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The ground state phase of a spin- 1
2 J1-J2 antiferromagnetic Heisenberg model on a square lattice around

the maximally frustrated regime (J2 ∼ 0.5J1) has been debated for decades. Here we study this model
using the cluster update algorithm for tensor-product states (TPSs). The ground state energies at finite sizes
and in the thermodynamic limit (with finite size scaling) are in good agreement with exact diagonalization study.
Through finite size scaling of the spin correlation function, we find the critical point J c1

2 = 0.572(5)J1 and critical
exponents ν = 0.50(8), ηs = 0.28(6). In the range of 0.572 < J2/J1 � 0.6 we find a paramagnetic ground state
with an exponentially decaying spin-spin correlation. Up to a 24×24 system size, we observe power law decaying
dimer-dimer and plaquette-plaquette correlations with an anomalous plaquette scaling exponent ηp = 0.24(1)
and an anomalous columnar scaling exponent ηc = 0.28(1) at J2/J1 = 0.6. These results are consistent with a
potential gapless U (1) spin-liquid phase. However, since the U (1) spin liquid is unstable due to the instanton
effect, a valence bond solid order with very small amplitude might develop in the thermodynamic limit. Thus,
our numerical results strongly indicate a deconfined quantum critical point at J

c1
2 . Remarkably, all the observed

critical exponents are consistent with the J -Q model.

DOI: 10.1103/PhysRevB.94.075143

I. INTRODUCTION

The spin- 1
2 J1-J2 antiferromagnetic Heisenberg model on

a square lattice has drawn great attention for the last two
decades owing to its close relation to the disappearance of
antiferromagnetic (AF) long-range order (LRO) in high-Tc

superconducting materials [1,2], and has been proposed as
a possible simple model to realize a topologically ordered
chiral spin-liquid state [3,4] or Z2 spin-liquid state [5–9]. The
Hamiltonian of this model is given by

H = J1

∑

(i,j )

Si · Sj + J2

∑

〈i,j〉
Si · Sj (J1,J2 > 0), (1)

where (i,j ) represents the nearest-neighbor (NN) pair and
〈i,j 〉 represents the next-nearest-neighbor (NNN) pair. For
convenience, we set J1 = 1 throughout the paper. It has long
been believed that the frustration from the NNN interaction
competes with the NN one and drives the system through
a quantum phase transition from an AF LRO phase to a
magnetically disordered phase. In two extreme cases, the
ground state phases of the model are well established: At
very small J2, the ground state has AF LRO, and at very large
J2, the system falls into two weakly coupled sets, and the
magnetic susceptibility peaks at momentum (π,0) or (0,π ).
In the intermediate coupling regime, quantum fluctuation is
meant to destroy the AF LRO near the maximally frustrated
point J2 = 0.5 of the classical model and establish a new
paramagnetic phase. The nature of such a quantum phase is of
great interest.

Numerous efforts have been made using many different
approaches, such as the exact diagonalization (ED) [10–15],
spin-wave theory [16,17], series expansion [18,19], large-N
expansion [5], the coupled cluster method (CCM) [20], varia-
tional methods [including short-range resonating valence bond
(SRVB) method] [21–23], and the fixed-node quantum Monte
Carlo (QMC) [24]. The results turned out to be controversial:
A series expansion calculation of a general magnetic suscep-
tibility over different perturbation fields suggests that within
the Ginzburg-Landau paradigm the type of phase transition
from the Néel to paramagnetic phase is of first order [19].
However, the same general magnetic susceptibility calculated
with a coupled cluster method suggests a second-order phase
transition [20]. The nature of the phase near J2 = 0.5 was as
unclear: A fixed-node QMC study indicates a plaquette valence
bond solid (VBS) state [24], whereas the series expansion
argues for a columnar VBS state [19]. A relatively direct
investigation of the nature of the ground state order is using
the SRVB approximation [22], where with another term J3

included in the Hamiltonian, a plaquette VBS state along
the line of J2 + J3 = 0.5 is found. Most recently, the density
matrix renormalization group (DMRG) has demonstrated its
power in simulating quasi-one-dimensional cylinders for the
kagome Heisenberg model. Different groups applied it to the
spin- 1

2 J1-J2 model as well, however, the results were different:
Jiang et al. claim a Z2 spin-liquid state [25] while Gong et al.
suggest a plaquette VBS state [26].

