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Early-Age Stress and Pressure
Developments in a Wellbore
Cement Liner: Application to
Eccentric Geometries
This paper introduces a predictive model for the stress and pressure evolutions in a well-
bore cement liner at early ages. A pressure state equation is derived that observes the
coupling of the elastic changes of the solid matrix, the eigenstress developments in the
solid and porespaces, and the mass consumption of water in course of the reaction. Here,
the transient constitution of the solid volume necessitates advancing the mechanical state
of the poroelastic cement skeleton incrementally and at constant hydration degree. Next,
analytic function theory is employed to assess the localization of stresses along the
steel–cement (SC) and rock–cement (RC) interfaces by placing the casing eccentrically
with respect to the wellbore hole. Though the energy release rate due to complete
debonding of either interface is only marginally influenced by the eccentricity, the risk of
evolving a microcrack along the thick portion of the sheath is substantially increased.
Additionally, it is observed that the risk of microannulus formation is principally affected
by the pressure rebound, which is engendered by the slowing reaction rate and amplified
for rock boundaries with low permeability. [DOI: 10.1115/1.4034013]

1 Introduction

To maintain the benefits of natural gas as a safe transition
energy source, drilling contractors must ensure that wells remain
sealed during construction and operation. Accordingly, a cement
barrier is placed into the annular region between the steel produc-
tion casing and the wellbore hole. Nonetheless, Ingraffea et al.
note that in Pennsylvania 6.2% (1.0%) of unconventional
(conventional) wells drilled between 2000 and 2012 have compro-
mised cement liners [1]. Moreover, it is known that early-age
shrinkage phenomena and pore pressure developments are pri-
mary contributors to sheath failure: After placement, the curing
cement undergoes pore pressure changes, chemical shrinkage
phenomena, and eigenstress developments in the calcium–
silicate–hydrate (CSH) gel—the binding phase of cement—that
cause bulk volume changes [2,3]. Under restraint of the steel and
rock boundaries, these volume changes can lead to stresses that
impair the integrity of the sheath. A diagram of a typical wellbore
system is presented in Fig. 1.

Current work at the molecular and mesoscales is revealing the
fundamental driving forces of the cement volume changes and
their relation to the CSH packing density [2]. Here, the construc-
tion of CSH gel as a system of colloidal particles has evinced net-
attractive forces that follow the out-of-equilibrium dynamics of
cement hydration. When left unconstrained, this eigenstress r*—a
loading that produces no mechanical work—engenders a volume
shrinkage of the gel. Additionally, the classification of confined
water into free, constrained, and chemically bound water molecules
[4] has elucidated the details of the H2O kinetics during hydration
and lends opportunity for improvements in modeling the hydrating
cement phase morphology. Specifically, the hydration reaction pro-
duces a water sink in the paste that is driven by the stoichiometric
demand of the cement chemical reaction and the adsorption of H2O
molecules onto the CSH gelpore surfaces [5]. This causes a drop in

pore pressure Dp and, at the engineering scale, incites a fluid
exchange between cement and rock formation.

An important design parameter, yet to be studied in connection
with the early-age driving forces of cement volume change, is the
eccentricity of the production casing with respect to the wellbore
hole. In an experimental setup, Albawi investigated the fraction of
interfacial debonding due to thermal cycling of specimens con-
taining a centrically and an eccentrically located casing [4]. Using
computer tomography, the eccentric casing (with a degree of
eccentricity of De ¼ 0:5; at its thinnest portion, the sheath thick-
ness is half the thickness of an equivalent concentric sheath)
showed a greater fraction of debonding and subsequent creation of
fluid channels. Related finite element simulations show that casing
eccentricity can significantly enhance the risk of cement sheath
failure [6], and it was noted that the added contribution of shear
stress along the interfaces plays an acute role in crack initiation
[7]. To the best of our knowledge, no analytic or semi-analytic

Fig. 1 Diagram of a wellbore cement liner
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solution exists for the boundary value problem of a material
domain confined by two eccentric, elastically deforming circular
contours.

The present work offers sophistication in the design of wellbore
cement liners: Section 2 develops a pressure state equation that
balances the chemical and mechanical changes of the porosity
with the external water supply from the adjacent rock formation.
Section 3 is devoted to the derivation of an analytic solution of
the stress state of the sheath, where the well-known complex vari-
able method for plane elasticity is employed when the boundary
contours are positioned eccentrically. The paper concludes in
Sec. 4 by connecting the bulk stress calculations of the coupled
chemoporomechanics model to the risk of fracture due to micro-
annulus formation along the SC interface or the RC interface.

2 Incremental State Equations of Stress and

Pressure in a Hydrating Cement Sheath

The incremental constitutive relations for the steel, cement
paste, and rock are written, in order of appearance, as

dR zð Þ ¼ Ks �
2

3
Gs

� �
tr dE zð Þð Þ þ 2Gs dE zð Þ (1a)

dR zð Þ ¼ Kc �
2

3
Gc

� �
tr dE zð Þð Þ þ 2Gc dE zð Þ þ dR� zð ÞI (1b)

dR zð Þ ¼ Kr �
2

3
Gr

� �
tr dE zð Þð Þ þ 2Gr dE zð Þ � br dp zð ÞI (1c)

where z ¼ xþ iy ¼ reih is the position vector in the complex
plane, and Kd and Gd (where d ¼ fs; c; rg) denote the drained bulk
and shear moduli, respectively. The concentric geometry is
depicted in Fig. 1, where the material domains are rigidly
connected along the interfaces jzj ¼ r1 and jzj ¼ r2. The internal
loading of the cement paste drives the bulk stress development of
the system, where dR� ¼ ½ð1� bÞdr� � b dp� is the incremental
change in the bulk eigenstress. Specifically, dr* accounts for the
eigenstress in the solid phase and dp accounts for the pressure in
the porespace, which are connected to the macroscale via the Biot
coefficient, b [8]. It should further be noted that the growth of the
solid volume during the cement hydration stiffens the material,
such that Kc, Gc, and b are functions of the hydration degree n
(see Fig. 2). As the pressure in the cement drops, the pressure in
the rock in proximity to RC experiences a similar change. As a

consequence, dp has been accounted for in Eq. (1c), where br is
the Biot coefficient of the rock, herein assumed to be 1.

