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ABSTRACT
It is a fundamental problem to decide how many copies of an
unknown mixed quantum state are necessary and sufficient
to determine the state. This is the quantum analogue of the
problem of estimating a probability distribution given some
number of samples.

Previously, it was known only that estimating states to
error ε in trace distance required O(dr2/ε2) copies for a
d-dimensional density matrix of rank r. Here, we give a
measurement scheme (POVM) that uses O((dr/δ) ln(d/δ))
copies to estimate ρ to error δ in infidelity. This implies
O((dr/ε2) · ln(d/ε)) copies suffice to achieve error ε in trace
distance. For fixed d, our measurement can be implemented
on a quantum computer in time polynomial in n.

We also use the Holevo bound from quantum information
theory to prove a lower bound of Ω(dr/ε2)/ log(d/rε) copies
needed to achieve error ε in trace distance. This implies a
lower bound Ω(dr/δ)/ log(d/rδ) for the estimation error δ in
infidelity. These match our upper bounds up to log factors.

Our techniques can also show an Ω(r2d/δ) lower bound for
measurement strategies in which each copy is measured indi-
vidually and then the outcomes are classically post-processed
to produce an estimate. This matches the known achievabil-
ity results and proves for the first time that such “product”
measurements have asymptotically suboptimal scaling with
d and r.

Categories and Subject Descriptors
F.2 [ANALYSIS OF ALGORITHMS AND PROB-
LEM COMPLEXITY]: Miscellaneous

; G.3 [PROBABILITY AND STATISTICS]: Proba-
bilistic algorithms (including Monte Carlo)

; E.4 [CODING AND INFORMATION THEORY]:
Data compaction and compression

General Terms
Theory

Keywords
Sample complexity, quantum state tomography, Schur-Weyl
duality, Pretty Good Measurement

1. INTRODUCTION

Problem and Motivation.
The identification of the state of a quantum system is

so fundamental that any physics experiment starts with it,
and is sometimes entirely about it. Generally speaking, the
preparation of an experimental setup must be accurate and
consistent, and hence must involve some type of quantum
state identification. For example, one may ask whether a state
is close to a fixed target state (state verification), whether
a state is pure, or whether a bipartite state is sufficiently
entangled (property testing); see [MdW13] for a review.

We address the simplest and strongest form of the state
identification problem, (quantum) state tomography or (quan-
tum) state estimation, in which one is asked to output a
classical description of the full state vector |ψ〉 ∈ Cd, or more
generally the full density matrix ρ ∈ Cd×d of the system,
when given n identical copies of the quantum states. Assum-
ing that ρ has rank ≤ r lets us interpolate between the cases
of pure states (r = 1, ρ = |ψ〉 〈ψ|) and general states (r = d).

Quantum state tomography can be viewed as the natural
quantum extension of the classical problem of reconstruct-



ing probability distributions from independent samples. The
latter problem is fundamental in many disciplines such as
statistics and property testing, and remains an active re-
search topic. Quantum state tomography, however, deals
with a much harder scenario, in which any density operator
contains both the spectrum information and the eigenbasis in-
formation. Moreover, it could also be viewed as a special and
fundamental problem in quantum property testing, the study
of which has recently attracted much attention [MdW13,
OW15b]. Not only are the goals of quantum state tomogra-
phy harder, but the choice of quantum measurements means
that the set of available techniques is also more complicated.
One of the fundamental questions is then the following:

Given d, r, δ, how many copies n are necessary and suffi-
cient to output an estimate ρ̂ with expected infidelity δ to the
true state ρ ∈ Cd×d, given the promise that ρ has rank ≤ r?

Since ρ has O(rd) real parameters, it is reasonable to con-
jecture that Θ(rd) measurements are necessary and sufficient
to estimate ρ to constant accuracy. To get a sense of the
likely error scaling, even distinguishing a fair coin from a
coin with heads probability 1/2 + ε (i.e. for d = 2) requires
Ω(1/ε2) measurements.

