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SEMISIMPLE HOPF ACTIONS ON COMMUTATIVE DOMAINS

PAVEL ETINGOF AND CHELSEA WALTON

Abstract. Let H be a semisimple (so, finite dimensional) Hopf algebra over

an algebraically closed field k of characteristic zero and let A be a commutative

domain over k. We show that if A arises as an H-module algebra via an inner

faithful H-action, then H must be a group algebra. This answers a question

of E. Kirkman and J. Kuzmanovich and partially answers a question of M.

Cohen.

The main results of this article extend to working over k of positive char-

acteristic. On the other hand, we obtain results on Hopf actions on Weyl

algebras as a consequence of the main theorem.

1. Introduction

We work over an algebraically closed field k of characteristic zero, unless stated

otherwise. Take H to be a finite dimensional Hopf algebra over k. Let us begin by

considering the following question of Miriam Cohen.

Question 1.1. [Coh94, Question 2] Let H be a finite dimensional noncocommu-

tative Hopf algebra acting on a commutative algebra A. Can such an action be

faithful? In other words, can A be a faithful left A#H-module?

This question was answered negatively in the case that A is a field and S2 6= id,

where S is the antipode of H [Coh94, Theorem 3.2]. Its full answer remains un-

known. However, the notion of a faithful Hopf algebra action is a strong condition.

In this work, we focus our attention on a weaker, yet interesting notion: inner

faithful Hopf actions. In other words, we want to consider Hopf (H-) actions that

do not factor through ‘smaller’ Hopf algebras, say H/I for some nonzero Hopf ideal

I of H (Definition 2.2). One may argue that inner faithfulness is a more useful

notion than faithfulness as one can pass uniquely to an inner faithful Hopf action

if necessary.

It is known that there do indeed exist inner faithful actions of a nonsemisim-

ple noncocommutative Hopf algebras on commutative algebras (see e.g. [All09]).

In particular, take H to be the 4-dimensional Sweedler algebra and A to be the

commutative polynomial ring in two variables [All09, Section 3.2]. In light of this

result, Ellen Kirkman and Jim Kuzmanovich proposed the following question.
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Question 1.2. [CWZ, Question 0.8] Suppose that H is semisimple and acts inner

faithfully on a commutative domain over an algebraically closed field of character-

istic zero. Must H be a group algebra?

This question was answered positively in the case that H is semisimple and A is

a commutative polynomial ring in two variables [CWZ, Proposition 0.7]. Now, the

main result of this article is a full affirmative answer to Question 1.2, which also

yields a partial answer to Question 1.1 above.

Theorem 1.3. (Theorem 4.1) If a cosemisimple Hopf algebra H over k acts inner

faithfully on a commutative domain over k, then H is a finite group algebra.

Note that semisimplicity and cosemisimplicity are equivalent over a field of charac-

teristic zero.

As a consequence, we also answer a question of [CWWZ14] pertaining to finite

dimensional Hopf actions on Weyl algebras.

Corollary 1.4. (Corollary 5.5) Let H be a finite dimensional Hopf algebra acting

inner faithfully on the n-th Weyl algebra An(k) with the standard filtration. If the

H-action preserves the filtration of An(k), then H is a finite group algebra.

The paper is organized as follows. In Section 2, we provide background material

on Hopf algebra actions and tensor categories. Section 3 provides results on coideal

subalgebras of finite dimensional Hopf algebras. Such results are needed for the

proof of the main theorem, Theorem 1.3, which is presented in Section 4. Finally,

Section 5 discusses consequences of Theorem 1.3; these include Corollary 1.4 and

versions of the main results for k of positive characteristic. For instance, we have

the following result.

Theorem 1.5. (Theorem 5.1) Theorem 1.3 holds if the field k has characteristic

p > 0 and K is a semisimple and cosemisimple Hopf algebra.

Several questions and conjectures are also posed in Section 5.

2. Background material

In this section, we provide a background discussion of Hopf algebra actions and

of tensor categories.

2.1. Hopf algebra actions. Let H be a finite dimensional Hopf algebra over

k with comultiplication ∆, counit ǫ, and antipode S. Moreover, let H∗ denote

the dual Hopf algebra to H . A left H-module M has left H-action denoted by

· : H ⊗M → M . Similarly, a right H-comodule M has right H-coaction denoted

by ρ : M → M ⊗ H . Since H is finite dimensional, M is a left H-module if and

only if M is a right H∗-comodule.

We recall basic facts about Hopf algebra actions; refer to [Mon93] for further

details. Denote the Hopf algebra H∗ by K. Here, H will act on algebras (from the

left), whereas K will coact on algebras (from the right).
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Definition 2.1. Given a Hopf algebra H and an algebra A, we say that H acts on

A (from the left) if A is a left H-module and

h · (ab) =
∑

(h1 · a)(h2 · b) and h · 1A = ǫ(h)1A

for all h ∈ H , and for all a, b ∈ A, where ∆(h) =
∑
h1 ⊗ h2 (Sweedler’s notation).