In this paper, we revisit this problem with a tensor-
product state (TPS) [27] ansatz for the ground state wave
function, accessed by the recently proposed cluster update
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algorithm [28], and reveal the answer to both questions. By
fitting a universal scaling function for the spin-spin correlation
we observe a continuous phase transition from the Néel to
paramagnetic phase at J

c1
2 = 0.572(5) with critical exponents

ν = 0.50(8) and ηs = 0.28(6). In the paramagnetic phase we
find exponentially decaying spin-spin correlation functions.
Up to a 24×24 system size, we observe power law decaying
dimer-dimer and plaquette-plaquette correlation functions,
which indicate a nonzero spin triplet gap and a zero spin
singlet gap. These properties are consistent with the previously
proposed U (1) gapless spin-liquid state [29] by using a
one-parameter TPS ansatz. Nevertheless, it is well known that
the U (1) gapless spin liquid is unstable due to the instanton
effect, and we argue that a very small VBS order might
eventually develop in the thermodynamic limit. Interestingly,
at J2 = 0.6 the scaling of plaquette (columnar) VBS order
parameter suggests an anomalous VBS scaling exponent ηp =
0.24(1) [ηc = 0.28(1)]. Remarkably, all observed exponents
are consistent with those of the J -Q model [30–32]. Thus,
our numerical results strongly indicate a deconfined quantum
critical point scenario (DQCP) [33,34] from Néel order to VBS
order at J2 = 0.572(5).

II. RESULTS

We divide the square lattice into four sublattices A,B,C,D

that form a 2×2 unit cell, and associate each type of site with
one of the four different sublattice tensors. Such a choice
of tensor-product state ansatz aims at describing potential
VBS orders and studying their competing effects. We use
the cluster update imaginary time evolution method [28] to
evolve from a TPS with random initialized tensor elements to
a converged state of the J1-J2 Hamiltonian. Such an obtained
state is often called infinite TPS, since there is no system
size information entering into this evolution scheme. Once the
infinite TPS (with a bond dimension D = 9) converges, we
cover a L×L torus with repeated 2×2 unit cells and form a
finite size wave function. Without further finite size ground
state optimization, we measure the size-dependent variational
energies, staggered magnetizations, spin-spin, dimer-dimer,
and plaquette-plaquette correlations on L×L tori for L = 4,
6, 8, 12, 16, and 24. Our tensor measurement strategy is
to use variational Monte Carlo (VMC) [35] to sample spin
configurations, whose weights are computed by the tensor
renormalization idea [36,37]. With these combined techniques,
we can make precise measurements (for periodic systems) and
perform a careful finite size scaling analysis. Hereafter, all
our numerical results are obtained from TPSs with a bond
dimension D = 9.

Ground state energies. We present the ground state energies
on tori of L×L (at L = 8 and 16) as functions of Dc (Dc = 8,
10, 12, 16, 20, 24, and 28) in Fig. 1, where Dc is the Schmidt
number kept in calculating the importance weight of the
sampled spin configurations [35]. We find that the variational
ground state energies decrease monotonically with increasing
Dc. Using a quadratic function in 1/D2

c , we extrapolate the
finite size energies to the Dc → ∞ limit. The fitted results are
shown in the dashed curves in Fig. 1. Note that our measure-
ment scheme [35] makes approximations to the importance
weight of the sampled spin configurations, where error is
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FIG. 1. Finite size ground state energies using the largest avail-
able bond dimension D = 9 measured at various Dc = 8, 10, 12, 16,
20, 24, and 28 in a variational Monte Carlo (VMC)-tensor renor-
malization algorithm [35]. The finite size energies are extrapolated
to Dc → ∞ limit by fitting to second-order polynomials; the fitted
results are shown in the dashed lines.

controlled by Dc. However, the VMC principle guarantees that
all measured energies at finite Dc are variational. Furthermore,
the almost-converged energies at Dc = 28 make sure that the
extrapolations are reliable.

We compare our variational energies on tori with the SU(2)
symmetric DMRG results on tori [26] and the best VMC with
Lanczos projection steps [9] on tori. As seen in Fig. 2, at a
system size L = 8, our results are consistent with the DMRG
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FIG. 2. A benchmark of ground state energy with the SU(2)
symmetric DMRG results [26] on tori and the VMC calculation with
one Lanczos projection step [9] on tori at J2 = 0.5 and 0.55, where
Dc is the Schmidt number kept in our VMC-tensor renormalization
algorithm.
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results. Interestingly, our variational energies on tori of L = 16
are lower than the DMRG energies on tori of L = 10. This
means that the ground state entanglement on tori of 10×10
are beyond the resolution of the DMRG if we keep only 8000
SU(2) Schmidt states, which also explains why DMRG often
relies on cylinder studies instead of tori. Very impressively,
our variational ground state energy for L = 16 is comparable
to (at J2 = 0.5) or better than (at J2 = 0.55) the best VMC
results for a smaller size L = 14 torus with one-step Lanczos
projections [9].

