (2.23), the

expressions for the baryon number (2.14) and (2.20) are
identical. When the external gauge fields are turned off, the
boundary values of the gauge field are given by Ajz→�∞ ¼
ĥ�dĥ

−1
� and the baryon number (2.14) is given by the

difference of the winding number carried by ĥþ and ĥ− as

nB ¼ −
1

24π2

Z
S3
ðtrððĥþdĥ−1þ Þ3Þ − trððĥ−dĥ−1− Þ3ÞÞ: ð2:24Þ

Therefore, for the gauge configurations with nonzero
baryon number, ĥ� cannot be trivial and the gauge field
A does not vanish at the boundaries.
One might think that the naive CS term (1.1) can be used

for this globally well-defined gauge field A. However, this
CS term depends on the choice of the gauge, since (1.1) is
not invariant under the gauge transformation that changes

FIG. 1. The five-dimensional space-time M5.

10For simplicity, we have assumed here that A� are well-
defined UðNfÞ-valued one-forms onM�

5 . This is always the case
for a static gauge configuration and a small perturbation around it,
because the gauge bundle over S3 is trivial due to π2ðUðNfÞÞ≃ 0.
A counterexample is a gauge configuration with nonzero in-
stanton number defined on S1 × S3, which looks like a baryon
configuration with the time and z directions interchanged.
General gauge configurations may be described by introducing
more patches to have good covering of M5, though we will not
discuss the details here.
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the boundary values. To see this, consider a gauge trans-
formation

A → Ag; ĥ� → ðgĥ�Þjz→�∞; ð2:25Þ
with a UðNfÞ-valued function g on M5. This gauge trans-
formation does not act on the external gauge fields Â� and
hence the gauge configurations ðA; ĥ�Þ and ðAg; gĥ�Þ are
physically equivalent. The problem is thatω5ðAÞ andω5ðAgÞ
are not equal [see (A16)] and it is not clear which one we
should use. Moreover, the naive CS term (1.1) does not
reproduce the expression (2.7) for the chiral anomaly.
Because of the boundary condition (2.23), the relation
between the boundary values of the gauge function g in
the gauge transformationA → Ag and the gauge function for
the gauged chiral symmetry ĝ� is modified as

ĝ� ¼ ðĥ−1� gĥ�Þjz→�∞: ð2:26Þ

Then, the transformation ðA;ĥÞ→ðAg;ĥÞ induces Â�→ Âĝ�
�

as desired. For the infinitesimal gauge transformation
with g≃ 1 − Λ and ĝ� ≃ 1 − Λ̂�, (2.26) gives Λ̂� ¼
ðĥ−1� Λĥ�Þjz→�∞ and hence the infinitesimal gauge trans-
formation of the naive CS term (1.1) is

δΛSCS ¼ C

�Z
Mðþ∞Þ

4

ω1
4ðĥþΛ̂þĥ

−1
þ ; Âĥþþ Þ

−
Z
Mð−∞Þ

4

ω1
4ðĥ−Λ̂−ĥ

−1
− ; Âĥ−

− Þ
�
; ð2:27Þ

which does not agree with (2.7) in general.
In addition to these issues, there is a more practical

problem of the CS term pointed out by Hata and Murata in
[19]. They studied the spectrum of baryons in holographic
QCD with Nf ¼ 3. The analysis is similar to that for the
three-flavor Skyrme model. In the Skyrme model, baryons
are represented as topological solitons called Skyrmions in
a theory of pions. There are collective coordinates corre-
sponding to the SUð3Þ rotation (for Nf ¼ 3) of the
Skyrmion solution, which are denoted by a ∈ SUð3Þ.
(See Sec. IV C.) It has been shown that theWZW term gives

SWZW ¼ −i
NcnBffiffiffi

3
p

Z
dt trðt8a−1∂taÞ; ð2:28Þ

which leads to a constraint

ψðaeit8θÞ ¼ ψðaÞ exp
�
i
NcnB
2

ffiffiffi
3

p θ

�
; ð2:29Þ

on the wave function ψðaÞ for the quantum mechanics of
the collective coordinates [22–28].11 Here,

t8 ≡ 1

2
ffiffiffi
3

p

0
B@

1

1

−2

1
CA ð2:30Þ

is the eighth generator of the SUð3Þ algebra. This constraint
is crucial to obtain the baryon spectrum consistent with the
experiments. Since the WZW term can be derived from the
CS term in holographic QCD [5], it is natural to expect that
the CS term plays a similar role. However, it was claimed
that the contribution from the CS term vanishes and the
constraint (2.29) cannot be reproduced, by using the naive
CS term (1.1) in a certain gauge. In order to get the correct
constraint (2.29), they proposed to use the CS term of the
form

SHMCS ¼ C
Z
M6

trðF3Þ; ð2:31Þ

where M6 is a six-dimensional manifold with ∂M6 ¼ M5.
Although they succeeded in recovering the correct con-
straint by using this new CS term, it is also problematic.
First, as emphasized above, M5 has boundaries and the
meaning of “∂M6 ¼ M5” is not clear, because ∂M5 ¼ ∅ is a
necessary condition to have such M6. Furthermore, this
term is manifestly gauge invariant and it does not recover
the chiral anomaly (2.7).

III. PROPOSAL

In this section, we propose a new CS term that solves all
the problems discussed in the previous section.

