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Abstract

We consider the problem of reconstructing the graph underlying an Ising model from i.i.d.
samples. Over the last fifteen years this problem has been of significant interest in the statistics,
machine learning, and statistical physics communities, and much of the effort has been directed
towards finding algorithms with low computational cost for various restricted classes of models.
Nevertheless, for learning Ising models on general graphs with p nodes of degree at most d,
it is not known whether or not it is possible to improve upon the pd computation needed to
exhaustively search over all possible neighborhoods for each node.

In this paper we show that a simple greedy procedure allows to learn the structure of an
Ising model on an arbitrary bounded-degree graph in time on the order of p2. We make no
assumptions on the parameters except what is necessary for identifiability of the model, and in
particular the results hold at low-temperatures as well as for highly non-uniform models. The
proof rests on a new structural property of Ising models: we show that for any node there exists
at least one neighbor with which it has a high mutual information. This structural property
may be of independent interest.

http://arxiv.org/abs/1411.6156v2


1 Introduction

Undirected graphical models, or Markov random fields, are a general and powerful framework for
reasoning about high dimensional distributions and are at the core of modern statistical inference.
The joint probability distribution specified by such a model factorizes according to an underly-
ing graph, and the absence of edges encodes conditional independence [36]. The graph structure
captures the computational aspect inherent in tasks of statistical inference including computing
marginals, maximum a posteriori assignments, the partition function, or sampling from the distri-
bution. In addition to their statistical relevance, such computations on graphical models include
as special cases many combinatorial optimization and counting problems.

The Ising model is a Markov random field having binary variables and pairwise potential func-
tions. The Ising model has a long and celebrated history starting with its introduction by statistical
physicists as a model for spin systems in order to understand the phenomena of phase transition
[29, 12]. It has since been used across a wide spectrum of application domains including finance,
social networks, computer vision, biology, and signal processing. The understanding of the compu-
tational tractability of inference (computing the partition function and sampling) has recently seen
significant progress [32, 66, 57, 58, 59, 27].

The inverse problem of learning models from data is equally important. Once the underlying
graph is known it is relatively easy to estimate the parameters, hence the focus is largely on the
task of structure learning, i.e., estimating the graph. Study of this problem was initiated by Chow
and Liu in their seminal 1968 paper [13], which gave a greedy algorithm for learning tree-structured
Markov random fields with runtime on the order of p2 for graphs on p nodes. They showed that
the maximum likelihood graph is a maximum-weight spanning tree, where each edge has weight
equal to the mutual information of the variables at its endpoints. The maximum-likelihood tree
can thus be found by a greedy algorithm, for example using Kruskal’s or Prim’s algorithms, and
the running-time of the Chow-Liu algorithm is dominated by the time required to compute the
mutual information between all pairs of nodes in the graph.

For graphs with loops the problem is much more challenging for two reasons: a node and its
neighbor can be marginally independent due to indirect path effects, and moreover, this difficulty
is compounded by presence of long-range correlations in the model, in which case distant nodes
can be more correlated than nearby nodes. As discussed next in Subsection 1.1, a basic first-order
question has remained unanswered: it is not known if it is possible to learn the structure of Ising
models on general graphs with p nodes of degree at most d in time less than pd. This is roughly
the time required to exhaustively search over all

(
p
d

)
possible neighborhoods of a node and for each

such candidate neighborhood test whether or not the implied conditional independence holds [9].
In this paper we show that despite these challenges, a simple greedy algorithm allows to re-

construct arbitrary Ising models on p nodes of maximum degree d in time Õ(p2), where the Õ(·)
notation hides a factor log p as well as a constant depending (doubly-exponentially) on d. Expo-
nential dependence on d is unavoidable as the number of samples must itself increase exponentially
in d [54], but doubly-exponential dependence on d is probably suboptimal. The implication of our
result is that learning Ising models on arbitrary graphs of bounded degree has essentially the same
computational complexity as learning such models on tree graphs. The proof rests on a new basic
property of Ising models: we show that for any node, there exists at least one neighbor with which
it has high mutual information, even conditional on any subset of nodes.
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1.1 Complexity of graphical model learning

A number of papers, including [1], [9], and [17], have suggested to find each node’s neighborhood by
exhaustively searching over candidate neighborhoods and checking conditional independence. For
graphical models on p nodes of maximum degree d, such a search takes time (at least) on the order
of pd. As d grows, the computational cost becomes prohibitive, and much work has focused on
trying to find algorithms with lower complexity. Writing algorithm runtime in the form f(d)pc(d),
for high-dimensional (large p) models the exponent c(d) is of primary importance. We will think
of efficient algorithms as having an exponent c(d) that is bounded by a constant independent of d.

Previous works proposing efficient algorithms either restrict the graph structure or the nature
of the interactions between variables. Chow and Liu [13] made a model restriction of the first type,
assuming that the graph is a tree; generalizations include to polytrees [18], hypertrees [60], tree
mixtures [3], and others. Among the many possible assumptions of the second type, the correlation
decay property (CDP) is distinguished: until the recent paper [10], all existing efficient algorithms
required the CDP [8]. Informally, a graphical model is said to have the CDP if any two variables σi
and σj are asymptotically independent as the graph distance between i and j increases. The CDP is
known to hold for a number of pairwise graphical models in the so-called high-temperature regime,
including Ising, hard-core lattice gas, Potts (multinomial), and others (see the survey article [25]
as well as, e.g., [20, 21, 53, 66, 26, 6]).

It was first observed in [9] that it is possible to efficiently learn (in time Õ(p2)) models with (ex-
ponential) decay of correlations, under the additional assumption that neighboring variables have
correlation bounded away from zero (as is true for the ferromagnetic Ising model in the high tem-
perature regime). A variety of other papers including [46, 50, 4] give alternative algorithms, but also
require the CDP to guarantee efficiency. Structure learning algorithms that do not explicitly require
the CDP are based on convex optimization, such as Ravikumar, Wainwright, and Lafferty’s [48]
approach using ℓ1-regularized node-wise logistic regression. This algorithm has complexity O(p4);
while it is shown to work under certain incoherence conditions that seem distinct from the CDP,
Bento and Montanari [8] established through a careful analysis that the algorithm fails for simple
families of ferromagnetic Ising models without the CDP. Other convex optimization-based algo-
rithms (e.g., [37, 30, 31]) assume similar incoherence conditions that are difficult to interpret in
terms of model parameters, and likely also require the CDP.

It is noteworthy that most computationally efficient sampling algorithms (which happen to
be based on MCMC) require a notion of temporal mixing, and this is closely related to spatial
mixing or a version of the CDP (see, e.g., [61, 22, 39, 66]). The conclusion is that under a class of
mixing conditions (informally speaking), we can both generate samples efficiently as well as learn
graphical models efficiently from i.i.d. samples. For antiferromagnetic Ising models on general
bounded degree graphs, one has the striking converse statement that generating samples becomes
intractable (NP-hard) precisely at the point where the CDP no longer holds [59].

