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Significant microstructural anisotropy is known to develop during shearing flow of attractive particle suspensions. These sus-
pensions, and their capacity to form conductive networks, play a key role in flow-battery technology, among other applications.
Herein, we present and test an analytical model for the tensorial conductivity of attractive particle suspensions. The model uti-
lizes the mean fabric of the network to characterize the structure, and the relationship to the conductivity is inspired by a lattice
argument. We test the accuracy of our model against a large number of computer-generated suspension networks, based on
multiple in-house generation protocols, giving rise to particle networks that emulate the physical system. The model is shown to
adequately capture the tensorial conductivity, both in terms of its invariants and its mean directionality.

Introduction

The electrical conductivity of heterogeneous materials has
been extensively studied by many different researchers over
the years3,4,12,19,20. The literature primarily focuses on het-
erogeneous materials which are mixtures of two materials
that each have different, isotropic electrical conductivities.
The most well-known result is that of Maxwell, which is
based on an effective-medium approximation for dilute sus-
pensions14. Hashin and Shtrikman approached the problem
in a different way. Rather than attempt to solve for an exact
expression for the effective conductivity of a randomly struc-
tured material, they applied a variational method to derive up-
per and lower bounds on the effective conductivity9. They
chose to use a variational approach to derive bounds on the
conductivity because solving the exact problem for an arbi-
trarily structured heterogeneous material was analytically in-
tractable. Torquato19–21 has studied the effective conductivity
problem in great depth. He has improved the bounds laid out
by Hashin and Shtrikman, has solved for effective conductiv-
ity of a number of different lattice types, and has expressed
the exact tensorial effective conductivity in terms of an infinite
series of N-point probability functions, which can be used to
describe the microstructure of a heterogeneous material. The
particular case of a suspension consisting of a conductive par-
ticle network within an insulating medium has been consid-
ered theoretically, to our knowledge, in one existing study12.
The approach they take assumes a spatially homogeneous po-
tential gradient field imposed upon the structure, leading to a
model for the conductivity that can be proven to be an upper
bound.

Much of the aforementioned work is concerned with the
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isotropic conductivity of heterogeneous materials. In this
work, we aim to model the full tensorial conductivity, with a
focus on suspended networks of conductive particles. These
particle networks are of practical importance, especially in
flowable battery technology currently under development by
the Joint Center for Energy Storage Research (JCESR)5. In
these batteries, a conductive, flowing suspension of carbon
black forms an integral component of the system, see Fig-
ure 1(a). It has been shown in related systems11 that shear-
ing flows induce anisotropy in a contact network of sus-
pended particles, as pictured in Figure 1(b). In instances
where suspension conductivity arises from particle-particle
contacts, this structure anisotropy should give rise to conduc-
tivity anisotropy. It is this behavior that we seek to describe. It
has been shown experimentally that the electrical conductivity
of a suspension is highly sensitive to shear rate1, dropping by
several orders of magnitude as shear rate increases. From this
observation and the evidence of particle microstructure chang-
ing in shearing flow, we deduce that a suitably chosen descrip-
tion of the particle network should be sufficient to predict the
electrical conductivity of a suspension.

In the granular media literature, a great deal of attention has
been given to describing the structure of the contact network
between particles. Perhaps the simplest structural measure
for such a network that includes anisotropy is the fabric ten-
sor 15,16,18. While more complex structural measures exist,
such as pair- and higher-order particle correlation functions19,
whose use could enable greater accuracy in constructing a
conductivity model, we shall show that a suitable model can
be achieved solely in terms of the fabric. Key to our model de-
velopment is the solution of a simple case, based on a network
conforming to a lattice structure. The results instruct the form
for a new conductivity model, whose accuracy is then tested
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(a)

(b)

Fig. 1 (a) Image of a carbon black particle network, an elec-
trically conductive suspension10. (b) Image of an effective two-
dimenionsional suspension (attractive polystyrene beads on a fluid
surface), which has been subjected to shearing. Note the formation
of an anisotropic contact network between particles.11

against many thousands of random particle networks. To ex-
plore a range of particle networks, we describe two distinct
algorithms for creating random packings — one for denser
packings, and one for more dilute packings that closely re-
semble those formed by carbon-black — and demonstrate the
model’s predictive capability against thousands of packings
generated from both algorithms.

