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We present a novel replica trick that computes the relative entropy of two arbitrary states in conformal
field theory. Our replica trick is based on the analytic continuation of partition functions that break the Z,
replica symmetry. It provides a method for computing arbitrary matrix elements of the modular
Hamiltonian corresponding to excited states in terms of correlation functions. We show that the quantum
Fisher information in vacuum can be expressed in terms of two-point functions on the replica geometry.
We perform sample calculations in two-dimensional conformal field theories.
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In recent years entanglement theory has found numerous
applications in the study of quantum phases of matter,
relativistic field theories and gravity. Most of these appli-
cations focus on an entanglement measure in bipartite pure
states known as the entanglement entropy. Unfortunately, in
relativistic field theories entanglement entropy suffers from
ultraviolet divergences. In gauge theories the definition of
entanglement entropy is ambiguous [1]. In this Letter,
we present a method to compute, in field theory, another
measure called relative entropy that is provably ultraviolet
finite, universal, and free of gauge ambiguities [1,2].

Relative entropy is a measure of distinguishability
between two states and has nice monotonicity and pos-
itivity properties. It appears naturally in the definition of
entanglement measures for mixed states such as mutual
information and the relative entropy of entanglement [3].
Recently, thinking in terms of relative entropy in quantum
field theories coupled to gravity has led to new develop-
ments such as a proof of the quantum Bousso bound [4],
and the identification of new gravitational positive energy
theorems [5].

The relative entropy of the density matrix ¢ with respect
to y is defined to be

S(¢lly) = tr(plog ) —tr(¢plogy). (1)

Note that relative entropy is ill-defined when y is pure.
The relative entropy of two states can be thought of as
the expectation value of the difference of the modular
Hamiltonians of the two states

S(@lly) = (#|H(w) — H($)|#)
= tr[(¢ —w)H(y)] - AS. (2)

Here the positive Hermitian operator H(y) = —logy is
the modular Hamiltonian of y, and AS is the difference of
the entanglement entropies of ¢ and . If we formally
define the generalized free energy function F,(¢p) =
tr[¢pH(y)] — S(¢), then the relative entropy is the free
energy difference between the two states
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S(@lw) = F () = F (w). (3)

The function F,, has all the properties one expects from free
energy in a thermodynamic theory where y = e~7%) plays
the role of the equilibrium state [5,6]. Note that F, achieves
its minimum on the equilibrium state y. [This is a conse-
quence of positivity of relative entropy: F,,(¢) > F,,(w)].

In this Letter, we construct a class of field theory
partition functions that is proportional to tr(gy" ).
Their analytic continuation provides the relative entropy
and the modular Hamiltonian of density matrices in excited
states |¢) and |y) reduced to the subsystem. While the
formalism presented here applies to all quantum field
theories we focus on conformal field theories to have
access to more computational tools.

According to the operator-state correspondence in con-
formal field theory (CFT) there is a one-to-one map
between wave functionals and operators in the Hilbert
space. In radial quantization, the wave functional of an
excited state |y) is found by performing a Euclidean path
integration with the corresponding operator ¥ inserted.
Restricting to subsystem A the state is described by a
density matrix y,; see Fig. 1. To simplify notation we
suppress the subsystem index A, and use y to refer to the
reduced state.

In principle, one can compute the logarithm of the
density matrix directly from the path integral by taking
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FIG. 1. (a) Operator-state correspondence in radial quantization
of conformal field theories. (b) Reduced density matrix corre-
sponds to a path integral with two operator insertions and a cut on
the subsystem.
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the logarithm of a path-ordered operator using the so-called
Magnus expansion; however, in practice this is too hard.
Here, we propose an alternative method to compute matrix
elements of the modular Hamiltonian of excited states
from the analytic continuation of correlation functions. Our
method is a generalization of the replica trick in Refs. [7,8]
to the case where one breaks the Z, symmetry among
replicas. This enables us to compute matrix elements of the
modular operator for all states. This is in contrast with
the old replica method which was restricted to states that
have local modular Hamiltonians, the only known example
of which is vacuum reduced to a half-space or spherical
subsystems [9,10]. (In two-dimensional CFTs, a finite
temperature state on a line also has reduced states with a
local modular Hamiltonian [11]).

