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The nonlinear phenomena that occur in the electric double layer (EDL) that forms at charged surfaces strongly
influence electrokinetic effects, including electro-osmosis and electrophoresis. In particular, saturation effects
due to either dielectric decrement or ion crowding effects are of paramount importance. Dielectric decrement
significantly influences the ionic concentration in the EDL at high ζ potential, leading to the formation of a
condensed layer near the particle’s surface. In this article, we present a model incorporating both steric effects
due to the finite size of ions and dielectric decrement to describe the physics in the electric double layer. The
model remains valid in both weakly and strongly nonlinear regimes, as long as the electric double layer remains
in quasiequilibrium. We apply this model to the study of two archetypal problems in electrokinetics, namely the
electrophoresis of particles with fixed surface charges and the electrophoresis of ideally polarizable particles.
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I. INTRODUCTION

When a charged surface is placed in an electrolyte, ions of
opposite charges migrate and screen the surface, eventually
forming an electric double layer (EDL). The structure of
the electric double layer strongly influences electrokinetic
phenomena, including electro-osmosis and electrophoresis.
In 1903, Smoluchowski [1] predicted that the electrophoretic
velocity U is proportional to the applied field E according to
relation

U = εmζ

η
E, (1)

where εm is the permittivity of the electrolyte, η its dynamic
viscosity, and ζ the ζ potential at the surface of the particle.
Later, it was shown that Smoluchowski’s formula holds for
a particle of arbitrary shape [2,3] and for assemblages of
spherical particles with identical ζ potentials [4].

Smoluchowski’s formula remains valid as long as the ζ

potential is of the same order of magnitude as the thermal
voltage [5]. At large applied voltages, ionic fluxes arise
between the electric double layer and the bulk solution. These
ionic exchanges result in a polarization of the concentration
field around the particle, that in turn drives a diffusio-osmotic
flow at the surface [6–9]. This particular regime is referred to as
electrophoresis of the first kind [10–13]. Electrokinetics phe-
nomena of the first kind have received considerable attention in
the past few years [7,8]. The classical approach to incorporate
surface conduction in the description of electrophoresis is
the one proposed by O’Brien and coworkers [7,14–16]. They
adopt a perturbative method by considering that the applied
electric field perturbs the equilibrium of the electric double
layer to derive the model’s equations. More elaborate models
have been developed, notably by Yariv and Schnitzer, that
carefully study surface conduction phenomena in the weakly
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and strongly nonlinear regimes for quasiequilibrium electric
double layers [5,17–19]. Other recent contributions that focus
more specifically on diffusio-osmotic phenomena are the ones
of Khair [20] and Rica and Bazant [21].

In addition to surface conduction phenomena, nonlinear
effects arise in the EDL at high ζ potential. In this situation,
the Gouy-Chapman model [22–24] classically used to describe
the EDL does not correctly predict the ionic concentration
profile. A first explanation is that this model relies on the
assumption of pointwise ions. As reviewed by Bazant et al.,
several models have been developed to account for steric
effects due to the finite size of ions [25–31]. In particular,
back in 1942, Bikerman [25,26] proposed a model based on a
cubic lattice of spacing a that predicts counter-ion saturation
as the concentration approaches closed-packing density. In
2008, Khair and Squires applied Bikerman’s model to study
the electrophoresis of particles with fixed surface charges
[32]. They demonstrated that steric effects reduce surface
conduction, which results in an increase of the mobility when
compared to the classical models of O’Brien [14–16].

Bikerman’s model provides a convenient analytical de-
scription but has been shown to significantly underestimate
steric effects in hard-sphere liquids. Hence, more accurate
approaches based on the Carnahan-Starling equation of state
for a bulk monodisperse hard-sphere liquid have been pro-
posed [33], notably to investigate polyelectrolyte adsorption
on charged interfaces [34,35] and sedimentation [36]. An
extensive discussion on the structure of the EDL can be found
in the article of Giera et al. [37], which compares molecular
dynamics simulations with local-density approximations. In
their study, Giera et al. demonstrate that the Carnahan-Starling
model yields an excellent agreement with molecular dynamics
simulations. On the contrary, they show that Bikerman’s model
poorly captures excluded volume interactions. However, as
discussed in the review article of Bazant el al. [38], by
considering an effective ion size in Bikerman’s lattice-based
model, we recover a differential capacitance that is very similar
to the one obtained with the Carnahan-Starling equation.
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FIG. 1. Schematic view of dielectric decrement effects: In the
immediate vicinity of the soluted ions, the water molecules are
oriented toward the electrostatic field created by the solvated ion.
This phenomenon causes the concentration to saturate in the EDL.

A second major nonlinear effect in the electric double layer
is the dielectrophoretic force, which is caused by the effective
polarizability of hydrated ions. Ions usually have smaller
dielectric constant than water. Therefore, when included in
water, ions create dielectric holes in the solution, leading to
an overall decrease of the permittivity. In addition, in the
immediate vicinity of the soluted ions, the orientation of the
water molecules is largely dictated by the electrostatic field
created by the ion, as shown in Fig. 1. These polarization
phenomena result in a significant dielectric decrement. Ben-
Yaakov et al. [39,40] and Hatlo et al. [41] have investigated
in detail the effect of dielectric decrement on the structure of
the EDL. Starting from thermodynamical considerations, they
demonstrated that dielectric decrement causes the counter-ion
concentration to saturate in the EDL at high ζ potential, a
phenomenon referred to as dielectrophoretic saturation. This
behavior is very similar to the one that is observed in the EDL
in the presence of ion crowding effects. Recently, Nakayama
and Andelman [42] incorporated both dielectric decrement and
steric effects in a model aimed at predicting the differential
capacitance of the EDL. The influence of dielectric decrement
on electrophoresis of particles with fixed surface charges has
been studied by Zhao and Zhai [43], who showed that dielectric
decrement significantly reduces surface conduction, therefore
yielding higher electrophoretic velocities.