Homogenization

The tensorial form of Ohm’s law relates the electric field vec-
tor E to the current density vector J through a second-order
conductivity tensor K, i.e.

J = KE (1)

The conductivity tensor is a symmetric, positive-definite ten-
sor21. An effective conductivity for a representative volume
Ω of a heterogeneous material must be defined prior to any
analytical or numerical work. The effective conductivity of an

ergodic medium is defined by

〈J〉= K〈E〉 (2)

where 〈E〉 and 〈J〉 are, respectively, the spatially-averaged
electric and current density fields over Ω21. To avoid a
possibly over-reaching assumption of ergodicity — our tests
will be conducted on finite domains — we specify that
〈E〉 is imposed by prescribing a linear boundary potential
ϕ(x ∈ ∂Ω) =−〈E〉 ·x, and that 〈J〉 is redefined as the flux that
is power-conjugate to 〈E〉. That is,

〈E〉 · 〈J〉 ≡ 1
V

∫
Ω

−∇ϕ · jdV (3)

where j is the local current density field. In the ergodic limit of
the ensuing analysis, 〈J〉 reduces to a standard spatial average.

Assuming that the current density obeys Kirchoff’s current
law and Ohm’s law — respectively, ∇ · j = 0 and j = −σ∇ϕ

for some non-negative conductivity field σ(x) — a symmetric,
positive-definite conductivity tensor K must exist that obeys
(2). By using a calculus identity, Eq 3 can be transformed into

〈E〉 ·K〈E〉= 1
V

∫
∂Ω

−ϕj ·ndA (4)

where n is the outward-pointing normal vector.

We model the particles as perfect conductors, the fluid as a
perfect insulator, and we suppose electrical resistance arises
only at the contacts between particles. Likewise, the field ϕ is
approximated as a constant within each particle but possibly
varying from particle to particle. The above integral can now
be broken into a sum of integrals over the boundary. In the lo-
cations where the boundary passes through free space (i.e., not
a particle), then we know that j is exactly 0. This leaves only
the parts of the boundary that pass through particles, which al-
lows us to write the integral over the set of boundary particles
B, i.e.

〈E〉 ·K〈E〉= 1
V ∑

i∈B
−ϕi

∫
∂Ωi

j ·ndA. (5)

where Ωi is the intersection of the ith boundary particle with
∂Ω, and the potential within particle i, denoted ϕi above, can
be brought outside the integral since it is constant within a
particle. Although the precise nature of j is unknown within
the particle, the value of the integral

∫
∂Ωi

j ·ndA is the current
that is flowing out of Ω. Denoting this current as Iout

i we can
write the final expression for the right-hand-side of (4),

〈E〉 ·K〈E〉= 1
V ∑

i∈B
−ϕiIout

i . (6)
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Fig. 2 Schematic of a small resistor network with nodes and edges
labeled according to our conventions.
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Fig. 3 Schematic of particles in contact showing contact vectors ni.

The three independent components of Ke can be determined
by performing multiple simulations on the same particle net-
work with three non-colinear choices of 〈E〉.
By our assumptions for the particle properties, the problem
can be reduced further to that of a resistor network. The net-
work is defined by the set of particles acting as the nodes,
which are connected by a set of contacts acting as the edges,
which carry a resistance Rc. A schematic of an example net-
work with 9 nodes and 12 edges can be found in figure 2.
Supposing an N-particle sample and letting im,n represent the
(signed) current flowing from particle m to n, Ohm’s and Kir-
choff’s law can be rewritten in their simpler discrete form,

im,n =
ϕm−ϕn

Rc
(7)

and

∑
n

im,n = 0 for all m. (8)

Solving these linear equations for a given particle network en-
ables us to calculate Iout in (6) and hence the conductivity ten-
sor for the network.

We choose to use the fabric tensor as the measure of the net-
work structure. The particle-level fabric is a local quantity that

can be defined for particle p by the relation15,16,18

Ap = ∑
i

ni⊗ni (9)

where ⊗ denotes the dyadic product, and ni is the unit normal
vector connecting particle centroids of the i’th contact on the
particle. This is illustrated in Figure 3. To homogenize over
the entire particle network, or at least meso-sized region of it,
the average fabric tensor is defined as the system average of
the particle fabric tensors.