Dually, a Hopf algebraK coacts on A (from the right) if A is a right K-comodule

and ρ(ab) = ρ(a)ρ(b) for all a, b ∈ A.

We also want to restrict ourselves to H-actions (and K-coactions) that do not

factor through ‘smaller’ Hopf algebras.

Definition 2.2. [BB10] Given a left H-module M , we say that M is inner faithful

over H , if IM 6= 0 for every nonzero Hopf ideal I of H . Given a Hopf action of H

on an algebra A, we say that this action is inner faithful if the left H-module A is

inner faithful.

Dually, a right K-comodule M is called inner faithful if for any proper Hopf

subalgebra K ′ ( K, we have that ρ(M) is not contained in M ⊗K ′. In this case,

we say that the K-coaction onM is inner faithful. Similarly, we can define an inner

faithful K-coaction on an algebra A.

Note that anH-action on an algebraA is inner faithful if and only if the H∗ = K-

coaction on A is inner faithful.

2.2. Tensor categories. We discuss the notion of a tensor category and, in par-

ticular, of a fusion category, below. This will mainly be used in the proof of Theo-

rem 3.6 in Section 3. Refer to [BK01, ENO05] for further details. Recall that k is

an algebraically closed field of characteristic zero.

Definition 2.3. Let C be a k-linear, abelian, rigid, monoidal category with unit

object 1 that is artinian (so, objects have finite length) and Hom spaces are finite

dimensional. We call C a tensor category over k if the bifunctor ⊗ : C × C → C is

bilinear on morphisms and if EndC(1) ∼= k.

Recall that an abelian category is semisimple if every object is a direct sum

of simple objects, and is finite if it has enough projectives and has finitely many

simple objects up to isomorphism. Now, a fusion category is a finite semisimple

tensor category.

For example, given H a finite dimensional Hopf algebra over k, the category

Rep(H) of (left) H-modules is a finite tensor category. Moreover, Rep(H) is a

fusion category precisely when H is semisimple.

We have that tensor categories (resp., fusion categories) categorify the notion of

rings (resp., semisimple rings). Similarly, the notion of a module category categori-

fies the concept of a module over a ring. By a module category, we mean a right

module category.

Definition 2.4. Let C be a tensor category with associativity constraint

aX,Y,Z : (X ⊗ Y )⊗ Z
∼
−→ X ⊗ (Y ⊗ Z)
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for all X,Y, Z ∈ C and unit object 1. A right module category over C is a category

M equipped with an action bifunctor ⊗ : M×C → M and a natural isomorphism

mM,X,Y :M ⊗ (X ⊗ Y )
∼
−→ (M ⊗X)⊗ Y

for all X,Y ∈ C and M ∈ M so that

• the functor M 7→M ⊗ 1 : M → M is an autoequivalence and

• the following pentagon diagram

M ⊗ ((X ⊗ Y )⊗ Z)

idM⊗aX,Y,Z

uu❥❥❥
❥❥
❥❥
❥❥
❥❥
❥❥
❥❥ mM,X⊗Y,Z

**❚
❚❚

❚❚
❚❚

❚❚
❚❚

❚❚
❚❚

M ⊗ (X ⊗ (Y ⊗ Z))

mM,X,Y ⊗Z

��

(M ⊗ (X ⊗ Y ))⊗ Z

mM,X,Y ⊗idZ

��

(M ⊗X)⊗ (Y ⊗ Z)
mM⊗X,Y,Z

// ((M ⊗X)⊗ Y )⊗ Z

is commutative for all X,Y, Z ∈ C and M ∈ M. 1

Moreover, we also need to consider the following definitions pertaining to tensor

categories C and module categories M over C.

Definition 2.5. Let A,B be artinian abelian categories and let C,D be tensor cat-

egories. Also, let M,N be module categories over C with associativity constraints

m,n, respectively.

(a) An exact functor G : A → B is surjective if any object Y ∈ B is a subquo-

tient of G(X) for some X ∈ A.

(b) A tensor functor F : C → D is an exact, faithful, k-linear, monoidal functor

between tensor categories.

(c) A C-module functor from M to N consists of an additive functor F : M →

N and a natural isomorphism

sM,X : F (M ⊗X) → F (M)⊗X, for all X ∈ C,M ∈ M,

so that the following equations hold:

(sM,X ⊗ idY ) ◦ sM⊗X,Y ◦ F (mM,X,Y ) = nF (M),X,Y ◦ sM,X⊗Y

F (rM ) = rF (M) ◦ sM,1

for all X,Y ∈ C and M ∈ M. Here, rM : M ⊗ 1
∼
→ M is the natural

isomorphism.

(d) Let FunC(M,N ) denote the category of C-module functors M → N with

natural transformations as morphisms.

(e) A module equivalence F : M → N of C-module categories is a module

functor (F, s) from M to N such that F is an equivalence of categories.

(f) A module category M over C is indecomposable if it is not equivalent to a

nontrivial direct sum of nonzero module categories.