Finally, nonlinearities in electrokinetics also stem from
polarization phenomena. When an electric field is applied to
an ideally polarizable particle in an electrolyte, its surface
charges recombine. This yields a nonlinear electro-osmotic
flow that arises due to the action of the electric field on
its own induced diffuse charge. This phenomenon, termed
induced-charge electro-osmosis, has first been described by
Murtsovkin [44] and has subsequently been studied by Bazant
and Squires [45,46]. In 2008, Yariv derived an expression for
the electrophoretic mobility of ideally polarizable particles
[47]. In his study, the electric double layer is described by
the Gouy-Chapman model. The model predicts that at high
applied voltages, the electrophoretic velocity goes to zero. This
is an immediate consequence of the Gouy-Chapman model,
which assumes pointwise ions. In 2008, by relying on the

steric model developed in Refs. [29,30], Bazant et al. showed
that the electrophoretic mobility scales as the square root of
the applied electric field [38] for asymptotically high fields.

In this article, we present a model incorporating both
steric effects due to the finite size of ions and dielectric
decrement to describe the electrophoresis of particles with
thin electric double layers. The model remains valid in
both weakly and strongly nonlinear regimes, as long as the
electric double layer remains in quasiequilibrium. We apply
the model to study two archetypal problems in electrokinetics,
namely the electrophoresis of particules with fixed surface
charges and the electrophoresis of ideally polarizable particles.
Following numerous studies in electrokinetics [48–52], we
rely on numerical simulations to incorporate nonlinear effects
including crowding effects due to the finite size of ions,
dielectric decrement in the electric double layer, surface
conduction, and concentration polarization and advection in
the bulk solution and in the electric double layer. To our
knowledge, the present study is the first to build on the
steric-dielectric decrement model of Nakayama and Andelman
[42] to quantitatively describe electrophoresis in the nonlinear
regime.

The manuscript is organized as follows. In Sec. II, we
derive the equations for the ionic concentration and the
excess electric potential in the electric double layer in the
presence of both crowding and dielectric decrement effects.
Electro-osmotic and diffusio-osmotic flows in the electric
double layer are discussed in Sec. III. In Sec. IV, we discuss
the model’s equations in the bulk solution. We account for
several nonlinear effects, including concentration polarization,
advective transport, and the effect of the body force that acts
on the fluid in the vicinity of the particle due to conductivity
gradients. In Secs. V and VI, we apply our model to two classic
problems in electrokinetics, namely the electrophoresis of
particles with fixed surface charges and of ideally polarizable
particles. Conclusions are drawn in the last section.

II. ELECTRIC DOUBLE LAYER MODEL

Electric potential in the electric double layer

To describe the EDL, we rely on the assumption that the
electric field is determined by the local mean charge density.
The total free energy in the electric double layer is the sum of an
electrostatic energy U and an entropic contribution −T S. The
electrostatic energy depends on the excess electric potential
φ, defined as the electric potential difference ψ − ψb between
the electric double layer and the bulk solution and on the local
ionic concentrations c+ and c−:

U =
∫

V

[
− εm

2
|∇φ|2 + ze(c+ − c−)φ

]
dr. (2)

In this expression, z denotes ion valence and e elementary
charge.

In the dielectric decrement model [41,43], it is assumed
that the permittivity εm of the solvent varies linearly with the
concentration:

εm = [εw − α(c+ + c−)]ε0, (3)

where εw is the relative permittivity of water and ε0 is the
permittivity of free space. The coefficient α depends on the
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ions of the solution. Typical values of α are 17 M−1 for H+ ions,
11 M−1 for Li+, 8 M−1 for Na+, or 13 M−1 for OH− [43]. In our
model, to simplify the analysis, we consider that the dielectric
decrement parameters of both co-ions and counter-ions are
equal.

To account for steric effects due to the finite size of
ions, we rely on Bikerman’s lattice-based model. This model
significantly underestimates volume exclusion effects when
the lattice spacing is set equal to the ionic diameter. However,
as shown by Bazant et al. [38], by considering an effective
ion size a accounting for solvation effects, it estimates the
differential capacitance of the EDL with good accuracy. With
Bikerman’s lattice-based model, in the presence of crowding
effects, the entropic contribution yields [30]

− T S =
∫

V

kT

a3
[a3c+ ln(a3c+) + a3c− ln(a3c−)

+ [1 − a3(c+ + c−)] ln[1 − a3(c+ + c−)]]dr, (4)

where k denotes the Boltzmann constant and T ambient
temperature. The dimensionless packing parameter ν accounts
for steric effects due to the packing of ions. It can be
related to the effective ionic diameter a and to the bulk
solution concentration cb,∞ through the estimate [29] ν =
2a3cb,∞. A characteristic value for the effective ion size
is a = 7 Å [38]. Hence, the parameter ν ranges from
1.0 × 10−4 for dilute solutions to 0.1 for highly concentrated
solutions.