A =
1

Nparticles

Nparticles

∑
p=1

Ap (10)

The definition of the fabric tensor has some attractive features.
It is symmetric and positive-semidefinite, guaranteeing that
the eigenvalues are non-negative and that the eigenvectors are
orthogonal. These properties are shared by the conductivity
tensor K, suggesting the fabric tensor could be an appropriate
independent variable in the conductivity’s functional form.

Lattice-Reduced Model

We propose an analytical model to elucidate the connection
between electrical conductivity and the fabric tensor based on
a simplified lattice structure. We will test this model’s appli-
cability to random packings in the later sections.

The particles are imagined to live on an idealized infinite, pe-
riodic lattice. The lattice is parameterized by a set of numbers
that describe the particle size and spacing. These parameters
are (1) particle diameter Dp, (2) distance in x-direction be-
tween chains dx, (3) distance in y-direction between chains
dy, (4) distance in z-direction between chains dz. In 2D, only
the first three parameters are used. An illustration of a 2D lat-
tice characterized by these parameters is shown in figure 4(a),
with its fundamental unit cell shown in figure 4(b).

Both the average fabric tensor and effective conductivity can
be computed analytically. The average fabric tensor is defined
as the spatial average of the fabric tensor for all of the particles
in the unit cell and ultimately results in the formua

A =
2

Nx +Ny−1

[
Nx 0
0 Ny

]
(11)

In this expression, the key quantities to recognize are the num-
ber of particles in the x-oriented chain, Nx = dx/Dp, and the
number of particles in the y-oriented chain, Ny = dy/Dp.

Next, the effective conductivity was derived for the unit cell.
To do this, imagine applying an arbitrary voltage difference

3



(a)

(b)
dx

dy

Dp

Fig. 4 Idealized particle lattice and unit cell from which fabric-
conductivity relation was derived. (a) Example 2D idealized parti-
cle lattice. (b) 2D lattice unit cell and its resistor network analog.
Neighboring unit cells are shown in gray dashed lines.

across the x-oriented and y-oriented chains separately. These
voltages are ∆ϕx and ∆ϕy, respectively. effective resistance.
By applying Ohm’s law through the corresponding chains, we
can recover the components of the vector form of Ohm’s Law
shown in (1). For example, for the x-oriented chain

jx =
(

1
NyRc

)
(∇ϕ)x (12)

with (∇ϕ)x = ∆ϕx/dx. Due to the geometry of the problem,
we know that the off-diagonal components of the conductivity
tensor K are exactly zero. Therefore, we can say

K11 =
1

NyRc
. (13)

Similarly analysis yields

K22 =
1

NxRc
. (14)

Finally, the parameters Nx and Ny can be algebraically elimi-
nated to give the components of K in terms of the components
of A, yielding the tensorial relationship

K =
1
Rc

trA−2
detA

A. (15)

We refer to the formula in (15) as the “lattice model”. A simi-
lar analysis can be carried out for a three-dimensional unit cell,

which will yield the following expression for the conductivity
tensor,

K =
1

4DpRc

(trA−2)2

detA
A. (16)

The formulae above apply when trA−2 is non-negative. Oth-
erwise the solution is K = 0.

Despite its inspiration from the lattice structure, there are sev-
eral reasons to consider the applicability of the lattice model to
more general particle networks. For one, the formula purports
codirectionality of the fabric and conductivity, i.e. the devia-
tors of the two tensors are aligned, implying that the direction
of anisotropy of one tensor gives the anisotropy direction of
the other, which to a first approximation ought to match the
behavior of general particle networks. Second, the results im-
ply that conductivity should vanish when trA < 2, which is
sensible more generally (though not strictly) because particles
in a percolating chain, as needed to conduct current across the
sample, must have coordination number at least two. Above
this threshold, conductivity increases with trA in line with
one’s basic intuition for more highly coordinated networks.

We are aware of one other fabric-based analytical model for
conductive particle networks, which was developed by Jagota
and Hui12. In their work, a uniformity hypothesis is made with
regard to the potential gradient, which results in a conductivity
model that is fully linear in the fabric tensor,

K =
NV D2

p

4Rc
A. (17)

The above, which can be proven to be an upper-bound on the
real conductivity, is for a two-dimensional system and NV is
the particle number fraction (per area in 2D). This model dif-
fers from ours most notably in that the conductivity is not
thresholded by the coordination number, the formula depends
explicitly on the particle area fraction as well fabric, and it
does not depend on the fabric determinant.