In the paragraphs to follow, we describe the origin of the
pressure drop and connect it to the exchange of water with the
rock formation.

2.1 Mass Balance of Water. The porespace of cement may
broadly be categorized into macropores (capillary pores) and gel-
pores (formed in the CSH gel). Using the Lagrangian porosity /,
the total pore volume at a given hydration degree n and incremen-
tal loading d(p, r*, Ev) per unit initial reference volume, the fluid
mass content is defined as m ¼ qfl/, where qfl denotes the fluid
mass density [9]. Under drained and saturated conditions, the
mass content of a representative elementary volume (REV) obeys

dm

dt
¼ M0 � dmhyd þ dmsurf

� �
(2)

where the temporal change in fluid mass dm/dt is driven by the
difference in the external water supply, M0, and the use of H2O
molecules in the creation of CSH (dmhyd þ dmsurf ). To elaborate:

(i) The stoichiometric sink term dmhyd, also termed water of
constitution or structural water [10], refers to the observa-
tion that 1 g of cement requires between ahyd¼ 0.20–0.25 g
of water to produce CSH and calcium hydroxide products.
Translated into volume fractions, this stoichiometric term
thus reads

dmhyd

qfl

¼ ahyd

qc

qfl

fc0

dn
dt
¼ bhyd

dn
dt

(3)

where qc=qfl ¼ 3:15 is the cement-to-liquid mass density
ratio, and fc0 is the initial cement volume content. dn/dt is
the reaction rate, which is described by a hydration kinetics
law (e.g., Ref. [11], see Appendix B). For w/c¼ 0.45, the
stoichiometric sink term is on the order of
bhyd� 0.27–0.33.

(ii) The adsorption sink term dmsurf was discovered by Powers
[12] and has recently been quantified by reactive molecular
simulations that traced the state of water in CSH [13]. The
driving force of the adsorption sink term is the interaction
potential, that is, the interparticle potential between the water
adsorbed on the CSH gelpore surface and the bulk water in
the gelpores, which in good approximation can be viewed as
constant over the hydration process. Given the surface nature
of the adsorption phenomena, the rate of water adsorption is
scaled by the change of the surface area of the gel porosity, or
more generally, by the specific surface area

dmsurf

qfl

¼ aC–wnH2O

Mw

qfl

dSG

dn
dn
dt
¼ bsurf

dn
dt

(4)

where aC–w is the number of C–w bonds per surface,
approximated at 2.4 bonds/nm2; nH2O is the number of
water molecules per bond (�10 H2O); Mw¼ 18 g/mol is
the molar mass of water; and SG is the gelpore surface,
which has been shown to increase almost linearly with
the hydration degree [14,15]. A rough estimate of this term
is provided by considering that the specific surface of
cement paste SG=q � 168 m2=g, as calculated from a col-
loidal mesoscale simulation for w/c¼ 0.45 paste [16],
where q ¼ 2 g=cm3 is the average paste density. Thus,
bsurf� 0.12–0.43, which means that the surface adsorption
term is of the same order of magnitude as the stoichiomet-
ric sink term.

The change in the mass content accounted for in Eq. (2) is
likewise obtained by considering the differential variation in the
porosity and the fluid compressibility

Fig. 2 The cement poroelastic constants in function of
the hydration degree (G‘ 5 11.1 GPa and N‘ 5 174.3 GPa; see
Table 2 in Appendix C for the calculation of the volume frac-
tions and the upscaling of the poroelastic constants). The inset
shows the evolution of the primary cement phases.
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dm

qfl

¼ d/jp;r� ;Ev
þ d/jn þ

dqfl

qfl

/ (5)

(i) The first term, d/jp;r�;Ev
, measures the change in the poros-

ity due to the morphology of the REV phases—calculated
at constant pressure p, eigenstress r*, and volumetric
strain Ev. In poromechanics literature, this term is coined
the chemical porosity [9,17]. Both the changes in the cap-
illary and the gel porespaces contribute to this term, such
that the evolution of /jp;r� ;Ev

in function of n is depicted
by the dashed contour in the inset of Fig. 2.

(ii) The second term, d/jn, measures, at constant hydration
degree, the change in porosity due to the loading of the
pore–solid system. More specifically, it measures the
deformation of the solid skeleton due to an infinitesimal
increment of volume strain, pressure, and eigenstress load-
ing dðEv; p;r�Þ [9].

(iii) The final term ðdqfl=qflÞ/ quantifies the mass change
due to the compressibility of the fluid, where, under iso-
thermal conditions, dqfl=qfl ¼ dp=kfl with 1/kfl being the
fluid compressibility, i.e., the inverse of the fluid bulk
modulus, kfl.

Equating the mass balances described by Eqs. (2) and (5), one
can write the state equation for the fluid mass content in cement
paste under isothermal hydration as

b
dEv

dt
þ 1

N

dr�

dt
þ 1

M

dp

dt
¼ kc

qfl

gfl

r2p

M
� 1

shyd

beff (6)

where n has passed the solid percolation threshold n0, and
dp/dt¼ 0 otherwise. The first term on the left-hand side (l.h.s.) of
the equation quantifies the effect on the porespace due to an incre-
mental bulk volume strain dEv of the REV as per definition of the
Biot coefficient b(n). The second term on the l.h.s. models the
effect of the eigenstress development in the CSH gel, where N(n)
is the corresponding Biot modulus of the solid matrix. The third
term on the l.h.s. accounts for the change in pore pressure and its
influence in compressing both the solid matrix and the fluid in the
macro- and gelpores, 1=MðnÞ ¼ 1=N þ /=kfl. Finally, the terms
on the right-hand side of the equation quantify, in order of appear-
ance, the Laplacian (r2) of the pore pressure and the effective
water sink. Here, kc, qfl, and gfl are the cement permeability, fluid
density, and fluid viscosity, respectively, while shyd ¼ ðdn=dtÞ�1

is the characteristic time of cement hydration, dictating the rate of
water consumption by the reaction. The effective sink term quan-
tifies the combined effect of the physicochemical changes to the
cement system: the stoichiometric water demand, the adsorption
of water to the gelpore surfaces, and the growth of the solid skele-
ton: beff ¼ bhyd þ bsurf þ d/jp;r�;Ev

=dn:

2.2 Simplifying Assumption of Uniform Bulk Eigenstress
Development. Once the pressure state equation (Eq. (6)) is
applied to the boundary value problem of the cement sheath, the
pore pressure varies according to the restraints and flux conditions
of the steel and the rock interfaces. As the cement contracts or
expands, the difference in the resistance of the steel and the rock
produces gradients in strain. Nonetheless, a uniform loading of a
concentric annular geometry results in a uniform volumetric strain
across the cement domain. This is not the case for an eccentrically

placed casing, where a gradient in Ev develops due to the nonuni-
form distribution of hydrating matter around the casing. Addition-
ally, the no-flux boundary condition along the steel and permeable
boundary of the soil causes fluid to travel into the cement sheath
only along the outer interface upon water consumption by the
reaction. Thus, a gradient in pressure is necessitated along RC.