A. Proposal for the CS term

Using the notation introduced in Sec. II B, our proposal
for the CS term is given by

SnewCS ≡ C

�Z
M−

5

ω5ðA−Þ þ
Z
Mþ

5

ω5ðAþÞ

þ 1

10

Z
Nð0Þ

5

trðð ~hd ~h−1Þ5Þ þ
Z
Mð0Þ

4

α4ðdh−1h; A−Þ
�
;

ð3:1Þ

where Nð0Þ
5 is a five-dimensional manifold satisfying

∂Nð0Þ
5 ¼ Mð0Þ

4 , ~h is a UðNfÞ-valued function on Nð0Þ
5

satisfying ~hj∂Nð0Þ
5

¼ h, and

α4ðV;AÞ≡1

2
tr

�
VðA3−AF−FAÞþ1

2
VAVAþV3A

�

¼−
1

2
tr

�
VðAdAþdAAþA3Þ−1

2
VAVA−V3A

�
:

ð3:2Þ11See also a textbook [21] for a review.
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Useful formulas for the CS five-form ω5ðAÞ and the four-
form α4ðV; AÞ can be found in Appendix A 3. Note that the
last term in (3.1) can be replaced with

−C
Z
Mð0Þ

4

α4ðdhh−1; AþÞ; ð3:3Þ

using (A19). The third and fourth terms in (3.1) are added
to the naive expression (2.21). The motivation for adding
these terms will soon become clear.
A few comments are in order. In (3.1), we have assumed

the existence of Nð0Þ
5 and ~h.12 For the case with Mð0Þ

4 ≃
S1 × S3 and h ∈ SUðNfÞ, which is the case of our main

interest, one can choose Nð0Þ
5 to be Nð0Þ

5 ≃D × S3, whereD
is a disk satisfying ∂D ¼ S1, and then ~h exists because the
image of h, as a map from S1 to SUðNfÞ at each point in S3,
is contractible in SUðNfÞ. The choice of Nð0Þ

5 and ~h does
not matter, due to the standard argument for the WZW
term [13].
This new CS term has the following desired properties:
1. It reduces to (1.1) when h is topologically trivial.
2. It is invariant (up to a 2πZ shift) under the gauge

transformation (2.19) with g�jz→�∞ → 1.
3. It reproduces the correct chiral anomaly in QCD

(2.7) with the identification Â� ¼ A�jz→�∞ and
ĝ� ¼ e−Λ̂� ¼ g�jz→�∞.

4. It reduces to the Hata-Murata’s proposal (2.31) when

M5 does not have boundaries [i.e. M
ð�∞Þ
4 ¼ ∅], and

there exists a six-dimensional manifoldM6 such that

∂M6 ¼ M5 andM6 ¼ Mþ
6 ∪ M−

6 withMþ
6 ∩ M−

6 ≃
Nð0Þ

5 × ð−ϵ; ϵÞ and ∂M�
6 ≃M�

5 ∪ ð�Nð0Þ
5 Þ (see

Fig. 2 for the picture in the limit ϵ → 0).
Let us show these properties one by one.
1. When h is topologically trivial, i.e. h can be

continuously deformed to h ¼ 1, there exists a
UðNfÞ-valued function ~h on M−

5 such that ~h ¼ h

on the intersection M−
5 ∩ Mþ

5 and satisfies the
boundary condition ~hjz→−∞ → 1. Then, we can
obtain a globally well-defined one-form A on M5

by defining

A≡
�
A ~h
− ðon M−

5 Þ
Aþ ðon Mþ

5 Þ
: ð3:4Þ

We choose Nð0Þ
5 ¼ M−

5 ∪ Nð−∞Þ
5 , where Nð−∞Þ

5 is a

five-dimensional manifold with ∂Nð−∞Þ
5 ¼ Mð−∞Þ

4 ,

and extend ~h toNð0Þ
5 by setting ~hj

Nð−∞Þ
5

¼ 1. Then, we

obtain

SnewCS ¼ C

�Z
M−

5

ω5ðA−Þ þ
Z
Mþ

5

ω5ðAþÞ

þ
Z
M−

5

�
1

10
trðð ~hd ~h−1Þ5Þ þ dα4ðd ~h−1 ~h;A−Þ

��

¼ C

�Z
M−

5

ω5ðA ~h
−Þ þ

Z
Mþ

5

ω5ðAþÞ
�

¼ C
Z
M5

ω5ðAÞ; ð3:5Þ

where (A16) is used.
2. Under the gauge transformation (2.19), the CS term

(3.1) is transformed as

SnewCS → C

�Z
M−

5

ω5ðAg−− Þ þ
Z
Mþ

5

ω5ðAgþþ Þ

þ 1

10

Z
Nð0Þ

5

trðð ~h0d ~h0−1Þ5Þ

þ
Z
Mð0Þ

4

α4ðdh0−1h0; Ag−− Þ
�
; ð3:6Þ

where h0 ≡ gþhg−1− and ~h0 are UðNfÞ-valued func-

tions onM−
5 ∩ Mþ

5 and Nð0Þ
5 , respectively, satisfying

~h0j∂Nð0Þ
5

¼ h0jz¼0. Note that since g�jz¼0 are topo-

logically trivial due to the boundary conditions
g�jz→�∞ → 1, there exist UðNfÞ-valued functions

FIG. 2. The six-dimensional space-time M6.

12For a generic choice ofMð0Þ
4 and h, the existence of Nð0Þ

5 and
~h is not guaranteed. For example, for Mð0Þ

4 ¼ CP2, which is
known to be a nontrivial element of the cobordism group for
oriented closed four-manifolds, Nð0Þ

5 does not exist. On the other
hand, when Mð0Þ

4 ¼ S1 ×M3 with M3 a closed oriented three-
manifold M3, there always exists a four-manifold N4 satisfying
∂N4 ¼ M3 and Nð0Þ

5 can be either D ×M3 or S1 × N4. If h is
topologically nontrivial on M3, like the examples with nB ≠ 0

considered in Sec. II B, we should choose Nð0Þ
5 ¼ D ×M3 so that

~h defined on Nð0Þ
5 can be found. However, if h has a nontrivial

winding number as a map from S1 to UðNfÞ at each point in M3,
this is not possible. For this reason, we consider the cases that h
does not wind around a nontrivial one-cycle in UðNfÞ along the

S1 direction. For the case ofMð0Þ
4 ≃ S4, we can choose Nð0Þ

5 to be
a five-dimensional ball and then ~h always exists for Nf ≥ 3,
because π4ðUðNfÞÞ is trivial.
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~g� onNð0Þ
5 satisfying ~g�j∂Nð0Þ

5

¼ g�jz¼0 and ~h0 can be

constructed by ~h0 ¼ ~gþ ~h~g−1− . Then, using (A16),
(A20), (A28) and (A29), one can show that (3.6)
is equal to

C

�Z
M−

5

ω5ðA−Þþ
Z
Mþ

5

ω5ðAþÞþ
1

10

Z
Nð0Þ

5

trðð ~hd ~h−1Þ5Þ

þ
Z
Mð0Þ

4

α4ðdh−1h;A−Þ
�
;

þ C
10

�Z
Mþ

5

trðG5þÞþ
Z
Nð0Þ

5

trð ~G5
þÞ
�

þ C
10

�Z
M−

5

trðG5
−Þ−

Z
Nð0Þ

5

trð ~G5
−Þ
�
; ð3:7Þ

where G� ≡ dg−1� g� and ~G� ≡ d~g−1� ~g�. The first
and second lines are SnewCS defined in (3.1). The third
and forth lines can be omitted because they take
values in 2πZ.