Numerical Simulation

In order to perform numerical experiments and determine the
generality of the lattice model, a large number of random par-
ticle networks (packings) must be created. There are a num-
ber of methods to do this already in the granular and partic-
ulate matter literature. See the references for a broad sum-
mary of the currently available granular packing algorithms2.
Attractive suspensions have been modeled with the Diffusion-
Limited Aggregation (DLA) model of Witten and Sander13.
A common feature of many of the granular statics methods is
that they solve force equilibrium equations for a system of par-
ticles This was not a feature that was required for this study,
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Fig. 5 Example (using a small number of particles) of a dense particle
packing resulting from Algorithm 1.

so these types of methods were not used, in the interest of
saving computational time. Instead, we developed two meth-
ods for creating two-dimensional random contact networks of
particles, and we tested our model against numerous packings
generated by each method. Both methods allow us to influence
the resulting anisotropic structure of the packings.

Algorithm 1: Our first packing algorithm was designed to cre-
ate a dense random contact networks of particles. This is in
contrast to a later algorithm, to be described below, which cre-
ated packings that resulted in much lower-density packings.
The dense packings were created by perturbing a 2D hexago-
nal close-packing of particles. This was achieved by placing
points into a triangular lattice, adding random noise to the po-
sition of each point, and finally growing each particle as large
as possible such that no particles overlapped. Anisotropy can
be influenced by shearing the points with an affine transfor-
mation x′ = Fx before growing the radii. This process is de-
scribed in pseudocode below (Algorithm 1). An example of
the resulting packing overlaid by its analogous resistor net-
work is shown in figure 5.

Algorithm 1
Seed L×L box with close-packed points
Perturb points with random noise
Move each point to new location x′ by x′ = Fx
while Not all radii frozen do

Find smallest distance that any particle can grow
Grow all particles by this amount
Freeze radii of particles that come into contact

end while

Algorithm 2: This procedure was motivated by a need to better
understand the conductivity of carbon black suspensions in an

insulating medium. The self-attraction carbon black particles
leads to fractal particle networks that are electrically percolat-
ing at low volume fraction (below 1 vol%)5.

To produce structures that more closely resemble carbon black
suspensions, we developed our second packing algorithm,
which is inspired by the “hit-and-stick” behavior of the car-
bon particles. In addition, the new algorithm is able to include
the effects of particle Brownian motion but this is not essential
to the algorithm.

First, clusters (single particles at this stage) are seeded ran-
domly into a Ld box, where d is the number of spatial dimen-
sions. Next, a linear velocity field is imposed directly on each
cluster’s centroid according to

v =−B(x−O) (18)

where O is a point in the middle of the original box. This im-
posed velocity field serves to pull all of the clusters together.
The matrix B is a d× d matrix that allows us to impose an
anisotropic velocity field. This allows us to influence (but
not completely impose) the fabric tensor that results from this
packing method. After the velocity field is imposed, the par-
ticle positions are updated by assuming a time step dt (com-
puted at runtime). Then, the clusters are checked to determine
whether any contacts have been made with other clusters. If
so, the clusters are cohered into a single cluster for all future
steps. This process of imposing velocity, updating positions,
and handling contacts is repeated until only a single cluster re-
mains. The process is outlined in pseudocode in Algorithm 2.
An example of a packing resulting from this process is shown
in figure 6 and a larger example is displayed in figure 7.

The box-counting fractal dimension6 of the resulting packings
was computed in order to determine if they resembled real-
life packings found in experiments. The fractal dimension of
packings produced by this method is approximately d = 1.75.
This was compared against the particle network image in fig-
ure 1. This network has a fractal dimension of approximately
d = 1.7± 0.1. Uncertainty in the measurement is due to the
image processing techniques used to identify particles. Based
on these measurements, we are satisfied that this algorithm
produces realistic packings, although more detailed correla-
tion function measurements would be needed for a firmer con-
clusion.

Applying boundary conditions: In order to apply the solution
method described above to an arbitrary packing of particles,
appropriate boundary conditions must be applied. In these
simulations, a prescribed voltage was applied to particles all
around the boundary. This process consists of two steps: first,
the boundary must be identified, and second, the linear system
must be updated to reflect the known voltages.

5



Algorithm 2

Seed N clusters (particles) in Ld square
while NClusters > 1 do

Move clusters according to v =−B(x−O)
Locate collisions between clusters
Combine clusters in contact and recompute centroids

end while

Fig. 6 Example (using a small number of particles) of a packing
resulting from Algorithm 2 using a small number of particles.

