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O) Flows of granular media down a rough inclined plane dematest number of nonlocal phenomena. We apply the recently
- proposed nonlocal granular fluidity model to this geomeiry find that the model captures many of these effects. Utditihe
<E model’s dynamical form, we obtain a formula for the critistdpping height of a layer of grains on an inclined surfacsing
an existing parameter calibration for glass beads, tha¢fieal result compares quantitatively to existing expemtal data for
C\J glass beads. This provides a stringent test of the models@vprevious validations focused on driven steady-flow @noisl For
layers thicker than the stopping height, the theoretical fioofiles display a thickness-dependent shape whose ésatue in
T agreement with previous discrete particle simulations.a¥§e address the issue of the Froude number of the flows, wilaish
“= been shown experimentally to collapse as a function of ttie e layer thickness to stopping height. While the collajsnot
obvious, two explanations emerge leading to a revisitintpetistory of inertial rheology, which the nonlocal mods=ierences
4 forits homogeneous flow response.

®
E 1 Introduction cept of “granular fluidity” has shown itself able to recoecil
[ the issues of grain-size dependent shear features as well as

“O Nonlocal effects in granular media manifest in myriad diffe the mechanically-induced creep effect in granular m&di&

C ‘ent ways. At the origin of the nonlocality is the finite size While these demonstrations pertain primarily to the way in
of the grains themselves, inducing cooperative behavi@s t which grain size influences spatial fields in materials that a

— defy local rheological description. Examples include gfai driven to flow, nonlocality as studied in inclined plane flows
size-dependent shear features in the steady flow profiles ¢f of a relatively different nature, particularly the natiof a

«—1 ‘granular media. A local rheology can be extracted from uni-stopping height, i.e., whether a material flows at all. Dispi

— form simple shearing data of a granular médimowever,  this distinction, in this paper we shall show that the noaloc

3 nonuniform steady flows of the same material can be seen tuidity model captures the phenomenology observed in the

~ violate such a relaticf?, as the grain-size sets up an internal jnclined plane geometry. Doing so provides a new test of the

LO length-scale that effectively penalizes variations in flate  framework, in a family of problems distinct from those previ
. .over space. A more recently observed nonlocal manifestatioously studied.

0O ‘is the mechanically-induced creep effect, also known as-“se
O ondary rheology®~". A highlight of this phenomenon is that (.

flow anywhere in a granular media removes the yield condiy 5 stonning height and how it varies with inclination, (il
. t|9n ev_erywhere, and the rheology of probes in the body sarie, 4 iation in shape of the flow profile as inclination incresase
= 'with distance from the source of motion. Some of the mMostpove the stopping height, and (iii) the dependence of mean

>< compelling demonstrations of nonlocality in granular needi g, speed on the ratio of the thickness to the stopping height

E caneSkflobserved in the behavior of grains on an |nc_I|ned SUFThese three phenomena have been well-studied (see aggre-
face”=% Contrary to local rheological models, which pre- jaiaq gata in MiDH) and constitute the major manifestations
dict a thickness-independent repose angle, experiments ar; nonlocality in inclined plane flows.

discrete simulations verify that granular layers have #-cri

cal “stopping height” proportional to the grain size — layer

thinner than this value come to a stop, whereas thicker sayer

admit steady flow down the incline. 2 From local to nonlocal granular rheology
Recently, a nonlocal rheological model based on the con-

N : — : We begin by describing the inertial granular rheology ared th
Department of Mechanical Engineering, MIT, Cambridge, MSA. B n1ncal granular fluidity model (per the review in Kamrirdan
mail: kkamrin@mit.edu

14 inarti
b School of Engineering, Brown University, Providence, R§AU E-mail: ~ Koval ) The inertial rheology for steady flow of de_nse gran-
david henann@brown.edu ular media relates the local stress state and the strahiat®

Herein, we compare theoretical results to known results
e., experimental or DEM) on the issues of (i) the presence
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and is expressed via the dimensionless relationship:

K= poc(l), | =yy/psd?/P, p=1/P @)

In the abovey is the ratio of shear stregsand normal pres-
sureP, andl is the inertial number, whengis the shear rate,
d is the mean grain diameter, apglis the grain density. The
function foruec(1) is empirically fit and is typically character-
ized by a yield coefficientis such thafuec(I — 0) = ps. Un-
der quasi-static circumstances, for whigtdoes not increase
substantially abovegs, a linear fit is often used,