Relative entropy and modular Hamiltonian.—Consider
the Hermitian operator {¢,y"~'} =1 (dy"~' +y"1¢)
built out of reduced density matrices ¢ and y correspond-
ing to global states |¢) and |y), respectively. Its trace
in conformal field theory corresponds to the n-sheeted
partition function tr(¢y"~!). The idea is to take advantage
of the analytic properties of correlators by using the
operator identity

(g logy) = O, (") a1 4)
Our partition functions of interest, tr(¢y"~!), break the Z,,
replica symmetry present in both the Renyi entropy and
Renyi relative entropy replica tricks [8,12]. In contrast
with the symmetric case, our partition functions are not
monotonic in index n, and have no known operational
interpretations. Nonetheless, under the assumption of
analyticity, they provide a computational tool for finding
relative entropies and the diagonal elements of the modular
Hamiltonian of excited states

(e )"
g [trw-')trw)”-l]n 1
(Bloi ()
[<¢|w"-l|¢>tr<ao>”-1],Hl’ ®)

where o is the reduced density matrix in vacuum. We
subtract the vacuum modular Hamiltonian so that we have
ultraviolet finite quantities at any n. The off-diagonal
elements of the modular Hamiltonian are obtained from
its diagonal element in superposition states; see
Supplemental Material [13].

Each of the terms inside the logarithm above can be
expressed as a Euclidean path integration with operator
insertions on a replicated or the original geometry [14]. For
instance, consider the terms tr(py"~!). Sewing n copies of
the density matrix cyclically along the boundary of their
subsystems we obtain n-sheeted replica manifold R, and
2n operator insertions (Fig. 2)

S(@lly) = 0,1

(#|H(w)—H(oo)|¢) =1

ommm————

S
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FIG. 2. (a) Entanglement entropy replica trick: the Euclidean
path integration on the n-sheeted manifold corresponding to the
partition function tr(y”). (b) The Z,-breaking partition tr(gy" ')
that appears in our relative entropy replica trick.

w(py"") = Z(R,)(®(2)8(2,) 04 )z,

D(z)®(z;) (6)

—

oy =
1

where z; and z} are points z and z’ on the ith sheet of R,,. It
is important to note that plugging Eq. (6) into Eq. (5) all
partition function terms cancel and we are left only with
correlation functions at any n which are free of ultraviolet
divergences.

Written explicitly in terms of correlation functions we
find the main results of this section:

S(@lly)
B O R (W)W ()
—3,,10g / (n-1) / ]
L{(@(2) @ (2,) O )p (@)@ ()i
(G|H (w) — H(o0)|h)
B (D(2) P (2, (U)W (z)) V!
=0, log o= ]
(@(2)0(z,)05 e 1,
() = Hleo)lg) = 0, tog || + e ||
where
X, = Epa (05 ") + |cPE, (05"
—I-cEq)X(OEI, V) +He.
Ey (O) = (2(z0)x (z0)O)r, )

V@R, (@2,

Here, we have assumed that (y|¢) = 0.

Quantum Fisher information.—Our replica trick con-
nects the modular Hamiltonian of excited states to analytic
continuation of 2n-point correlation functions. Apart from
integrable models and large central charge theories,
obtaining analytic expressions for 2n-point functions is
an intractable problem. However, as we show in this section
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a great simplification occurs once we focus on near-vacuum
states.

Let us first consider a one-parameter family of states
(|¢) +€|X))/V'1+€ perturbed around |¢) in perpendicular
direction |X). The reduced density matrix on subsystem A
expanded in € has the form

¢+epy) + g + 0(),

Relative entropy is a smooth nondegenerate function of
two states. Hence, the relative entropy of two nearby states
expanded in e vanishes to the first order. The coefficient of
the second order term, F,(X,Y), is called the quantum
Fisher information at point ¢ in the space of density
matrices:

S(¢ +epxll@) = €F4(X. X) + O(e?).