For the first packing algorithm, identifying the boundary is a
trivial process, since the particle locations are known a priori.
For algorithm 2, however, the particle positions are not known.
A boundary can be located visually quite easily at the end
of the simulation process, but performing this step manually
would be prohibitively slow. In order to expedite and automate
the simulation process, the following method was devised to
locate the boundary.

First, histograms of the particle x and y positions were sepa-
rately created. To find the “left” and “right” boundaries, de-
noted x− and x+ respectively, the histogram of x positions was
thresholded. The value x− is defined as the smallest x value
where the histogram reaches 50% of its maximum value. The
value x+ is defined as the largest x value that meets the same
criterion. The top and bottom boundaries, y+ and y−, are
found in the same manner using the histogram of particle y
coordinates. The threshold value 50% was determined emper-
ically to locate the same boundary that one would identify vi-
sually. An example packing and its associated x-position his-
togram is shown below in figure 7 to demonstrate the efficacy
of the method. Once the location of the boundary has been
identified, all particles whose centers fall less than one radius
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Fig. 7 Example 10,000-particle packing (from Algorithm 2) with
its associated x-position histogram and the boundary selected by the
method.

away from the lines are marked as being “boundary particles”.

The expression in (6) can be computed easily from the solu-
tion of the particle network, so by judiciously choosing 〈E〉,
the components of Ke can be extracted. In two dimensions,
the effective conductivity tensor has three independent com-
ponents, so three simulations are sufficient to extract all of the
components. The K11 component can be extracted by setting
〈E〉 = ex. This corresponds to evaluating the integral for an
applied boundary voltage of ϕ = −x. The remaining tensor
components may be similarly extracted by applying specific
potential fields at the boundary and evaluating the summation
given in (6).

Tests

The previously described packing algorithms and solution
procedures for the current/potential have been implemented
in Matlab. Algorithm 1 was used to create 50,000 separate
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400-particle packings. In all of these packings, the F11 and
F22 components of the affine transformation F equalled 1.0.
The F12 component that controlled the shearing of the packing
ranged between 0 and 0.5 in increments of 0.01. Any par-
ticles that were sheared out of the original bounding rectan-
gle were reflected to the other side of the box to return the
packing to a rectangular geometry. Algorithm 2 was used to
create 10,000 separate 5,000-particle packings. In the B ma-
trix, the B11 component remained 1.0, and the B22 component
was varied in [1.0,1.9] in increments of 0.1 to influence the
level of anisotropy of the resulting packings. In all simula-
tions, the contact resistance Rc was assigned to be 1, so it did
not have any affect on the following analyses. After applying
the previously described procedure to each packing to obtain
the effective conductivity tensor and average fabric tensor for
each packing, the data were analyzed to determine how well
the results agree with the model’s prediction for the isotropic
magnitude, the deviatoric magnitude, and the direction of con-
ductivity. These tests are described next, and thereafter we
shall proceed to show how well the lattice model performs
compared to the existing model, equation (17).

The isotropic behavior of the conductivity can be investigated
by taking the trace of both sides of (15). The average coordi-
nation number is the most natural independent variable when
examining the isotropic behavior, so in addition to taking the
trace of both sides of (15), both sides were multiplied by detA
in order to make the right-hand side a single-valued function
of trA. This results in (19).

Rc trK detA = (trA−2) trA (19)

The results of the simulations are plotted together with the an-
alytical curve given by (19) in figure 8. It was found that the
analytical solution is usually an upper bound on the measured
conductivity. This can be explained by the fact that the ana-
lytical model was derived from an idealized system where the
chains span a unit cell in a straight line. Since the total resis-
tance of a chain is proportional to the number of contacts in the
chain, it follows that the shortest chain between any two points
is the lowest resistance path, and therefore most conductive.
Since the model was derived from a straight-chain idealiza-
tion, it implies an upper bound on the conductivity. This logic
is less valid in low-coordinated systems, which have many dis-
connected groupings of one or two particles; low-coordinated
systems rarely if ever occur from Algorithm 2 or in actual car-
bon black suspension networks. In this case, the trace of the
system’s fabric can be less than 2 but percolating chains may
still exist to produce small but non-zero conductivity. This
effect is evident in the figure in the data of Algorithm 1.