1 This definition is equivalent to the usual definition of a module category involving the unit

morphism and the triangle diagram.
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For example, consider Vec, the category of finite dimensional vector spaces over

k. If F : C → Vec is a tensor functor, then Vec becomes a (right) module category

over C via V ⊗X := V ⊗ F (X), for V ∈ Vec and X ∈ C.

3. Coideal subalgebras of finite dimensional Hopf algebras

In this section, we establish several results pertaining to the number and struc-

ture of coideal subalgebras of finite dimensional Hopf algebras. In particular, we

show that semisimple Hopf algebras have only finitely many coideal subalgebras;

see Theorem 3.6 below. Such a result fails for nonsemisimple Hopf algebras; see

Example 3.5.

Definition 3.1. A right (respectively, left) coideal subalgebra B of a Hopf algebra

H is a subalgebra of H with ∆(B) ⊆ B ⊗H (or ∆(B) ⊆ H ⊗B).

We will now show how coideal subalgebras could arise from coactions of Hopf

algebras on commutative algebras. Consider the notation below.

Notation. [A, χ, ρχ, Aχ] Let A be a finitely generated commutative domain over k

and let K be a finite dimensional Hopf algebra that coacts on A via ρ : A→ A⊗K.

Moreover, let χ : A→ k be a character of A. Then, consider the following morphism

ρχ = (χ⊗ id) ◦ ρ : A→ K.

Here, we identify k ⊗K with K. We also take Aχ to be the image of ρχ in K.

Lemma 3.2. Retain the notation above. The image ρχ(A) = Aχ is a right coideal

subalgebra of K.

Proof. Since ρχ is an algebra morphism, Aχ is a subalgebra of K. So, it suffices to

show that ∆ ◦ ρχ = (ρχ ⊗ id) ◦ ρ as morphisms. We have that

(3.3)
(ρχ ⊗ id) ◦ ρ = (χ⊗ id⊗ id) ◦ (ρ⊗ id) ◦ ρ

= (χ⊗ id⊗ id) ◦ (id⊗∆) ◦ ρ = ∆ ◦ (χ⊗ id) ◦ ρ = ∆ ◦ ρχ,

as desired. �

Now, we consider the coaction of the Hopf subalgebra generated by the span of

the coideal subalgebras Aχ of K on A.

Notation. [LA] Given a K = H∗-coaction on A, let LA be the k-linear span of all

coideal subalgebras Aχ of K.

Lemma 3.4. Retain the notation above.

(a) The coaction ρ of K on A restricts to ρ : A→ A⊗ LA.

(b) The linear span LA is a subcoalgebra of K. Thus, the subalgebra 〈LA〉

generated by LA is a Hopf subalgebra of K.
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Proof. (a) It suffices to show that for any ψ ∈ L⊥
A ⊆ K∗, we get that

(id⊗ ψ) ◦ ρ(a) = 0

for all a ∈ A. Fix an element a ∈ A. Let X = Specm(A) be the set of characters

(or, equivalently, maximal ideals) in A. Then, X is an affine algebraic variety

and f := (id ⊗ ψ)ρ(a) ∈ A can be viewed as a regular function on X . Recall

that A is a finitely generated domain. Now by the Nullstellensatz, to check that

f = 0, it suffices to check that f(χ) = ψ(ρχ(a)) = 0 for all χ ∈ X . So we need

ρχ(a) ∈ L⊥⊥
A = LA. Since ρχ(a) ∈ Aχ and Aχ ⊆ LA, we are done.

(b) We need to show for any b ∈ Aχ, we have that ∆(b) ∈ LA ⊗ LA. Say

b = ρχ(a) = (χ⊗ id) ◦ ρ(a).

By (3.3), we have that ∆(b) = (ρχ⊗ id)◦ρ(a). Now by part (a), ∆(b) ⊆ Aχ⊗LA as

desired. This implies that LA is a subcoalgebra ofK. Hence, 〈LA〉 is a subbialgebra

of K, which is actually a Hopf subalgebra of K by [Rad12, Proposition 7.6.1]. �

In the following example, we show how one computes the coideal subalgebras Aχ

corresponding to a finite dimensional Hopf algebra K and a K-comodule algebra

A; refer to Lemma 3.2. As a consequence, we also illustrate that a nonsemisimple

finite dimensional Hopf algebra can have infinitely many coideal subalgebras.

Example 3.5. Let H be the Sweedler Hopf algebra, which is 4-dimensional and

non-semisimple. It is generated by g and x where

g2 = 1, x2 = 0, xg = −gx, ∆(g) = g ⊗ g, ∆(x) = g ⊗ x+ x⊗ 1,

ǫ(g) = 1, ǫ(x) = 0, S(g) = g−1, S(x) = −gx.

Let A be the commutative polynomial ring k[u] with left H-action given by

g · u = −u and x · u = 1.

It is easy to check that this action is inner-faithful. Moreover, the action · yields

the right coaction of K = H∗ on A given by ρ : A→ A⊗K, where

ρ(u) = u⊗ (1∗ − g∗) + 1⊗ (x∗ + (gx)∗).