Hioc(l) = ps+ b, 2

whereb is a dimensionless material parameter.(Aiscreases
further aboveyus, curvature of the function is observed with
an asymptote at an upper-limiting value jof denotedu,. A
common fit i/

tioc(1) = ps+Ap/(lo/1 +1) 3)

whereAu =y, — s andlg = Ap/b.
The inertial rheology works well in describing uniform

state parameter called tigganular fluidity, andé is the plas-

tic cooperativity lengthwhich is proportional tal. Note that

in planar shear, flow gradients vanish and the above reduces
appropriately to the local rheology, but in the presenceraf g
dients, the Laplacian term “spreads” fluidity basedé&nin

our previous work?13 we have verified thaf is, in fact, not

a constant length but satisfies

A
VA ’

roughly in-line with prediction of the kinetic-elasto-glic
(KEP) theory on which other fluidity models are basgd
The parameted, the dimensionlessonlocal amplitudeis the
only new parameter in the model, which quantifies the spatial
extent of cooperativity in the flow.

&(p) = (5)

2.1 Dynamical system for fluidity

In Henann and Kamrit?, we describe how the steady-state-
only NGF model — i.e., EqdX1)(2)1(4)]1(5) — is obtained
in its entirety from the steady flow limit of a thermomechan-

flows (e.g., planar shearing) over a wide range of flow fates ically derivable dynamical system fgr One treats the flu-

flowing, quasi-static material the one-to-one inertiahtien
betweeru andl is violated®. The behavior displayed in these
zones is definitively nonlocal; the bulk stress/straireriag-

rate free-energy contributions. By selecting the corregpo
ing free-energies in a fashion that preserves the lineatiahe
rheology in uniform flow conditions, Ed.]J(2), we obtain the

havior at steady-state changes as the macroscopic geomefgflowing system:

varies, even when the local kinematics are identical.
The “nonlocal granular fluidity” (NGF) model may pro-

vide the solution to the above issues. It has demonstraéed th

ability to quantitatively predict granular flows in many dis

. | psd?
tog = A?d?00%g— (us— H)g—b p%ugz, (6)

parate geometries, with predictions verified in 2D and 3D agVhereto > 0 is a constant time-scale. The steady-state-only
compared to both discrete-particle simulati&and experi- Model arises as the approximate solution of the stabledstea
ments3. It is the first continuum model to quantitatively de- P€havior ofgin the above dynamical partial differential equa-
scribe all experimentally-obtained flow data in the complextion (PDE). The approximationiis valid as 1ong@s: goc + 0
split-bottom family of geometri$. It has also been shown for some small functio, wherego. emerges as the stable
to correctly capture other nonlocal phenomena such as norsolution when the Laplacian term above vanishes. To switch
locally induced material weakening, whereby the motion ofth® local response to the more robust form, Eg. (3), the same
a boundary removes the yield strength of the material every2nalysis can be reapplied giving

where, permitting far-away loaded objects to creep through

the grains when otherwise they would remain sttic : 2422 Hs—H pd?
tog = A°d“0°g—Ap | ——— | g—by/ ——pug-. 7
Our exisiting work has implemented the NGF equations in od g—aH Ho— U g P He Q)

a reduced, steady-state-only form )
y y When the above is reduced to a steady-state only model, the

Y= 0u, nonlocal system obtained matches the aforementioned one in
. - the appropriate limit of4 nearps, as it should, withé main-
Goc(H,P) = Yoc (U, P) _ Mocl(ﬂ) P/ psd? 4) taining the same inverse square-root divergence beffavior
) u u )

* The precise form of in the steady-state system corresponding to[Bq. (7) is

H2—H
=A,/———"d.
f=A Aplp— ps|

Note that the limit of EqL(8) ag> goes to infinity corresponds to EQ (5).