3. Here, we consider the infinitesimal gauge trans-
formation with ĝ� ≃ 1 − Λ�.

13 In this case, g�jz¼0 is
again topologically trivial and it suffices to show
property 3 for the cases with g� ¼ 1 on M−

5 ∩ Mþ
5 ,

because of the property 2 shown above. Then, since
the third and fourth terms in (3.1) do not change
under the gauge transformation, the proof of (2.7) is
the same as that reviewed in Sec. II A.

4. Using the relations ∂M�
6 ¼ M�

5 ∪ ð�Nð0Þ
5 Þ and the

Stokes’ theorem, we obtain

SHMCS ¼ C

�Z
M−

6

dω5ðA−Þ þ
Z
Mþ

6

dω5ðAþÞ
�

¼ C

�Z
M−

5

ω5ðA−Þ þ
Z
Mþ

5

ω5ðAþÞ

þ
Z
Nð0Þ

5

ðω5ðAþÞ − ω5ðA−ÞÞ
�
: ð3:8Þ

Now, Aþ and A− are related by Aþ ¼ A ~h
− on

M−
6 ∩ Mþ

6 ≃ Nð0Þ
5 × ð−ϵ;þϵÞ. Then, it is easy to

check, using (A16),Z
Nð0Þ

5

ðω5ðAþÞ − ω5ðA−ÞÞ

¼
Z
Nð0Þ

5

1

10
trðð ~hd ~h−1Þ5Þ þ

Z
∂Nð0Þ

5

α4ðd ~h−1 ~h; A−Þ;

ð3:9Þ

which shows that SHMCS (2.31) agrees with SnewCS (3.1).

B. Other useful expressions

It is often more useful to use the globally well-defined
gauge field A defined in (2.22) to describe the CS term.
A similar analysis as in (3.6)–(3.7) shows that the new CS
term (3.1) can be rewritten as

SnewCS ¼ C

�Z
M5

ω5ðAÞ þ
Z
Nðþ∞Þ

5

1

10
trððh−1þ dhþÞ5Þ

þ
Z
Mðþ∞Þ

4

α4ðdĥþĥ−1þ ; AÞ −
Z
Nð−∞Þ

5

1

10
trððh−1− dh−Þ5Þ

−
Z
Mð−∞Þ

4

α4ðdĥ−ĥ−1− ; AÞ
�
; ð3:10Þ

where Nð�∞Þ
5 are five-dimensional manifolds with

∂Nð�∞Þ
5 ¼ Mð�∞Þ

4 and h� are the UðNfÞ-valued function

on Nð�∞Þ
5 satisfying h�j∂Nð�∞Þ

5

¼ ĥ�. The relation between

the boundary values of the gauge field A and the external
gauge fields Â� is given by (2.23). The boundary terms in
(3.10) can also be written in terms of the external gauge
fields as

SnewCS ¼ C

�Z
M5

ω5ðAÞ þ
Z
Nðþ∞Þ

5

1

10
trððh−1þ dhþÞ5Þ

−
Z
Mðþ∞Þ

4

α4ðdĥ−1þ ĥþ; ÂþÞ −
Z
Nð−∞Þ

5

1

10
trððh−1− dh−Þ5Þ

þ
Z
Mð−∞Þ

4

α4ðdĥ−1− ĥ−; Â−Þ
�
; ð3:11Þ

where we have used (A19). This expression makes it clear
that we do not have to modify the CS term for Nf ¼ 2 and
Â� ¼ 0, because the additional terms in (3.11) vanish in
that case.
The expressions (3.10) and (3.11) can be written in a

more compact notation as

SnewCS ¼ C

�Z
M5

ω5ðAÞ þ
Z
N5

1

10
trððh−1dhÞ5Þ

þ
Z
∂M5

α4ðdhh−1; AÞ
�

¼ C

�Z
M5

ω5ðAÞ þ
Z
N5

1

10
trððh−1dhÞ5Þ

−
Z
∂M5

α4ðdh−1h; ÂÞ
�
; ð3:12Þ

where N5 is a five-dimensional manifold with two con-

nected components N5 ¼ Nðþ∞Þ
5 ∪ ð−Nð−∞Þ

5 Þ satisfying

∂N5 ¼ ∂M5 ¼ Mðþ∞Þ
4 ∪ ð−Mð−∞Þ

4 Þ; ð3:13Þ13See Sec. III B for the finite transformation.
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and h is aUðNfÞ-valued function onN5 with ĥ� ¼ hj
Mð�∞Þ

4

.

The external gauge field Â in (3.12) is defined on the
boundary ∂M5 with the identification Â� ¼ Âj

Mð�∞Þ
4

. The

relation to the boundary value (2.23) is written as

Aj∂M5
¼ Âh: ð3:14Þ

It is not difficult to show, using (A16), (A21) and (A28),
that this CS term is invariant (up to a 2πZ shift) under the
transformation (2.25), which can be written as

A → Ag; h → gh; Â → Â; ð3:15Þ

assuming that g can be extended to N5.
The transformation corresponding to the chiral sym-

metry discussed around (2.26) is given by

A → Ag; h → h; Â → Âĝ; ð3:16Þ

with

ĝ ¼ ðh−1ghÞj∂M5
; ð3:17Þ

where ĝ� ≡ ĝj
Mð�∞Þ

4

corresponds to the chiral symmetry.
Combining this with the inverse of (3.15), we find that the
chiral transformation is also induced by