Here, {1∗, g∗, x∗, (gx)∗} is the dual basis of K. Note that H is self-dual, so H ∼= K

as Hopf algebras.

To define a set of right coideal subalgebras of K (and thus of H), consider the

character χ : A → k defined by χ(u) = α ∈ k. Moreover, consider the morphism

ρχ : A→ K defined by

ρχ(u) = α(1∗ − g∗) + (x∗ + (gx)∗).

Take Aχ to be the image of ρχ, which is spanned by 1K and hχ := α(1∗ − g∗) +

(x∗ +(gx)∗). Here, 1∗+ g∗ is the unit 1K of K since 1∗+ g∗ = ǫ is the counit of H .

We show explicitly that the image Aχ is a right coideal subalgebra of K for

all α ∈ k. First, Aχ is clearly a subalgebra of K. Secondly, recall that ∆(f) =∑
f(eiej)e

∗
i ⊗ e∗j for all ei, ej ∈ H and f ∈ K = H∗. Let ḡ := 1∗ − g∗ and
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x̄ := x∗+(gx)∗, so hχ = αḡ+ x̄. Moreover, ∆(ḡ) = ḡ⊗ ḡ and ∆(x̄) = 1K⊗ x̄+ x̄⊗ ḡ.

So, we get that for all α ∈ k:

∆(hχ) = α(ḡ ⊗ ḡ) + (1K ⊗ x̄+ x̄⊗ ḡ) = hχ ⊗ ḡ + 1K ⊗ x̄ ∈ Aχ ⊗K.

Therefore, the Sweedler Hopf algebra has infinitely many right coideal subalgebras.

On the other hand, we establish the following theorem pertaining to the number

of coideal subalgebras of a semisimple Hopf algebra.

Theorem 3.6. Let k be a field of characteristic zero. Then, a semisimple Hopf

algebra K over k has finitely many coideal subalgebras.

Remark 3.7. This theorem is one of the many finiteness (or “rigidity”) results for

both semisimple Hopf algebras and fusion categories. These include the Ocneanu

rigidity theorem (there are finitely many fusion categories with a given fusion rule)

and Stefan’s theorem (there are finitely many semisimple Hopf algebras of a given

dimension over a field of characteristic 0). Such theorems are discussed in [ENO05].

To prove Theorem 3.6, we need the following preliminary result.

Lemma 3.8. [Bur12, Lemma 4.0.2] [Skr07, Theorem 5.2] Any left or right coideal

subalgebra B of a semisimple Hopf algebra K is semisimple. �

Now, we use the machinery of fusion categories to prove Theorem 3.6.

Notation. [B, C, M, FC , FM, G, σ] Let K be a Hopf algebra and let B be a

right coideal subalgebra of K. Consider the fusion category C := Rep(K) of left

K-modules and the category M := Rep(B) of left B-modules. We see that M is a

right C-module category as follows. Given X ∈ C and M ∈ M, we get an action of

B on M ⊗X by

b · (m⊗ x) =
∑

(b1 ·m)⊗ (b2 · x),

where ∆(b) =
∑
b1 ⊗ b2 for b, b1 ∈ B and b2 ∈ K. We also have that if K is

semisimple, then M is semisimple by Lemma 3.8.

Moreover, we have a functor G : C → M defined by restriction from K to B,

which is a surjective module functor. We also have forgetful functors, FC : C → Vec

(a tensor functor) and FM : M → Vec (a module functor), where Vec is the category

of finite dimensional vector spaces over k. We also get an isomorphism of module

functors over C given by σ : FM ◦G
∼
→ FC .

Next, we establish a bijection between the set of right coideal subalgebras of K

and the set of quadruples (M, FM, G, σ) up to equivalence. By equivalence, we

mean the equivalence relation generated by the following conditions.

(1) If L : M → M′ is an equivalence of right C-module categories with quasi-

inverse L−1, then (M, FM, G, σ) is equivalent to (M′, FM ◦L−1, L ◦G, σ′)

where σ′ is the corresponding isomorphism.

(2) If G′ : C → M and F ′
M : M → Vec are other C-module functors with

isomorphisms a : G → G′ and b : FM → F ′
M, then (M, FM, G, σ) is

equivalent to (M, F ′
M, G′, σ′) where σ′ is the corresponding isomorphism.
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(3) The quadruple (M, FM, G, σ) is equivalent to (M, FM, G, λσ) with λ ∈ k×.

Lemma 3.9. Retain the notation above. Then, the following statements hold.

(a) There is a bijection between the set of right coideal subalgebras B of K and

the set of quadruples (M, FM, G, σ) up to equivalence.

(b) The module category M is indecomposable.

Proof. (a) Our job is to show that given a semisimple right C-module category M

and a diagram

C
G

//

FC

EE
M

FM
//

σ

��
✤

✤

✤
Vec

Diagram 1

where G and FM are module functors, with G surjective, and σ an isomorphism of

module functors, we can construct a unique coideal subalgebra B of K.