The accuracy is usually measured in the following two
forms, discussed further in Section 1.2. The fidelity of two
quantum states ρ, σ is F (ρ, σ) := tr

√√
ρ σ
√
ρ, the “infi-

delity” is 1− F , represented by δ, and their trace distance
is T (ρ, σ) := 1

2
‖ρ− σ‖1, represented by ε. These are related

by [FvdG99].

1− F ≤ T ≤
√

1− F 2. (1)

1.1 Main Results
In this paper we show that the number of copies required to

estimate ρ with precision ε (in trace distance) scales roughly
with both dr and either 1/δ (if error is measured in infidelity)
or 1/ε2 (if trace distance is used). More precisely, we show an
O((dr/δ) ln(d/δ)) upper bound and an Ω((dr/δ)/ ln(d/rδ))
lower bound (which can be slightly improved to Ω(d2/δ) when
r = d). When the accuracy is measured in trace distance ε,
by Eq. (1), we can replace δ by ε2. Both our upper and lower
bounds improve upon previous results. We refer readers to
Section 2 for the upper bounds and to Section 3 for the lower
bounds. See also Table 1 for a summary.

General tomography schemes (including ours) require joint
(or entangled) measurements over multiple copies of ρ, which
is an arguably difficult task with current experimental tech-
nology. It would be desirable to have a tomography scheme
that performs only independent measurements. In such a
scheme each copy of the state is independently measured
and the outcomes of the measurement are jointly processed
by a classical computer. The best previously known scheme
with independent measurements [KRT14] makes use of n =
O(dr2/ε2) copies when ρ is guaranteed to have rank ≤ r
and the accuracy ε is measured in trace distance. We demon-
strate that any independent measurement scheme requires
Ω(dr2/δ) copies when the accuracy δ is measured in infidelity
(see Theorem 4). Our work thus shows for the first time
that joint measurements are asymptotically more efficient for
large d than independent measurements. Previously only the
error scaling of joint measurements was known to outperform
independent measurements, as we discuss below along with
other prior work in Section 1.3.

We also discuss how to implement our measurement scheme

on quantum computers in Section 4.

1.2 Discussion on accuracy measure
We derive an upper bound in terms of fidelity and a lower

bound in terms of trace distance, in each case implying a
near-optimal bound in terms of the other quantity. Here
we discuss why fidelity is in many ways a natural quantity
for tomography [Woo81]. Tomography is essentially a state
discrimination procedure where one distinguishes ρ⊗n from
σ⊗n. The statistical distinguishability of these states is mea-
sured by the trace distance Tn = T (ρ⊗n, σ⊗n), which is in
general much larger than T (ρ, σ); this amplification is what
enables the tomography. The asymptotic behavior of Tn can
be quantified as

1

2
F (ρ, σ)2n ≤ 1− Tn ≤ F (ρ, σ)n

by Eq. (1) and F (ρ⊗n, σ⊗n) = F (ρ, σ)n. This means that
ln(1/F ) or infidelity gives nearly sharp bounds on the rate
at which Tn converges to 1; the actual rate1 is between
ln(1/F ) and 2 ln(1/F ). In particular, for fixed d, the state
discrimination is possible to infidelity δ using n = Θ(1/δ)
copies. Our upper bound on n in terms of fidelity proves that
the POVM we will present in this paper indeed accomplishes
the discrimination task using n = Õ(1/δ) copies2. On the
contrary, the corollary upper bound in terms of trace distance
sometimes over-estimates the sufficient number of samples
by an unbounded amount. As a simple example, consider
qubit states, for any 0 < ξ < 1,

ρ =

(
1 0
0 0

)
and σ =

(
1− ξ 0

0 ξ

)
,

between which the trace distance is ξ and the infidelity
is 1 −

√
1− ξ ' ξ/2. The trace distance bound only says

n = Õ(1/ξ2) copies are sufficient to distinguish them, whereas

the fidelity bound says n = Õ(1/ξ) copies are sufficient.