From now on, we employ dimensionless variables to
facilitate the physical analysis. We define the Debye length

λD =
√

ε0εmkT

2z2e2cb,∞
(5)

as the characteristic length, the thermal voltage

ϕT = kT

ze
(6)

as the potential scale, and cb,∞ as the concentration scale. We
finally introduce the dimensionless quantity

α̂ = αcb,∞
εw

. (7)

For the remainder of the paper, we will omit the hat
on α̂ to keep simple notations. α̂ ranges from 1.0 ×
10−3 for dilute solutions to 0.05 for highly concentrated
solutions.

Setting the variational derivatives of the free energy
δF/δc± to zero, we obtain an expression for the local ionic
concentrations that takes into account both steric and dielectric
decrement effects:

c± = cb

exp(∓φ − α|∇φ|2)

1 + ν[cosh(φ) exp(−α|∇φ|2) − 1]
. (8)

In this expression, cb denotes the dimensionless
bulk concentration in the immediate vicinity of the
EDL.

Similarly, setting the variational derivative δF/δφ to zero,
we obtain the modified Poisson-Boltzmann equation in a
similar form as those obtained by Hatlo et al. [41] and Zhao
et al. [43]:

∇[(1 − 2α(c+ + c−))∇φ] = c− − c+. (9)

The right-hand side of this equation represents the neg-
ative of the local charge density ρE . Note that for ν =
0 and α = 0, we recover the classical Poisson-Boltzmann
equation [53].

It is not possible to solve Eq. (9) analytically. As a
consequence, we rely on a pseudo-spectral method to calculate
the excess potential in the electric double layer [54]. The
model that we consider is strongly nonlinear. Therefore, we
linearize Eq. (9) with respect to the electric potential and we
use Newton’s method to solve the complete nonlinear equation.
We use a Chebyshev grid with 300 grid points for discretizing
the linearized equations. Simulation results are shown in Fig. 2.
We observe that both dielectric decrement and ion crowding
effects result in ionic saturation in the electric double layer near
the particle surface. In mathematical terms, near the surface of
the particle, the saturation condition reads

dc±
dy

= 0, (10)

y being the direction parallel to the surface of the particle.
When dielectrophoretic saturation is reached before close
packing of ions, we can neglect the denominator in expression
(8) of the concentration. Hence, we find, in the saturated
region,

dφ

dy

(
1 − 2α

d2φ

dy2

)
= 0. (11)

Since local charge is constant in the presence of ionic
saturation, the Poisson equation becomes

d2φ

dy2
= −ρc, (12)

where ρc is the local charge in the saturated part of the EDL,
given by

ρc = 1

2α
. (13)

In a similar manner, when saturation results from steric effects,
the term exp (−α|∇φ|2) � 1 remains of order O(1), so when
φ � 1, we find

ρ � 2

ν
. (14)

In Fig. 2, we note that saturation is caused either by
dielectric decrement or steric effects due to the finite size of
ions. In situations where 1/2α � 2/ν, we observe that steric
effects due to the finite size of ions are almost negligible.
Similarly, when 1/2α � 2/ν, dielectric decrement effects can
be neglected. As a first approximation, to simplify the physical
analysis, it is then legitimate to consider a steric only or a
dielectric decrement only model depending on the value of
the quantity 4α/ν. In the Appendix, we present a simplified
model where we decompose the electric double layer into two
distinct regions, namely a condensed and a diffuse layer. This
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FIG. 2. Excess electric potential (a), excess charge (b), and dimensionless permittivity (c) in the EDL for distinct values of the dimensionless
packing parameter ν and of the dimensionless dielectric decrement parameter α. Note that our model predicts the correct saturation values for
the concentration, that are, respectively, 2/ν = 20 and 1/2α = 10.

simpler model captures relatively well crowding effects and
dielectrophoretic saturation and provides us with a simple
but accurate analytical description of the electric double
layer.

III. ELECTRO- AND DIFFUSIO-OSMOTIC MOBILITIES

In this section, we establish the equations for the fluid
motion in the EDL. The fluid motion results from two distinct
physical phenomena, namely electro- and diffusio-osmosis
[6,8]. Electro-osmotic flow in the electric double layer arises
under the action of the external electric field which perturbs
the equilibrium of the double layer in the direction tangent
to the surface of the particle. Diffusio-osmotic flow is caused
by concentration gradients in the bulk solution that similarly
perturb the double layer equilibrium in the direction parallel
to the surface.