Yet, the coupling of Eq. (6) to the macroscopic stress field is
vastly simplified without loss of predictive power, if, in good
approximation, the solid eigenstress and pressure developments
can be assumed to develop uniformly. More precisely, we
are enabled to apply the effective bulk eigenstress
dR�ðnÞ ¼ ð1� bÞdr�ðnÞ � b dpðnÞ directly along the boundary
contours to calculate the equivalent stress field of the domain.

Small-to-moderate eccentricities of the casing maintain a mean
stress field that is approximately uniform. By inspecting the stress
state in the cement due to a uniform increment dR* and De ¼ 0:8,
where the derivation of the stress state is presented in Sec. 3 and
the input parameters are presented in Table 1, the radial and
tangential stresses varied by �25% of the applied load, while the
mean stress varied by less than 2% over the cement body. Though
the stiffness of the cement and rock may differ from the values
chosen, model results by varying these parameters showed no
appreciable growth in the mean stress gradient relative to the
radial gradients of Rrr and Rhh. Consequently, Ev may reasonably
be considered uniform without incurring error beyond the uncer-
tainty posed by the model parameters.

Because the eigenstrain development of the CSH gel phase is
an intrinsic property of the cement and the mix design is assumed
homogeneous, it remains only to outline the conditions that
render the spatial variations in the pressure negligible to ensure
dðr�; p;EvÞ as approximately uniform.

2.2.1 Two Key Time Scales. Isolating the pressure compo-
nents of Eq. (6) and nondimensionalizing, the normalized diffu-
sion length of the pressure within the sheath is revealed as
dpðnÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
kcshyd

p
=ðr2 � r1Þ. Here, kcðnÞ ¼ kcðnÞqfl=gfl is the

hydraulic conductivity of the cement, shyd (n) is the characteristic
time of hydration, and dp� 1 allows the pressure to be modeled as
uniform in good estimation. It must be remembered that the per-
meability of the sheath kc changes with the microtexture of the
cement and is directly related to the capillary porosity [18–20].
Thus, near the beginning of the hydration reaction kc is large, rap-
idly equilibrating the pressure in the sheath. At later stages of the
reaction when kc decreases, the hydration kinetics slow (i.e., shyd

becomes large) to further minimize developments of the pressure
variations.

Instead of resolving the pressure field explicitly, the dynamics
are further investigated by discretizing Darcy’s law to model the
flow of water between the formation and the sheath

ufl
r ¼ kflðpðr ¼ r2; tÞ � p0Þ (7)

where p0 is the far-field formation pressure, and the above Newton
coefficient depends on the flow characteristics of the cement and
the rock via

kfl ¼
qfl

gfl

lc
kc

þ lr

kr

� ��1

(8)

where kr is the permeability of the rock, and lr (lc) is the character-
istic length scale of the radial pressure gradient in the rock

Table 1 Model input parameters

Geometry (cm) Elastic constants (GPa) Newton coef. (s�1) Eigenstress (MPa) Eff. sink term Ref. pressure (MPa)

r0 r1 r2 Gs Ks Gr Kr kfl dr*/dn beff p0

10 11 16 78.7 144.9 15.4 33.3 10(1)� 10�6 147 0.1 40
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(cement). Moreover, the discretized expression for the fluid veloc-
ity allows us to relate the volume of the water consumed during
the reaction dXsink=dt � pðr2

2 � r2
1Þ=shyd and the volume of water

entering along the RC boundary dXflux=dt � kflMr22p=qfl. Com-
parison of these two quantities shows that the pressure dynamics
depend on two characteristic time scales

dXflux

dXsink

� 2Mkflshyd

qflr2 1� r2
1=r2

2

� � ¼ shyd

sfl

(9)

such that the characteristic time of hydration shyd ¼ dt=dn
competes with the characteristic time of fluid influx sfl ¼ qflr2

ð1� r2
1=r2

2Þ=ð2MkflÞ to change the pressure. Considering the
parameters governing the fluid mobility in the cement and the for-
mation and the hydration kinetics, several regimes of the pressure
development emerge.

2.2.2 Sample Pressure Output of the Poromechanics Model.
Table 1 and Fig. 2 provide the input parameters for the sample
simulations presented in this paper; additional information on the
calculation of the poroelastic constants is given in Appendix C.
We chose to restrict ourselves to typical conditions encountered
during primary cementing operations. In doing so, the parameters
kfl, p0, and n0 were adjusted within the range of observable values
to allow model resemblance with the pressure evolution of typical
wellbore measurements. Figure 3 demonstrates the dependence of
the pressure changes within the sheath on the ratio between the
characteristic time of hydration and the characteristic time of
mass exchange (shyd/sfl):

(I) At early curing times, the rate of the hydration reaction is
fast compared to the rate of recharge shyd/sfl� 10–100,
producing a rapid decrease in the cement pressure. Here,
kc is large and the water entering the cement sheath moves
rapidly to equilibrate the pressure in the cement. It is thus
the rock permeability that limits influx of water to the
sheath, and the exchange coefficient in Eq. (8) tends
toward kfl ! ðqfl=gflÞðkr=lrÞ. Because shyd is small, the

initial, rapid decrease in pressure is the dominant mecha-
nism of the bulk eigenstress development. This is well
exhibited by comparing the driving forces in Fig. 3(a) to
the pressure changes in Fig. 3(b).