1.3 Previous Results
Quantum state estimation has been extensively studied, go-

ing back at least to the work of Helstrom [Hel69], Holevo [Hol82]
and others from around 1970. Many of the rigorous results
are for the special cases when d = 2 or r = 1, or give an
uncontrolled or suboptimal d dependence (e.g. with n scaling
as f(d)/δ for unknown f) or discuss related problems such as
spectrum estimation, parameter estimation or determining
the identity of a state drawn from a discrete set. In this
paper we will consider optimal measurements (also called
“collective” measurements) and will not discuss the extensive
literature on independent or adaptive measurements.

For d = 2 (i.e. qubits), the optimal infidelity was shown in
[BBMnTR04, BBG+06, GK06, GK08, HM08] to scale as 1/n.
This scaling was generalized to qudits in [KG09] (see also
Section 6.4 of [Hay06]), but with an uncontrolled dependence
on d (i.e.n scales as f(d)/δ for unknown f(·)); see also [Key06].
In many settings (e.g. minimax estimation) one can show that
covariant measurements are optimal. If one further assumes
that ρ is pure then the optimal estimation strategy has a
simple form and n should scale as Θ(d/δ) [Hay98, Hol82]; see

1 The exact scaling of 1 − Tn for large n is known to be
Cn where C = C(ρ, σ) = inf0≤s≤1 tr(ρsσ1−s), and − logC is
called the quantum Chernoff distance [NS09, ACMnT+07].
2We adopt the convention that Õ(·) hides logarithmic terms.



Table 1: Conditions for the quantum state tomography with high success probability. δ denotes the accu-
racy goal measured in the infidelity 1 − F (ρ, ρ̂) = 1 − tr

√√
ρ ρ̂
√
ρ, and ε denotes that in the trace distance

T (ρ, ρ̂) = 1
2
‖ρ− ρ̂‖1. The upper bound in terms of the infidelity implies that in terms of trace distance;

n ≤ O(d2/ε2) log(d/ε). The lower bound in terms of the trace distance implies that in terms of infidelity;
n ≥ Ω(d2/δ). The previously known upper bound on n already used only independent measurements; thus our
lower bounds show that this result was essentially optimal.

Our result Previous result

for general ρ ∈ Cd×d for ρ of rank at most r

Sufficient n ≤ O(d2/δ) log(d/δ) n ≤ O(rd/δ) log(d/δ) n ≤ O(r2d/ε2) [KRT14] See App. E.

Necessary n ≥ Ω
(
d2/ε2

)
n ≥ Ω

(
rd/ε2

)
/ log(d/rε) n ≥ Ω(1/ε2) + Ω̃(rd) [FL11]

Necessary using
independent
measurements

n ≥ Ω(d3/δ) n ≥ Ω(dr2/δ) n ≥ Ω(1/δ2 log(1/δ)) See Sec. 1.3

also [Chi11] where further connections were made to cloning
and de Finetti theorems.

Another major theme in recent work has been the study
of various forms of restricted measurements, e.g. indepen-
dent measurements with a limited number of measurement
settings. Intermediate between independent measurements
and unrestricted (also called “collective” or “entangled”) mea-
surements are adaptive measurements in which the copies of
ρ are measured individually, but the choice of measurement
basis can change in response to earlier measurements.

On the achievability side for independent measurements, a
sequence of works [GLF+10, FGLE12, Vor13, KRT14] showed
that n = O(dr2/ε2) copies are sufficient to obtain trace dis-
tance ≤ ε with high probability.3 On the other hand, even
for d = 2, adaptive and collective measurements are known
to have asymptotically better error scaling, at least when
measured in terms of infidelity. The usual intuition is that n
should scale as 1/δ2 for independent measurements and 1/δ
for adaptive or collective measurements; e.g. see [MRD+13]
for numerical evidence. Refs. [BBG+06, HM08] showed that
adaptive measurements could achieve n = O(1/δ) scaling.
When a POVM contains a finitely many elements, the lower
bound 1/δ2 can be demonstrated by considering qubit to-
mography when the density matrix does not commute with
POVM elements. We were unable to find a reference that
proves this particular fact. [FBK15] gave an Ω( 1

δ′2 log(1/δ′) )

lower bound for independent measurements with relative en-
tropy δ′ as accuracy measure without restriction that POVM
should consist of finitely many elements. One major question
left open by our work is to clarify the power of adaptive
measurements, and in particular to determine whether there
is an asymptotic separation between the power of adaptive
and collective measurements.