9= Gioc+ £20%g,

where the linearized version gfoc(1), Eq. (2), was used since
flows of interest were all close to quasi-static. The figid a

®)
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The dynamics ofj presented above have yet to account for We compare the results of our model to the experiments
bistability of granular flows nor do they account for the to- of Pouliquer, where glass beads were used as the media.
tality of transient effects that occur in a sheared granmlesr  The local continuum parameters for glass beads have been
dia. To the former point, recent experimental evidence sugealibrated in Joget al.t’ and areus = 0.382= tan(20.9°),
gests non-monotonicity of the local response (contraryge E pp = 0.643 = tan(32.76°), b = Au/lp = 0.938, andps =
and[B) may exist giving rise to bistable flow hysteresis in2450kg/ni. The nonlocal amplitude for glass beads was cali-
certain circumstancé8 To the latter point, Reynolds dilation brated in Henann and Kamr# to beA = 0.48. We can there-
during shear initiation induces transient variations irtenal ~ fore apply our model in this geometry without additional pa-
strength, which are commonly described using criticalesta rameter fitting, as long as we can identify accurate boundary
modelg? but which are not yet included in our fluidity dynam- conditions for the fluidity and basal slip velocity. We have
ics. Instead, our model above intends to provide is an ateuratried two different fluidity boundary conditions in our past
long-term dynamical behavior of the material when passingstudies, chosen primarily based on simplicity, with the un-
through a sequence of developed flowing states. We note thderstanding that the choice is less important far from syste
the process of obtaining a steady-state-only relation feom boundaries due to the source-diffusion nature of the flyidit
fully dynamical form has a history within fluidity-based mod system. However, due to the thinness of the layers we wish
eling for other amorphous media The dynamical form of  to consider here, the accuracy of the boundary conditiomhas
the nonlocal fluidity model shows mathematical similagtie much larger influence on the flow behavior. To remove this is-
to order-parameter-based rheological approaches, wkdch a sue, we opt instead to extract the fluidity boundary cond#io
feature a diffusing state variat®e directly from existing flow data. In discrete particle siraul
tions of Silbertet al.?, who also used spherical particles, it is
apparentthat adjacent to a fully rough boundary, the stegar-
(and velocity fluctuations) approach an approximately stani
ing state, and the mean velocity vanishes, indicating mmo sli
At or near the free surface, there is usually (though not al-
ways) a zone where the shear-rate appears to level off and a
vanishing shear-rate gradient is observed. Likewise, we wi
assumea = 0 andv = 0 along the rigid surface at=H and
takedg/0z= 0 at the free surface= 0. Since these boundary

See Fig:lL(a) for reference. Accordingly, if a local relatio conditions are homogeneous, they always permit both flowing

were applied, either Eq(2) dil(3), one would predict a unive @nd static solutions. . .

sal angle of reposé; = arctarus, i.e., any layer tilted above ~ The phase diagram of flowing and non-flowing states ac-

6; would be predicted to flow. cording t(_) _the nonlocal model can be obtained b){ determining
A signature of the cooperativity of granular motion is the the conditions necessary for the glolgak 0 solution to be

fact that this universal repose angle is contradicted iregxp StabPle, as this decides if a system perturbed to flow retorns t

ments. As shown initially by Pouliquérand verified by oth- azsta'uc state. In EA.(7), a perturbation abgutO renders the

er®-1 the angle at which an initially flowing layer of grains 9~ term negligible. The remaining PDE is linear and, substi-

comes to a stopstop, depends sensitively on the thickness of tuting u = tané, it is solved by

the layer wherH is small. Inverting, one can extract a func-

tion Hstop(6) for every granular media and substrate, which 9(zt) =

repre_sents the critical thickness at which a flowing layea at 2A2d2 tand — s\ t Z

certain angle would arrest. Cexp[(—w +Aﬂm> t_] cos(ﬁ) , (10)
Unlike our past studies, which have focused on nonlocal ef- He 0

fects in media that is necessarily flowing, the problem aésiz whereC is a constant prefactor. The solution decayg te

dependent strengthening of thin layers often presentsicondO as long as the term in the exponent is negative. Hence, a

tions that do not satisfy thg= gioc + & approximation neces- perturbed layer solidifies if

sary to reduce the mathematics to steady-state-only foem; i

material stopsdq = 0) although the inclination can be steep H < n_Ad Uz —tang Heton(6) (11)

enough forgiec to be notably greater than zero. To study in- 2 \|Au(tano—p) TP

clined flows, we must revert to the primitive, dynamical form

of the nonlocal fluidity model, E{7), to ensure accuracy ofA similar mathematical technique was utilized?¥n The

solutions, which should be valid up to and including steep in above shows that for tall layers] > O(d), the material is

clination angles. predicted to have a common repose anglé,0f arctaris).

3 Strengthening due to thinness

In the inclined plane geometry, a layer of thicknésss in-
clined to an angl#. Assuming a packing fraction ap and
acceleration of gravitys, the stress distribution in the layer
obeys

u=tanf, P = @psGzcoshb. (9)
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functional forms.