A → A; h → g−1h; Â → Âĝ: ð3:18Þ

It is also straightforward to show that the CS term (3.12)
transforms under the transformation (3.16) with (3.17) as

SnewCS →SnewCS þC

�Z
N5

1

10
trððĝdĝ−1Þ5Þþ

Z
∂M5

α4ðdĝ−1ĝ;ÂÞ
�
;

ð3:19Þ

up to the 2πZ shift, where we have assumed that ĝ can be
extended to N5. If we consider an infinitesimal chiral
transformation with ĝ≃ 1 − Λ̂, then (3.19) reduces to the
formula for chiral anomaly (2.7).
There is another useful expression that generalizes (2.31)

to the cases with a boundary. Note that M5 ∪ ð−N5Þ is a
five-dimensional manifold without boundary. Suppose
there exists a six-dimensional manifold M6 with ∂M6 ¼
M5 ∪ ð−N5Þ and the gauge field A can be extended to M6.
Then, we haveZ

M6

trðF3Þ ¼
Z
M5

ω5ðAÞ −
Z
N5

ω5ðAÞ: ð3:20Þ

Next, we extend the external gauge field Â to N5 by
defining Â≡ Ah−1 (on N5), which reduces to (3.14) at
∂N5 ¼ ∂M5. Then, using (A16), we find

Z
N5

ω5ðÂÞ ¼
Z
N5

�
ω5ðAÞ þ

1

10
trððh−1dhÞ5Þ

�

þ
Z
∂N5

α4ðdhh−1; AÞ: ð3:21Þ

Comparing (3.20) and (3.21) with (3.12), we obtain a
simple formula14

SnewCS ¼ C

�Z
M6

trðF3Þ þ
Z
N5

ω5ðÂÞ
�
: ð3:22Þ

C. Pion field

The relation between the UðNfÞ-valued pion field UðxμÞ
in the chiral Lagrangian and the five-dimensional gauge
field was proposed in [5,7,18]:

UðxμÞ ¼ P exp
�
−
Z þ∞

−∞
dzAzðxμ; zÞ

�
: ð3:23Þ

This formula should be modified as follows.
For the gauge field considered in Sec. III A, the correct

expression is

UðxμÞ ¼ P exp

�
−
Z þ∞

0

dzAþzðxμ; zÞ
�
hðxμÞjz¼0

× P exp

�
−
Z

0

−∞
dzA−zðxμ; zÞ

�
: ð3:24Þ

For the gauge field A in (2.22), this is equivalent to

UðxμÞ ¼ ĥ−1þ ðxμÞP exp
�
−
Z þ∞

−∞
dzAzðxμ; zÞ

�
ĥ−ðxμÞ:

ð3:25Þ

This expression is invariant under the gauge transforma-
tion (2.25).
On the other hand, (3.24) transforms under the gauge

transformation (2.19) as

UðxμÞ → ĝþðxμÞUðxμÞĝ−ðxμÞ−1; ð3:26Þ

where ĝ� ≡ g�jz→�∞, which is nothing but the chiral
transformation of the pion field. In terms of (3.25),
(3.26) can be easily seen by the transformation (3.16)
or (3.18).

14A similar expression was suggested in [19] as a quick
remedy to recover the chiral anomaly. Our derivation gives its
precise meaning.
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D. Equations of motion and current

For later use, let us write down the equations of motion
and currents with our new CS term. Since the additional
terms in our new CS term do not affect these equations, the
results in this subsection are not new. Nevertheless, it will
be instructive to show them explicitly. The action (2.1) is
replaced with

S5 dim ¼ SYM þ SnewCS : ð3:27Þ

Here, we use the expression (3.12) for the CS term SnewCS .
Using (A22) and (A26), an infinitesimal variation of the
action is computed as15

δS ¼
Z
M5

trðδAð−κDA � F þ 3CF2ÞÞ

þ
Z
∂M5

tr

�
δÂ

�
−κ c�F þ C

�
F̂ ÂþÂ F̂−

1

2
Â3

���
;

ð3:28Þ

where DA is the covariant derivative defined in (A2), Â is
the external gauge field related to the boundary value of the
gauge field as (3.14), and

F̂≡ ðh−1FhÞj∂M5
; c�F≡ ðh−1 � FhÞj∂M5

;

δÂ≡ ðh−1δAhÞj∂M5
: ð3:29Þ

Note here that c�F is different from the Hodge dual of F̂
defined on ∂M5. Its explicit form with (2.4) is

c�F ¼
�
−
kðzÞ
3

ðh−1Fμ
zhÞϵμνρσdxνdxρdxσ

�
j∂M5

: ð3:30Þ

The first term in (3.28) gives the equations of
motion

−κDA � F þ 3CF2 ¼ 0; ð3:31Þ

which is consistent with the boundary condition
δÂ ¼ 0. The variation with respect to the external gauge
field Â at the boundary in (3.28) gives the current three-
form:

J�≡�i

�
−κd�F�þC

�
F̂�Â�þÂ�F̂�−

1

2
Â3
�

��
; ð3:32Þ

where (Hodge dual of) J− and Jþ correspond to the
currents of UðNfÞL and UðNfÞR, respectively [29–31].

Then, it is straightforward to check, using the equations of
motion (3.31), that it satisfies the (consistent) anomaly
equation16:

DÂ�J� ¼ � Nc

24π2
d

�
Â�d�Â� þ 1

2
Â3
�

�
: ð3:33Þ

The baryon number current is defined as

JB ¼ 1

Nc
ðtrJþ þ trJ−Þ; ð3:34Þ

and the baryon number (for Â ¼ 0) is

nB ¼
Z
S3
JB

¼ i
Nc

Z
S3
½trð−κ c�FÞ�z¼þ∞

z¼−∞ ¼ 1

8π2

Z
S3×R

trðF2Þ; ð3:35Þ

where we have used the equations of motion (3.31) and
Stokes’ theorem in the last step, reproducing the expression
in (2.11).