In many cases it is not necessary to determine the full state
ρ but only to estimate some parameters of the state. This is
an extremely general problem which includes results such as
a quantum version of the Cramér-Rao bound [Hel69, GM00,
Hay09] again going back to the early prehistory of quantum
information. One special case that uses similar representation-
theory techniques to our work is the problem of spectrum
estimation. Here, the optimal covariant measurement was

3The earlier papers [GLF+10, FGLE12] achieved n =

Õ(d2r2/ε2). The improved n = O(dr2/ε2) performance is
achieved by analyzing Theorem 2 of [KRT14]. This is not
obvious from their theorem statement, but we explain the
connection in Appendix E.

described by Keyl and Werner [KW01], its large-deviation
properties were derived in [HM02] (see also [CM06]), and it
was analyzed further in [CHW07, OW15b]. Ref. [OW15b]
in particular showed (among other results) that the Keyl-
Werner algorithm required

Ω

(
d2

ε2

)
≤ n ≤ O

(
d2

ε2
ln
d

ε

)
.

Our results improve the upper bound by using the same
number of copies to obtain a full estimate of ρ instead of
merely its spectrum. We also improve the lower bound by
showing that it applies to all estimation strategies, not only
the Keyl-Werner algorithm; on the other hand, our lower
bound is for the harder problem of state estimation, while the
lower bound of Ref. [OW15b] is for the problem of spectrum
estimation. We improve both bounds in the case when r � d.

The problem of quantum state estimation can be thought
of as a special case of minimax estimation (i.e. choosing an
estimator that minimizes the expected loss when we maxi-
mize over input states) when the loss function is given by
the infidelity. Other loss functions have also been consid-
ered [Gil05, Tan14]. For example, with the 0-1 loss function
(assuming ρ is drawn from a finite set) the goal is to maxi-
mize the probability of guessing ρ correctly. Here a powerful
heuristic is to use the so-called “pretty good measurement”
or PGM [Bel75b, Bel75a, HW94], whose error is never worse
than twice that of the optimal measurement for any ensem-
ble [BK02]. While the PGM requires a prior distribution,
prior-free versions can also be constructed [HW12]. We will
describe two closely related measurements in this paper: first,
one closely related to the PGM and then one (with roughly
equivalent performance) that corresponds precisely to a PGM
over an appropriately chosen “uniform” ensemble of density
matrices. In each case, we analyze the measurements directly,
without making use of the results of [BK02, HW12] or other
prior work.

Independent and simultaneous work.
Independent of this paper, another work has achieved

similar results. Ref. [OW15a] analyzes the Keyl measurement
strategy [Key06] as well as the first measurement proposed
in this paper, and shows that each requires O(d/γ2) copies in
order to achieve expected 2-norm distance γ. This implies an
O(dr/ε2) upper bound for trace distance, and O(dr/δ2) upper
bound for infidelity, which improves on our result for trace
distance by removing the log term. However, the result does



not imply our fidelity bound, which is incomparable to theirs.
They also observe a lower bound of Ω̃(dr) for constant ε using
packing nets; our use of Holevo’s theorem allows us to derive
a stronger Ω̃(dr/ε2) lower bound. Moreover, we also consider
the lower bound of independent measurement schemes and
the implementation of proposed measurements on quantum
computers, which were not considered in [OW15a].

1.4 Techniques
The input to the problem is ρ⊗n with no prior informa-

tion about ρ except for its dimension d. The input has an
obvious intrinsic symmetry Sn of permuting tensor factors.
In addition, the measurement strategy should not perform
differently for ρ and UρU† for a unitary U ∈ U(d). This sug-
gests that our POVM should be symmetric under U(d)× Sn.
It is natural to work in the basis where the symmetry action
is block diagonal. Such a basis is called a Schur basis, and the
decomposition of the total Hilbert space into irreducible rep-
resentation (irrep) spaces Πλ(Cd)⊗n = Qλ⊗Pλ of U(d)×Sn
is known as Schur-Weyl duality:

(Cd)⊗n ∼=
⊕
λ`n

Qλ ⊗ Pλ, (2)

where λ = (λ1, . . . , λd) is a partition of n =
∑d
i=1 λi. We

consider two POVM’s on (Cd)⊗n which obey this symmetry:

M1(λ,U)dU ∝ Πλ(Udiag(λ/n)U†)⊗nΠλdU,

M2(η)dη = η̄−
1
2 η⊗nη̄−

1
2 dη

where dU is the normalized Haar measure on U(d), dη is
a U(d)-invariant measure on the set of all states such that
the distribution of the spectrum of η over the probability
simplex is uniform, and η̄ =

∫
η⊗ndη. The normalization

for M1 is such that
∫
M1(λ,U)dU = Πλ. Each POVM is

labeled by a state, σ = Uλ̄U† or σ = η, which is our output
ρ̂ = σ. For both of the POVM’s we prove the concentration
of the measurement outcome distribution, peaked around
the true state ρ, yielding the upper bound on the sample-
complexity of tomography. M1 may be viewed as a two-stage
measurement where the spectrum of ρ is measured first by
Keyl-Werner scheme, and then the basis is estimated by a
so-called pretty good measurement with the Haar random
prior distribution. M2 directly implements the pretty good
measurement for a continuous ensemble of states of form
η⊗n. The key ingredient in the concentration proof is the
identification of the character sλ(ρσ) of Qλ in terms of fidelity
F (ρ, σ). See Section 2 for more details.

Lower bounds from information theory.
For lower bounds, we observe that any tomography scheme

can be used to decode a classical message x that has been
encoded as ρ⊗nx , where ρ1, . . . , ρN are states with

min
x 6=y

T (ρx, ρy) ≥ ε.

A classic result in quantum information theory is Holevo’s
1973 bound on the capacity of a quantum channel to transmit
classical information [Hol73]. If all message states are O(ε)-
close to one another, the Holevo capacity χ should vanish
as ε→ 0, and if the average state is an interior point then
χ ∼ ε2. Meanwhile, the manifold of rank-r states is Θ(rd)-
dimensional, and in the interior, the ε-ball still contains N :=
exp(Ω(rd)) balls of radius ε/10, which are distinguishable by

the tomography procedure. These two observations lead us
to the lower bound Ω(rd/ε2) that combines d and ε.

A similar argument (in Theorem 4) restricting to indepen-
dent measurements leads to a lower bound of Ω(r2d/δ). The
idea there is that the random choice of eigenbasis in ρ is an
additional source of noise, so that each measurement reveals
only O(1/r) bits of information about ρ. These results are
discussed in more detail in Section 3.

1.5 Discussion and open questions
Our POVM constructions are inspired by the pretty good

measurement, and indeed the measurement operator cor-
responding to the estimate σ is like a distorted version of
σ⊗n. Variants of the PGM have been proposed in which
the measurement operators are distorted versions of higher
powers of the state piσi, i.e. Mi = X−1/2(piσi)

kX−1/2 where
X ≡

∑
i(piσi)

k. When k = 1 this is the PGM, but the cases
k = 2 and k = 3 have also been found useful in specific
settings; see [Tys09] for a review. If we take k → ∞ here
then this corresponds precisely to the Keyl “rotated-highest-
weight” strategy. It is possible that this framework could be
used to formally compare the performance of these different
strategies.

Even though the sample complexity of the quantum tomog-
raphy problem is nearly resolved here, many open questions
remain. Can this measurement be made efficient? How well
can adaptive measurements do? What is the rate of conver-
gence to the Local Asymptotic Normality approximation of
[GK08]?

2. STATE TOMOGRAPHY

Schur-Weyl duality.
Given n i.i.d. samples of a classical probability distribution

p, it is natural to analyze the outcomes in terms of their
type, or empirical distribution. The Schur decomposition of
(Cd)⊗n described in (2) can be thought of as a quantum
method of types, and is similarly useful in analyzing ρ⊗n.
The analogues of types are partitions λ = (λ1, . . . , λd) with
λ1 ≥ · · · ≥ λd ≥ 0 and

∑
i λi = n.