We have a homomorphism φ from the algebra, End(FM), of functorial endomor-

phisms of the functor FM to the Hopf algebra K defined as follows:

φ : End(FM)
G
−→ End(FM ◦G)

Ad(σ)
−→ End(FC) = K.

The last equality holds by the reconstruction theorem for Hopf algebras [JS91].

Since G is surjective, the map φ is injective and the image B of φ can be viewed as

a subalgebra of K.

We see that B is a coideal subalgebra of K as follows. Fix elements m ∈M ∈ M

and x ∈ X ∈ C. (We abuse notation by writing M for FM(M) and X for FC(X)

as actions technically occur in FM(M) and FC(X), respectively.) Consider the

coaction ρ : B → B ⊗K defined by ρ(b) =
∑
b1 ⊗ b2, where

b · (m⊗ x) =
∑

(b1 ·m)⊗ (b2 · x).

This makes sense since M ⊗ X ∈ Rep(B). Here, M is naturally identified with

Rep(End(FM)) by the reconstruction theorem for associative algebras. Moreover,

the map ρ is identified with the endomorphism algebra of the functor (M,X) 7→

FM(M) ⊗ FC(X) on the product category M × C. Now, it suffices to show that

ρ = ∆|B ; we verify this in the following sublemma.

Sublemma 3.10. The coproduct ∆ of K restricted to B is given by the K-coaction

ρ on B.

Proof of Sublemma 3.10. Consider the following standard isomorphisms:

JX,Y : FC(X)⊗ FC(Y )
∼
−→ FC(X ⊗ Y ),

sX,Y : G(X ⊗ Y )
∼
−→ G(X)⊗ Y,

rM,Y : FM(M)⊗ FC(Y )
∼
−→ FM(M ⊗ Y )

for all X,Y ∈ C and M ∈ M. Here, J is the tensor structure on FC , and s and r

are the structures of a module functor on G and FM, respectively. Also, we have
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the isomorphism σ : FC → FM ◦G. Now, the following diagram commutes for all

X,Y ∈ C and M ∈ M:

FM(G(X ⊗ Y ))

∼σ

��

FM(G(X)⊗ Y )
∼

FM(sX,Y )
oo FM(G(X))⊗ FC(Y )

∼

rG(X),Y
oo

∼σ

��

FC(X ⊗ Y ) FC(X)⊗ FC(Y )
∼

JX,Y
oo

Let b ∈ End(FM). We leave it as an exercise to show that

(i) the image of b under conjugation by J−1
X,Y ◦ σ is given by ∆(φ(b)); and

(ii) the image of b under conjugation by σ ◦ r−1
G(X),Y ◦ FM(s−1

X,Y ) is given by

(φ ⊗ id)ρ(b).

Thus, ∆(φ(b)) = (φ⊗ id)ρ(b), and we are done.

Returning to the proof, we claim that σ is unique up to scaling. It suffices to show

that any automorphism of the module functor FC is a scalar. An automorphism

of FC , as an additive functor, is just an element h ∈ K. The condition that it

preserves module structure is ∆(h) = h⊗ 1, which implies that h is a scalar.

It is clear that φ does not change under rescaling σ. So, since σ is unique up to

scaling, φ (and hence, the image B of φ) is independent of σ. Finally, it is easy to

check that the assignments

B 7→ (Rep(B), FRep(B), G, σ) and (M, FM, G, σ) 7→ φ(End(FM))

are mutually inverse.

(b) We claim that M is an indecomposable module category. Let J = G(1), which

is simple as FM(J) = FC(1) = k. Let M ∈ M be a simple object. Since G is

surjective, M is contained in G(X) for some X ∈ C. Moreover,

G(X) = G(1⊗X) = G(1)⊗X = J ⊗X.

So, M is contained in J ⊗ X . In other words, all simple objects M of M are

accessible from J . Hence, M is indecomposable. �

To prove Theorem 3.6, we will also need the following proposition.

Proposition 3.11. Let C be a fusion category.

(a) There are finitely many semisimple indecomposable module categories M

over C.

(b) If M and N are semisimple finite module categories over C, then there are

finitely many module functors F : M → N up to isomorphism, inducing a

given map of Grothendieck groups Gr(M)→Gr(N ).

Proof. Part (a) follows from [ENO05, Corollary 2.35]. Since FunC(M,N ) is a

semisimple abelian category with finitely many simple objects, part (b) holds

[ENO05, Theorem 2.16]. �
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Proof of Theorem 3.6. By extension of the ground field, we may assume that k is

algebraically closed. Consider the category of left K-modules C = Rep(K), which is

a fusion category asK is semisimple. By Proposition 3.11(a), there are finitely many

semisimple indecomposable module categories M over C. So by Lemma 3.9(a,b),

we need to show that for all such M, there are finitely many choices of G and FM

as in Diagram 1.

Let {Xi} be the simple objects of C and let {Mj} be the simple objects of M.