Because all known efficient algorithms required the CDP, and because the Ising model exhibits
dramatically different macroscopic behavior with versus without the CDP (and this determines
computational tractability of sampling), Bento and Montanari [8] posed the question of whether
or not the CDP is necessary for tractable structure learning. A partial answer was given in [10],
by demonstrating that a family of antiferromagnetic Ising models on general graphs can be learned
efficiently despite strongly violating the CDP. Thus any relationship between the complexity of
sampling (or computing the partition function) and the problem of structure learning from i.i.d.
samples seems tenuous, and this is corroborated by the results of this paper. In contrast, the recent
papers [11] and [43] demonstrate an algorithmic connection between parameter estimation from
sufficient statistics for a model on a known graph and computation of the partition function.
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1.2 Results

We prove that the graph structure of an arbitrary Ising model on a bounded degree graph can be
learned efficiently. Before discussing the algorithm, we first state the main conceptual contribution
of the paper, namely identifying a new structural property of Ising models. Given the structural
result the algorithm is almost obvious, and indeed it can be interpreted as a generalization of Chow
and Liu’s 1968 greedy algorithm for learning trees to models on arbitrary graphs.

Proposition 1.1 (Structural property – informal). Let G be a graph on p nodes of maximum degree
d, and consider an Ising model on G. Then for any node u ∈ V there exists a neighbor i such that
the mutual information between i and u is at least some constant that is independent of p.

The property as stated is actually a consequence of Proposition 5.3: we allow to condition on
an arbitrary set of nodes, and instead of mutual information, we use a certain conditional influence
measure. As shown in Section 5, this influence provides a lower bound on the mutual information.

Our algorithmic result is stated in the following theorem.

Theorem 1.2 (Algorithm performance – informal). Consider an Ising model on an arbitrary graph
on p nodes of maximum degree at most d. Given n = f(d) log p samples from the model, where the
constant f(d) is a function of the range of interaction strengths and d, it is possible to learn the
underlying graph in time f(d)p2 log p .

We remark that the factor f(d) in the sample complexity and runtime of our algorithm depends
doubly-exponentially on d, in contrast to the necessary exponential dependence discussed in Sub-
section 2.2. While the focus of this paper is not on sample complexity, our algorithm does obtain
(with a suboptimal constant) the optimal logarithmic dependence on p.

Our algorithm is described in Section 4 and a more detailed statement of the theorem (with
full dependence on constants) is given as Theorem 4.1. The algorithm is extremely simple and
quite natural: in order to find the neighborhood of a node u, it greedily (according to a measure of
conditional influence) adds nodes one-by-one to form a constant-size superset of the neighborhood
(pseudo-neighborhood). The idea of adding spurious nodes to form a superset is not new, but it is
worth emphasizing the difference relative to algorithms that attempt to add only correct nodes.

It is also crucial that the algorithm only adds—and does not remove—nodes in creating the
pseudo-neighborhood. The reason is that in models with long-range correlations, a non-neighbor i
with high influence on u (or high mutual information) contains a lot of information about many other
non-neighbors, so conditioning on i effectively eliminates many non-neighbors from consideration.
This allows us to use a potential argument, whereby each added node reduces the conditional
entropy of the node u by some constant, and this bounds the size of the pseudo-neighborhood. The
pseudo-neighborhood can then be easily pruned to remove non-neighbors.

We next mention a few connections to other work and then in Section 2 define the Ising model
and structure learning problem. Section 3 introduces the notion of influence we use and states a
lemma showing that empirical estimates are close to the population averages. Section 4 presents
our algorithm with performance guarantee stated in Theorem 4.1. Section 5 contains proofs of
correctness and runtime, as well as a statement of our structural result, Proposition 5.3. The
proposition is proved in Sections 6 and 7. Finally, Section 8 contains the proof of the lemma from
Section 3 and Section 9 discusses possible extensions.

1.3 Other related work

Since the 1980’s, Hinton and others have studied the problem of learning Ising models under the
name of learning Boltzmann machines [2, 28, 63]. Most approaches for learning Boltzmann machines
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do not assume a sparse underlying graph and attempt to find parameters directly, using gradient
optimization methods. Ising models are used to model neuronal networks and protein interaction
networks, and the problem of learning Ising models has been studied in this context [55, 15, 44, 65].
The problem of learning Ising models has also been of interest in the statistical physics community,
where it is known as the inverse Ising problem. A variety of non-rigorous methods have been
proposed, including based on truncation of expansions relating couplings to mean parameters or
entropies [56, 14, 52, 38], message-passing [41, 51, 5], and others [19].

Structure learning of graphical models has been studied in the statistics and machine learning
communities as a problem in high-dimensional statistics. Broadly, in high-dimensional statistics
one wishes to estimate a high-dimensional object from samples, where the number of samples is far
less than the dimensionality of the parameter space. To solve this ill-determined problem requires
that there be some sparse underlying combinatorial structure. In our case the graph underlying the
Markov random field is a sparse graph. As discussed in [45], optimization of regularized objective
functions has been a popular approach to many problems in high-dimensional statistics including
sparse linear regression, low-rank matrix completion, inferring rankings, as well as the problem of
learning graphical models (both binary and Gaussian) [48, 40, 24, 49]. Such general methodology
based on optimizing likelihood or (pseudo-likelihood) has failed thus-far to learn Ising models on
general graphs, and one of the messages of our work is that a tailored approach is often necessary.

The theoretical computer science community has made progress on learning a variety of high-
dimensional probability distributions from samples, including mixtures of Gaussians [42, 7]. But
there is a more intriguing connection to work on learning function classes. In an Ising model, the
conditional distribution of a node given its neighbors is specified by a logistic function, which is a
soft version of a linear threshold function (LTF). Thus our algorithm effectively learns soft LTFs
over a complicated joint distribution. Arguments based on boolean Fourier analysis have played a
major role in learning boolean functions over uniformly random examples and also over product
distributions [33], but due to the complicated joint dependencies in an Ising model, it is not obvious
how to apply Fourier analysis in our setting. Our structural result, nevertheless, is at a high level
analogous to the statement that LTFs have non-trivial total degree-one Fourier mass (see, e.g., [47]).
Other recent works learn LTFs over non-product distributions, including log-concave [34] and sub-
Gaussian or sub-exponential [35]. These assumptions are badly violated by Ising models in the
low-temperature regime (with long-range correlations), but the bounded graph degree assumption
makes our soft LTFs depend on few variables, and this makes learning tractable.

