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Buckling of slender structures is traditionally regarded as a first route toward failure.
Here, we provide an alternative perspective on a burgeoning movement where mechani-
cal instabilities are exploited to devise new classes of functional mechanisms that make
use of the geometrically nonlinear behavior of their postbuckling regimes. Selected exam-
ples are highlighted across length-scales to illustrate some of the exciting opportunities
that lie ahead. [DOI: 10.1115/1.4031456]

Introduction

Slender structural elements (e.g., rods, plates and shells) under
compression are ubiquitously subjected to mechanical instabil-
ities. In 1744, Euler [1] laid the foundation for the formal analysis
of structural stability; a field that has matured to become para-
mount in engineering design and one of the pillars in the history
of mechanics [2]. A modern and detailed perspective on the stabil-
ity of structures is found in the seminal book by Ba�zant and Cedo-
lin [3]. Across length-scales, buckling has traditionally been
regarded as a first route toward failure and can lead to catastrophic
collapse [4]; an approach that can be succinctly referred to as
Buckliphobia. By contrast, Buckliphilia is a more recent and bur-
geoning trend that is changing the above paradigm. Mechanical
instabilities of slender structures are therefore envisioned as
opportunities for novel modes of functionality that are to be pre-
dictively understood in order to then be exploited.

In these efforts of adopting Buckliphilia, there is a need to
rationalize the complex configurations that arise in the
postbuckling regime, far-from-threshold. The large displacements
and rotations permissible by slender structures can yield nontrivial
and nonnegligible geometric nonlinearities, even if their material
properties remain linear. Furthermore, this strong rooting of the
postbuckling behavior on geometry results in general and univer-
sal modes of deformation; albeit with threshold or onsets that are
scale- or material-dependent. To avoid overstatement, it is impor-
tant to note that viscoelasticity, plasticity, fracture, and other phe-
nomena can introduce additional time- and length-scales that may
compromise the geometric universality of the buckling modes. In
many problems involving the large deformation of thin structures,
however, the strains at the material level are small enough, such
that these effects are secondary and a linear elastic constitutive
description suffices.

Qualifying a structure as slender is a statement on aspect ratio
rather than length-scale, which added to the fact that elasticity is a
scale-free theory, ensures that functional mechanisms based on
the instability of slender structures can be instantiated over a wide
range of length-scales. In Fig. 1, we represent three representative
examples that illustrate this scale invariance. First, the crumpling
of paper [5] (Fig. 1(a)) has been regarded by the nonlinear physics
community as a canonical problem, at the centimeter scale, for

Fig. 1 Mechanics of slender structures, across length-scales.
(a) Crumpled paper ball (8-cm diameter) and (b) crumpled gra-
phene sheet (�200-nm diameter, SEM image courtesy of Mao
et al. [9]). Kirigami springs made out of a periodically cut (c) pa-
per and (d) graphene sheets (courtesy of Blees et al. [11]). (e)
Precision desktop experiment to study the buckling of a thin
rod injected into a horizontal cylindrical constraint that is appli-
cable to the (f) lock-up in coiled tubing operations in the oil and
gas industries (courtesy of Miller et al. [14]).

Contributed by the Applied Mechanics Division of ASME for publication in the
JOURNAL OF APPLIED MECHANICS. Manuscript received August 24, 2015; final
manuscript received August 25, 2015; published online September 28, 2015. Editor:
Yonggang Huang.

Journal of Applied Mechanics NOVEMBER 2015, Vol. 82 / 111001-1Copyright VC 2015 by ASME

Downloaded From: http://appliedmechanics.asmedigitalcollection.asme.org/pdfaccess.ashx?url=/data/journals/jamcav/934326/ on 07/11/2017 Terms of Use: http://www.asme.org/about-asme/terms-of-use



how elastic singularities (developable cones [6] and ridges [7])
can assemble into complex arrangements that require a description
based on statistical mechanics [8]. Analogously, at the nanoscale,
spheres of crumpled graphene, the epitome of a thin sheet, are
being explored for innovative energy storage applications
(Fig. 1(b)) [9,10].

As a second illustration of the scale-invariance in plates, in
Figs. 1(c) and 1(d), we present two examples of kirigami, for pa-
per and graphene sheets, respectively; a variation of origami that
involves shape forming but allowing cutting [11]. Again, because
of the preponderance of geometry, the modes of deformation in
the paper and graphene cases are identical. Building on the insight
gained by their paper models, Blees et al. [11] have devised a new
class of graphene-based metamaterials with tunable mechanical
properties, that may open new directions in stretchable electrodes,
springs, and hinges.

In a third example of our own (Figs. 1(e) and 1(f)), we have per-
formed precision model experiments (at the meter scale) [12–14]
to study the buckling and subsequent lock-up of coiled-tubing dur-
ing injection into horizontal wellbores (at the kilometer scale), as
well as identify methods for extending reach [13]. As part of this
study, we performed a formal scaling analysis of the dimension-
less governing equations for a thin elastic rod inside a cylindrical
constraint to identify the primary parameters and predictively
extrapolate the mechanics learned from the scaled experiment to
the field scale. This example illustrates the value of scalings in
order to assist in the porting of the gained understanding across
length-scales, in a predictive manner. Scaling analysis is therefore
a powerful tool, even if the ultimate goal is to be able to arrive at
an analytical or numerical quantitative description of the problem.