We review the Schur decomposition in Appendix A. One
useful piece of notation that will be introduced there is the
Schur polynomial sλ(x), which (for λ defined as above) is a
degree-n polynomial in d variables. It is also natural to define
sλ(X) := sλ(eig(X)) for any (not necessarily diagonalizable)
matrix X, where eig(X) are the roots of the characteristic
polynomial of X. Then we will see in the technical appendices
that sλ(ρ) is proportional to the probability of observing
partition λ given ρ⊗n and sλ(ρσ) is related to the probability
that our measurement procedure outputs σ when the true
state is ρ.

Bound on Schur polynomials.
Let ρ and σ be d× d density matrices. Suppose ρ has rank

r. The central inequality in this paper (see Appendix B for
a very short proof) is:

sλ(ρσ)

{
≤ (dimQλ)e−2nH(λ̄)F 2n

= 0 if λr+1 > 0,
(3)

where F = F (ρ, σ) = tr
√√

ρ σ
√
ρ is the fidelity and H(λ̄) =

−
∑
i λ̄i ln λ̄i is the Shannon entropy of λ̄ = λ/n. Note that



since sλ(λ̄) is a sum of non-negative terms, it is lower bounded
by its largest term:

sλ(λ̄) ≥ e−nH(λ̄). (4)

Tomography.
Since our input ρ⊗n is symmetric under permutations of

the tensor factors (Sn), the POVM elements of the optimal
strategy can be taken to commute with permutations without
loss of generality. Additionally since we do not assume any
distribution over ρ, our measurement should not perform
differently when ρ is replaced by UρU†. This means that if
Mσ is the outcome corresponding to σ then we should have

MU†σU = (U†)⊗nMσU
⊗n.

These observations, along with the Schur-Weyl decomposition
(from Appendix A), motivate us to define positive semi-
definite operators

M(λ,U) :=
dimQλ
sλ(λ̄)

Πλ(Uλ̄U†)⊗nΠλ, (5)

for each unitary U and Young diagram λ that partitions
n with at most d rows. As before, λ̄ denotes the diagonal
matrix with entries λ/n.

We first show that the M(λ,U)dU constitute a POVM,
where dU is the Haar probability measure on U(d). It suffices
to check

∫
dUM(λ,U) = Πλ, because

∑
λ Πλ = I. Since∫

dUM(λ,U) is invariant under any unitary conjugation or
permutation, we only need to check the traces of both sides.∫

dU trM(λ,U) =
dimQλ dimPλ

sλ(λ̄)

∫
dU tr qλ(Uλ̄U†)

=
dimQλ dimPλ

sλ(λ̄)

∫
dU tr qλ(λ̄)

= tr Πλ

Note thatM(λ, U) is redundant; obviously we haveM(λ, U) =
M(λ, eiφU), and any degeneracy in λ renders some block
of U ineffective. The redundancy is actually accounted for
by the Haar measure, and thus will not concern us. The
following theorem is our achievability result on tomography.

Theorem 1. Suppose a quantum state ρ ∈ Cd×d has rank
at most r. The measurement using the POVM {M(λ, U)dU}
on ρ⊗n outputs an estimate ρ̂ = Uλ̄U† such that F (ρ̂, ρ) ≥
1− δ with probability at least 1− (n+ 1)3dre−2nδ, which is
at least 2/3 whenever n ≥ (10dr/δ) ln(d/δ).

In terms of the trace distance, using Eq. (1) we have

Pr

[
1

2
‖ρ̂− ρ‖1 > ε

]
≤ (n+ 1)3rde−nε

2

, (6)

so the number of required copies scales as Õ(dr/ε2). This
is an asymptotic improvement in the number of copies of ρ
over all previously considered POVM’s for full state tomog-
raphy [FGLE12, Vor13, KRT14], and as we will see below
matches the lower bound up to log factors.

Proof. Let F = F (ρ, Uλ̄U†) be the fidelity. We claim

tr(M(λ,U)ρ⊗n) ≤ (n+ 1)2drF 2n, (7)

where r is the rank of ρ. To show this, we need a bound on
dimPλ:

dimPλ ≤ enH(λ̄), (8)

which has implicitly appeared in [CM06]. This follows from

dimPλ
∏
i

λ̄λii ≤
n!∏
i λi!