2 Preliminaries

2.1 Ising model

We consider the Ising model on a graph G = (V, E) with |V| = p. The notation ∂i is used to denote
the set of neighbors of node i, and the degree |∂i| of each node i is assumed to be bounded by d.
To each node i ∈ V is associated a binary random variable (spin) Xi. Each configuration of spins
x ∈ {−,+}V (‘−’ and ‘+’ are used as shorthand for −1,+1) is assigned probability according to
the probability mass function

P (x) = exp

( ∑

{i,j}∈E

θijxixj +
∑

i∈V

θixi − Φ(θ)

)
. (1)

Here Φ(θ) is the log-partition function or normalizing constant. The distribution is parameterized
by the vector θ = {θij}{i,j}∈E ∪{θi}i∈V ∈ R

E∪V , consisting of edge couplings and node-wise external
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fields. The edge couplings are assumed to satisfy α ≤ |θij| ≤ β for all {i, j} ∈ E for some constants
0 < α ≤ β and the external fields are assumed to satisfy |θi| ≤ h for all i ∈ V . The bounds
α, β, h are necessary for model identifiability, and as shown in [54] and discussed briefly in the next
subsection, must appear in the sample complexity.

We can alternatively think of θ ∈ R
(p2)+p, with θij = 0 if {i, j} /∈ E . For a graph G, let

Ωα,β,h(G) = {θ ∈ R
(p2)+p : |θi| ≤ h for i ∈ V, α ≤ |θij| ≤ β if {i, j} ∈ E , and θij = 0 otherwise}

be the set of valid parameter vectors corresponding to G.
The distribution specified in (1) is a Markov random field, and an implication is that each node

is conditionally independent of all other nodes given the values of its neighbors. The conditional
probability of Xu = + given the states of all the other nodes V \ {u} can thus be written as:

P(Xu = + |XV\{u} = xV\{u}) = P(Xu = + |X∂u = x∂u) =
exp

(
2
∑

i∈∂u θuixi + θu
)

1 + exp
(
2
∑

i∈∂u θuixi + θu
) . (2)

A useful property of bounded degree models is that the conditional probability of a spin is always
bounded away from 0 and 1. The proof of this statement is immediate from (2) by conditioning on
the neighbors of u and using the tower property of conditional expectation.

Lemma 2.1 (Conditional randomness). For any node u ∈ V, subset S ⊆ V \ {u}, and any config-
uration xS ∈ {−,+}|S|,

min{P(Xu = +|XS = xS),P(Xu = −|XS = xS)} ≥
1

2
e−2(βd+h) := δ .

This quantity is denoted by δ and appears throughout the paper.

2.2 Graphical model learning

Denote the set of all graphs on p nodes of degree at most d by Gp,d. For some graph G ∈ Gp,d

and parameters θ ∈ Ωα,β,h(G), one observes configurations X(1), . . . ,X(n) ∈ {−,+}p sampled
independently from the Ising model (1). A structure learning algorithm is a (possibly randomized)
map

φ : ({−1,+1}p)n → Gp,d

taking n samples X1:n = X(1), . . . ,X(n) to a graph φ(X1:n). The statistical performance of a
structure learning algorithm will be measured using the zero-one loss, meaning that the exact
underlying graph must be learned. The risk, or expected loss, under some vector θ ∈ Ωα,β,h(G) of
parameters corresponding to a graph G ∈ Gp,d is given by the probability of reconstruction error

Pθ(φ(X
1:n) 6= G) ,

and for given α, β, h, p, d, the maximum risk is

sup
G∈Gp,d

θ∈Ωα,β,h(G)

Pθ(φ(X
1:n) 6= G) .

Our goal is to find an algorithm with maximum risk (probability of error) tending to zero as p → ∞,
using the fewest possible number of samples n. This notion of performance is rather stringent, but
also robust, being worst-case over the entire class of graphs Gp,d and parameters θ ∈ Ωα,β,h(G). A
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lower bound on the number of samples necessary was obtained by Santhanam and Wainwright in
Theorem 1 of [54]:

n ≥
eβd log

(
pd
4 − 1

)

4αdeα
.

This means in particular that exponential dependence of the sample complexity (and hence runtime)
on the quantity βd is unavoidable.

3 Measuring the influence of a variable

Our algorithm uses a certain conditional influence of a variable on another variable. For nodes
u, i ∈ V, subset of nodes S ∈ V \ {u, i} and configuration xS ∈ {−,+}S , define

νu|i;xS
:= P(Xu = +|Xi = +,XS = xS)− P(Xu = +|Xi = −,XS = xS) .

We also use a quantity we call the average conditional influence, which is obtained by performing
a weighted average of |νu|i;XS

| over random configurations XS :

ν
avg

u|i;S := E
(
λi(XS) · |νu|i;XS

|
)
.

The weights are given by the function

λi(xS) = 2 · P(Xi = +|XS = xS)P(Xi = −|XS = xS) .

By the Markov property (2), the influence is zero for non-neighbors conditional on neighbors,
that is, for any xS ,

νu|i;xS
= 0 for all i ∈ V \ {u,S} if ∂u ⊆ S . (3)

This implies the same statement for ν
avg

u|i;S . Our structural result, Proposition 5.3, shows that

ν
avg

u|i;S is bounded below for at least one neighbor i ∈ ∂u \ S if S does not already contain the

neighborhood ∂u. Thus computing ν
avg

u|i;S allows to determine if ∂u ⊂ S or not, and our algorithm
given in Section 4 is based on this idea.

Remark 3.1. Other works using a “conditional independence test”, for example [4, 67], use a
similar measure of influence amounting to minxS

|νu|i;xS
|. We do not take the minimum over

configurations xS , as there is no guarantee that minxS
|νu|i;xS

| is nonzero for any neighbor i ∈ ∂u:
each Xi can be marginally independent of Xu conditional on some configuration xS .

The empirical conditional influence ν̂u|i;xS
replaces the probability measure by the empirical

measure:

ν̂u|i;xS
:= P̂(Xu = +|Xi = +,XS = xS)− P̂(Xu = +|Xi = −,XS = xS) ,

where for S,T ⊆ V,

P̂(XT = xT |XS = xS) =
P̂(XT = xT ,XS = xS)

P̂(XS = xS)
and P̂(XS = xS) =

1

n

n∑

t=1

1
{X

(t)
S =xS}

.

Like before we define an averaged version (with average taken according to the empirical measure):

ν̂
avg

u|i;S := E
XS∼P̂

(
λ̂i(XS) · ν̂u|i;XS

)
,
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where
λ̂i(xS) = 2 · P̂(Xi = +|XS = xS)P̂(Xi = −|XS = xS) .