(II) At a degree of hydration of n� 0.35, the water demand of
the reaction and the changes in the porespace are balanced
by the Darcy flux into the annulus, such that a pressure
minimum is realized. It is at this transition stage and
during the early recovery of the pressure toward the equi-
librium value of the far-field formation pressure that the
uniformity of the pressure is most approximate. Nonethe-
less, the pressure has passed its minimum value, and
hence, the local extremum in the loading conditions has
expired. The percolation of a dense solid matrix decreases
kc, such that the pressure gradients are expected to evolve
as a fringe along RC.

(III) For a more mature paste, the rate of the hydration reaction
slows, and the pressure changes in the cement are princi-
pally affected by the influx of water, shyd/sfl� 103–106.
As a consequence, the decreased permeability of the
cement drives variations in pressure. However, as the
hydration reaction progresses, the incremental bulk eigen-
stress dR* is dominated by dr* in the CSH gel phase.
Again, we assume lc to be small and limited by the dimen-
sion of the sheath and lr to be large and controlled by the
pressure drop in (I), such that the Newton coefficient is
approximated as kfl ! ðqfl=gflÞðkr=lrÞ.

For a low-to-moderately eccentric geometry, it is remarked
that any pressure gradient in the radial direction far exceeds the
gradient in the tangential direction: The distance over which the
pressure varies is larger, 2pr1> r2� r1, and gradients develop
principally due to the radial influx of water. As a consequence, an
assumption of uniform radial pressure similarly implies tangential
uniformity.

Accepting the conditions for the uniform treatment of the pres-
sure and the CSH eigenstress development, the state equation in
Eq. (6) can be simplified to the discrete form

Mb
dhEvi

dn
þM

N

dr̂�

dn
þ dp̂

dn
¼ shyd

sfl

1� p̂ð Þ � M

p0

beff (10)

where n> n0 and dp/dn¼ 0 otherwise. The variables p̂ ¼ p=p0

and r̂� ¼ r�=p0 are the normalized quantities of the pressure and
solid eigenstress, and the brackets around Ev indicate its mean
field value.

3 Stress and Pressure Evolutions

In the next segment of the paper, we couple the discrete version
of pressure state equation (Eq. (10)) to the loading incurred by the
boundary restraints. Though the solution assumes a linear elastic
material behavior, nonlinearity arises due to the growth of the sys-
tem volume, which is delineated by the boundary of the REV and
the interface between solid and porespace. Hence, the out-of-
equilibrium calculation of the mass growth is separated from the
incremental loading of the solid (see Appendix of Ref. [5] for a
more detailed thermodynamic reasoning).

3.1 The Case of a Concentrically Placed Casing. In a
concentric geometry and for plane strain, the displacement
solution, evaluated at a constant degree of hydration, is of the
well-known form

dujn ¼ durer ¼ dR� C�1r þ C�2
r

� �
þ dp Cp

1r þ Cp
2

r

� �
(11)

where C�1ðnÞ; C�2ðnÞ; Cp
1ðnÞ, and Cp

2ðnÞ are constants determined
by the boundary conditions and are given in Appendix A. More-
over, we have separated the mechanical response due to the

Fig. 3 Plots depicting the (a) driving forces of the bulk stress
developments and (b) the pressure evolution p̂ 5 p=p0 for low
and high permeability formations. Herein, the solid eigenstress
r* was assumed to evolve linearly with n. As a validation of con-
cept, the black contours in (b) show smoothed, nondimension-
alized pressure-log data for a well of undisclosed identity
provided by Schlumberger (solid) and the pressure evolution
simulated by our model (dashed) for a cement with w/c 5 0.45.
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loading increments of the bulk eigenstress and pressure, because
the SC and RC interfaces differ in their drainage. Substituting the
volumetric strain, dEvjn ¼ 6ðdR�C�1 þ dp Cp

1Þ, into the pressure
equation (Eq. (10)) allows the incremental change in pressure to
be calculated as

dp̂jn ¼
dn

Dp þ 1

shyd

sfl

1� p̂ð Þ � M

pF
beff � D� þM

N

� �
dr̂�

dn

( )
(12)

where Dp ¼ ðCp
1 � 6b2MC�1Þ and D� ¼ ð6bð1� bÞMC�1Þ. The

results of iteratively updating first p and R, and then the solid
mass are displayed for the pressure in Fig. 3 and for the interfacial
radial and tangential stresses in Fig. 4. The simulations were run
for a more or less liberal exchange of water between rock and
cement (kfl¼ 1� 10�5 s�1 and kfl¼ 1� 10�6 s�1).

The effective radial stress (Figs. 4(a) and 4(b)) in the sheath
shows particular sensitivity to the dynamics of the pressure. Ini-
tially, during the period of accelerated hydration, a pressure drop is
imposed on a relatively incompressible slurry; much of the system
is still composed of a fluid mixture of water and clinker grains. As
the matter hydrates, the growth of porous CSH gel increases the
percolation and compressibility of the system. Finally, as the reac-
tion rate slows and upon repressurization, the compressible cement
matrix is placed into a state of residual tension. This phenomenon
further increases the effective radial tensile stress beyond effects
purely due to the eigenstress in the solid and porespace. In fact,
if the system were to remain incompressible in course of the pres-
sure evolution, no additional Cauchy stresses would be created.
Instead, the hardening sheath is most vulnerable to microannulus
formation—complete debonding of the interfaces—following the
period of pressure recovery, after complete hydration. This is high-
lighted by the stress development in the less permeable system,
where the extended regime of low pressure and delayed recovery
heighten the final value of the residual tension.

The effective radial stress along SC and RC for n¼ 1 shows
similar dependence on the rock permeability and stiffness parame-
ters, respectively, displayed in Figs. 5(a) and 5(b). For a shrinking
cement sheath, the adhesion to a stiff outer formation causes ten-
sile stresses to develop along both interfaces. However, as is
shown in Fig. 5(a) for large kfl, if Gr falls below the stiffness
needed to resist the contraction of the sheath, the effective radial
stress becomes compressive (i.e., Rrrþ p falls below the normaliz-
ing quantity p0). Hence, under such conditions, a microannulus
along RC prohibits debonding along SC. The contour plots gener-
ally show that stiff, impermeable rock boundaries place the
cement sheath at greatest risk of failure. For highly nonconductive
rock or when an external water supply is unavailable, the pore

pressure remains below p0 throughout hydration, helping balance
the shrinkage of the solid skeleton due to r*. However, Figs. 5(c)
and 5(d) show that the eventual recovery of the pressure leads to
the most dangerous scenario, in which the radial tensile stresses
increase by up to 60–70% of the reference pressure and effec-
tively guarantee the failure of the liner.