Then, the map of Grothendieck groups from C to M is determined by G(Xi) =⊕
j aijMj . Since G is surjective, for every j, there is an i such that aij > 0.

Similarly, we have that FM(Mj) = kdj for some dj > 0. Hence, the equations

dimkXi =
∑

j aijdj have finitely many suitable solutions (aij , dj). So, there are

finitely many suitable maps between Grothendieck groups from Gr(C) to Gr(M)

and from Gr(M) to Gr(Vec)=Z. Since C, M, and Vec are all semisimple finite

module categories over C, Proposition 3.11(b) then implies that there are finitely

many choices for both G and FM. �

Additionally, we have a result that is easily obtained from Theorem 3.6.

Notation. [CSd(K)] Given a finite dimensional Hopf algebra K, let CSd(K) denote

the variety of coideal subalgebras of K of dimension d.

Corollary 3.12. Let K be a finite dimensional Hopf algebra and let Grd(K) be

the Grassmannian of d-dimensional subspaces of K. Then, CSd(K) is a closed

subvariety of Grd(K). If K semisimple, then CSd(K) consists of finitely many

points.

Proof. For a subspace of K to be a coideal and a subalgebra of K are closed

conditions, so the first statement is clear. The second statement follows directly

from Theorem 3.6. �

4. Proof of Theorem 1.3

This section is dedicated to the proof of our main theorem; see Theorem 4.1 be-

low. We also discuss the various ways this result fails if its hypotheses are amended;

see Remarks 4.2 and 4.3.

Theorem 4.1. If a semisimple Hopf algebra K over k coacts inner faithfully on a

commutative domain A over k, then K is itself commutative. Thus, the coaction

of K reduces to the action of a finite group on A.

Proof. First, let us reduce to the case where A is finitely generated. Any K-

comodule algebra A is a union of finitely generated subalgebras invariant under

this coaction. We see this as follows. Let a ∈ A, so ρ(a) =
∑
ai ⊗ hi for ai ∈ A

and hi ∈ K. Let C(a) be the k-linear span of {ai}. Then, C(a) contains a as

a =
∑
ǫ(hi)ai. Moreover, C(a) is a finite dimensional K-subcomodule of A. So,

the algebra A(a) ⊆ A generated by C(a) is a finitely generated right K-comodule

subalgebra of A containing a. Thus, A is the union of all A(a), which are finitely

generated K-comodule algebras.
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So, assume that A is finitely generated and let X = Specm(A), whose closed

points consist of characters χ : A → k of A. Then, X is an irreducible affine

algebraic variety over k. We have a map

γ : X −→
⊔

d

CSd(K)

defined by γ(χ) = Aχ (see the notation from Section 3).

Let d0 = maxχ∈X dimk Aχ. Consider the set

X0 = {χ ∈ X | dimk Aχ = d0},

which is non-empty. The dimension map g : X → [0, d0] given by g(χ) = dimk Aχ is

lower semi-continuous, so X0 is also an open subset of X . Thus, X0 is irreducible.

Now, we show that the map γ|X0 is regular. Take a1, . . . , am to be generators of

A. Let n be the dimension of K and let A(n) be the k-span of monomials ai11 · · · aimm
where 0 ≤ i1, . . . , im < n. Since any element x of K satisfies a monic polynomial

equation of degree n (namely, the characteristic polynomial of the linear operator

given by left multiplication of x), we have that ρχ(A(n)) = ρχ(A) = Aχ. Moreover,

the map f : X0 → Homk(A(n),K) given by f(χ) = ρχ|A(n) is regular with the

rank of f(χ) constant (independent of χ). Since ρχ(A) = ρχ(A(n)), we have that

im(f(χ)) = γ(χ) for any χ ∈ X0. This implies that γ|X0 is regular.

Since CSd0(K) is finite by Theorem 3.6, X0 is irreducible, and γ|X0 is regular, we

have that γ|X0 is constant. In other words for all χ ∈ X0, we have that γ(χ) = B for

some coideal subalgebra B ofK whose dimension is maximal among the dimensions

of the Aχ. We see that Aχ ⊆ B for all χ ∈ X as follows. Let β ∈ B⊥ and a ∈ A.

Then, β(ρχ(a)) is a regular function with respect to χ, and it is zero for χ ∈ X0.

Hence, this function is identically zero since X0 is dense in X . Hence, ρχ(A) ⊆ B

as claimed.

On the other hand, consider LA, the k-linear span of the coideal subalgebras Aχ

of K; refer to Lemma 3.4. Since Aχ ⊆ B for all χ ∈ X , we have that LA ⊆ B.

Also, B = Aχ for some χ ∈ X0. Hence, B = LA. So, B equals the subalgebra 〈LA〉

generated by LA, which is also a Hopf subalgebra of K (Lemma 3.4(b)).

Again by Lemma 3.4(b), the coaction of K on A restricts to the coaction of 〈LA〉

on A. By inner faithfulness, no proper Hopf subalgebra of K can coact on A, so

〈LA〉 = K. Since B = LA = Aχ for some χ ∈ X0 and Aχ is commutative, we have

that K = 〈LA〉 is commutative as desired.