The hegemony of geometry and the scale-invariance of Buckli-
philia requires that we revisit old problems on the mechanics of
rods, plates, and shells and tackle the fundamental challenge of
predictively understanding their underlying geometric nonlinear-
ities in the postbuckling regime. We proceed by providing four
specific examples of practical relevance, where this methodology
can be used to derive function. A more detailed review of other
instances of functional buckling can be found in Refs. [15 and 16].

Figure 2(a) shows a photograph of a pneumatically actuated
structure that makes use of the periodic buckling of a thin-stiff
shell bound to a thick-soft substrate to generate complex topogra-
phy, on demand [17], by depressurizing an inner cavity. In a spe-
cific region of parameter space, one can excite a wrinkling pattern
of dimples that arrange in a quasi-hexagonal packing, with topo-
logical defects that are dictated by the geometry of the curved
crystal [18]. The depth of the dimples can be varied by setting the
pressure differential between the inside and the outside of the
sample. These dimpled patterns have a striking resemblance to the
topography of golf balls. We have explored this similarity and
demonstrated that the reversible buckling patterns on spherical
shells can be exploited as a tunable and reversible aerodynamic
drag reduction mechanism, which we refer to as Smorphs (for

smart morphable surfaces) [17]. These Smorphs have the remark-
able characteristic that their aerodynamic drag coefficient can be
controlled and actively reduced by as much as a factor of 2 (from
CD � 0:5 for the smooth spherical case, down to CD � 0:25 for
the dimpled case). Moreover, we have been able to rationalize
how the curvature of the substrate, together with the other geomet-
ric and material properties of the film and substrate, dictates the
phase diagram of the system [19].

The Buckliball (Fig. 2(b)), was introduced as a new class of
continuum structures that can undergo buckling-induced reversi-
ble folding, under pneumatic actuation [20]. The geometry of the
Buckliball consists of a spherical shell patterned with a regular
array of circular voids, the arrangements of which is dictated by
topological constraints. Below a critical value of the internal pres-
sure, the narrow ligaments between the voids buckle, leading to a
cooperative cascade that is underpinned by a negative Poisson’s
ratio effect [21] of the skeleton of the ball. This mechanism can
potentially be used for encapsulation, actuation in soft robotics
[22], or for large-scale deployable structures.

In another example for the functional usage of buckling, this
time at the microscopic scale, Xu et al. [23] recently proposed a
new set of design and fabrication principles to morph planar lay-
outs of ribbons into a plethora of three-dimensional (3D) architec-
tures (Fig. 2(c)). These include butterflies, boxes, tents, tables,
baskets, coils, and stars, with the possibility of built-in hierarchy.
The 2D-to-3D transition is triggered by buckling that is induced
by the compressive stresses arising from the unloading of a pre-
stretched elastomeric substrate, onto which the ribbons are
adhered to at strategic bounding sites. The mechanism is analo-
gous to children’s pop-up books and is related to the kirigami
example mentioned above. Here, however, the coupling of bend-
ing and twist of the ribbons enables a wider design flexibility than
those more traditional strategies, which are limited by the addi-
tional geometric constraints of plates. Potential applications of
these 3D devices span novel electronic, optical and magnetic
properties, which themselves may be coupled, and with the added
advantage of the possibility of tunability.

Shifting to biological systems; still at the micron scale,
uniflagellated bacteria (e.g., Vibrio alginolyticus, see Fig. 2(d))
have been found to exploit buckling to alter their swimming direc-
tion [24]. In this case, the instability is localized at the highly
compliant hook that connects the slender flagellum to the rotary
motor inside the cell body. Subsequently, by combining computer
simulations and precision model experiments, we have demon-
strated [25] that it is possible for the actual flagella to buckle,
itself a helical filament that is highly flexible ought to its slender-
ness. Here, the instability arises due to the compressive stresses
that derive from the viscous loading during the rotation of the hel-
ical filament. Given our dimensionless description in a problem
that is, again, dominated by geometry, we have extrapolated these
results to the biologically relevant regime and found that some
common bacteria appear to operate near the critical buckling

Fig. 2 Buckliphilia—using buckling for functional modes of deformation. (a) Smart morphable
surfaces for tunable aerodynamic drag reduction through wrinkling on curved surfaces [17].
Scale bar, 1 cm. (b) The Buckliball exhibits buckling-induced folding [20]. Samples at different
stages of loading. Scale bar, 1 cm. (c) 3D structure created by the buckling of a 2D ribbon layout
(courtesy of Xu et al. [23]). Scale bar, 200 lm. (d) Vibrio alginolyticus uses buckling of its hook
for turning during swimming (courtesy of Son et al. [24]). Scale bar, 1 lm.
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threshold. This raises the hypothesis that the reconfigurations that
emerge in the postbuckling regime of the flagella may be used as
a remarkably simple functional turning mechanism. We speculate
that there are many other instances in biology, yet to be discov-
ered and mimicked, where mechanical instabilities are used for
function.