The equations for fluid motion in the EDL are obtained by
solving the Stokes equation subject to the effect of external
electric field. When projected on ey, since the electric double
layer remains at equilibrium, the Stokes equation becomes

−∂P

∂y
− ρE

∂φ

∂y
= 0, (15)

where P is the local pressure, ρE the local electric charge
density, and η the dynamic viscosity, assumed to be constant.
This relation expresses that the pressure gradient equilibrates
the action of the electric field within the EDL. In general, the
local charge depends on the excess electric potential φ and on
its gradient ∇φ. We can integrate Eq. (15) and perform the
change of variables y → φ(y) to obtain the pressure profile in
the EDL:

P (y) = P∞ +
∫ +∞

y

ρE(φ(y),∇φ(y))
∂φ

∂y
(y)dy. (16)
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The EDL is not at equilibrium along direction ex. Therefore,
when projected on ex, the Stokes equation reads

−∂P

∂x
− ρE

∂ψ

∂x
+ η

∂2u

∂y2
= 0, (17)

where u is the velocity in direction x. Using expression (16)
found for osmotic pressure, we find

∂

∂y

(
εm

∂φ

∂y

)
∂ψb

∂x
+ η

∂2u

∂y2

−
( ∫ +∞

y

∂

∂cb

[
ρE(φ(y),∇φ(y))

∂φ

∂y
(y)

]
dy

)
∂cb

∂x
= 0.

(18)

Far from the surface, the velocity gradient vanishes between
the electric double layer and the bulk solution

∂u

∂y
|y→∞ → 0, (19)

and there is no-slip at the surface of the particle

u|y=0 = 0, (20)

which fixes the boundary conditions of the problem. Hence, we
can integrate (18), first between y and +∞ and then between
0 and y, to obtain the electro-osmotic mobility μeo and the
diffusio-osmotic mobility μdo in the EDL. We find

u(y) = μeo(y)
∂ψb

∂x
+ μdo(y)

∂cb

∂x
, (21)

where

μeo(y) = 1

η

∫ y

0
εm(y)

∂φ

∂y
(y)dy (22)

and

μdo(y)

= 1

η

[ ∫ y

0

∫ ∞

y1

∫ ∞

y2

∂

∂cb

(
ρE(φ,∇φ)

∂φ

∂y

)
dy3dy2dy1

]
.

(23)

When the electric double layer is described by the classical
Gouy-Chapman model, the local permittivity remains con-
stant, and the electro-osmotic mobility is classically given by
Smoluchowski’s formula (1). This expression also holds for
the Kilic model that accounts for ion crowding effects in the
EDL but neglects dielectric decrement [29,30]. In the presence
of dielectric decrement effects, the electrophoretic mobility
must be calculated through a numerical integration of Eq. (22).
One of the benefits of the composite-layers model described
in the Appendix is that one can obtain an analytical formula
approximating the electro-osmotic mobility that accounts for
dielectric decrement effects:

μeo =

⎧⎪⎪⎨
⎪⎪⎩

εm

2η

(
ζ + ln

1

2α

)
if ζ > ln(1/2α)

εmζ

η
if ζ � ln(1/2α)

. (24)

In Fig. 3, we show a comparison between the electro-
osmotic mobility calculated numerically with the model’s
equations and the electro-osmotic mobility calculated with

FIG. 3. Dimensionless electro-osmotic mobility as a function of
the ζ potential for the steric model (in black) and the dielectric
decrement model (in yellow). The electro-osmotic mobility calculated
with the composite layer model using formula (24) is plotted with a
dashed line. In this simulation, the dimensionless dielectric decrement
parameter is α = 0.02.

(24) using the composite model. We note the good agreement
between both models.

Similarly, explicit expressions for the diffusio-osmotic
mobility have been found by Prieve et al. [8] and Rica and
Bazant [21] when the electric potential in the EDL is described
by the Gouy-Chapman model, and by Figliuzzi et al. [52] for
the steric only model.

IV. ELECTROKINETICS IN THE BULK SOLUTION

In this section, we study the electrophoresis of charged
particles in an electrolyte. We restrict our study to large
particles with thin electric double layers. For such particles, the
physical domain is classically divided into two regions, namely
the bulk solution and the electric double layer. Both regions
are described by asymptotic solutions which are matched using
appropriate boundary conditions.

A. Electrokinetics in the bulk solution

Following classical approaches, we assume that the bulk
solution is electroneutral. To simplify the physical analysis,
we also assume that the diffusivities of the cations and anions
are the same. The ion fluxes in the bulk solution are given by
Nernst-Planck relations [55]

∇2cb − mbdiv(cbu) = 0,

div(cb∇�b) = 0, (25)

where mb is a dimensionless ionic drag coefficient defined by

mb = V R

D
= εmϕ2

T

ηD
. (26)

023115-5



FIGLIUZZI, CHAN, BUIE, AND MORAN PHYSICAL REVIEW E 94, 023115 (2016)

These equations describe the concentration and the electric
potential fields in the bulk solution.

B. Surface conduction phenomena

The inner and the outer asymptotic solutions are matched by
appropriate boundary conditions expressing the conservation
of ions across the diffuse interface between the electric double
layer and the bulk solution [56]. We define the excess ion fluxes
in the electric double layer as the difference between ion fluxes
in the diffuse layer and ion fluxes in the bulk solution:

J±
exc = − D

kT
(c± − cb)∇μb + c±u − cbus. (27)

In this expression, μb denotes the electrochemical potential
in the bulk solution, u the fluid velocity in the EDL, and us
the slip velocity. We calculate the excess surface fluxes by
integrating (27) between y = 0 and +∞ in the electric double
layer. In outer spherical coordinates, we obtain

J±
S =

∫ +∞

0
J±

exc(y)dy = − D

kT
cb�±∇Sμb

+ cb�±us +
∫ +∞

0
c±(u − us)dy, (28)

where �± is a surface adsorption coefficient [29], defined by

�± = 1

cb

∫ +∞

0
(c±(y) − cb)dy, (29)

and ∇S denotes the surface gradient operator in the outer
spherical coordinates system. The equation for ionic transport
normal to the boundary is

j±
n = − D

kT
cb

∂μb

∂r
. (30)