As displayed in Figs. 4(c) and 4(d), the effective tangential
stress Rhhþ p for 0< n< 1 is only marginally affected by the
pressure drop as the steel and rock boundaries resist the constric-
tion of the sheath around the casing. Contrary to Rrr, the increase
in the macroscopic stress Rhh is approximately balanced by the
drop in pressure. Instead, the solid eigenstress is the primary agent
causing the progressive increase in Rhhþ p.

3.2 The Case of an Eccentrically Placed Casing. The
boundary value problem of the cement sheath is complicated
when casing eccentricity admits a loss of axisymmetry to the equi-
librium equations. Jeffrey [21] is the first to have thoroughly
treated the problem of a two-dimensional elastic solid bounded by
eccentric circular contours, and his solution admits any prescrip-
tions of traction along the boundaries so long as they are known
and can be expressed as analytic functions of the polar argument.
The difficulty in the elastic interface continuity conditions of
the sheath is that they do not permit an a priori knowledge of the
tractions. In the paragraphs to follow, we adopt the approach of
seeking R and u as series representations, where added care is
made to satisfy the elastic response of the bonded steel and rock.

3.2.1 Stress and Displacement Under Conformal Mapping. In
our two-dimensional analysis of the sheath, we resort to the well-
known Muskhelishvili representation of the incremental stress
field [22]

dR :
dRrr � idRrh ¼ / zð Þ þ / zð Þ � z/0 zð Þ �

z

z
w zð Þ

dRhh þ idRrh ¼ / zð Þ þ / zð Þ þ z/0 zð Þ þ
z

z
w zð Þ

8><
>: (13)

where j¼ 3� 4� in plane strain, / and w are complex potentials
holomorphic in the domain of interest, and an overbar denotes
complex conjugation. The change in displacement in Cartesian
coordinates is given by

du : 2Gðdux þ iduyÞ ¼ jUðzÞ � zU0ðzÞ �WðzÞ (14)

where /ðzÞ ¼ U0ðzÞ and wðzÞ ¼ W0ðzÞ, and it is often more con-
venient to work with the differentiated form

Fig. 4 Bulk effective radial ((a) and (b)) and tangential ((c) and (d)) stress development along the SC interface ((a) and (c))
and the RC interface ((b) and (d)). At complete hydration, a residual Dp remains in the system. Thus, the dashed contours
show the asymptotic values of the effective stress, once the pressure has fully recovered to the reference value p 5 p0.
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2G

�iz

@

@h
dux � iduyð Þ ¼ j/ zð Þ � / zð Þ þ z/0 zð Þ þ

z

z
w zð Þ (15)

We map the cement interfaces onto circular contours centered
at the origin. This allows for the complete description of the
contours by their radial coordinate. In doing so, it is necessary to
evaluate the stress and displacement of the steel, cement, and rock
in separate coordinate systems, the z-, s-, and ẑ - planes.

	 The steel casing is placed at the center of the physical system
in the z-plane. This defines the inner and outer surfaces of
the casing by jzj ¼ r0 and jzj ¼ r1, respectively.

	 The eccentric boundaries of the cement annulus are mapped
onto concentric circles in the s-plane, defined by jsj ¼ q1 and
jsj ¼ q2, where s ¼ qei#.

	 The wellbore hole is mapped to the ẑ-plane by translating the
z-plane in the direction opposite the eccentricity, d, such that

its surface is described by jẑj ¼ r2 and ẑ ¼ z� d ¼ r̂eiĥ .

Movement between the reference and transformed domains of
the cement is defined by

s ¼ w zð Þ ¼ aþ z

cþ bz
(16a)

z ¼ x sð Þ ¼ �
a� cs

1� bs
(16b)

and shown in Fig. 6. The radii of the transformed interfaces are
calculated from the geometry of the physical system by

ri 7!qi ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2brið Þ2

q
� 1

2b2ri

i ¼ 1; 2 (17)

where b¼d=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr2

1�r2
2Þ

2�2d2ðr2
1þr2

2Þþd2

q
; a¼bq2

1=ð1�b2q2
1Þ;

c¼ð1þabÞ, and d is the eccentricity. Inserting the transformation
into Eqs. (13) and (15) allows for the evaluation of stress and dis-
placement in the s-plane

dRqq þ idRq# ¼ uðsÞ þ uðsÞ � CðsÞu0ðsÞ � HðsÞvðsÞ (18a)

dR## þ idRq# ¼ uðsÞ þ uðsÞ þ CðsÞu0ðsÞ þ HðsÞvðsÞ (18b)

2G

�ix sð Þ
@

@h
dux � iduyð Þ ¼ u sð Þ þ u sð Þ � C sð Þu0 sð Þ � H sð Þv sð Þ

(18c)

where C ¼ s2x=q2x0 ¼ c2q2=aþ ð2c� 1Þei# � aei2# and H ¼
s2x0=q2x0 ¼

P1
n¼0Hnein# and

Hn ¼
bq2 if n ¼ 0

ð�2nbn þ ðn� 1Þbn�2q�2 þ ðnþ 1Þbnþ2q2Þqn if n > 0

(

(19)

Fig. 5 Contour plots of the influence of the shear modulus ratio between rock and cement Gr/Gc and the Newton
coefficient kfl on the effective radial stress along SC (left column of panel) and RC (right column) at complete hydra-
tion (top row) and once the pressure has completely recovered (bottom row). The casing placement is assumed
concentric with the borehole.
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3.2.2 Boundary Conditions. The potentials of the Muskhelish-
vili formalism are sought as Laurent series

/1ðzÞ ¼
X1

n¼�1
As

nzn; w1ðzÞ ¼
X1

n¼�1
Bs

nzn where z 2 S (20a)

uðsÞ ¼
X1

n¼�1
Ac

nsn; vðsÞ ¼
X1

n¼�1
Bc

nsn where xðsÞ ¼ z 2 C

(20b)

/2ðẑÞ ¼
X�1

n¼�1
Ar

nẑn; w2ðẑÞ ¼
X�3

n¼�1
Br

nẑn where ẑ � d ¼ z 2 R

(20c)

where the positive powers of the potentials defining the rock stress
have been truncated to keep the solution bounded as z ! 1. We
may further set Ar