It will be necessary that these empirical influences are sufficiently accurate. Let A(ℓ, ǫ) denote
the event that empirical influences with conditioning set up to size ℓ are accurate to within an
additive ǫ:

A(ℓ, ǫ) = {|ν
avg

u|i;S − ν̂
avg

u|i;S | ≤ ǫ for all {u, i} ⊂ V,S ⊂ V \ {u, i}, |S| ≤ ℓ} .

Lemma 3.2. Recall the notation δ := 1
2e

−2(βd+h) and suppose ℓ ≤ p/4 − 2. If the number of

samples n is at least 144(ℓ+3)
ǫ2δ2ℓ

log p
ζ
, then P(A(ℓ, ǫ)) ≥ 1− ζ.

The proof the lemma follows from Azuma’s inequality and is similar to Theorem 2 of [9]. We
give the proof in Section 8.

4 Algorithm

We now describe the structure learning algorithm, which learns the neighborhood of an arbitrary
individual node u ∈ V. Algorithm LearnNbhd takes as input the node u whose neighborhood ∂u
we wish to learn as well as the data X(1), . . . ,X(n) and a threshold parameter τ . The first step
is to construct a superset S (which we call a pseudo-neighborhood) of the neighborhood ∂u. This
is accomplished by greedily adding to S the node i with highest conditional influence ν̂

avg

u|i;S , until

there are no nodes i with ν̂
avg

u|i;S ≥ τ . (To simplify the description we set ν̂
avg

u|i;S = 0 if i ∈ S ∪ {u}.)
At each step the conditional influences are computed with respect to the current set S.

As will become apparent in Subsection 5.1, inclusion of non-neighbors is important, as it allows
to use a potential argument to show that the constructed pseudo-neighborhood is not too large.
Concretely, by definition of the algorithm and a simple lemma relating influence to mutual infor-
mation, adding a node to the pseudo-neighborhood S always reduces by at least τ the conditional
entropy H(Xu|XS) of the variable Xu whose neighborhood we are trying to find. The entropy is
non-negative and was initially at most one (since Xu is binary), so this bounds the size of S.

The correctness of the algorithm relies on Proposition 5.3 of Subsection 5.2, which shows that
there is always at least one neighbor with influence above a constant, and we set τ equal to this
constant. This implies that the algorithm does not terminate before all the neighbors are added.
Finally, after construction of the pseudo-neighborhood, the algorithm removes those nodes with
low average influence. Proposition 5.3 is again used to show that no neighbors are removed.

Algorithm 1 LearnNbhd(X(1), . . . ,X(n), τ, u)

Pseudo-neighborhood:

1. Let S = ∅

2. Let (i∗, η∗) = (argmaxi ν̂
avg

u|i;S
,maxi ν̂

avg

u|i;S
)

3. If η∗ ≥ τ, then add i∗ to S
4. Else goto Step 6

5. Repeat Steps 2 to 4

Pruning:

6. For each i ∈ S if ν̂
avg

u|i;S\{i} < τ remove i
7. Output S

7



Theorem 4.1. Let G ∈ Gp,d and θ ∈ Ωα,β,h(G). Let δ = 1
2e

−2(βd+h) and define

τ∗ =
α2δ4d+1

16dβ
, ǫ∗ =

τ∗

2
, ℓ∗ =

2

(τ∗ − ǫ∗)2
=

8

(τ∗)2
.

Suppose we observe n samples X(1), . . . ,X(n), for

n ≥
144(ℓ∗ + 3)

(ǫ∗)2δ2ℓ∗
log

p

ζ
= exp{cα−c′ec

′′d(βd+h)} · log
p

ζ
,

where c, c′, c′′ denote numerical constants. Then with probability at least 1−ζ, the structure learning
algorithm LearnNbhd(X1:n, τ∗, u) returns the correct neighborhood ∂u for all u ∈ V and the
runtime for each of the p nodes is (for a numerical constant C)

Cℓ∗pn = O(p log p) .

Remark 4.2. As stated, the algorithm has probability 1−ζ of both returning the correct neighbor-
hoods for all nodes and having the claimed runtime. Obviously, the algorithm can be terminated
if the runtime exceeds the stated value, giving a deterministic guarantee on runtime.

5 Algorithm correctness

In this section we prove Theorem 4.1, first giving a bound on the run-time in Subsection 5.1 and
then showing correctness in Subsection 5.2.

5.1 Entropy increment argument and run-time bound

In this subsection we bound the size of the pseudo-neighborhood constructed, but make no guaran-
tee that it actually contains the true neighborhood. We use several standard information-theoretic
quantities including entropy, Kullback-Leibler divergence, and mutual information. The relevant
definitions can be found in any information theory textbook (such as [16]). The following lemma
gives a lower bound on the conditional mutual information of each added node.

Lemma 5.1. Assume that event A(ℓ, ǫ) holds and suppose that LearnNbhd added node jℓ+1 to the
pseudo-neighborhood of u after having added j1, . . . , jℓ. Then the conditional mutual information
I(Xu;Xjℓ+1

|Xj1 , . . . ,Xjℓ) ≥
1
2(τ − ǫ)2.

We can now argue that the number of nodes added in the pseudo-neighborhood step is not too
large by using a potential argument. The bound is stated in terms of the quantity

ℓ(τ, ǫ) =
2

(τ − ǫ)2
.

Lemma 5.2. If event A(ℓ(τ, ǫ), ǫ) holds, then at the end of the pseudo-neighborhood construction
step the set S has cardinality at most ℓ(τ, ǫ) = 2(τ − ǫ)−2.

Before proving the lemma, let us quickly see how it justifies the runtime claimed in Theorem 4.1.
Each maximization step in line 2 of LearnNbhd takes time O(pn), so we get a cost of O(|S|pn) =
O(ℓ∗pn) for the pseudo-neighborhood step, and this dominates the runtime.
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Proof of Lemma 5.2. Consider the sequence of nodes added, j1, j2, . . . , jr, with S = {j1, j2, . . . , jr}.
Then

1 ≥ H(Xu)
(a)

≥ I(Xu|XS)
(b)
=

r∑

k=1

I(Xu;Xjk |Xj1 , . . . ,Xjk−1
)
(c)

≥ min{ℓ+ 1, r} · 1
2(τ − ǫ)2 .

(a) is by non-negativity of conditional entropy and the definition of mutual information, I(Xu|XS) =
H(Xu)−H(Xu|XS), (b) follows by the chain rule for mutual information, and (c) is by Lemma 5.1.
Since ℓ+1 is strictly larger than 2(τ−ǫ)−2, r = |S| must satisfy the bound stated in the lemma.

Proof of Lemma 5.1. Let Sℓ = (j1, . . . , jℓ) consist of the first ℓ nodes already added to the pseudo-
neighborhood. Our goal is to show that the next node jℓ+1 has mutual information I(Xu;Xjℓ+1

|XSℓ
) ≥

1
2(τ − ǫ)2.