Finally, the conservation of ionic species at the interface of the
EDL reads

j±
n + divSJ±

S = 0. (31)

In dimensionless form, the equations describing ionic conser-
vation across the diffuse interface are thus

∂cb

∂n
= −ε

2
divS

[
w∇S ln cb + q∇S�b

− m

(
wus +

∫ +∞

0
(c+ + c−)(u − us)dy

)]
,

(32)

cb

∂�b

∂n
= −ε

2
divS

[
q∇S ln cb + w∇S�b

− m

(
qus +

∫ +∞

0
(c+ − c−)(u − us)dy

)]
,

where ε denotes the ratio between the Debye length and the
radius of the particle and m is a dimensionless ionic drag
coefficient defined for the EDL:

m = εmϕ2
T

ηD
. (33)

These boundary conditions state that fluxes of ions are
transported across the electric double layer-bulk interface to
balance the tangential surface flux gradients in the electric

double layer. In this relation, q denotes the excess charge stored
in the electric double layer and w the excess ion concentration.
These quantity are defined by

q =
∫ +∞

0
(c+ − c−)dy (34)

and

w =
∫ +∞

0
(c+ + c− − 2cb)dy. (35)

Analytical expressions have been derived for q and w for the
Gouy-Chapman model and for the steric-only model [29,30].
However, when dielectric decrement effects are added, we
cannot proceed analytically for the calculation of both q and
w and we have to rely on numerical integrations to estimate
these quantities from relations (34) and (35).

C. Velocity field in the bulk solution

Expression (25) shows that advective transport introduces
a coupling between the ionic concentration and the velocity.
Hence, to calculate the electrophoretic mobility of the particle,
the velocity field must be completely determined. In the bulk
solution, the velocity is solution of the Stokes equation

η∇2u − ∇P + εm∇2�b∇�b = 0. (36)

In this equation, u denotes the fluid velocity, P the pressure
field, εm the solvent permittivity, and �b the electric potential
in the bulk electrolyte. The term εm∇2�b∇�b refers to
the effects of a body force caused by the field-induced
variations of the bulk concentration. These fluctuations result
in corresponding variations of the solution conductivity. The
conductivity gradient in turn results in a body force acting
on the bulk fluid. The velocity field is finally solution of the
continuity equation

∇ · u = 0. (37)

We determine the velocity field by relying on the Stokes stream
function �, which is defined in spherical coordinates by

ur = 1

r2 sin θ

∂�

∂θ
, uθ = − 1

r sin θ

∂�

∂r
. (38)

We can formulate the momentum conservation in terms of the
Stokes stream function to yield

η∇2

(
1

r sin θ
L

)
� − ∇ × εm∇2�b∇�b = 0, (39)

where operator L is defined by

L = ∂2.

∂r2
+ 1

r2

∂2.

∂θ2
− cot θ

r2

∂.

∂θ
. (40)

We complete the problem description by specifying bound-
ary conditions in the reference frame anchored at the center
of the particle. At infinity, the flow is a steady uniform stream
at velocity −U , where U is the electrophoretic velocity of
the particle, which remains unknown. At the surface of the
particle, the velocity field must match the slip velocity given
by relation (21):

1

r2 sin θ

∂�

∂θ

∣∣∣∣
r=R

= 0, − 1

r sin θ

∂�

∂r

∣∣∣∣
r=R

= us. (41)
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To complete the calculation of the velocity field, we are
finally left with the determination of U . The global charge of
the system constituted by the particle and its surrounding EDL
vanishes. Hence, mechanical equilibrium is expressed by∫

S

σE · ndS +
∫

S

σH · ndS = 0, (42)

where S denotes the external surface of the EDL, σE the
Maxwell stress tensor, and σH the hydrodynamic stress tensor.
The Maxwell stress tensor is given by

σE = 1
2εm[∇ψb∇ψb − (∇ψb · ∇ψb)I] (43)

and accounts for the effects of the body force f. By making
use of the reciprocal theorem and introducing the companion
velocity field

ũ = 1

2
cos θ

(
3R

r
− R3

r3

)
er − 1

4
sin θ

(
3R

r
+ R3

r3

)
eθ . (44)

we can show that

U= 1

6πηR

(
ez ·

∫
S

σE · ndS− 3η

2R
ez ·

∫
S

usdS−ez ·
∫

V

ũ · fdV

)
.

(45)

We refer the reader interested in a complete derivation of this
result to Ref. [52].

V. ELECTROPHORESIS OF PARTICLES WITH FIXED
SURFACE CHARGE

In this section, we apply the dielectric decrement model
to electrophoresis of spherical particles with fixed surface
charges. This problem is classically studied by relying on
the weak-field approximation. In this approach, the applied
electric field is considered to perturb the equilibrium of the

electric double layer. Hence, the model equations are linearized
at first order in the applied electric field. This approach was
originally introduced by O’Brien et al. [14]. It was applied
by Khair and Squires [32] to study electrophoresis of fixed
surface charge particles in the presence of steric effects due to
the finite size of ions and by Zhao and Zhang [43] to investigate
the influence of dielectric decrement effects.