Staggered magnetization. The staggered magnetization
square is defined as

M2 = 1

N

∑

rx ,ry

(−1)rx+ry C(rx,ry), (2)

where C(rx,ry) is the spin-spin correlation function,

C(rx,ry) = 1

N

∑

x,y

S(x,y) · S(x+rx ,y+ry ). (3)
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FIG. 3. (a) The largest distance spin-spin correlation as a function
of J2 at L = 8, 12, 16, 24. The same correlations C(L/2,L/2)
presented against 1/L in a regular plot (b) and in a log-log plot
(c) for various J2.

We compute the spin-spin correlation functions at the largest
distance C(L/2,L/2) for various L, and show their depen-
dence with coupling J2 in Fig. 3(a), where dashed lines
are polynomial fittings. To determine the critical transition
point, we present C(L/2,L/2) against 1/L in a regular plot
for various J2 in Fig. 3(b), and extrapolate using quadratic
functions (shown in the dashed lines). We find the critical
point to be 0.57 < J

c1
2 < 0.58. To see the critical behavior, we

present C(L/2,L/2) vs 1/L in a log-log plot in Fig. 3(c).
Taking the critical scaling as C(L/2,L/2) ∝ L−(z+ηs ) and
using a linear regression function, we find the anomalous spin
scaling exponent ηs = 0.19(5) at J2 = 0.57 and ηs = 0.43(10)
at J2 = 0.58. Finally, we take the finite size scaling (FSS)
formula

C(L/2,L/2)Lz+ηs (1 + aLω)

= F
[(

J
c1
2 − J2

)
L1/ν(1 + bLω)

]
(4)

to determine the critical point J
c1
2 = 0.572(5) and the critical

exponents ν = 0.50(8), ηs = 0.28(6), with the result presented
in Fig. 4. Here, F (x) is a dimensionless polynomial, and ω

represents subleading finite size corrections whose values are
set to 2.

Valence bond solid orders. To determine the phase at
region J2 ∈ (0.572,0.6], dimer-dimer and plaquette-plaquette
correlation functions are investigated. We define the dimer-
dimer correlation function as

Cdx(rx,ry) = 1

N

∑

x,y

Dx(x,y)Dx(x + rx,y + ry), (5)

Cdy(rx,ry) = 1

N

∑

x,y

Dy(x,y)Dy(x + rx,y + ry), (6)

with

Dx(x,y) ≡ S(x,y) · S(x+1,y), (7)

Dy(x,y) ≡ S(x,y) · S(x,y+1). (8)

Similarly, the plaquette correlation function is [22,38]

Cplq(rx,ry) = 1

N

∑

x,y

Q(x,y)Q(x + rx,y + ry), (9)
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FIG. 4. The finite size scaling function of C(L/2,L/2).
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with Q(x,y) ≡ [P�(x,y) + P −1
� (x,y)] defined as the permu-

tation operator that permutes four spins on a plaquette by one
lattice spacing.

To subtract the background expectation value, we take the
modified correlation functions as follows:

C∗
dx(r,r) = Cdx(r,r) − Cdx(r − 1,r − 1), (10)

C∗
plq(r,r) = Cplq(r,r) − Cplq(r − 1,r − 1). (11)

We present the modified dimer-dimer and plaquette-plaquette
correlation functions for J2 = 0.6 and L = 8, 12, 16, and 24
in Fig. 5. We find clear power law decay behaviors for both the
dimer-dimer and plaquette-plaquette correlations. To measure
the two most possible VBS orders, namely, the columnar VBS
order and the plaquette VBS order, we define the following
order parameters:

S2
plq(L) = 1

L − 2

L∑

r=2

(−1)rCplq(r,r), (12)

S2
col(L) = 1

L − 2

L∑

r=2

(−1)rCdx(r,r). (13)

We show the above two VBS order parameters at J2 = 0.6
as a function of 1/L in a log-log plot in Fig. 6. Again, we
find power law decay behaviors for both the columnar and
plaquette VBS orders. Taking the critical scaling behavior as
S2

VBS(L) ∝ L−(z+η), we find the anomalous plaquette scaling
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FIG. 5. The modified dimer-dimer correlation C∗
dx(r,r) (a) and

plaquette-plaquette correlation C∗
plq (r,r) (b) as a function of separa-

tion r at J2 = 0.6 in log-log plots.
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FIG. 6. The valence bond solid order parameters S2
col and S2

plq

at J2 = 0.6 as functions of 1/L in a log-log plot. The power law
decay behaviors are captured by decay exponents 1 + ηp = 1.24(1)
and 1 + ηc = 1.28(1) for the plaquette and columnar VBS order,
respectively.

exponent ηp = 0.24(1) and the anomalous columnar scaling
exponent ηc = 0.28(1). Our critical exponents ηs , ηc, ηp, and
ν are all consistent with the results of the J -Q model [30–32].