For a direct comparison, in Fig. 1(b), the above predicted
form for Hstop(6), using the parameters for glass beads, is
compared against Pouliquen’s experimentally determiaéd v
ues using glass beads with a fully rough base. It is worth
pointing out that the model's result was obtained using the
same continuum parameters that were used to successfully
predict steady flow fields of glass beads in split-bottomscell
and other geometriéd Yet here, the question is of a different
nature, one of predicting input conditions for flow stoppage
rather than velocity profiles in a flowing body.

We note that a size-dependent starting heltgat( 6) — the
height at which a static layer initiates flow — is also obsdrve
experimentally. Its curve depends on the preparation of the
static layer and differs somewhat frarop, though it shares
the same qualitative features (e.€;, and 6, values where
the curve asymptotes and vanishes respectively). Our sinaly
above is tailored téisiop since it reflects the limiting behavior
of a flowing solutions a$l (or 8) is decreased, however we
note that without a bistable term in our dynamics, a distinct
Hstart curve does not arise theoretically.

(b)

Hstop/d

4 Velocity profiles

18 20 22 24 26 28 30
0 (degrees) For angles betweefy and6,, andH exceedindHstop the ma-
terial has a steady flow state down the incline. As reported
Fig. 1(a) Setup of the inclined plane flow geometry. (b) collectively in GDR MiDit! and explored directly in Silbert
Theoretically predictedfistoplocus (-), Eq.(IlL), as calibrated for et al., the shape of the flow profile varies from concave up,
glass beads on a fully rough base, compared to experimentall to roughly linear, to concave down &b is increased. The
determined valuesf from Pouliquer?. concave down shape observed for larhis well-fit by the so-
called "Bagnold profile” obtainable by integrating the stra
rate predicted by the inertial rheology through the thideef
However, for thinner layers, an inclination higher tharsthi the layer. The result is of the form
value is needed to stop flow. This applies up to an upper
limit of 8, = arctariuy) at which all layers, independent of Veag(2) O H¥? - 2/2. (12)
height, are predicted to flow. The existence of two critical a
gles having these properties has been verified as a comm
trait of Hstop data in inclined plane flows in multiple exper-

Figure[2(a) shows the discrete particle simulation datailef S
Yere for inclination anglef = 24° and various values of
H > Hstop(6 = 24°). We have computed numerical solutions

|m(ejntsbar:d fézrtl\(j\l/i S|m_;JIat|ons ;nvolvm_gf;_ d;ﬁer?_nt ml?tsr to our model at the same inclination angle and several layer
and substrates. en 1t comes 1o Speclic IUNCHoNAlIoMMS i nesses. We note that the stopping curves of the simu-

for Hstop data, several fit curves have been proposed, a tOp'E‘;\ted material and glass beads are different at 24°, the

we shall return to later, but all invoke critic@}l and 6, val- simulated particles have #fy,/d value more than twice that

ueistgs désc&%ed -he}re. Itl bears n?tlngltthatththe de*."é?ﬂ of the experiment. To make an appropriate albeit qualgativ
relation, Eq.[(1Ml), is linearly proportional to the coopiafity comparison, we select ottt values so as to (roughly) match

length, Eq.[(B), i.e.Hsioplarctanu) = (11/2)¢ (k). This is in the relative height$l /Hsiop used in the discrete simulations.

IlnetV\gtPhe;(pelnm_tental ol:luste_rvalnonsthof_P(_)ulllqlmng\iho re The results are in Figl 2(b). The model predictions are ealcu
ported that veloclly correlation Iengihs in Inciined p S lated by evolving Eq[{7) using finite-differences in MATLAB

vary W'th 6 (and h_er_lceu) Ina similar manner ablsiop We usingAx < d and the Bagnold profile as the initial guéss
emphasize that this is a derivable consequence — not an-under
Iylng qssumptlon —ofthe dynamlcal syste_m, H] (7) F_Urth_ewlln the numerics, we allow a small pressure on the top sudaoesponding
one will obtain the same result when working with the simpli- 5 the weight of a layer of1,/2)d thickness, i.e Rop = (1/2)@psGdcosd, to

fied dynamical system, EQJ(6), albeit with slightly modified ensure that the coefficient of tigg term in Eq.[T) remains bounded.