Next, we determine the extent the analytical lattice model pre-
dicts the anisotropy of the conductivity. To remove the influ-

0 1 2 3 4
0

1

2

3

4

5

6

trA

R
c
tr

K
d
et

A

 

 

Algorithm 1
Algorithm 2
Lattice Model

1.95 2 2.05 2.1 2.15
0

0.05

0.1

0.15

0.2

0.25

Fig. 8 Predicted relationship between the (modified) trace of the
conductivity and the fabric trace, compared to numerical results of
50,000 packings generated by Algorithm 1 and 10,000 generated un-
der Algorithm 2. Inset is a zoom-in of the vicinity of trA = 2.

ence of the isotropic behavior, we take the deviator of both
sides of (15). In this case, the most natural independent vari-
able is the magnitude of the fabric deviator, so the resulting
equation was manipulated to be a single-valued function of
this quantity. After manipulation, (15) can be written as (20).

Rc K0 :
A0

|A0|

(
detA

trA−2

)
= |A0| (20)

where a subscript 0 denotes the deviator of the tensor, and the
term A0

|A0| is commonly referred to as the direction or sign of
the tensor A0. The left hand side of this was plotted against
|A0| to test the predictive power of the model. It can be seen
in figure 9 that, although there is a large amount of noise in
the measurements, the model captures the mean behavior very
closely.

The final prediction that must be examined is the notion of
codirectionality. The analytical model in (15) predicts that
the fabric and conductivity tensors have the same eigenvec-
tors. To examine this, the angle difference between the fabric
and conductivity deviators was calculated, which is equivalent
to the (signed) angle between the eigenvectors corresponding
to the largest eigenvalues of the two tensors, denoted eK and
eA. The deviators were chosen because, in 2D, the eigenvec-
tor corresponding to the positive eigenvalue can be unambigu-
ously chosen. The probability density function of the angle
difference as a function of ∆θ is plotted in figure 10. It can
be seen that this distribution is symmetrically centered around
zero, indicating that the fabric and conductivity are strongly
codirectional.
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Finally, we also compared the lattice model, (15), to the ex-
isting model by Jagota & Hui12 shown in (17). For the same
60,000 packings generated using both packing algorithms, we
computed the relative error of the prediction of the trace and
the determinant of the conductivity using each model and
plotted the results in figures 11 and 12. In every case, we
found that the new lattice model predictions were closer to
the true values from the numerical experiments than the pre-
vious model by Jagota & Hui. On the other hand, the Jagota
& Hui model maintains a strong upper bound on both invari-
ants of the conductivity tensor, whereas the lattice model is
not strictly an upper bound, as previously discussed.
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Fig. 12 Plot of the relative error of the determinant of conductivity.
(Left) Relative error from packings created with Algorithm 1. (Right)
Relative error from packings created with Algorithm 2.

Discussion and Conclusions

In this paper we have derived and tested a new model relating
the structure of a packing of particles to its tensorial electrical
conductivity. The assumptions implicit in the model are that
the suspending medium is a perfect insulator and that electri-
cal resistance arises only at particle contacts. The structural
measurement used was the fabric tensor, and the model arises
from a straightforward analysis of a representative problem
involving a lattice structure. The resulting model takes a non-
linear functional form, and was tested multiple ways against
numerical simulations of many thousands of random parti-
cle packings. The agreement in its predictions of the various
scalar properties and tensorial orientation is significant, espe-
cially in light of the simplistic nature of the fabric tensor being
the sole independent variable for the model. In our tests, the
lattice model’s accuracy was shown to be higher than an ex-
isting conductivity model, a model which requires more struc-
tural input data than the lattice model. While it is definitely
possible to write a more accurate model by including depen-
dences on more structural variables — some of our data spread
is due to the finite nature of the datasets, but some is surely due
to modeling error — the current simplicity of the lattice model
is an advantage for its usage in engineering applications in-
volving flowing suspension networks. Modeling frameworks
for the evolution of anisotropy tensors in flowing media have
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been developed over the last decades7,8,17; keeping our model
in terms of fabric, then, suggests a path to the simulation of
simultaneous flow and current transfer fields in nontrivial sys-
tems by coupling a fabric evolution rule and a rheology with
our conductivity model. Such a capability would be key in the
targeted application of modeling flow battery systems, which
rely on a flowing conductive suspension that closely resembles
the idealized system that we considered.
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