IV. APPLICATION TO BARYONS

In this section, we analyze the effective action for the
collective coordinates of the soliton solution corresponding
to baryons. We show that the term (2.28) needed to obtain
the correct constraint (2.29) is reproduced by using the CS
term proposed in the previous section. This statement was
already shown in [19] using (2.31) for the nB ¼ 1 case. As
we have seen in Sec. III B that our CS term reduces to
(2.31) when Â ¼ 0, we should recover their result. In our
derivation, we will not use an explicit solution correspond-
ing to a baryon so that it can be generalized to the cases
with nB > 1.

A. Collective coordinates

In this subsection, we work in the A0 ¼ 0 gauge. We
assume there exists a solution of the equations of motion
(3.31) with nonzero baryon number nB, denoted as

Acl ¼ Acl
Mdx

M; ð4:1Þ

where “cl” refers to a classical solution and M ¼ 1, 2, 3, z
is the spatial index. We also assume that this gauge field is
globally well defined and regular everywhere in M5.
Here, we consider the cases with Â� ¼ 0. Then, for a

finite energy solution, the gauge field approaches a pure
gauge configuration near the boundary as

Acl → hcl�dh
cl−1
� ; ðz → �∞Þ: ð4:2Þ

15The variation with respect to h can be absorbed in δA, using
the transformation (3.15).

16See [31] for a detailed discussion on the currents and the
anomaly equations in holographic QCD.
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Because of the condition A0 ¼ 0, hcl� are time independent.
Without loss of generality, we can assume hcl−jz→−∞ ¼ 1

and hclþjz→þ∞ ≡ h0ðx⃗Þ, where h0 is a UðNfÞ-valued func-
tion on the S3 parametrized by x⃗ ¼ ðx1; x2; x3Þ satisfying

nB ¼ 1

24π2

Z
S3
trððh−10 dh0Þ3Þ: ð4:3Þ

Following [20], we consider a gauge configuration

AM ¼ VAcl
MV

−1 þ V∂MV−1 ð4:4Þ

with a globally well-defined SUðNfÞ-valued function V.17

The idea is as follows. If V is time independent, it can be
regarded as the collective coordinates (coordinates of the
instanton moduli space) corresponding to the global gauge
rotation, since AM is again a classical solution with the
same energy. A standard procedure of the moduli space
quantization method18 is to promote the collective coor-
dinates to be time-dependent variables and reduce the
system to a quantum mechanics of these variables. To this
end, one should also make a compensating gauge trans-
formation so that the gauge configuration satisfies the
Gauss law equation, which is the equation of motion for A0:

dt ∧ ð−κDA � F þ 3CF2Þ ¼ 0: ð4:5Þ

V in (4.4) contains both the collective coordinates and the
compensating gauge transformation, and it can depend on
the five-dimensional space-time coordinates. We assume
that the initial value of V is 1 and hence its value at a fixed
time is connected to V ¼ 1 by a continuous deformation.
With this choice of the gauge configuration, the asymp-

totic value of the gauge field is

AM → Vhcl�∂MðVhcl�Þ−1; ðz → �∞Þ: ð4:6Þ

The electric fields F0i (i ¼ 1, 2, 3) are assumed to vanish at
the boundaries z → �∞. Then, F0ijz→�∞¼∂0Aijz→�∞¼0

implies that the asymptotic values of Ai should be time
independent, and therefore, since the initial value of V is
assumed to be 1, one has

Ai → hcl�∂ihcl−1� ; ðz → �∞Þ ð4:7Þ

for all time. This implies that V has the following
asymptotic values,

Vjz→−∞ ¼ a−ðtÞ; Vjz→þ∞ ¼ h0ðx⃗ ÞaþðtÞh−10 ðx⃗ Þ; ð4:8Þ

with a�ðtÞ being SUðNfÞ-valued functions that depend
only on time.
With the asymptotic expression of the gauge field in

(4.7), ĥ� in (2.23) can be chosen as

ĥ− ¼ 1; ĥþ ¼ h0ðx⃗ Þ; ð4:9Þ

and the CS term (3.11) is simply

SnewCS ¼ C
Z
M5

ω5ðAÞ: ð4:10Þ

Therefore, the naive CS term is actually the correct one in
this gauge choice.
Let us now consider the Gauss law equation (4.5). With

the expression (4.4), one can easily show that FMN ¼
VFcl

MNV
−1 and

F0M ¼ _AM ¼ VðFcl
0M −Dcl

MΦÞV−1; ð4:11Þ

where the dot denotes the time derivative, and we have
defined Φ≡ V−1 _V and Dcl

MΦ≡ ∂MΦþ ½Acl
M;Φ�. Using

these relations and the fact that Acl
M is a classical

solution, (4.5) becomes

dt ∧ ðDcl
A � ðDcl

AΦdtÞÞ ¼ 0; ð4:12Þ

where the covariant derivative acting on Φ is Dcl
AΦ≡

Dcl
MΦdxM. In components, (4.12) is given by

Dcl
Mð

ffiffiffiffiffiffi
−g

p
gMNg00Dcl

NΦÞ ¼ 0: ð4:13Þ

For the background with the metric (2.3), this is written
explicitly as

δijDcl
i D

cl
j Φþ ~kðzÞ−1Dcl

z ðkðzÞDcl
z ΦÞ ¼ 0; ð4:14Þ

where i, j ¼ 1, 2, 3.
With the expression (4.8), Φ has the following asymp-

totic values

Φjz→−∞ ¼ a−ðtÞ−1 _a−ðtÞ;
Φjz→þ∞ ¼ h0ðx⃗ÞaþðtÞ−1 _aþðtÞh−10 ðx⃗Þ: ð4:15Þ

Therefore,Φ is determined as the solution of the Gauss law
equation (4.12) with the boundary condition (4.15).

17One could consider V to be a UðNfÞ-valued function.
However, we only consider the configurations of V that do
not wind around a nontrivial one-cycle of UðNfÞ along the time
direction in the following (see the footnote on p. 12 for a related
issue) and, at least for such configurations, it is possible to show
that the diagonal Uð1Þ part of the UðNfÞ does not contribute to
the effective action studied in Sec. IV B and we can restrict V to
be an SUðNfÞ-valued function.