∏
i

λ̄λii =
n!

nn

∏
i λ

λi
i∏

i λi!
≤ 1. (9)

The first inequality is by the “hook length formula” [FH04].
For the last inequality we note that the function f(z) =
z ln z − ln Γ(z + 1) satisfies f(0) = 0 and f ′′(z) > 0 for

z > 0 [Bat08]. Hence,
∑d
i=1 f(λi) with

∑d
i=1 λi = n is

maximum if and only if λ1 = n, in which case the inequality
is saturated. Eqs. (4) and (8) now imply that

tr(M(λ,U)ρ⊗n) =
dimQλ dimPλ

sλ(λ̄)
sλ(ρUλ̄U†)

≤ dimQλ · e2nH(λ̄)sλ(ρUλ̄U†).

By Eq. (3), this is nonzero only if λr+1 = λr+2 = · · · = λd =
0. In this case, we have dimQλ ≤ (n+ 1)dr by Eq. (19) in
Appendix A. We arrive at Eq. (7).

The output of our POVM is ρ̂ = Uλ̄U†. The probability
of obtaining ρ̂ where ρ̂ has small fidelity, say infidelity δ,
to the true state ρ can be estimated by integrating Eq. (7)
over all pairs (λ,U) such that F (ρ, Uλ̄U†) ≤ 1 − δ. Since∑
λ

∫
dU < (n+ 1)d, we see that

Pr[ F (ρ̂, ρ) ≤ 1− δ ] ≤ (n+ 1)3dre−2nδ.

Construction via PGM.
Recall that given an ensemble {(p1, φ1), . . . , (pm, φm)},

the PGM has measurement operators Mi := φ̄−1/2piφiφ̄
−1/2

with φ̄ :=
∑
i piφi [Bel75b, Bel75a, HW94]. A relevant en-

semble for us is the one in which φi is equal to σ⊗ni , and
the index i should run over all state space; our ensemble is
determined by n and a probability measure dσ on the whole
state space {σ}. Demanding the unitary invariance of dσ, we
have

φ̄ =

∫
dσ σ⊗n =

∑
λ

∫
dσsλ(σ)

dimQλ
Πλ,

Mσdσ =
∑
λ

dimQλ
E sλ

Πλσ
⊗nΠλdσ, (10)

where E sλ =
∫

dσsλ(σ). It follows that the probability den-
sity of measuring Mσ given a state ρ of rank at most r
is

tr(Mσρ
⊗n)dσ =

∑
λ

(dimQλ · dimPλ)sλ(σρ)

E sλ
dσ

≤
∑

λ:λr+1=0

(dimQλ)2

enH(λ̄) E sλ
F 2ndσ

where the inequality is by Eq. (3) and (8). This is the same

scaling in n up to constants as Eq. (7), provided enH(λ̄) E sλ ≥
(nd)−O(dr) . Indeed we show that this is the case if we choose
a uniform distribution over the simplex of spectra of σ. First,
we bound the Schur polynomial by its largest term:∫

dσsλ(σ) ≥ 1

fd(~λ = 0)

∫
si≥0,

∑
i si=1

sλ1
1 · · · s

λd
d ds︸ ︷︷ ︸

fd(~λ)

.



By writing the integral explicitly, we see that

fd(λ1, . . . , λd) = f2

(
λ1, d− 2 +

d∑
i=2

λi

)
fd−1(λ2, . . . , λd),

f2(a, b) =
a!b!

(a+ b+ 1)!
.

This implies that fd(~λ) = λ1! · · ·λd!/(n+ d− 1)!. (We just
calculated the normalization factor for the Dirichlet distribu-
tion.) Hence,

enH(λ̄)

∫
dσsλ(σ) ≥ enH(λ̄) λ1! · · ·λd!(d− 1)!

(n+ d− 1)!
≥ (n+ d)−d,

where in the second inequality we use Eq. (9). We conclude
that this PGM defined by the uniform spectrum distribution
achieves the same bound (up to constants) on the sufficient
number of copies for tomography.