We use a shorthand for the (random) conditional measure: Q(u+) = P(Xu = +|XSℓ
) and

similarly Q(u+ |i−) = P(Xu = +|Xi = −,XSℓ
), with similar definitions for any combination of ‘+’

and ‘−’. Thus we can write

ν
avg

u|i;Sℓ
= 2 · EXSℓ

(
Q(i+)Q(i−)

∣∣Q(u+ |i+)−Q(u+ |i−)
∣∣
)
.

Now for any i ∈ V \ (S ∪ {u}),
√

1
2 · I

(
Xu;Xi|XSℓ

)

=

√
1
2 ·

∑

xSℓ

P (xSℓ
)I
(
Xu;Xi|XSℓ

= xSℓ

) (a)

≥
∑

xSℓ

P (xSℓ
)
√

1
2 · I

(
Xu;Xi|XSℓ

= xSℓ

)

= EXSℓ

√
1
2 ·DKL

(
Q(u, i) ‖Q(u)Q(i)

) (b)

≥ EXSℓ
DTV(Q(u, i), Q(u)Q(i))

(c)

≥ EXSℓ

∣∣Q(u+, i+)−Q(u+)Q(i+)
∣∣ = EXSℓ

∣∣Q(u+ |i+)Q(i+)−Q(u+)Q(i+)
∣∣

= EXSℓ

(
Q(i+) ·

∣∣Q(u+ |i+)
(
Q(i+) +Q(i−)

)
−Q(u+ |i+)Q(i+) −Q(u+ |i−)Q(i−)

∣∣
)

= EXSℓ

(
Q(i+)Q(i−) ·

∣∣Q(u+ |i+)−Q(u+ |i−)
∣∣
)

= 1
2 · ν

avg

u|i;Sℓ

(e)

≥ 1
2 · (ν̂

avg

u|i;Sℓ
− ǫ) .

(a) is by Jensen’s inequality applied to the (concave) square root function, (b) Pinsker’s inequality,
(c) the definition of total variation distance, (d) Lemma 2.1, (e) is by definition of A(ℓ, ǫ) and the
fact that the conditioning set has cardinality |Sℓ| ≤ ℓ.

Finally, by definition of the algorithm, node jℓ+1 is only added to Sℓ if |ν̂
avg

u|jℓ+1;Sℓ
| ≥ τ , so the

previous displayed equation implies that I(Xu;Xjℓ+1
|XSℓ

) ≥ 1
2(τ − ǫ)2 as claimed.

5.2 Key structural result and algorithm correctness

We now state our structural result, and use it to prove correctness of the algorithm. Its proof is
given in Section 6. In this subsection we use the values τ∗, ǫ∗, ℓ∗ defined in Theorem 4.1.

Proposition 5.3. Let G be a graph of maximum degree d, and consider an Ising model (1) on G
with vector of parameters θ ∈ Ωα,β,h(G). For any node u ∈ V, if S ⊆ V \ {u} such that ∂u 6⊆ S,
then there exists a node i ∈ ∂u \ S with ν

avg

u|i;S ≥ 2τ∗.

9



We now show that the pseudo-neighborhood contains the true neighborhood.

Corollary 5.4. If event A(ℓ∗, ǫ∗) holds, then for any u ∈ V, the pseudo-neighborhood S constructed
by LearnNbhd(X1:n, τ∗, u) contains the true neighborhood ∂u.

Proof. Consider an arbitrary node u ∈ V and suppose ∂u 6⊆ S. Proposition 5.3 shows that ν
avg

u|i;S
≥

2τ∗ for some i ∈ ∂u \ S. If event A(ℓ∗, ǫ∗) holds, then |S| ≤ ℓ∗ by Lemma 5.2, and we have
ν̂
avg

u|i;S ≥ ν
avg

u|i;S − ǫ∗ ≥ 3τ∗/2. But this contradicts line 3 of algorithm LearnNbhd.

Corollary 5.5. Consider the same setup as Corollary 5.4. After the pruning step, S = ∂u.

Proof. By Corollary 5.4, the pseudo-neighborhood S contains ∂u, hence Equation (3) states that
ν
avg

u|i;S\{i} = 0 for non-neighbors i. By Lemma 5.2, |S| ≤ ℓ∗, and by definition of the event A(ℓ∗, ǫ∗)

(with our choice ǫ∗ = τ∗/2), we have ν̂
avg

u|i;S\{i} ≤ ǫ∗ = τ∗/2 for all non-neighbors i, and hence these

are discarded. Conversely, by Proposition 5.3, ν̂
avg

u|i;S\{i} ≥ 3τ∗/2, so no neighbors are discarded.

All the ingredients are in place to finish the proof of Theorem 4.1.

Proof of Theorem 4.1. By Lemma 3.2, our choice of n in the statement of the theorem guarantees
P(A(ℓ∗, ǫ∗)) ≥ 1−ζ. Together the two corollaries prove correctness of the algorithm assuming event
A(ℓ∗, ǫ∗) holds, and this completes the proof of Theorem 4.1, modulo Proposition 5.3.

6 Proof of Proposition 5.3

Fix u ∈ V and S ⊆ V \ {u}, and let U = ∂u \ S consist of the neighbors of u not in S. Assume
that U is nonempty or there is nothing to prove. Let θuU := (θui)i∈U and recall the definition
τ∗ := α2δ4d+1/16dβ . We will prove that for any assignment xS ∈ {−,+}S ,

∑

i∈U

θui · λi(xS)νu|i;xS
≥ ‖θuU‖1 · 2τ

∗ . (4)

Averaging with respect to xS and applying the triangle inequality gives

∑

i∈U

θui · ν
avg

u|i;S =
∑

i∈U

θui · E
(
λi(XS)|νu|i;XS

|
)
≥ ‖θuU‖1 · 2τ

∗ .

As a consequence there exists some i ∈ U such that

ν
avg

u|i;S ≥ 2τ∗ ,

and this proves the Proposition.
We proceed with showing (4). Let S̃ = ∂u ∩ S consist of nodes in S adjacent to u and

θ̃u = θu +
∑

j∈S̃
θujxj be the effective external field at u when we include the effect due to x

S̃
.

Using the notation Q(·) for the conditional measure P( · |XS = xS), and Q(u + |xU ) = P(Xu =
+|XU = xU ,XS = xS), we let

g(xU ) := Q(u+|xU ) =
exp{2(θu +

∑
j∈U θujxj +

∑
j∈S̃

θujxj)}

1 + exp{2(θu +
∑

j∈U θujxj +
∑

j∈S̃ θujxj)}
=

exp{2(θ̃u +
∑

j∈U θujxj)}

1 + exp{2(θ̃u +
∑

j∈U θujxj)}
.