These new trends of reversibly exploiting the postbuckling
regime of slender structures are calling for new technical
approaches for experimental, numerical, and theoretical analysis.

On the experimental front, to which we dedicate particular
focus in our research, scalability of the geometrically rooted
behavior in thin structures allows for a reduction of problems to
their bare essential physical ingredients. As such, precision model
experiments can be devised at a scale (e.g., the centimeter) that is
more amenable for systematic and detailed exploration, when
compared to the length scale of the original problem (the micron
or the kilometer, in many cases). These rescaled laboratory set-
tings, which we often refer to humorously as precision desktop
experiments (p.d.e.’s), carry added value in that they can serve as
quantitative validation platforms for theoretical and numerical
models, as well as a powerful means to gain physical insight.
More importantly, the added versatility in fabrication and system-
atic exploration of parameter spaces open the door for exploration
and discovery-driven approaches to arrive at new mechanisms and
phenomena. This experimental approach is empowering progress,
in what are otherwise highly nonlinear, and therefore both nontri-
vial and counterintuitive, systems. We have found the following
experimental techniques to be particularly enabling in this frame-
work: (i) casting with silicone-based elastomers to fabricate sam-
ples, (ii) 3D printing, (iii) digital imaging, and (iv) 3D scanning.
In particular, digital fabrication and rapid prototyping techniques
offer the opportunity to fabricate organic morphable specimens
with an unprecedented level of flexibility, in both geometry and
materials. Moreover, digital imaging (high-resolution/speed and
3D-scanning) enables accurate quantification of the geometric
configurations in the postbuckling regime that can be a powerful
tool for discovery and in the detailed validation of models.

There are also significant opportunities in numerical and theo-
retical analysis that revive results from the classic mechanics liter-
ature into new contexts and call for new developments. Even if a
detailed review of these opportunities is beyond the scope of this
perspective, we pick on two specific aspects. First, the nonlinear
nature of the complex geometries that is encountered in buckli-
philia make the derivation of closed analytical solutions a chal-
lenging, and sometimes unachievable, endeavor. As an
alternative, approximate solutions and scaling laws obtained from
an energy balance of the primary ingredients assume a new level
of importance. These scalings help systematize physical under-
standing and provide design guidelines that can facilitate imple-
mentation by nonspecialists.

Second, on the topic of computer simulations, the mechanics of
slender structures, especially in their postbuckling regimes, is
pushing the limits of well-established numerical techniques, such
as the finite element method (FEM). Accurately reproducing the
resulting geometric nonlinearities using FEM is challenging and
computationally costly due to both poor convergence and the exis-
tence of many neighboring buckling modes. To deal with the first,
we have greatly benefited from porting cutting-edge algorithms
from the computer graphics community that exploit the power of
discrete differential geometry for geometrically exact, efficient
and robust computation. For example, using the discrete elastic
rod method [26], we have been able to predictively compute the
full phase diagram of the nonlinear coiling patterns that emerge
when a thin elastic rod is deployed onto a rigid moving substrate
[27,28]. Moreover, multistability is often ubiquitous in these sys-
tems due to the presence of many neighboring modes that can
interact nonlinearly. One way to address this issue of multistable
solutions is to turn to numerical continuation techniques, as we
have illustrated for thin elastic rods [29–31] using the asymptotic
numerical method [32]. We believe that translating approaches

from computer graphics into engineering as predictive tools and
developing new computational techniques offer tremendous
opportunities for engineering mechanics.

In summary, the recent revival in the study of mechanical insta-
bilities of slender structures, is opening exciting new research
directions that are fundamentally challenging and offer unprece-
dented opportunities for applications. The post-buckling regime
allows for dramatic reconfigurations that can be exploited for
function. The prominence of geometry in this class of problems
leads to a scale-invariance and universality that confers relevance
over a wide range of length-scales. There has been a striking
dynamism in this area, which has come to be warmly referred to
by some as the Extreme Mechanics movement [33]. This upsurge
in activity is demonstrated by the many symposia and focus ses-
sions at leading conferences; e.g., the Society of Engineering Sci-
ence, the American Society of Mechanical Engineers, and the
American Physical Society. This activity is attracting young and
well-established researchers, alike, who are blurring disciplinary
boundaries with important contributions coming across mechan-
ics, physics, materials science, chemistry, mathematics, and com-
puter science.

Looking forward, some of the exciting opportunities ahead
include accurately addressing issues of self-contact and coupling
geometrically nonlinear mechanics with other phenomena; e.g.,
adhesion, growth, fracture, flow, and electromagnetism. As we
continue to push ahead, it is important that wheels are not
re-invented but, instead, that we revive the well-established
mechanics literature respectfully, and continue to advance its leg-
acy into fundamentally new grounds, while remaining open to a
diversity of approaches. Simultaneously, it is important that we
maintain a good balance between a curiosity-driven research and
a drive for innovative engineering. “The future is mechanics”
[34], as one of our colleagues often says, and some of it is both
slender and geometrically nonlinear.
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