In our model, we consider that the electric potential and
the ionic concentration fields are described by the modified
Poisson-Boltzmann equation (9) in the EDL. The slip at the
surface of the particle is expressed by Eq. (21) as a combination
of electro- and diffusio-osmotic flows. The concentration and
the ionic concentrations in the bulk solution are given by
Eqs. (25). To match the asymptotic solutions in the EDL and
in the bulk solution, we rely on Eqs. (32) that describe the
conservation of ions across the diffuse interface between the
EDL and the bulk solution. The velocity field in the bulk
solution is finally described by relation (39) along with the
boundary conditions (41) and Eq. (42). The parameters of
the model are the dimensionless applied electric field E, the
dimensionless charge Q of the particle, and the ratio ε between
the Debye length and the particle radius.

The only quantity that remains to be determined is the
ζ potential. For particles with fixed surface charges, the ζ

potential can be directly deduced from relation (34). Since the
surface charge is known a priori, the ζ potential only depends
on the bulk concentration. Due to concentration polarization
phenomena that occur in the presence of surface conduction,
the ζ potential varies around the particle.

The set of equations describing the model are highly non-
linear. Hence, to solve the model, we linearize the equations
and use Newton’s method to solve. The linearized equation
are solved using a pseudospectral method based on the tensor
product grid of a Chebyshev basis and of a sine cardinal
basis. The main advantage of pseudospectral scheme over

FIG. 4. Electrophoretic mobility as a function of surface charge (a) and mean ζ potential (b) at the surface of the particle for distinct values
of the packing parameter ν and dielectric decrement parameter α. The ionic drag coefficients are m = mb = 0.1. The ratio ε between the Debye
length and the radius of the particle is 0.02 for the continuous curves. The dashed lines correspond to calculations conducted in the absence of
surface conduction phenomena (ε = 0).
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FIG. 5. Concentration field (a), slip velocity (b), and diffusio-osmotic velocity (c) along the surface of the particle for distinct values of the
packing parameter ν and of the dielectric decrement parameter α. The ionic drag coefficients are m = 0.1 = mb = 0.1. The ratio ε between
the Debye length and the radius of the particle is 0.02. The dimensionless surface charge of the particle is σ = −q = 40. Panel (c) shows the
diffusio-osmotic contribution to the total slip velocity, which is shown in panel (b).

other methods is that since the geometry remains relatively
simple, a high accuracy can be reached even with a limited
number of discretization nodes [54].

In Fig. 4, we plot the electrophoretic mobility as a function
of surface charge and the mean ζ potential at the surface
of the particle for distinct values of the packing parameter
ν and the dielectric decrement parameter α. The ionic drag
coefficients are m = 0.1 and mb = 0.1. The ratio ε between
the Debye length and the radius of the particle is 0.02 for
the continuous curve and 0 for the dashed curves. Surface
conduction significantly reduces the electrophoretic mobility
of the particle. An explanation for this observation is that
the diffusio-osmotic flow due to concentration polarization
opposes the electro-osmotic flow, hence significantly slowing
down the particle as shown in Fig. 5. Our calculations

reproduce the same pattern as the one observed by Khair and
Squires [32]. At low ζ potential, the mobility increases linearly
with the ζ potential. Then, surface conduction effects become
non-negligible, which leads to a nonlinear relation between
mobility and ζ potential (see Fig. 4).

VI. INDUCED-CHARGE ELECTROPHORESIS OF
PARTICLES

In this section, we apply our model to study the elec-
trophoresis of ideally polarizable particles. These particles are
constituted of an ideal conductor, so the surface charges of the
particle rearrange when an electric field is applied. As a result,
the ζ -potential varies on the surface of the particle and an
induced electric field appears in the bulk solution. The problem
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FIG. 6. Electrophoretic mobility as a function of applied electric field for distinct values of the packing parameter ν and the dielectric
decrement parameter α, with and without surface conduction. The ionic drag coefficients are m = 0.1 and mb = 0.1. Surface conduction only
slightly reduces the mobility, and ionic saturation in the electric double layer prevents the decrease of the mobility with the applied field.

is similar to the one of particles with fixed surface charges,
except for the polarization of the ζ potential. To evaluate the
electric potential of the particle, we note that the total charge
Q of the particle remains constant during the formation of the
electric double layer [19]. Hence, we have

Q = −
∫

S

qdA = −2πR2
∫ π

0
q(θ ) sin θdθ, (46)

where q is the local surface charge. If we scale the global
charge Q of the particle by the quantity

Q∗ = 4πR2zecb,∞λD, (47)

then we obtain the dimensionless equation

Q = −1

2

∫ π

0
q(θ ) sin θdθ. (48)

Before considering the general case, it is of interest to
investigate induced-charge electrophoresis in the absence of
surface conduction. At low applied electric field, the excess
charge q and the excess ionic concentration w remain of order
O(1). As a consequence, the right-hand sides of Equations
(32) describing surface conduction phenomenon remain of
order O(ε). In this situation, it appears legitimate to consider
the model’s equations in the limit ε → 0, i.e., to neglect
surface conduction phenomena. At higher applied fields,
surface conduction becomes significant in the electric double
layer. However, studying induce-charge electrophoresis in the
absence of surface conduction remains interesting from a
theoretical perspective.