18See, e.g., [32] for a review of this method explained for the
magnetic monopoles.
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B. Effective action

To obtain the effective action for a�ðtÞ, it turns out
to be more convenient to make a gauge transformation
(2.25) using g ¼ V−1. Then, the configuration in (4.4) is
mapped to

A0 ¼ V−1 _V ≡Φ; AM ¼ Acl
M; ð4:16Þ

and ĥ� in (2.23) is given by

ĥ− ¼ a−ðtÞ−1; ĥþ ¼ h0ðx⃗ÞaþðtÞ−1: ð4:17Þ
Then, the CS term (3.11) is

SnewCS ¼ C

�Z
M5

ω5ðAÞ þ
Z
Nðþ∞Þ

5

1

10
trððaþh−10 dðh0a−1þ ÞÞ5Þ

�
:

ð4:18Þ

Here, Nðþ∞Þ
5 is assumed to be Nðþ∞Þ

5 ≃D × S3, and h0 and
aþ are extended to be functions on it. We can choose h0 and
aþ to be constant along the D and S3 directions, respec-
tively. Using the relation (A28), one can show that (4.18) is
equivalent to

SnewCS ¼ C

�Z
M5

ω5ðAÞ −
1

2

Z
Mðþ∞Þ

4

dt trða−1þ _aþðh−10 dh0Þ3Þ
�
:

ð4:19Þ
Although it is a bit more tedious, it is also possible to derive
(4.19) directly from (4.10) by using (A16) with g ¼ V−1.19

The first term on the right-hand side of (4.19) can be
evaluated as follows. The relation (A22) with δA ¼ Φdt
implies

ω5ðAÞ ¼ ω5ðAclÞ þ 3trðΦdtðFclÞ2Þ þ dβ4ðΦdt; AclÞ;
ð4:20Þ

where β4 is defined in (A23). The contribution from the
collective coordinates to the CS five-form isZ

M5

ω5ðAÞ−
Z
M5

ω5ðAclÞ

¼
Z
M5

3trðΦdtðFclÞ2Þ þ
Z
Mðþ∞Þ

4

β4ðΦdt; AclÞjz¼þ∞

−
Z
Mð−∞Þ

4

β4ðΦdt; AclÞjz¼−∞

¼
Z
M5

3trðΦdtðFclÞ2Þ þ 1

2

Z
Mðþ∞Þ

4

dt trða−1þ _aþðh−10 dh0Þ3Þ:

ð4:21Þ

Substituting this back to (4.19), one obtains

SnewCS ¼ C
Z

M5

ω5ðAclÞ þ 3C
Z
M5

dt trðΦðFclÞ2Þ: ð4:22Þ

The field strength for the gauge field (4.16) is

F ¼ Fcl þDcl
AΦdt; ð4:23Þ

and the YM part is given as

SYM ¼ SYMðAclÞ − κ

2

Z
M5

trðDcl
AΦdt ∧ �ðDcl

AΦdtÞÞ

− κ

Z
M5

dt trðΦDcl
A � FclÞ − κ

Z
∂M5

dt trðΦ � FclÞ:

ð4:24Þ

Using the fact that Acl satisfies the equations of motion
(3.31), the total action (3.27) becomes

S5 dim ¼ S5 dimðAclÞ þ S1 þ S2; ð4:25Þ

where S5 dimðAclÞ is the action evaluated with A ¼ Acl, and
S1 and S2 are the terms including Φ:

S1 ¼ −κ
Z
∂M5

dt trðΦ � FclÞ; ð4:26Þ

S2 ¼ −
κ

2

Z
M5

trðDcl
AΦdt ∧ �ðDcl

AΦdtÞÞ: ð4:27Þ

Using the Gauss law equation (4.12), S2 can also be
written as

S2 ¼ −
κ

2

Z
∂M5

dt trðΦ � ðDcl
AΦdtÞÞ: ð4:28Þ

For the background with the metric (2.3), (4.26) and (4.28)
can be written as

S1 ¼ 2κ

Z
d4x½kðzÞtrðΦFcl

0zÞ�z→þ∞
z→−∞ ; ð4:29Þ

S2 ¼ κ

Z
d4x½kðzÞtrðΦDcl

z ΦÞ�z→þ∞
z→−∞ : ð4:30Þ

Substituting the asymptotic expressions of Φ (4.15) into
(4.26), one obtains

S1 ¼ −i
Z

dt trða−1þ _aþnclþ þ a−1− _a−ncl−Þ; ð4:31Þ

with ncl� defined by
19The integral of trððV−1dVÞ5Þ over M5 can be evaluated by

using (A31).
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ncl� ≡
Z
S3
Jcl� ¼∓ iκ

Z
S3

d�Fcljz→�∞; ð4:32Þ

where Jcl� are the classical current three-forms given by
(3.32) with A ¼ Acl and Â� ¼ 0. The classical quark
number matrix is defined as nclQ ≡ nclþ þ ncl−. Its diagonal
elements are interpreted as the number of up quarks, down
quarks, strange quarks, etc., carried by the classical solution
and the trace is the total quark number:

trnclQ ¼ NcnB: ð4:33Þ

C. Relation to Skyrmions

The action of the Skyrme model is written in terms of the
pion field UðxμÞ discussed in Sec. III C. The classical
solution corresponding to the baryon carries nonzero
winding number as an element of π3ðUðNfÞÞ≃ Z. In
the standard approach for Nf ¼ 3, the ansatz for the field
configuration is

UðxμÞ ¼ aðtÞUclðx⃗ÞaðtÞ−1; ð4:34Þ

where Uclðx⃗Þ ∈ SUð3Þ is a classical solution representing a
baryon and aðtÞ ∈ SUð3Þ is the collective coordinates
corresponding to the SUð3Þ rotation. The classical solution
is assumed to be of the form

Uclðx⃗Þ ¼
�
U0ðx⃗Þ

1

�
; ð4:35Þ

where U0ðx⃗Þ is the Skyrmion solution for Nf ¼ 2. The
form of the solution (4.35) is natural in the sense that
exciting the components of the mesons with a strange quark
costs more energy than those with only up and down
quarks, when we include the mass term to the Lagrangian.
The pion field (3.25) for our gauge configuration (4.16)

is given by

UðxμÞ ¼ aþðtÞh−10 ðx⃗ÞPexp
�
−
Z þ∞

−∞
dzAcl

z ðxμ; zÞ
�
a−ðtÞ−1;