This function defines a metric on the space of perturbations
to state ¢b
2FH(X,Y) = Fy(X + Y. X +Y) = F4(X,X) = Fy(Y,Y).
Quantum Fisher information is a local measure of distin-
guishability, and is intimately connected with uncertainty
relations [15]. Consider the relative entropy of two nearby
states. Our replica trick in Eq. (5) implies

Fy(X.X)
|: n—2 {X (I)}(Iﬂm{x (I)}(I)Z n—m-— 2)>
! (@)r, (XX)g,

R, (PP)z,

n

m=0 n—1

(8)

where X and ¢ denote the operators that create the
perturbations corresponding to |X) and |¢), respectively.
The location of operator insertions are the same as Eq. (6).

For near vacuum states, we replace ® in Eq. (8) with the
identity. The quantum Fisher information takes the form of
an analytic continuation of two-point functions on the
replica geometry; see Fig. 3:
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FIG. 3. The type of two-point functions on the replica manifold
whose analytic continuation determines quantum Fisher infor-
mation in vacuum.

F (X.X) = an{ Ky(z*. z‘)]

ez n—1
n— l
K Z ) =n m+l)>7€ (9)
m=1 0)>R

This implies that in arbitrary dimensions the vacuum
Fisher information of any primary excitation reduced to a
ball or radius R is universal in the sense that it depends only
on energy and subsystem size. In the remainder of this
Letter, we provide examples of relative entropies, modular
Hamiltonians, and quantum Fisher information in two-
dimensional CFTs computed using the method above.

Examples in two dimensions.—Relative entropy of
excited states: Consider a free massless boson CFT in
two dimensions on a circle of radius R and a subsystem at

= (=1/2,1/2). We are interested in the excited states
obtained by the action of chiral vertex operators on vacuum
at past infinity: |a) = V,|Q) = ¢*?|Q), where ¢ is the
boson field. The dimension of this operator is (h,h) =
(a?/2,0). Here x = I/R is the dimensionless parameter.
In the Supplemental Material [13] it is shown that in two
dimensions one can equally use correlators on a cylinder,
full complex plane, or a strip in our formulae in Eq. (7) for
relative entropy and modular Hamiltonian. The conformal
factors found from the change of coordinates vanish in the
limit of n — 1. In a free theory with a nondegenerate
ground state all correlation functions are determined by
Wick’s theorem [16]:

(V_aOy ™IV, s = [2sin(mx/n) (== g (=220
where S refers to correlators on a strip of width 2z, and

g, = sin(zx)/nsin(zx/n). For holomorphic excitations
[V,]T ~ V_,. Therefore,

(O8N5 (V_yVp)! )
V—avao,(ﬂn_l)>s<v—ava>g_l
= (a = B)*[1 — zx cot(zx)]. (10)

S(allp) = 9, 10g<<

The analytic continuation used above is justified in the
Supplemental Material [13]. When f = 0 this matches the
result previously found using a Z,-symmetric replica trick
in Ref. [12]: S(a]|0) = @*[1 — zx cot(zx)]. Interestingly,
the answer in Eq. (5) is symmetric in its arguments,
S(allp) = S(Blla). These excited states further have the
property that S(a) = S(f) = S(oy), where o is the vac-
uum density matrix. Hence, we find tr(p, Hy) = tr(pgH,)
for all @ and p.

Modular Hamiltonian of excited states: In the free
¢ =1 CFT, Wick contractions imply that a correlator
is zero unless > ;a;=0. For all a#y we have
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(V_aVyOén_U)S =0. As a result, X, in Eq. (7) is inde-
pendent of ¢, and we find that the modular operator H 4 has

no off-diagonal terms in the |@) basis.
The diagonal elements are

{a|H(p) — H(oo)|a) = (B — 2a)[1 — zx cot(mx)].

Note that in the limit o = f this reproduces —f*[1 —
meot(nx)] = —S(flog) as it should. In the limit f =0
the difference of modular Hamiltonians is the zero operator
and hence the answer should vanish as it does.