According to Eq. (25), in the absence of surface conduction,
the concentration is uniform in the bulk solution. Hence, the
electric potential yields [47]

�b(r,θ ) = −E

(
r + R3

2r2

)
cos θ. (49)

The ζ potential is defined as the difference of potential between
the surface of the particle and the bulk solution, so

ζ (θ ) = �P + 3
2E cos θ. (50)

In this expression, �P is the (constant) potential of the charged
particle and remains to be determined. Using relation (50), we
can perform a change of variable in (48) to yield

Q = 1

3E

∫ 3E
2 +�P

3E
2 −�P

q(ζ )dζ. (51)

At high values of applied electric field E, the ζ potential
ζ increases significantly near the poles of the particle. This
implies that steric effects and dielectric decrement strongly
impact the electrophoretic mobility. At high applied electric
fields, it was shown [52] that

μ � 3
8Q

√
3Eν. (52)

The situation is more complicated for the dielectric decre-
ment model, since there is no analytical formula relating
the surface charge to the ζ potential. In addition, the elec-
trophoretic mobility cannot be expressed analytically from
the ζ potential. However, by relying on the composite layers
model, we can get an estimate of the electric potential of the
particle. At high applied electric field E � ln(1/2α) and in
the limit E � �P , we have the asymptotic estimate

�P � Q

√
3
2Eα. (53)

At high applied electric fields, the particle is highly polarized
and the region of the surface where the ζ potential is less
than the critical potential ln(1/2α) can be neglected in the
calculation. Hence, using Eq. (24), we can show that

μ � Q

2

√
3

2
Eα. (54)
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FIG. 7. Surface charge (a), concentration (b), and diffusio-osmotic velocity (c) at the surface of the particle for distinct values of the packing
parameter ν and of the dielectric decrement parameter α. The ionic drag coefficients are m = 0.1 and mb = 0.1. The ratio ε between the Debye
length and the radius of the particle is 0.01. The applied electric field is E = 4.5. Note that for a 1-μm particle, the characteristic electric field
is E∗ = 250 V/cm.

In Fig. 6, we plot the mobility of an ideally polarizable
particle as a function of the applied electric field, with and
without surface conduction and for distinct values of the
packing parameter ν and the dielectric decrement α. The
ionic drag coefficients are m = 0.1 and mb = 0.1, and the
dimensionless charge of the particle is Q = 1. Both steric
and dielectric decrement effects prevent the decrease of the
mobility predicted by the Gouy-Chapman model [47]. We
can see in Fig. 7 that dielectric decrement and steric effects
significantly impact the charge recombination at the surface of
the particle. For the Gouy-Chapman model, the outside charge
repartition is almost symmetrical around the particle, so the
slip velocities on both sides of the particle compensate each
other. For the other simulations, due to ionic saturation in the

EDL caused by both dielectric decrement and steric effects,
the charge repartition is not symmetrical, yielding net motion
of the particle.

It is also interesting to take a closer look at the curve
corresponding to parameters ν = 0.05 and α = 0.02. In this
situation, the ratio 4α/ν yields 1.6, indicating that dielectric
decrements effects are dominant over steric effects. The ratio
remains, however, close to one. Still, we see that steric
effects can almost be neglected for the electrophoretic mobility
calculation.

Finally, we see that surface conduction reduces the elec-
trophoretic mobility of the particle. The mechanism here
is very similar to the one observed for electrophoresis of
particles with fixed surface charge. As is evident in Fig. 7,
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a concentration gradient arises in the immediate vicinity of
the particle due to surface conduction. The concentration
gradient in turn drives diffusio-osmotic flow at the surface
of the particle, which significantly reduces the slip velocity.

VII. CONCLUSION

In this article, we studied the electrophoresis of particles
with thin electric double layers in the presence of both
dielectric decrement and steric effects. We conducted numer-
ical simulations to calculate the electrophoretic mobility of
the particle. These calculations demonstrated that dielectric
decrement and steric effects due to the finite size of ions play a
very similar role regarding the motion of the particle and both
predict ionic saturation in the electric double layer.

Our simulations show that a proper description of the
electric double layer is a prerequisite to any attempt to calculate
the electrophoretic mobility at high applied voltages. The
modeling of the electric double layer for large ζ potential
and high applied electric fields remains a very active field of
study. In the present study, we considered dielectric decrement
and crowding effects altogether. However, we assumed that
the dynamic viscosity remains constant across the electric
double layer. This assumption most certainly breaks down
at high ionic concentrations, as pointed out by Bazant et al. in
Ref. [38]. Another possible extension of this study could be to
incorporate the Carnahan-Starling equation to describe crowd-
ing effects in the EDL. Finally, our description of the electric
double layer also relies on a mean-field description. Recently,
Bazant, Storey, and co-workers have developed models for
the electric double layer when the mean-field approximation
breaks down [57,58]. Incorporating these additional effects
constitutes a natural extension of this study.
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APPENDIX: CONDENSED LAYER MODEL

The model developed in this article predicts a saturation of
the ionic concentration in the electric double layer at high ζ

potential. The saturation is either caused by ion polarizability
or by crowding effects due to the finite size of ions. As a
first approximation, to simplify the physical analysis, it is
legitimate to consider a steric only or a dielectric decrement
only model depending on the value of the quantity 4α/ν. In
this document, in the spirit of Kilic et al. [29,30], we present
a simplified model where we decompose the electric double
layer into two distinct regions, namely a condensed and a
diffuse layer, as sketched in Fig. 8. In the following, without
loss of generality, we will assume that the wall is positively
charged.