The second statement of the theorem is clear. �

The following remarks illustrate how Theorem 4.1 fails if one of its hypotheses

is altered.

Remark 4.2. The proof of Theorem 4.1 fails if K has infinitely many coideal

subalgebras. In this case, K must be nonsemisimple by Theorem 3.6. For example,

consider the coaction of the (dual of the) Sweedler Hopf algebraK on A = k[u] from

Example 3.5. Note that K is a 4-dimensional vector space spanned by 1K , ḡ, x̄, gx,

where ḡ := 1∗ − g∗ and x̄ := x∗ + (gx)∗.
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Recall that the coideal subalgebras Aχ of K are of the form

{Aχ} = {〈1K , hχ := αḡ + x̄〉 | α ∈ k},

which all have k-vector space dimension 2. The k-linear span, LA, is spanned

by 1K , ḡ, x̄, which is a 3-dimensional k-vector space. However, K = 〈LA〉 is 4-

dimensional. Observe that each Aχ is commutative, but these coideal subalgebras

do not commute with each other. Hence, K is noncommutative.

Remark 4.3. Theorem 4.1 also fails if A is not a domain. First, let K = kS3,

the group algebra of the symmetric group S3, with s1 := (12) and s2 := (23). Let

A = k[u1, u2]/(u
2
1, u1u2, u

2
2). Here, A contains nonzero nilpotents, yet A/Rad(A) is

a domain. Although K is noncommutative, we can define an inner faithful coaction

of K on A by ρ(ui) = ui ⊗ si for i = 1, 2.

Secondly, let K be as above, and let A′ = k[u1, u2]/(u1u2). The algebra A′ has

zero divisors, yet no nonzero nilpotents. Consider the K-coaction on A′ given by

ρ(ui) = ui ⊗ si for i = 1, 2. Again, the K-coaction on A′ is inner faithful, but K is

noncommutative.

5. Consequences and further directions

Here, we discuss consequences of Theorem 1.3, which include versions of the main

theorems for k a field of characteristic p > 0 and a study of Hopf actions on Weyl

algebras. We also present further directions of this work in the last subsection.

5.1. Results for k a field of positive characteristic. We can generalize the

main results of this work for when the field k is algebraically closed of characteristic

p > 0.

Theorem 5.1. Theorem 4.1 holds if the algebraically closed field k has character-

istic p > 0 and K is a semisimple and cosemisimple Hopf algebra.

Proof. In Section 9 of [ENO05], it is explained that Proposition 3.11 extends to

positive characteristic if the fusion category C is nondegenerate (see e.g. [ENO05,

Theorem 9.3]). This is the case if C = Rep(K), where K is a semisimple and

cosemisimple Hopf algebra over k. The rest of the proof is the same as in charac-

teristic zero. �

By similar arguments, we also have the following theorem.

Theorem 5.2. Theorem 3.6 holds if the algebraically closed field k has character-

istic p > 0 and K is a semisimple and cosemisimple Hopf algebra.

Furthermore, we make the following conjecture.

Conjecture 5.3. Theorems 3.6 and 4.1 hold when we work over an algebraically

closed field k of characteristic p > 0 and K is semisimple and not necessarily

cosemisimple.
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5.2. Hopf actions on differential operator algebras. It was asked in [CWWZ14,

Question 0.2] whether a noncocommutative finite-dimensional Hopf algebra can act

inner faithfully on the n-th Weyl algebra. This question was answered negatively for

n = 1. Now, the general result is obtained from Theorem 1.3 as follows. First, we

require some preliminary results. We assume that the filtrations below are indexed

by nonnegative integers.

Proposition 5.4. Let S be a filtered k-algebra with filtration F so that the asso-

ciated graded ring, grFS, is a commutative domain over k. If a semisimple Hopf

algebra H acts on S inner faithfully and preserves the filtration, then H is a group

algebra.

Proof. Since H is semisimple, we have that S and grFS are isomorphic as H-

modules. So, the induced H-action on the commutative domain grFS is inner

faithful. By Theorem 1.3, H is a group algebra. �

Now we answer [CWWZ14, Question 0.2].

Corollary 5.5. Let H be a finite dimensional Hopf algebra acting inner faith-

fully on the n-th Weyl algebra An(k) with the standard filtration. If the H-action

preserves the filtration of An(k), then H is a finite group algebra.

Proof. The standard filtration F of An(k) is given by {Fn = (k1+U)n}, where U is

the 2n-dimensional vector space spanned by the generators u1, . . . , un, v1, . . . , vn of

An(k). Here, [ui, uj ] = [vi, vj ] = 0 and [vi, uj] = δij . By [CWWZ14, Theorem 0.3],

we have that if H satisfies the hypotheses above, then H is semisimple. The re-

sult follows from Proposition 5.4 as grFAn(k) is isomorphic to the commutative

polynomial ring k[u1, . . . , un, v1, . . . , vn]. �

We have a more general corollary to Proposition 5.4. Here, we use the notions

of the so-called homological determinant of a Hopf action on a (graded) algebra A

and of a (graded) r-Nakayama algebra; see [CWZ] for details.