4| Journal Name, 2010, [voll 1{7] This journal is © The Royal Society of Chemistry [year]



The model shows that fdd nearHstop the profiles display () 1
a concave-up feature in agreement with the particle simula-
tions. It could be said that the concave up appearance isdue t
the comparative unimportance of tg&term in Eq.[7) when
flows are slow, which, if neglected, gives a cosinusoidal-sol
tion forgandv ~ 1—sin(zrr/2H). AsH increases to be much 067

08¢

>
greater tharHstop, the profiles approach the Bagnold profile, §
which agrees with the discrete simulations and is sensible = 04l
since the relative importance of the particle-size-depahd
term in Eq.[(¥) diminishes in a tall flow; if neglected, the re- 02

maining terms give exactly the inertial rheology at steacyfl
The transition between these extremes is marked by velocity
profiles displaying a linear character. It can also be oleskry 0
that, in agreement with the data and in contrast to the Baignol

profile, the model does not always require a zero strainatate

the free surface. (® 4

5 Discussion of the Froude number 08}

We now discuss the mean flow speed of granular media down
an incline. Pouliqued, and others thereaftér!, have ob-
served that the Froude number of the fléw,//GH, appears

to be a relatively well-defined, one-to-one function of thke r
ative heightH /Hstop for all angles and heights as longlds

is not close tdHstop In this range, they find

v / Vmax

0.4}

02}
v) B H
VGH " Hstop 0 0.2 0.4 06 08 1

where, for glass beadg,= 0.136. When results of the nonlo- z/H

cal theory are plotted in this fashion, Hig. 3(a), we do not ob

serve a one-to-one correspondence between the Froude nuftig. 2 () Discrete particle simulation data of Silbettal 2 for
ber and the relative height. We have two comments on thi§ = 24° and many layer thicknesses (increasing from top to

point, that may explain the discrepancy. bottom). Dashed !ine is .the Bagnold profile. (b) Theoretirafiles
for the same relative heights,/Hstop=~ 1.1, 1.9, 2.7, 4.1, 6.4, as

well asH /Hstop = 20.

(13)

5.1 A more preciseHsipcurve

Collapse of the Froude number is sensitively dependenten th

fit one uses foHsop( ). In the form obtained from our theory,

we notice some deviations from the experiment which magg »  consistent local rheology
nify, unsurprisingly, as one approaches the asymptot® at

(see Figll). A different fit functiol, empirically matched to

the data in Pouliquen takes the form . . : S
queh An alternative explanation could be found if we revisit th& h

U — Us tory of the local inertial rheology. The rheology in Hd. (3sv
Hstop(6) = Lo (m - ) ) (14)  arrived at, coincidentally, by fitting data for glass beads/fl
ing down inclines (see Appendix A of Jag al.X!). First, a
whereLo/d ~ 1.65 (see the caption to Fig. 8 of Forterre and form for Hsiop Was fitted empirically from experiments (i.e.,
Pouliquert?). If we use the above relation folsiop @ rather  Eq.(14)). Then(v) was calculated in terms of an as-yet-
strong collapse of the Froude number versus relative heighinknown functiornuec(l) (assuming fully local rheology and,
emerges (see Figl 3(b)). Thus, it may be that the lack of @onsequently, the Bagnold velocity profile, Hgl(12)). Treis
collapse of the Froude number is attributable to deviatibn osult was subsequently substituted, along with the empirica
the predictedstop curve. Hstop function, into Eq.[(IB) to solve fopec(l). The result

This journal is © The Royal Society of Chemistry [year] Journal Name, 2010, [voll, 17 |5
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Fig. 3 Predicted Froude numbek)/+/GH, at inclinationsd = 22.5(+), 24(0), 25.5(0), 27(A), 285(57), and 3@x) degrees while varying
H from 12-8d, plotted against the relative height, utiliziflgiop(6) as shown in (a) Eq{11) and (b) EQ.{14). (c) Theoreticalltegoen the
local rheology is chosen consistent with the theoretitzadp, per Eq.[I5). In (a)-(c), dashed line is the experimentliapse line, Eq[(13),
with B8 = 0.136.