(5)

10



Suppose i ∈ U . Conditioning on the values of the remaining neighbors U \ {i} of u,

νu|i;xS
= Q(u+ |i+)−Q(u+ |i−)

=
∑

xU\{i}

(
Q(u+ |i+, xU\{i})Q(xU\{i}|i+)−Q(u+ |i−, xU\{i})Q(xU\{i}|i−)

)

=
∑

xU

(
Q(u+ |xU )Q(xU )

1{xi=+}

Q(i+)
−Q(u+ |xU )Q(xU )

1{xi=−}

Q(i−)

)

= E

(
g(Y )

Yi

Q(Yi)

)
. (6)

The expectation is over the random vector Y ∈ {−,+}|U| with law P(Y ∈ ·) = P(XU ∈ ·|XS = xS),
and in particular P(Yi = +) = P(Xi = +|XS = xS) = Q(i+). The notation Q(Yi) is understood to
mean Q(i+) if Yi = + and Q(i−) if Yi = −.

It is helpful to rescale and shift the variable Yi/Q(Yi) in (6) so that it takes values ±1. To this
end, define the quantities

si :=
1

2
·

(
1

Q(i+)
−

1

1−Q(i+)

)
and ti :=

1

λi(xS)
=

1

2
·

(
1

Q(i+)
+

1

1−Q(i+)

)
.

(The function λi(xS) was defined at the beginning of Section 3.) Arithmetic manipulations lead to

EYi = 2Q(i+)− 1 = −
si
ti

and Yi =
Yi

tiQ(Yi)
−

si
ti

=
Yi

tiQ(Yi)
+ EYi .

Multiplying (6) by 2θui/ti and using the identities in the last display gives

2
θui
ti

· νu|i;xS
= E

(
2g(Y )

Yiθui
tiq(yi)

)
= E

(
2g(Y )

(
Yiθui − EYiθui

))
= E

(
(2g(Y )− 1)(Yiθui − EYiθui)

)
.

Summing the last displayed quantity over i ∈ U gives

∑

i∈U

θui · λi(xS)νu|i;xS
= 1

2 · E
(
(2g(Y )− 1)(Y · θuU − EY · θuU)

)
≥ dβ2τ∗ ≥ ‖θuU‖1 · 2τ

∗ . (7)

Here θuU = (θui)i∈U and the first inequality is by Lemma 7.3, given in Section 7 below.

7 Technical lemma

The goal of this section is to justify Equation (7), which appeared in the proof of Proposition 5.3.
We start with an observation that will be used in the proof. Recall that Y is a random vector equal
in distribution to XU conditioned on XS = xS . Due to the “conditional randomness” Lemma 2.1,
Y has probability at least δ|U| of taking each value in {−,+}|U|, where δ = 1

2 exp
−2(βd+h). Hence

we can decompose the probability mass function PY of Y as

PY (y) = δ|U| + P Y (y) (8)

with P Y (y) ≥ 0 for all y ∈ {−,+}|U|. We will be concerned with the random variable

Z := Y · θuU + θ̃u , (9)

11



and the decomposition (8) will allow us to obtain anti-concentration for Z from anti-concentration
for sums of i.i.d. uniform ±1 random variables.

The following result of Erdös on the Littlewood-Offord problem shows anti-concentration for
weighted sums of i.i.d. uniform ±1 random variables. (It can be found, e.g., as Corollary 7.4 in [62]
and is a simple consequence of Sperner’s Lemma).

Lemma 7.1 (Erdös [23]). Let w1, . . . , wr be real numbers with |wi| ≥ α for all i. Let I = {t ∈ R :
t0 − α < t < t0 + α} be an open interval of length 2α. If ξ = (ξ1, . . . , ξr) is uniformly distributed
on {−1, 1}r, then

P(w · ξ ∈ I) ≤
1

2r
·

(
r

⌊ r2⌋

)
≤

1

2
.

We can use the decomposition (8) and Lemma 7.1 to draw the following conclusion. (It is
possible to show this directly, but this approach seems clearer.) We mention that the only place
the lower bound α on the coupling strengths appears is through the following lemma.

Lemma 7.2. Let 2t = 2|U| · δ|U|. Consider the random variable Z defined in (9), and let µ = EZ.
Then

E[(µ − Z)1{Z≤µ−αt}] ≥
αt2

2
.

Proof. Decompose the probability mass function PY as discussed at the beginning of this section
in (8). Let 2t = 2|U| · δ|U| be the total mass assigned to the uniform part. Let Z ′ = ξ · θuU + θ̃u
where ξ ∈ {−,+}|U| is uniformly distributed and let Z ′′ = Y ′′ · θuU + θ̃u where Y ′′ ∼ (1−M)−1P Y .
The variable Z can be represented as a mixture distribution: if we define R ∼ Ber(2t), then

Z
d
= R · Z ′ + (1−R) · Z ′′ ,

and we can think of obtaining Z by choosing either Z ′ or Z ′′ with probabilities 2t or (1 − 2t).
Let It = (µ − tα, µ + (2 − t)α). Lemma 7.1 implies that P(Z ′ /∈ It) ≥ 1/2 for any t, and hence
P(Z /∈ It) ≥ t. Denote the probability that Z lies to the left of It and inside It, respectively, as

m1 = P(Z ≤ µ− tα) and m2 = P(Z ∈ It) ≤ 1− t ,

so that 1 − m1 − m2 = P(Z ≥ µ + (2 − t)α). Thinking about placing the probability mass to
minimize µ subject to fixed m1 and m2 justifies the inequality

µ = EZ = m1 · E(Z | Z ≤ µ− tα) +m2 · E(Z | Z ∈ It) + (1−m1 −m2)E(Z | Z ≥ µ+ (2− t)α)

≥ m1 · E(Z | Z ≤ µ− tα) +m2(µ− tα) + (1−m1 −m2)(µ + (2− t)α) .

Using m2 ≤ 1− t and performing arithmetic manipulations leads to

m1 · E[(µ − αt)− Z | Z ≤ µ− αt] +m12α ≥ −m22α + (2− t)α ≥ tα .

At least one of the two terms on the left-hand side is larger than the average, which is at least
tα/2, and in either case E[(µ − Z)1{Z≤µ−αt}] ≥ αt2/2 (using the fact that t ≤ 1).

The remainder of this section is devoted to proving the following lemma.

Lemma 7.3. Let g and Y be as in the proof of Proposition 5.3 in Section 6. Then the quantity in
Equation (7) is lower bounded as

1
2 · E

(
(2g(Y )− 1)(Y · θuU − EY · θuU )

)
≥

α2δ4|U|+1

8
≥ dβ2τ∗ .
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Proof. We start by adding and subtracting θ̃u to the left-hand side of the lemma statement:

E

((
2g(Y )− 1

)(
Y · θuU − EY · θuU

))
= E

((
2g(Y )− 1

)(
Y · θuU + θ̃u − E(Y · θuU + θ̃u)

))
.