a. Diffuse layer. In the diffuse layer, we assume that the
standard Poisson-Boltzmann equation holds, so the electric

FIG. 8. Schematic view of the composite layer model. The EDL is
subdivided in two sublayers: a condensed layer where the counterion
concentration saturates and a diffuse layer.

potential is the solution of the Poisson-Boltzmann equation,

d2φ

dy2
= 2zecb

ε0εw

sinh

(
zeφ

kT

)
. (A1)

We can integrate this relation to find

dφ

dy
= −2

√
2kT cb

ε0εw

sinh

(
zeφ

2kT

)
. (A2)

b. Condensed layer. Within the condensed layer, we assume
that the co-ion concentration vanishes and that the counter-ion
concentration saturates. Hence, we have

ρc = −zecb exp

(
ze|φc|
kT

)
, (A3)

so the crossover value for the excess electric potential is

φc = kT

ze
ln

(
ρc

zecb

)
. (A4)

The Poisson equation becomes

d2φ

dy2
= − ρc

εcl

, (A5)

where εcl is the permittivity in the condensed layer. The excess
electric potential profile is therefore quadratic, yielding

φ(y) = −1

2

ρc

εcl

y2 + q

εcl

y + ζ. (A6)
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In relation (A6), we note that the integration constant can be
expressed as

q = εcl

dφ

dy

∣∣∣∣
y=0

. (A7)

In parallel, we note that this quantity exactly corresponds to
the integral

ε(y)
dφ

dy
(y)

∣∣∣∣
y=0

=
∫ +∞

0
ρ(y)dy. (A8)

Hence, the integration constant q simply corresponds to the
global charge embedded in the EDL.

c. Matching. To completely determine the potential profile
across the EDL, we are left with the determination of q and yc.
The continuity of the excess electric potential and of its first
derivative at y = yc yields the following relations:

−1

2

ρc

εcl

y2
c + q

εcl

yc + ζ = φc,

(A9)
q = ρcyc − 4zecbλD

(
εcl

ε0εw

)
sinh

(
zeφc

2kT

)
,

so we obtain the dimensionless relation

(ζ − φc) − 2 sinh

(
φc

2

)
yc + 1

4
ρc

ε0εw

εcl

y2
c = 0. (A10)

d. Steric VS dielectrophoretic saturation. When ionic
saturation results from steric effects due to the finite size of
ions, we have

ρc = −2

ν
(A11)

and

εcl = ε0εw. (A12)

The crossover occurs for φc = ln(2/ν). Therefore, when ζ >

ln(2/ν), the thickness yc of the condensed layer is given by

yc = −
√

2ν

[(
1 − ν

2

)
+

√(
1 − ν

2

)2

+ ζ − ln

(
2

ν

)]
,

(A13)

and the charge is found to be

q = −2

√
2

ν

√(
1 − ν

2

)2

+ ζ − ln

(
2

ν

)
. (A14)

When ζ < ln(2/ν), the charge embedded in the EDL is simply
given by the classical Gouy-Chapman model:

q = −4 sinh

(
ζ

2

)
. (A15)

Similarly, when ionic saturation results from dielectric
decrement, we have, when ζ > ln(1/2α),

ρc = − 1

2α
(A16)

and
ε0εw

εcl

= 2. (A17)

The crossover occurs for

φc = sign(ζ ) ln
1

2α
, (A18)

so

yc =
√

2α

[
(1 − 2α) +

√
(1 − 2α)2 + 2ζ − 2 ln

(
1

2α

)]
.

(A19)

Finally, the total charge embedded in the EDL is

q = −
√

1

2α

√
(1 − 2α)2 + 2ζ − 2 ln

(
1

2α

)
. (A20)

Again, when ζ < ln(1/2α), the charge embedded in the EDL
is simply given by the classical Gouy-Chapman model:

q = −4 sinh

(
ζ

2

)
. (A21)

e. Excess salt in the EDL. Another quantity of interest is
the excess ionic concentration, defined to be

w =
∫ +∞

0
(c+ + c− − 2cb)dy. (A22)

This quantity is related to the dimensionless Dukhin number
and plays a key role in describing surface conduction phenom-
ena in the EDL. For steric dominated saturation, we find, using
the composite layer model,

w = 2cbλD

(√
2

ν
+

√
ν

2
− 2

)
+ cbyc

(
2

ν
− 2

)
. (A23)

Similarly, when saturation in the EDL is caused by dielectric
decrement, we find

w = 2cbλD

(√
1

2α
+

√
2α − 2

)
+ cbyc

(
1

2α
− 2

)
. (A24)

The excess charge and the excess ionic concentration are
plotted for distinct values of the packing parameter ν and of
the dielectric decrement parameter α in Fig. 9 as a function
of the ζ potential. We note the good agreement between the
numerical calculations and the results of the composite layers
model.
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FIG. 9. Excess charge (a) and excess ionic concentration (b) in the EDL as a function of the ζ potential for distinct values of the packing
parameter ν and of the dimensionless dielectric decrement parameter α. The dashed lines correspond to calculations conducted with the
composite layer model, while the continuous lines correspond to the full numerical solution.
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