Quantum Fisher metric around the vacuum: Consider
an arbitrary two-dimensional conformal field theory on a
circle. The vacuum Fisher information is given by Eq. (9).
After some algebra we find

F(F(X’ X) = 8,1[25'”(0) + sn(x) + sn(_x)]n—ﬂ

in?(zx)\ =L .
sp(x) = (S n(2 )) nZsin [z(m + x)/n]720+h),

m=1

For simplicity we expand in small x to find

x\ 2(h+h) P2l -
F =0 4™ ~ ~2(h+h)
- n{ <n> nmz::lsm(nm/n)

B 2(zx)2h) \/ZD(h + h + 1) (1)
B L(h+h+3) ’

n—1

where we have used the analytic continuation found
in Ref. [17].

Multiple intervals: The replica trick developed here can
be applied to subsystems with multiple intervals. As an
example we focus on mutual information in vacuum

S(eapllos ® o) = I(A:B), (12)

where A and B are nonoverlapping intervals. According to
Eq. (5), the relative entropy is the analytic continuation of
the vacuum partition functions on manifolds Z42 and Zj**
illustrated in Fig. 4

— J—— jp—

P Y
> i 1

______

(o) Z;1F

FIG. 4. (a) The n-sheeted manifold corresponding to the
partition function Z42. (b) The Z,-breaking partition Zj® =
trloap(os ® o5)®"71].

I(A:B) = lim

lim —— (log Z48 —log ZaB).  (13)

The first partition function Z48 corresponds to Renyi
entropies of o,5. Therefore, from Eq. (12) all we need
to check is

0,Z4"| 1 = S(A) + S(B). (14)

The Riemann-Hurwitz formula tells us that Z4? has genus
(n — 1) and Z4* is simply the Riemann sphere. Following
Ref. [18] we compute the path integral over these manifolds
using twist operators in an orbifold theory with replica
copies of the fields. In particular, up to normalization zhB
is the correlation function

<6(1-~-n) (”A)U(n---l) (vA>6(n-~-2n—1) (MB)6(211—1--~n) (vg))

in a (2n—1) replica theory. Here u, and v, are the
endpoints of interval A, and going around the twist operator
o(1..m) the replica fields transform as (X', x2...xm xmt
Lo X2y 5 (x2, . xm X XL X201 Inserting
a resolution of the identity on the nth sheet splits the
correlator into a sum over the product of sphere one-point
functions. (see Fig. 5). The sphere one-point function is
zero unless @, is the identity operator. In other words,

saB — gA 4 gB (15)

which is the sum of Renyi entropies of intervals A and B,
and hence Eq. (14) follows.

Discussion.—In this Letter, we have developed a replica
trick that takes advantage of breaking the replica symmetry
to access the modular Hamiltonian of excited states. In the
absence of the Z, replica symmetry Renyi entropies are
not monotonic in n; hence, our method cannot be used to
obtain lower or upper bounds on relative entropy. The
applicability of this method crucially relies on our ability to
analytically continue correlation functions in n. According
to the Carlson theorem [19], in order to find the unique
analytic continuation of Renyis at integer n one needs to
further fix the behavior at n — +ico. We postpone a careful
study of this asymptotic choice and its physical implica-
tions to future work.

Pniniy N

g s
> A F eex
K —————e’

FIG. 5. Inserting the resolution of the identity in Z4%, we
observe that at each K we multiply sphere one-point functions
that are zero unless @ is the identity.
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The correlation functions needed to compute the
modular operator of an excited state are 2n-point func-
tions. There are not many examples of CFTs for which
we have access to high-point correlators. One class of
such CFTs is free theories which we briefly discussed.
Another class is CFTs with large central charge, where
one can reduce the calculation of n-point functions
of heavy operators to a classical monodromy problem
for differential equations that correlation functions
satisfy [20].

In holographic theories, the vacuum Fisher information
in spherical subsystems was recently shown to be dual to
canonical energy in gravity [21]. This confirms the uni-
versal feature suggested by Eq. (9). It would be interesting
to understand the connection between the CFT calculation
of this quantity and canonical energy in the bulk.

We are greatly indebted to Sean Hartnoll, whose obser-
vation of the importance of partition functions that break
replica symmetry initiated this project. We thank Salman
Beigi, John Cardy, Thomas Hartman, and Srivatsan
Rajagopal for discussions and illuminating comments.
This work is supported in part by funds provided by
MIT-Skoltech Initiative.
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