0 ¼ 0 and Br
�2 ¼ 0 on account that the far-field

stress remains constant.
The total stress in the sheath is calculated by linearly superpos-

ing the real-valued stress R* in q1 < jsj < q2 onto the boundary
value problem. Complete continuity of traction and displacement
ensures that both the normal and shear stresses generated by the
shrinking cement specimen are transferred to the steel and rock.
Solving for a divergence-free stress field, the boundary conditions
are summarized as follows:

(1) The inner surface of the steel casing is assumed traction-
free (0< h< 2p)

/1 þ /1 � z/01 �
z

z
w1 ¼ 0

�
r ¼ r0 (21)

(2) A rigid connection between steel and cement implies
traction and displacement continuity along SC (r ¼ r1;
0 < h < 2p and q ¼ q1; 0 < # < 2p)

/1 þ /1 � z/01 �
z

z
w1 ¼ u þ u� Cu� Hvþ dR�jn (22a)

/1 � /1 � z/01 �
z

z
w1 ¼ Gs=Gc u � u� Cu� Hv½ � (22b)

(3) A rigid bond of the cement to the wellbore hole implies
traction and displacement continuity along RC (r̂ ¼ r̂2;
0 < ĥ < 2p and q ¼ q2; 0 < # < 2p)

/2 þ /2 � ẑ þ d ei2ĥ
� �

/02 �
ẑ

ẑ
w2 � dp

¼ u þ u� Cu� Hvþ dR�jn (23a)

/2 � /2 � ẑ þ d ei2ĥ
� �

/02 �
ẑ

ẑ
w2 ¼ Gr=Gc u � u� Cu� Hv½ �

(23b)

3.2.3 Matching the Boundary Arguments. It is readily noticed
that the boundary conditions above are expressed as mutually non-
orthogonal modes of eikh; eik#, and eikĥ . With the help of
Eq. (16b), the arguments along SC and RC are connected by

f ð#Þ þ if ð#þ p=2Þ

¼
eih ¼ xðs ¼ q1ei#Þ=r1 if r ¼ r1 7!q ¼ q1

eiĥ ¼ ðxðs ¼ q2ei#Þ � dÞ=r2 if r̂ ¼ r2 7!q ¼ q2

(
(24)

Furthermore, the analytic mapping of s 7! z along z � SC allows
the mode eik# to be evaluated as a power series

eik# ¼
X1
n¼1

k gneinh (25)

In evaluating the coefficients k gn, the Chebyshev polynomials
of the first kind Tn allow higher modes einh to be calculated from
the relation in Eq. (24), such that the orthogonality condition of
the polynomials gives

kgn ¼ �
2

p

ðp

0

cos k#ð ÞTn f #ð Þ
� � dh

d#
d#

� 2

N

XN

m¼0

cos k#mð ÞTn f #mð Þð Þ
(26)

Here, the discrete approximation is evaluated at the abscissas
#m ¼ pðm� 1=2Þ=N, and k 
 N is required to achieve an accu-
rate result. The same procedure is used to match modes of the ẑ
and s coordinate systems along RC (i.e., eik# ¼

P1
n¼1

kĝneinĥ ).
The remaining calculation of the stress state proceeds in the

usual manner, where the series relations of the boundary
conditions—now expressed solely using the modes ein# —are
truncated upon convergence to produce a system of equations that
determine the coefficients in Eqs. (20a)–(20c).

Fig. 6 Diagram of the bilinear transformation that maps the eccentric contours SC and RC
in the z-plane to concentric contours in the s-plane

Journal of Applied Mechanics SEPTEMBER 2016, Vol. 83 / 091012-7

Downloaded From: http://appliedmechanics.asmedigitalcollection.asme.org/pdfaccess.ashx?url=/data/journals/jamcav/935381/ on 07/12/2017 Terms of Use: http://www.asme.org/about-asme/terms-of-use



4 Energy Release Rate Due to the Formation

of a Microannulus

For common rock-to-cement stiffness ratios, the eccentricity of
the boundaries will produce an increase (decrease) in the effective
stress along the thick (thin) portion of the liner for an increment of
loading. Here, the increase along the thick portion generally
ranges between 10% and 20%, and is spread across a large
fraction of the interface, whereas the drop in stress along the thin
portion is more significant and spatially concentrated. Addition-
ally, the loss of axisymmetry entails the creation of shear stresses
Rrh that concentrate near the rock boundary; the rigid body dis-
placement of the steel casing with respect to the wellbore hole
reduces Rrh along SC.

The design of wellbore liners has traditionally been framed in
the context of stress–strength-based failure criteria [6,23,24].
However, a recent spurt in research is shifting the design para-
digm of liners toward predictive poromechanical fracture models
[5,7,25,26]. Wang et al. [26], for instance, analyzed crack tunnel-
ing by loading the inner surface of the steel casing, and Petersen
and Ulm [27] analyzed the early-age radial fracture in a cement
sheath. A fracture design of setting cement requires the energy
release rate G to be compared to the fracture energy Gcr, for which
the rate of evolution depends on the hydration degree as
dGcr=dn � 1=n [28] and we expect the interfacial fracture energy
along SC and RC to show a similar trend.

Using Clapeyron’s formula, the risk of failure of the liner due
to microannulus formation is stated using the following fracture
criterion:

G ¼ � @Epot

@C
¼ @W
@C
¼
ð
@X

dG
ds

ds � Gcr (27)

In the above equation, the release of potential energy @Epot in creat-
ing new crack surface area @C may equivalently be regarded as the
work done on the crack surfaces @W to reverse the infinitesimal frac-
ture process. Hence, dG=ds is the distribution of work done along the
boundary @X to bring the two fractured surfaces back together. Frac-
ture is substantiated when G equals the interface toughness Gcr.
Therefore, with the requirement that the interfaces are in tension
ðRðriÞ þ DpðriÞÞ > 0, we obtain for a drained fracture process

G ¼

1

2

ð
@X

R rð Þ þ DpIð Þ � er½ � �
����us

0 � Dp
r1

Ks

er

����ds if r ¼ r1

1

2

ð
@X

R rð Þ þ DpIð Þ � er½ � �
����ur

0 � Dp
r2

Kr

er

����ds if r̂ ¼ r2

8>>><
>>>:

(28)

where the term in the absolute value brackets measures the crack
opening displacement. Hence, us

0 ður
0Þ is the displacement of the

debonded inner (outer) sheath boundary with respect to the posi-
tion before setting. The displacement must also account for the
effects of a fluid pressure p acting on the newly created surfaces,
such that the fractured steel (rock) interface displaces by
Dp r1=Ks ðDp r2=KrÞ.1

In Fig. 7(a), we display the progression of Ĝ corresponding to
the evolution of Rrrþ p in Fig. 4 for kfl ¼ 1� 10�5s�1 and we
have adopted the normalization, Ĝ ¼ GG1c =2priR

12
rr ; where G1c

and R1rr are the terminal values (t ! 1; Dp¼ 0) of the cement
shear modulus and the effective radial stress, respectively, and
2pri (i¼ 1, 2) is a measure of the crack length. In the plot, Ĝ
increases rapidly upon entering the tensile stress regime and
achieves normalized values �1.0–1.4 upon recovery to the forma-
tion pressure (indicated by the dashed lines). Here, it is remarked
that the pressure recovery more drastically amplifies the energy
release rate along SC. Next, Fig. 7(b) shows Ĝ at t! 1 in func-
tion of Gr/Gc, where a low rock stiffness increases the system’s
compliance and, as a consequence, the normalized energy release
rate. This must be contrasted with the reduced effective stresses
entailed by the soft system (displayed in Fig. 5), such that the
dimensional quantity G typically increases for larger Gr.

To quantify the increased risk posed by casing eccentricity,
Fig. 8 shows the distribution of work done along SC and RC to
reverse a microannulus, i.e., the integrands written in Eq. (28),
which have been normalized with respect to the uniform distribu-
tion of the concentric geometry.2 While the �10% increase in
work done along the thicker portion of the annulus along RC
(Fig. 8(b)) coincides with the increase in the radial stress distribu-
tion, it is counterintuitive to observe a reduction of dG=dh along
the entirety of SC for large eccentricities (Fig. 8(a)). In other
words, casing eccentricity can reduce the risk of complete
debonding along SC. Next, the increased risk of crack initiation is
aptly quantified by considering the presence of a small flaw or
microcrack along either interface, where the crack length is much
smaller than the thicknesses of the casing and the sheath,
l
 r1 � r0 < r2 � r1. For such a crack, we can neglect the influ-
ence of the curvature of the boundaries, such that the condition of
a crack between two semi-infinite material half-spaces can be
assumed. The analytic behavior of such interface cracks is well

Fig. 7 (a) The evolution of the energy release rate for a vertically propagating microannulus in a concentric geom-
etry for kfl 5 1 3 1025 s21; values normalized by Ĝ5GG‘

c =2priR
‘2
rr , where i 5 1 along the SC and i 5 2 along RC. The

dashed contours show the energy release rate once the pressure has fully recovered. (b) The normalized energy
release rate at t fi ‘ in function of the rock-to-cement shear modulus ratio.

1Ks and Kr are the effective stiffnesses of the steel and rock, respectively (see
Appendix A).

2It should be noted that the analytical calculation of the energy release rate for an
in-plane crack that is only partially debonded is a complicated two-mode fracture
process, and it is further unclear whether the crack will follow along the interface or
kink out into the cement. Nonetheless, Lecampion et al. provide numerically tabulate
results for cracks of partial azimuthal extent [29].
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understood [30], where the energy release rate for crack initiation
scales as Gi / ½ðRrrðhÞ þ DpÞ2 þ RrhðhÞ2� and Rrr þ Dp > 0. The
h-dependence of crack initiation is plotted in Figs. 8(c) and 8(d)
for SC and RC for the terminal stress states of our sample simula-
tion. Normalized by the value of the concentric geometry, Gi

increases for both SC and RC along the thick portion of the
sheath, reaching maxima of �1.08 and �1.30, respectively.
Hence, the introduction of casing eccentricity universally ampli-
fies the prospect of crack formation.

To conclude, we display the relation between the maximum
value of Gi along the interfaces and the rock-to-cement stiffness
ratio in Fig. 9. The plot shows that an eccentrically placed casing

increases the risk of crack initiation most drastically for soft for-
mations, and it is noted that the normalized values for the low and
high permeability scenarios differ due to the effects of their incre-
mental loading histories. Interestingly, in decreasing the stiffness
of the rock, the curve displaying Gi along SC for the highly per-
meable formation decreases to 1. This marks the ratio Gr=Gc at
which the loading along SC transitions from tensile to compres-
sive. Conversely, the increased repressurization at the end of
hydration prevents a similar transition for kfl¼ 1.0� 10�6 s�1.

5 Conclusions

An analysis of the early-age pressure and stress evolution in a
wellbore cement sheath has been conducted. We derived a pres-
sure state equation by balancing the chemical and mechanical
changes of the capillary porespace. Tracing the morphology of the
phase volume fractions, and incorporating the loading due to
eigenstress and pressure, we calculated the exchange of fluid with
the adjacent rock formation. Though the model acts under the
assumption of saturated, creep-free deformation, it nonetheless
captures the underlying physics of the pressure and stress evolu-
tion. For a growing solid volume, the stress and pressure were
advanced incrementally, which elucidated a critical phenomenon:
the increase in cement compressibility in a lowered pressure envi-
ronment poses a grave risk of microannulus formation upon
repressurization. This highlights the system’s permeability as the
primary predictor of the final state of the radial effective stress.

Second, an analytic solution for the stress state of the sheath
hydrating between two elastic eccentric boundaries was derived
and used to infer the added risk of fracture. For a concentric
geometry, it was found that high rock stiffness increases the effec-
tive radial stress along the boundaries, where G / ðRrr þ DpÞ2,

Fig. 8 The top panels show the distribution of work done along (a) SC and (b) RC to produce a microannulus
along the respective interface for different degrees of casing eccentricity. The bottom panels display the energy
release rate for a microcrack Gi, i.e., the risk of crack initiation, along (c) SC and (d) RC. dG=dh and Gi have been nor-
malized with respect to the uniform values in a concentric geometry.