is a local rheology having the form We apply the above system to inclined plane flows. Letting
50 q Z=7z/H andg'= guHstp/ vGH, writing P = @psGzcosb, re-

| = Uoa (M) = calling the definition oB, and allowingd; < 6 < 6,, Eq. (1T)
2,/pcogarctaru) Hstop(arctaru) (15) produces steady solutions given by
d 7T2 2
~ 3 H .2 1,
B Hstop(arctaru)’ 0=0z+ 4 (Hstop) (g 58 EgZ) . ()

which generates Ed.](3), upon substituting Eql (14)Hepp
As was done in Jopt al.1?, the term containing the square-
root is replaced with a constaBt (=~ 2.17 for glass beads) '’ o
because the cos function does not vary much in the range Jy'se the velocity field obeys
use. We see that, historically, the fit function chosertHagy H H
gives rise to the functional form one obtains for the inértia  V(2) =/ y(Z) dZ =/ ug(z) dz
rheology. z z

Let us repeat this logic in a thought experiment. Suppose, =VGHV (z/H;H/Hstop).  (19)
through Eq[(Ib), we replace the local rheology in our theory_ i i
with the one corresponding to our fit for tiop function, Finally, we arrive at a relation for the Froude number:

The only varying parameter in the above is the rétitHstop
Hence, all solutions have the form="6(Z H /Hstop). Like-

Eqg.(11). Theresultis ) 1 1 H
=~ [ vw2)dZ
=y - YR [E= T ae ~ VEH VGHHU
Hioc TAB Lo — U : 1 N )
With this, the nonlocal fluidity dynamics are expressibla-co B /0 V(& H /Hetop) d2=Fr(H/Hsop).  (20)
veniently as We conclude that when the sarhigiop curve we derive the-
. 2 0 oretically is used to fit the local inertial relation, the ame
tog = A°d“0°g gent nonlocal theoryequiresa collapse between the Froude
) number andH /Hstop for all H > Hstop.  This is an interest-
A < d > 9-B | psd? ( d ) ug?|  (17)  ing result because while the local relation on its own would
4 Hstop P\ Hstop ' require such a collapse by definition, this is the full nonlo-

cal solution. WhenH /Hsiop is large enough, the second-

Only theg? term has changed so the previous stability argu-derivative term in Eq[(18) is negligible (excepting a rapid
ment identically produces outstop function, and Eq[(16) is
now obtained in the homogeneous flow limit as the new locafhrough EqI#) with local rheology E@.{IL6) and coopergtiength Eq.[(8).
responﬁ We note that the coefficient af in Eq. [17) is for the moment only defined

for 4 > s as needed for the Froude number analysis, but any monotenic e
tension of ¥Hstop for u < pis may be assumed without affecting the analysis
tIn fact, the steady-state-only system corresponding to{l&) is given nor the corresponding steady-state-only relation.

6| Journal Name, 2010, [voll.1{7] This journal is © The Royal Society of Chemistry [year]



variation near the lower boundary), and the solution dor “rate in terms of aperture opening size, indicates a critipah-

approaches that of a purely local material behavior.
wise the function RiH /Hstop) 0beys F(H /Hstop) ~ BH /Hstop

Eq. (17) verifies these analytical properties (see[Fig) 3@

Like-ng size at which flow stops. This effect may be roughly anal-
ogous to the stopping height observed for inclined flows, and

for H > Hstop, matching EqI(I3). Numerical integration of it would be useful to apply the nonlocal fluidity model in this
geometry to determine if the Beverloo correlation can be ob-

observe that Fd) = 0, which is sensible as this correspondstained from the nonlocal model.

to the stopping height, and our model does not include Histab

terms. Although it is unclear in discrete simulations and ex Acknowledgements

periments what the precise behavior of the Froude number is
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heigh and other data suggests it equals Zéras our model
purports.
A short commentary is in order. The above result comes at

the cost of adjusting thgoc relation from the commonly used References

form of Eq.[7), to a form compatible with the theory’'s own
predictedHstop function. The new relation, Eq.(1L6), is qual- 1
itatively similar to the previous, witlu increasing monotoni-
cally from us to uo asl increases. One difference is that the
new relation haslyec/dl = 0 atl = 0 whereas the former has
a positive slope. There has been a debate recently over the be
havior of joc nearl = 0. Some experimental data suggests, in 5
fact, a negative initial slope fquoc2%25 while other fits sug-
gest a steeper-than-linear power-law behavior heaf2®. It
bears noting that our previous work on nonlocal fluidity has -
focused solely on quasi-static flows, in whigh< pis almost 8
everywhere and the only important aspect of the local rheol-9

ogy is the value ofis. 10
11
12
13

2
3

6

6 Conclusion

We have applied the theory of nonlocal granular fluidity to 14
the canonical problem of size-dependence in granulaniedli 15
plane flows. The theory, as calibrated to glass beads based of
prior data, predicts ahlsiop curve that matches experimen- i;
tal data rather well. Further, the theory predicts flow pesfil
that vary in shape in a fashion consistent with existing dis-g
crete simulation data, marked by an upward curvature farlay
thicknesses$i close toHsip and transitioning to the Bagnold 21
profile for largeH. While the Froude number does not exhibit