ð4:36Þ

and it corresponds to the above ansatz (4.34) with the
identification aþðtÞ ¼ a−ðtÞ ¼ aðtÞ and

UclðxμÞ ¼ h−10 ðx⃗ÞP exp
�
−
Z þ∞

−∞
dzAcl

z ðxμ; zÞ
�
: ð4:37Þ

Note that, in the infinite volume limit, the pion field is
supposed to approach its vacuum value at spatial infinity,
i.e. UðxμÞjjx⃗j→∞ ¼ 1. Since the modes with aþ ≠ a−
change the vacuum configuration, they are unphysical in

the infinite volume limit. For this reason, we impose
aþ ¼ a− hereafter.
Motivated by the ansatz (4.35), we consider embedding a

classical solution for Nf ¼ 2 into the Uð3Þ gauge field to
obtain Acl for Nf ¼ 3, as it was done in [19]. Decomposing
the Uð2Þ gauge field into the SUð2Þ part and Uð1Þ part as

AUð2Þ ¼ ASUð2Þ þ AUð1Þ; ð4:38Þ

the equations of motion (3.31) for Nf ¼ 2 can be written as

− κDA�FSUð2Þ þ 6CFUð1ÞFSUð2Þ ¼ 0; ð4:39Þ

− κd�FUð1Þ þ 3CððFUð1ÞÞ2 þ ðFSUð2ÞÞ2Þ ¼ 0: ð4:40Þ

These equations can be consistently truncated by restricting

FSUð2Þ
0M ¼ 0 and FUð1Þ

MN ¼ 0 for M, N ¼ 1, 2, 3, z. In this
case, only the Uð1Þ part of the gauge field contributes in
(4.32) and the classical quark number matrix nclQ forNf ¼ 2

is proportional to the unit matrix. When the solution for
Nf ¼ 2 is embedded into the Uð3Þ gauge field, nclQ is of the
form

nclQ ¼ NcnB
2

0
B@

1

1

0

1
CA; ð4:41Þ

which means that, before quantization of the collective
modes aðtÞ, the classical configuration represents a state
with no strangeness and equal number of up and down
quarks.
Imposing aþ ¼ a− ≡ a ∈ SUð3Þ, (4.31) becomes

S1 ¼ −i
Z

dt trða−1 _anclQÞ

¼ −i
NcnBffiffiffi

3
p

Z
dt trðt8a−1 _aÞ; ð4:42Þ

which precisely agrees with (2.28). Note that trðt8a−1 _aÞ
does not appear in S2. To see this, let us assume that a is of
the form a ¼ eit8θðtÞ. For this, since t8 commutes with Acl

and h0, Φ ¼ a−1 _a ¼ it8 _θ solves the equations (4.12) and
(4.15). Then, it is clear that S2 vanishes. Because _θ appears
only in (4.42), the momentum conjugate to θ is

Pθ ¼
NcnB
2

ffiffiffi
3

p ; ð4:43Þ

and hence the correct baryon constraint (2.29) is recovered.

V. CONCLUSION AND OUTLOOK

In this paper, we reexamined a puzzle concerned with the
CS term in the five-dimensional meson effective theory of
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holographic QCD. We proposed a modified CS term
and demonstrated that the new action successfully repro-
duces the required baryon constraint as well as the chiral
anomaly.
Although we obtained a CS term that can be used for the

topologically nontrivial gauge configurations correspond-
ing to baryons, our construction is not completely general.
For example, the expression (3.12) is applicable only when
N5 and h can be constructed and the gauge field can be
treated as a globally well-defined one-form field onM5. For
the expression (3.22), we have to assume the existence of
M6 and N5 as well as an extension of the gauge fields to
these spaces. (See the footnote on p. 12 for further com-
ments.) It would be interesting to investigate an expression
of the CS term that works for more generic situations, as it
was done in [33] for the three-dimensional CS term.
The main motivation for the present work is to solve a

puzzle concerned with baryons in holographic QCD with
Nf ¼ 3 and make it applicable to the physics of baryons
including strange quarks. In order to be more realistic, it
would be important to include the mass of the strange
quark. There are already some works along this direction.
(See, e.g., [19,34–38].) We hope our work removes
possible concerns on the validity of the formulation and
provides some new insight into application of holographic
QCD to hyperons.
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APPENDIX: NOTATIONS
AND USEFUL FORMULAS

1. Gauge field, covariant derivative, etc.

In our convention, the gauge field A and its field strength
F ¼ dAþ A2 are the anti-Hermitian one-form and two-
form, respectively. The gauge transformation is

A → Ag ≡ gAg−1 þ gdg−1 ¼ gðAþ dg−1gÞg−1;
F → Fg ≡ gFg−1: ðA1Þ

For a general (matrix-valued) n-form αn, we define
DAαn as

DAαn ≡ dαn þ Aαn − ð−1ÞnαnA: ðA2Þ

It satisfies the Leibniz rule

DAðαnβmÞ ¼ ðDAαnÞβm þ ð−1ÞnαnDAβm: ðA3Þ

One can show

DAF ¼ dF þ AF − FA ¼ 0: ðA4Þ
Note that d and DA are the same in the trace:

dtrαn ¼ trdαn ¼ trðDAαnÞ: ðA5Þ
The infinitesimal variation of the field strength is

δF¼ dδAþδAAþAδAþδA2¼DAδAþOðδA2Þ: ðA6Þ
The infinitesimal gauge transformation with g ¼ e−Λ is