Corollary 5.6. Let H be a finite dimensional Hopf algebra that acts inner faith-

fully and preserves the filtration F of a filtered algebra S. Assume the following

conditions:

(a) grFS is a commutative domain,

(b) the Rees ring, ReesFS, is connected graded, r-Nakayama and N -Koszul,

(c) the induced H-action on ReesFS has trivial homological determinant.

Then, H is a group algebra.

Proof. The inner faithful H-action on S induces an inner faithful H-action on

ReesFS. So, H must be semisimple by [CWZ, Theorem 0.6]. Since the inner

faithful H-action on S now induces an inner faithful H-action on grFS, we are

done by Proposition 5.4. �

It would be interesting to know if the Weyl algebras are the only k-algebras that

satisfy the hypotheses of Corollary 5.6. On the other hand, Corollary 5.5 prompts

the following question.
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Question 5.7. Let X be any smooth irreducible affine variety and consider the

algebra of differential operators D(X) on X . If a finite dimensional Hopf algebra

acts inner faithfully and preserves the order filtration Ford of D(X), must then H

be a group algebra?

Note that grFord
D(X) is isomorphic to the algebra of regular functions O(T ∗X),

where T ∗X is the cotangent bundle on X . Hence, grFord
D(X) is a commutative

domain. Moreover, Question 5.7 is open even if X = kn, to say, for D(X) = An(k)

with the order filtration.

5.3. Additional questions. We pose the following questions for future work.

To begin, note that the main theorem (Theorem 1.3) and Example 3.5 naturally

prompt the question below.

Question 5.8. Which finite dimensional nonsemisimple Hopf algebras act inner

faithfully on the commutative domains?

On the other hand, as an extension of Theorem 1.3, we consider Hopf actions on

PI algebras.

Question 5.9. If a cosemisimple Hopf algebra H over k acts inner faithfully on a

PI domain of PI degree d, must then PIdeg(H∗) ≤ d2?

If the answer is affirmative, then we have that the bound d2 is sharp due to the

following example.

Example 5.10. Let ζ be a primitive d-th root of unity and let L denote the group

Zd ⊕ Zd. There is a nondegenerate 2-cocycle σ on L, given by σ((x, y), (x′, y′)) =

ζxy
′

, where x, y, x′, y′ ∈ Zd. Moreover, σ defines a Drinfeld twist J on L, given by

J =
∑

x,y,x′,y′ ζxy
′

(x, y)⊗ (x′, y′).

TakeG to be a finite group containing L with an element g, such that gLg−1∩L =

{1}. For instance, one could take G = GLn(Zd) for n ≥ 3, where the embedding

ι : L → G is given by ι(a, b) = Id + aE12 + bE13 for a, b ∈ Zd. Now, by [EG99,

Theorem 3.2], the PI degree of ((kG)J )∗ is equal to |L| = d2.

Assuming that we have a faithful, linear action ofG on a commutative polynomial

ring A in n variables, we have an inner faithful, linear action of (kG)J on the

twisted algebra AJ [GKM12]. At least one of the skew parameters of the quantum

polynomial ring AJ is a primitive d-th root of unity, so AJ has PI degree at least

d. On the other hand, the rank of AJ over (central invariants) AL
J is |L|, where

AL
J
∼= AL as algebras. Hence, the PI degree of AJ is at most |L|1/2 = d.
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[JS91] André Joyal and Ross Street. An introduction to Tannaka duality and quantum

groups. In Category theory (Como, 1990), volume 1488 of Lecture Notes in Math.,

pages 413–492. Springer, Berlin, 1991.

[Mon93] Susan Montgomery. Hopf algebras and their actions on rings, volume 82 of CBMS

Regional Conference Series in Mathematics. Published for the Conference Board of

the Mathematical Sciences, Washington, DC, 1993.

[Rad12] David E. Radford. Hopf algebras, volume 49 of Series on Knots and Everything.

World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2012.

[Skr07] Serge Skryabin. Projectivity and freeness over comodule algebras. Trans. Amer. Math.

Soc., 359(6):2597–2623 (electronic), 2007.

Etingof: Department of Mathematics, Massachusetts Institute of Technology, Cam-

bridge, Massachusetts 02139, USA

E-mail address: etingof@math.mit.edu

Walton: Department of Mathematics, Massachusetts Institute of Technology, Cam-

bridge, Massachusetts 02139, USA

E-mail address: notlaw@math.mit.edu


	1. Introduction
	2. Background material
	2.1. Hopf algebra actions
	2.2. Tensor categories

	3. Coideal subalgebras of finite dimensional Hopf algebras
	4. Proof of Theorem 1.3
	5. Consequences and further directions
	5.1. Results for k a field of positive characteristic
	5.2. Hopf actions on differential operator algebras
	5.3. Additional questions

	Acknowledgments
	References