. . X o 22
a direct collapse againbt/Hstop We have identified two pos- o3
sible explanations for this and corresponding ways in which,,
the collapse can indeed be obtained.

Perhaps the most compelling result herein is the predictioR5
of theHstop function, which suggests the nonlocal fluidity con-
cept could be used to model other size-sensitive flow stappa 3
phenomena, such as silo jamming. The famous Beverloo cor-
relatior?’, an empirical functional form that gives silo flow

F. da Cruz, S. Emam, M. Prochnow, J.-N. Roux and F. CheRbiys. Rev.
E., 2005,72, 021309.

P. JopPhys. Rev. E2008,77, 032301.

G. Koval, J.-N. Roux, A. Corfdir and F. Chevolrhys. Rev. F2009,79,
021306.

K. Kamrin, Int. J. Plasticity 2010,26, 167-188.

K. Nichol, A. Zanin, R. Bastien, E. Wandersman and M. vankeeehys.
Reuv. Lett.2010,104, 078302.

K. Reddy, Y. Forterre and O. PouliqueRhys. Rev. Lett.2011, 106,
108301.

E. Wandersman and M. van Hecleyrophys. Lett.2014,105 24002.
O. PouliguenPhys. Fluids 1999,11, 542-548.

L. E. Silbert, J. W. Landry and G. S. GreBhyys. Fluids 2003,15, 1-10.
Y. Forterre and O. Pouliqued, Fluid Mech, 2003,486, 21-50.

G. D. R. MiDi,Eur. Phys. J. £2004,14, 341-365.

K. Kamrin and G. KovalPhys. Rev. Lett2012,108 178301.

D. L. Henann and K. KamrirR. Natl. Acad. Sci. USA013,110, 6730—
6735.

K. Kamrin and G. KovalComput. Part. Mech2014,1, 169-176.

D. L. Henann and K. Kamrinnt. J. Plasticity 2014,60, 145-162.

D. L. Henann and K. KamrirgrXiv:1408.38842014.

P. Jop, Y. Forterre and O. PouliquénFluid Mech, 2005,541, 21-50.
P. Jop, Y. Forterre and O. Pouliqué&tature 2006,441, 727-730.

L. Bocquet, A. Colin and A. AjdarPhys. Rev. Lett2009,103 036001.
J. A. Dijksman, G. H. Wortel, L. T. van Dellen, O. Dauchotlavl. van
Hecke,Phys. Rev. Lett2011,107, 108303.

A. Schoefield and P. Wrotkritical State Soil MechanigdMcGraw-Hill,
1968.

I. S. Aranson and L. S. Tsimringhys. Rev. E2002,65, 061303.

O. PouliguenPhys. Rev. Lett2004,93, 248001.

T. Weinhart, A. R. Thornton, S. Luding and O. Bokho@ganul. matter
2012,14, 531-552.

0. Kuwano, R. Ando and T. Hatan@eophys. Res. Let2013,40, 1295—
1299.

P.-E. Peyneau and J.-N. Ro®hys. Rev. E2008,78, 011307.

W. Beverloo, H. Leniger and J. Van de Vel@hem. Eng. Sci1961,15,
260-269.

This journal is © The Royal Society of Chemistry [year]

177

Journal Name, 2010, [voll,






(v)/VGH

15

10

100



15

10

(v)/VGH

H/Hstop

PY
7
/*-
A~
7
7k
%6
of
20 40 60 80 100



15

10

(v)/VGH

20

40 60
H/Hstop

80

100



ARTIC| E TYPE Rovyal Society of Chemistry [year]



	1 Introduction
	2 From local to nonlocal granular rheology
	2.1 Dynamical system for fluidity

	3 Strengthening due to thinness
	4 Velocity profiles
	5 Discussion of the Froude number
	5.1 A more precise Hstop curve
	5.2 Consistent local rheology

	6 Conclusion