Fig. 9 The energy release rate for a microcrack along SC and
RC GiðhÞ5Gecc

i ðhÞ=Gcent
i in function of different Gr/Gc
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though the simultaneous reduction in the system’s compliance
curbs the boundary displacement and consequently Ĝ upon frac-
ture. Next, the effect of casing eccentricity was inspected in the
context of fracture. It was found that G for complete debonding of
the interfaces is typically not substantially increased and in some
cases even decreases along SC. Instead, there is a higher risk of
crack initiation due to the localization of stresses and addition of
the shear traction.

By shifting from stress–strength-based failure criteria toward
fracture modeling and incorporating the chemoporous nature of
the cement paste, the design of cement liners is progressed toward
predictive, physics-based tools.
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Appendix A: Parameters Defining the Cement Stress

Field in a Concentric Geometry

Defining the effective stiffnesses of the steel casing Ks and rock
formation Kr as the uniform pressure acting along the outer and
inner boundaries, respectively, to produce a unit of radial
displacement, we write

Ks ¼ 2Gs

Gs þ 3Ksð Þ -2
1 � 1

� �
Gs 3-2

1 þ 1
� �

þ 3Ks

(A1a)

Kr ¼ 2Gr (A1b)

where -1 ¼ R1=R0. Hence, the constants defining the stress state
in the concentric geometric of the sheath are given as

C�1 ¼ �
2G 1� -2

2

� �
þ KS þ -2

2KR

KR þ KS

C�2 (A2a)

C�2 ¼
3 KR þ KSð Þ

K
(A2b)

Cp
1 ¼ �

KR þ 2Gð Þ-2
2

KR þ KS

C�2 (A2c)

Cp
2 ¼

2Gþ 6K þ 3KRð Þ
3 KR þ KSð Þ

C�2 (A2d)

where -2 ¼ R2=R1 and K ¼ 2ð4Gþ 3KÞðKR þ KSÞ þ ð1� -2
2Þ

ð3KRðKS � 2KÞ � 2Gð3KS þ KRÞ þ 4Gð3K þ GÞÞ.

Appendix B: Arrhenius Law

The hydration reaction is advanced using an Arrhenius type law
of the form [31]

dn
dt
¼ A nð Þe�Ea=RT ¼ s�1

hyd n;Tð Þ; A nð Þ ¼ a
1� e�bn

1þ cnd
(B1)

where a, b, c, and d are parameters to be determined by fitting the
above functional form to cement calorimetry data. The packing
density—the volume ratio between hydrated cement and the
hydration products—of the CSH gel is given by gðnÞ ¼ Vhc=Vhp

� ðn=aÞ1=b, and b ¼ lnðnlim=n0Þ=lnðglim=g0Þ; a ¼ n0=g
b
0 ¼ 1=gb

lim;
where glim and g0 are the limit packing density and the packing
density at percolation, respectively. We assumed glim¼0.72 and
g0¼0.50 in our simulations. For the calculation of the evolution
of the volume fractions, refer to Ref. [32].

Appendix C: Upscaling Procedure of a Three-Level

Cement System

The elastic constants of the CSH gel, a granular, colloidal com-
posite, are upscaled via a self-consistent scheme [33], where
KI=ks ¼ ð4gG=gsÞð4G=gs þ 3ð1� gÞrsÞ

GI

gs

¼ 1

2
�5

4
1�gð Þ� 3

16
rs 2þgð Þþ 1

16

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
144 1� rsð Þ�480gþ400g2þ408rsg�120rsg2þ9r2

s 2þgð Þ2
q

and rs ¼ ks=gs ¼ 2ð1þ �sÞ=3ð1� 2�sÞ > 0. Next, the Mori–
Tanaka scheme homogenizes the constants for a CSH gel matrix

with capillary porosity using KII=KI ¼ ð4ð1� /II
MÞÞ=ð4þ 3/II

MrIÞ
and GII=GI ¼ ½ð8þ 9rIÞð1�/II

MÞ�=½8þ 9rI þ 6/II
Mð2þ rIÞ�, where

rI ¼ KI=GI and /II
M ¼ ðVgþVwÞ=ðVIIÞ [17]. Finally, we access the

macroscale by incorporating rigid, slippery inclusions (representa-
tive of, e.g., silica flour), and the unhydrated clinker grains in a
self-consistent scheme: The bulk and shear moduli are calculated
as KIII=KII ¼ ½3rII þ 4ðGIII=GIIÞnIII�=½3ð1� nIIIÞrII�, and

GIII

GII

¼ 1

24

1

2� 3nIIIð Þ 8 3� 2nIIIð Þ� 15� 24nIIIð ÞrII

	
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9 8nIII� 5ð Þ2r2

IIþ 48 11n2
III� 29nIIIþ 15

� �
rIIþ 64 3� 2nIIIð Þ2

q 


where rII ¼ KII=GII [34]. Herein, the bulk properties of the CSH
solid were assumed ks¼ 49 GPa and gs¼ 23.5 GPa [35]. The

Table 2 Phase volume fractions and homogenized poroelastic constants for an REV at the characteristic length scales, levels I–III.
The Biot coefficients and Biot moduli at the three scales are derived in Refs. [5] and [32].

Level I (CSH solid
þ gelpores)

Level II (CSH gel
þmacropores)

Level III (hydrating matrix, CSH gel,
macropores, and nonreactive inclusions)

Reference volume VI¼Vhp VII¼VhpþVw VIII¼VIIþVcþVnr

Matrix fraction nI¼ g nII¼Vhp/VII nIII¼VII/VIII

Inclusion fraction u ¼ 1� g /II
M ¼ Vw=VII finc¼ (VcþVnr)/VIII

Total porosity /I
0 ¼ u /II

0 ¼ /II
M þ nIIu /III

0 ¼ /II
0 ð1� fincÞ

Biot coefficient bI¼ 1�KI/ks bII¼ 1�KII/ks bIII¼ bII

Solid Biot modulus 1

NI

¼ bI � /I
0

ks

1

NII

¼ 1

ks
ð1� /II

MÞðbI � /I
0Þ þ ð1� bIÞ 1� KII

KI

� /II
M

� �� 

1

NIII

¼ ð1� fincÞ
1

NII
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remaining relations are found in Table 2, where w¼water,
c¼ cement clinker, hp¼ hydration products, and nr¼ nonreactive
inclusions.
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