δΛA≡ ðAg − AÞjOðΛÞ ¼ dΛþ ½A;Λ� ¼ DAΛ: ðA7Þ
The following trivial relations that follow from

trððodd formÞ2nÞ ¼ 0 are sometimes useful:

trðA2Þ ¼ trðA4Þ ¼ 0; trðAFAFÞ ¼ 0: ðA8Þ

2. CS three-form

The CS three-form is defined as

ω3ðAÞ≡ tr

�
AF −

1

3
A3

�
¼ tr

�
AdAþ 2

3
A3

�
; ðA9Þ

which satisfies

dω3ðAÞ ¼ trðF2Þ: ðA10Þ

The gauge transformation is

ω3ðAgÞ ¼ ω3ðAÞ −
1

3
trððgdg−1Þ3Þ − dtrðdg−1gAÞ: ðA11Þ

The infinitesimal gauge transformation with g ¼ e−Λ and
δΛA ¼ DAΛ is

δΛω3ðAÞ ¼ dtrðΛdAÞ þOðΛ2Þ: ðA12Þ

The infinitesimal variation is

δω3ðAÞ ¼ 2trðδAFÞ þ dtrðδAAÞ þOðδA2Þ: ðA13Þ

3. CS five-form

The definition of the CS five-form is

ω5ðAÞ≡ tr

�
AF2 −

1

2
A3F þ 1

10
A5

�

¼ tr

�
AdAdAþ 3

2
A3dAþ 3

5
A5

�
; ðA14Þ
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which satisfies

dω5ðAÞ ¼ trðF3Þ: ðA15Þ

The gauge transformation is

ω5ðAgÞ ¼ ω5ðAÞ þ
1

10
trððgdg−1Þ5Þ

þ dα4ðdg−1g; AÞ; ðA16Þ

where

α4ðV;AÞ ¼ −
1

2
tr

�
VðAdAþ dAAþA3Þ− 1

2
VAVA−V3A

�

¼ 1

2
tr

�
VðA3 −AF−FAÞ þ 1

2
VAVAþV3A

�
:

ðA17Þ

This α4ðV; AÞ satisfies the following relations:

α4ðV;�VÞ ¼ 0 ðA18Þ

for any one-form V,

α4ðdgg−1; AgÞ ¼ −α4ðdg−1g; AÞ; ðA19Þ

and

α4ðdðghÞðghÞ−1; AgÞ ¼ α4ðgðH − GÞg−1; AgÞ
¼ α4ðH;AÞ − α4ðG;AÞ

−
1

2
tr

�
G3H þ GH3 −

1

2
GHGH

�

þ 1

2
dtrððH −GÞðAG −GAÞÞ;

ðA20Þ

whereG ¼ dg−1g andH ¼ dhh−1. Using (A19) and (A20),
one can also show

α4ðdðghÞ−1ðghÞ; AÞ ¼ α4ðdh−1h; AÞ þ α4ðG;AhÞ

þ 1

2
tr

�
G3H þGH3 −

1

2
GHGH

�

−
1

2
dtrððH −GÞðAhG −GAhÞÞÞ;

ðA21Þ

where G ¼ dg−1g and H ¼ dhh−1.
The infinitesimal variation is

δω5ðAÞ ¼ 3trðδAF2Þ þ dβ4ðδA; AÞ þOðδA2Þ; ðA22Þ

where

β4ðδA; AÞ≡ tr

�
δA

�
FAþ AF −

1

2
A3

��
: ðA23Þ

The infinitesimal gauge transformation with g ¼ e−Λ

and δΛA ¼ DAΛ is

δΛω5ðAÞjOðΛÞ ¼ dα4ðdΛ; AÞjOðΛÞ ¼ dω1
4ðΛ; AÞ

¼ dð3trðΛF2Þ þ β4ðDAΛ; AÞÞ; ðA24Þ
where

ω1
4ðΛ; AÞ≡ tr

�
Λd

�
AdAþ 1

2
A3

��

¼ 1

2
trðΛð2F2 − FA2 − AFA − A2F þ A4ÞÞ:

ðA25Þ
The infinitesimal variation of α4ðAÞ is

δα4ðV; AÞ≡ α4ðV; Aþ δAÞ − α4ðV;AÞ

¼ 1

2
trðδAð2FV þ 2VF − ðAþ VÞ3 þ A3ÞÞ

−
1

2
dtrðδA½V; A�Þ þOðδA2Þ: ðA26Þ

4. WZW

When U ¼ gh, where g and h are UðNfÞ-valued
functions, we have

trððU−1dUÞ3Þ ¼ −trðG3Þ þ trðH3Þ þ 3dtrðGHÞ; ðA27Þ
and

trððU−1dUÞ5Þ ¼ −trðG5Þ þ trðH5Þ

þ 5dtr
�
G3H þ GH3 −

1

2
GHGH

�
;

ðA28Þ
whereG¼dg−1g,H¼dhh−1. This formula can also be shown
from (A16) by setting U−1dU¼Ah−1 with A¼g−1dg¼−G.
When U ¼ gfh, where g, f and h are UðNfÞ-valued

functions, we have

trððU−1dUÞ5Þ
¼ −trðG5Þ þ trðF5Þ þ trðH5Þ
þ 5dtrðf−1ðG − FÞ3fH þ f−1ðG − FÞfH3

−
1

2

�
f−1ðG − FÞfHÞ2 þG3F þGF3 −

1

2
GFGF

�
¼ −trðG5Þ − trðF̂5Þ þ trðH5Þ
þ 5dtrðG3fðH − F̂Þf−1 þ GfðH − F̂Þ3f−1

−
1

2

�
GfðH − F̂Þf−1Þ2 þ F̂3H þ F̂H3 −

1

2
F̂HF̂H

�
;

ðA29Þ
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where G ¼ dg−1g, F ¼ dff−1, F̂ ¼ df−1f and H ¼
dhh−1.
An important property is that when M5 is a five-

dimensional closed manifold, the integral

C
10

Z
M5

trððU−1dUÞ5Þ ðA30Þ

takes values in 2πZ and its contribution in the action
can be dropped. WhenM5 has a boundary, a useful trick to

evaluate this integral is to find N5 such that ∂N5 ¼ ∂M5,
i.e.M5 ∪ ð−N5Þ is a closed manifold, and extend U to be a
UðNfÞ-valued function on M5 ∪ ð−N5Þ. If such N5 and U
exist, M5 can be replaced with N5 by using

C
10

Z
M5

trððU−1dUÞ5Þ¼ C
10

Z
N5

trððU−1dUÞ5Þ; ðmod2πZÞ:

ðA31Þ
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