Recalling the definition of g in (5), we make the observation that 2g(x)−1 = tanh(x ·θuU + θ̃u). We
will use the fact that tanh(z) is an odd, increasing function, which is concave for t ≥ 0 and convex
for t ≤ 0. Recall from (9) the definition Z = Y · θuU + θ̃u and let µ := EZ. The lemma statement
requires that we lower bound E[tanh(Z)(Z − µ)]. We assume from now onward that µ ≥ 0, but a
(symmetrically) identical argument applies to the opposite case µ ≤ 0. From the definition of Z
and assumptions |θui| ≤ β, |θu| ≤ h we obtain the bound

µ = EZ ≤ (|U|+ |S̃|) · β + h ≤ βd+ h .

Next we record a few estimates on the function tanh(·). The derivative satisfies

d

dz
tanh(z) =

4

(ez + e−z)2
≥

1

e2|z|

and due to the concavity of tanh(z) for z ≥ 0, we have the estimate

tanh(z) ≤ tanh(µ)−
(µ − z)

e2µ
≤ tanh(µ)−

(µ− z)

e2(βd+h)
= tanh(µ)− 2δ(µ − z) for 0 ≤ z ≤ µ .

We additionally use the bound tanh(t) ≥ tanh(µ) for z ≥ µ due to monotonicity of tanh(·).
Partitioning the range of Z and using these estimates gives

E[tanh(Z)(Z − µ)]

= E[tanh(Z)(Z − µ)1{Z<0}] + E[tanh(Z)(Z − µ)1{Z∈[0,µ]}] + E[tanh(Z)(Z − µ)1{Z>µ}]

≥ E[tanh(Z)(Z − µ)1{Z<0}] + E

[(
tanh(µ)− 2δ(µ − Z)

)
(Z − µ)1{Z∈[0,µ]}

]

+ E[tanh(µ)(Z − µ)1{Z>µ}] .

Subtracting tanh(µ)E(Z − µ) = 0 from the third term, the last expression is equal to

E[tanh(Z)(Z − µ)1{Z<0}] + E

[(
tanh(µ)− 2δ(µ − Z)

)
(Z − µ)1{Z∈[0,µ]}

]

− E[tanh(µ)(Z − µ)1{Z<0}]− E[tanh(µ)(Z − µ)1{Z∈[0,µ]}]

=E[
(
tanh(Z)− tanh(µ)

)
(Z − µ)1{Z<0}] + E

[
2δ(µ − Z)21{Z∈[0,µ]}

]
. (10)

Both of these terms are non-negative.
Lemma 7.2 states that E[(µ − Z)1{Z≤µ−αt}] ≥

αt2

2 , where 2t = (2δ)|U|, and this means that
either

E[(µ − Z)1{Z≤µ−αt}1{Z<0}] ≥
αt2

4
or E[(µ − Z)1{Z≤µ−αt}1{Z∈[0,µ]}] ≥

αt2

4
, (11)

(or both) is true. In the former case, the first term in (10) is lower bounded by

E[
(
tanh(Z)− tanh(µ)

)
(Z − µ)1{Z≤µ−αt}1{Z<0}]

≥ 1{µ<1}
αt2

4

(
tanh(µ)− tanh(µ − αt)

)
+ 1{µ≥1}

αt2

4
tanh(1) (12)

(a)

≥
αt2

4
min

(αt
e2

, tanh(1)
) (b)

≥
α2t3

4e2
≥

α2t3

25
. (13)
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(a) follows by bounding the first term in (12) for 0 ≤ µ < 1 by noting that [µ− αt, µ] ⊆ [−αt, 1] ⊆
[−1, 1] and lower bounding the derivative of tanh(z) on [−1, 1] by 1/e2, and (b) follows from the
fact that tanh(1) > 1/e2 ≥ αt/e2.

In the latter case of (11), the second term of (10) is lower bounded by

2δ · E
(
(µ− Z)21{Z≤µ−αt}1{Z∈[0,µ]}

)
≥

2δα2t4

16
. (14)

This used Cauchy-Schwarz (or equivalently non-negativity of the variance) to lower bound the
expectation of (µ − Z)2 by (αt2/4)2, the square of the expectation given in (11). The quantity in
(14) is smaller than in (13), because 2δ ≤ 1 and t ≤ 1/2. Multiplying the right-hand side of (14)
by 1/2 and plugging in t = 1

2 (2δ)
|U| ≥ δ|U| completes the proof of the lemma.

8 Proof of Lemma 3.2

Azuma’s inequality states that if Y ∼ Bin(n, µ), then

P (|Y − nµ| > γn) ≤ 2 exp(−2γ2n) ,

so for any subset of nodes W ⊆ V and configuration xW ∈ {−,+}|W| we have

P

(∣∣P̂(XW = xW)− P(XW = xW)
∣∣ ≥ γ

)
≤ 2 exp(−2γ2n). (15)

There are 2|W|
(

p
|W|

)
≤ (2p)|W| such choices of W and xW of a given cardinality, and hence at most

(ℓ+ 2)(2p)ℓ+2 choices of W and xW with |W| ≤ ℓ+ 2.
Suppose n ≥ (2γ2)−1 log

(
2(ℓ + 2)(2p)ℓ+2/ζ

)
. An application of the union bound implies that

with probability at least

1− (ℓ+ 2)(2p)ℓ+2 · 2 exp(−2γ2n) ≥ 1− ζ

it holds that ∣∣P̂(XW = xW)− P(XW = xW)
∣∣ ≤ γ (16)

for all W and xW with |W| ≤ ℓ+ 2. For the remainder of the proof assume (16) holds.
Our goal is to bound the quantity

∣∣νavg
u|i;S − ν̂

avg

u|i;S

∣∣ =
∣∣EXS∼P

(
λi(XS)|νu|i;XS

|
)
− E

XS∼P̂

(
λ̂i(XS)|ν̂u|i;XS

|
)∣∣ .