Gapless spin liquid versus deconfined quantum criticality.
The exponentially decaying spin-spin correlation and power
law decaying dimer-dimer correlation indicate that the param-
agnetic phase has a spin S = 1 gap but no S = 0 gap. These
properties are consistent with the gapless U (1) spin-liquid state
constructed by a single variational parameter TPS ansatz [29].
However, since it is well known that a U (1) gapless spin-liquid
state is unstable due to the confinement of U (1) gauge field
in 2 + 1 dimensions, we argue that a VBS order with an
exponentially small amplitude might eventually develop at
long wavelengths. Thus, our numerical results could imply a
Landau forbidden phase transition from Néel order to VBS
order described by the DQCP scenario.

III. CONCLUSIONS

In conclusion, we applied the cluster update algorithm for
tensor-product states (TPSs) to study the frustrated spin- 1

2
J1-J2 antiferromagnetic Heisenberg model on a square lattice.
Limited to a cluster size 2×2, a rather large bond dimension
D = 9 is feasible. Through a finite Dc scaling, our ground
state energies at finite sizes are in good agreement with
the results from a state-of-the-art exact diagonalization (ED)
study [15], an SU(2) symmetric density matrix renormalization
group (DMRG) study [26], and a variational Monte Carlo
(VMC) study [9]. Applying finite size scaling (FSS) to the
spin-spin correlation function, we found the staggered mag-
netization diminishes to zero at J

c1
2 = 0.572(5), suggesting

a continuous quantum phase transition. We further observed
an exponentially decaying spin-spin correlation with power
law decaying dimer-dimer and plaquette-plaquette correlations
up to a 24×24 system size. All this evidence points to
the emergence of a gapless U (1) spin-liquid state that is
consistent with a single variational parameter TPS ansatz [29].
Nevertheless, since the U (1) spin liquid is unstable due to
the instanton effect, a VBS order with a small amplitude
could emerge in the thermodynamic limit. Remarkably, we
found the critical exponents ν = 0.50(8) and ηs = 0.28(6),
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ηp = 0.24(1), ηc = 0.28(1), which agree with the observed
critical exponents for a deconfined quantum critical point
(DQCP) in the J -Q model on a square lattice [30–32]. Thus
our numerical results strongly indicate a Landau forbidden
phase transition from Néel order to VBS order at J

c1
2 .

IV. METHOD

The following is an illustration of how to construct the
evolution operators for this Hamiltonian. We expand the evolu-
tion operator Ô ∼ exp{−εJ1(S1 · S2 + S2 · S3) − 2εJ2S1 · S3}
on three sites from the Trotter decomposition of the partition
function. By writing exp(−εJSi · Sj ) as

∏

α

[
cosh(εJ/4)1i ⊗ 1j − sinh(εJ/4)σα

i ⊗ σα
j

]
, (14)

where α = x,y,z, σα are Pauli matrices, and omitting higher
orders of O(ε), one obtains

Ô = 11 ⊗ 12 ⊗ 13 −
∑

α

tanh(εJ1/4)σα
1 ⊗ σα

2 ⊗ 13

−
∑

α

tanh(εJ1/4)11 ⊗ σα
2 ⊗ σα

3

−
∑

α

tanh(εJ2/2)σα
1 ⊗ 12 ⊗ σα

3 . (15)

The above terms can be expressed as a matrix product operator
(MPO) [39],

Ô =
3∑

i1,i2,i3=0

(
vT

i1
Bi2 vi3

)
Xi1 ⊗ Xi2 ⊗ Xi3

X0 = 1, X1 = σx, X2 = σy, X3 = σ z,

v0 = |0〉,
vi = a|i〉 (i = 1,2,3),

B0 = |0〉〈0| + b|1〉〈1| + b|2〉〈2| + b|3〉〈3|,
Bi = c|0〉〈i| + c|i〉〈0| (i = 1,2,3), (16)

where vi are the vectors of length 4, Bi are 4×4 matrices, Xi
are operators acting on the physical index, and a,b,c are scalar
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FIG. 7. (a) The simple update scheme. (b) The cluster update
scheme with a cluster size 2×2.

variables. In order to correctly match the coefficients in front of
each term in Eq. (15), a,b,c have to be chosen to satisfy ac =
− tanh(εJ1/4), a2b = − tanh(εJ2/2), and |a|,|b|,|c| � 1.
Thus the evolution operators on these sites are written as
Ô1 = ∑

i vT
i ⊗ Xi , Ô2 = ∑

i Bi ⊗ Xi , and Ô3 = ∑
i vi ⊗ Xi ,

respectively.
We present the diagrammatic representation of the evolu-

tion operators Ô1, Ô2, and Ô3 acting on sites A, B, and C in
a 2×2 cluster in Fig. 7(b). The corresponding simple update
scheme is sketched in Fig. 7(a). In both cases, the complexity
scales as D5, and there is no cumulative error.
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