The triangle inequality and the inequality
∣∣|s| − |t|

∣∣ ≤ |s− t| for real-valued s and t gives

∣∣EXS∼P

(
λi(XS)|νu|i;XS

|
)
− E

XS∼P̂

(
λ̂i(XS)|ν̂u|i;XS

|
)∣∣

=

∣∣∣∣
∑

xS

[
P(XS = xS)λi(xS)|νu|i;xS

| − P̂(XS = xS)λ̂i(xS)|ν̂u|i;xS
|
]∣∣∣∣

≤
∑

xS

∣∣∣P(XS = xS)λi(xS)|νu|i;xS
| − P̂(XS = xS)λ̂i(xS)|ν̂u|i;xS

|
∣∣∣

≤
∑

xS

∣∣∣P(XS = xS)λi(xS)νu|i;xS
− P̂(XS = xS)λ̂i(xS)ν̂u|i;xS

∣∣∣ .
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Writing out the definition of νu|i;XS
and ν̂u|i;XS

, the above sum is equal to

∑

XS

∣∣∣P(XS = xS)λi(xS)
(
P(Xu = +|Xi = +,XS = xS)− P(Xu = +|Xi = −,XS = xS)

)

− P̂(XS = xS)λ̂i(xS)
(
P̂(Xu = +|Xi = +,XS = xS)− P̂(Xu = +|Xi = −,XS = xS)

)∣∣∣

(a)
=

∑

xS

∣∣∣∣∣

[
λi(xS)

P(Xu = +,Xi = +,XS = xS)

P(Xi = +|XS = xS)
− λ̂i(xS)

P̂(Xu = +,Xi = +,XS = xS)

P̂(Xi = +|XS = xS)

]

−

[
λi(xS)

P(Xu = +,Xi = −,XS = xS)

P(Xi = −|XS = xS)
− λ̂i(xS)

P̂(Xu = +,Xi = −,XS = xS)

P̂(Xi = −|XS = xS)

]∣∣∣∣∣
(b)

≤
∑

xS

∣∣∣∣λi(xS)
P(Xu = +,Xi = +,XS = xS)

P(Xi = +|XS = xS)
− λ̂i(xS)

P̂(Xu = +,Xi = +,XS = xS)

P̂(Xi = +|XS = xS)

∣∣∣∣

+
∑

xS

∣∣∣∣λi(xS)
P(Xu = +,Xi = −,XS = xS)

P(Xi = −|XS = xS)
− λ̂i(xS)

P̂(Xu = +,Xi = −,XS = xS)

P̂(Xi = −|XS = xS)

∣∣∣∣

:= C+ + C− .

Here (a) is by Bayes’ rule and (b) is by the triangle inequality.
We will now bound the quantity C+ in a way that does not depend on the specific assignment

of ± to Xi, so the same bound will hold symmetrically for C−. Using the identity ab − âb̂ =
ab− ab̂+ ab̂− âb̂ = a(b− b̂) + b̂(a− â), the triangle inequality, and the definition of λ, λ̂, we have

C+ =
∑

xS

∣∣∣∣λi(xS)
P(Xu = +,Xi = +,XS = xS)

P(Xi = +|XS = xS)
− λ̂i(xS)

P̂(Xu = +,Xi = +,XS = xS)

P̂(Xi = +|XS = xS)

∣∣∣∣

≤
∑

xS

∣∣∣∣P(Xu = +,Xi = +,XS = xS)
( λi(xS)

P(Xi = +|XS = xS)
−

λ̂i(xS)

P̂(Xi = +|XS = xS)

∣∣∣∣

+
∑

xS

∣∣∣∣
λ̂i(xS)

P̂(Xi = +|XS = xS)

(
P(Xu = +,Xi = +,XS = xS)− P̂(Xu = +,Xi = +,XS = xS)

)∣∣∣∣

= 2 ·
∑

xS

P(Xu = +,Xi = +,XS = xS)
∣∣∣P(Xi = −|XS = xS)− P̂(Xi = −|XS = xS)

∣∣∣

+ 2 ·
∑

xS

P̂(Xi = −|XS = xS)
∣∣∣P(Xu = +,Xi = +,XS = xS)− P̂(Xu = +,Xi = +,XS = xS)

∣∣∣

(17)

The latter sum is bounded by 2 · 2|S|γ. In order to bound the first sum in (17) we write
∣∣∣P(Xi = −|XS = xS)− P̂(Xi = −|XS = xS)

∣∣∣

=
∣∣∣P(Xi = −,XS = xS)

P(XS = xS)
−

P̂(Xi = −,XS = xS)

P̂(XS = xS)

∣∣∣

≤
∣∣∣P(Xi = −,XS = xS)

P(XS = xS)
−

P̂(Xi = −,XS = xS)

P(XS = xS)

∣∣∣+
∣∣∣ P̂(Xi = −,XS = xS)

P(XS = xS)
−

P̂(Xi = −,XS = xS)

P̂(XS = xS)

∣∣∣

≤
2γ

q
,
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where q := δℓ ≤ δ|S| ≤ minxS
P(XS = xS) . Plugging this into (17), the sum over xS marginalizes

over these variables and we obtain

C+ ≤
4γ

q
· P(Xu = +,Xi = +) + 2|S|+1γ ≤

6γ

q
.

Here we used the fact that q−1 = δ−ℓ ≥ 2|S|, since δ ≤ 1/2.
The same bound holds for C−, so

∣∣νavg
u|i;S − ν̂

avg

u|i;S

∣∣ =
∣∣EXS∼P

(
λi(XS)|νu|i;XS

|
)
− E

XS∼P̂

(
λ̂i(XS)|ν̂u|i;XS

|
)∣∣ ≤ 12γ

q
.

Choosing γ = ǫδℓ/12, we get the desired accuracy and our earlier choice of n evaluates to

n = (2γ2)−1 log

(
2(ℓ+ 2)(2p)ℓ+2

ζ

)
≤

144(ℓ + 3)

ǫ2δ2ℓ
log

p

ζ
.

9 Discussion

Our algorithm learns Ising models in time quadratic in the number of nodes (ignoring the log
factor), showing that high graph degree is not an obstacle to efficient structure learning. In light
of Valiant’s [64] algorithm for finding large correlations in less than quadratic time, it is plausible
that one could achieve an analogous further improvement of the runtime to pc for some constant
c < 2. Perhaps even “input-sparsity” time O(pd) is possible. As far as practical applicability, it
seems most urgent to improve upon the doubly-exponential dependence of the run-time and sample
complexity on βd. We suspect that (singly) exponential dependence is possible.

There are a number of further questions of both theoretical and practical relevance. While
Lemma 3.2 on estimation of influences can be easily modified to deal with mean-zero noise, gener-
alizing to more complicated noise requires more work. Another problem is that of structure learning
with unobserved or latent variables, and it would be interesting to see if the approach taken here
has implications also for this more challenging variant. Yet another issue is that in practice one
does not a priori know the degree d nor the parameter bounds α, β, h; perhaps using the Bayesian
Information Criterion or other method can help determine model complexity.

Many generalizations and extensions of the results are possible. For example, one can likely
generalize to pairwise Markov random fields with alphabet sizes larger than two, but the required
non-degeneracy conditions will be more complicated. Also, the assumption of uniformly bounded
node degrees may be restrictive in some settings, and the algorithm presented here can probably
be modified to work on families of graphs with unbounded degree (but low average degree).
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