3. LOWER BOUNDS

General Measurements.
Our tomography scheme is the most precise up to logarith-

mic factors, among all possible measurement schemes given
n copies of the unknown state ρ.

Theorem 2. Let ε ∈ (0, 1) and η ∈ (0, 1). Suppose there
exists a POVM {Mσdσ} on (Cd)⊗n such that for any d-
dimensional density matrix ρ with rank ≤ r,∫

1
2
‖σ−ρ‖1≤ε/2

dσ tr[Mσρ
⊗n] ≥ 1− η. (11)

Then,

n ≥ C dr
ε2

(1− ε)2

ln(d/rε)

for C a constant depending only on η. In addition, if r = d,

then n ≥ C d2

ε2
(1− ε)2.

This theorem implies that achieving infidelity δ = 1 − F
requires n ≥ Ω̃(dr/δ).

Proof. We will show that any measurement satisfying
(11) will imply the existence of a communication protocol that
can reliably send a large message. Holevo’s theorem [Hol73]
can then be used to obtain a lower bound on n. Following
convention, call the sender Alice and the receiver Bob. We will
show in Lemma 3 below that there exists states ρ1, . . . , ρN
each with rank ≤ r such that

1

2
‖ρi − ρj‖1 > ε ∀i 6= j. (12)

The set {ρ1, . . . , ρN} is known as an ε-packing net. Fix such
a net, along with a measurement {Mσdσ} satisfying (11).

We will now construct a communication protocol. Alice
will choose a message x ∈ [N ] := {1, . . . , N} which she will
encode by sending ρ⊗nx . Bob will use the state estimation
scheme {Mσ} to attempt to guess x. If σ is within ε/2 trace
distance of some ρy then Bob will guess y. By (12), there is
always at most one ρy satisfying this condition. If no such
ρy exists, Bob will output failure. This results in the POVM
with measurement outcomes

M̃y =

∫
1
2
‖σ−ρy‖1≤ε/2

dσMσ , M̃fail = id−
∑
y∈[N ]

M̃y.

Define Pr[y|x] = tr[M̃yρ
⊗n
x ]. From (11) we have that Pr[x|x] ≥

1− η. In other words, Bob has a ≥ 1− η chance of correctly
decoding Alice’s message. By Fano’s inequality [Fan61], this
implies that

I(X : Y ) ≥ (1− η) ln(N)− ln(2). (13)

On the other hand, Holevo theorem [Hol73] states that
I(X : Y ) ≤ χ where χ is the Holevo information:

χ = S

 1

N

∑
x∈[N ]

ρ⊗nx

− 1

N

∑
x∈[N ]

S(ρ⊗nx ). (14)

In Lemma 3 below we will argue that there exists a packing
net with large N and small χ. We will bound χ ≤ nχ0 by
the subadditivity of entropy where

χ0 = S
(
EUUρxU†

)
− S(ρx),

for an appropriate Haar random unitary U , and prove χ0 =
Õ(ε2). This will imply that

n ≥ (1− η) ln(N)− ln(2)

χ0
.

Our result then follows from Lemma 3 below.

Lemma 3. There exist ε-packing nets I,II,III of d-dimensional
states (i.e. satisfying (12)) characterized in the following ta-
ble.

rank χ0/c ≤ c lnN ≥ restriction

I r ε2 ln(d/rε) rd ε ≤ 2−4, r < d/3

II d ε2 d2 ε ≤ 2−3, d even
III r ln(d/r) rd(1− ε) r < d(1− ε)/6

where c > 0 is a sufficiently large constant; c = 1000 is good
enough. (Proof in Appendix C.)

The packing net I and II cover small-ε regime, and III covers
regime where ε is close to 1.

We remark that packing nets of size exp(Ω(dr)) for rank-r
states have been achieved as early as 1981 [Sza81, Sza83];
see also [Win04, LVWdW15] which used them for applica-
tions in communication complexity. These imply an Ω(dr)
lower bound on the number of copies needed when ε is con-
stant [Win04, LVWdW15, OW15a] and has been used in

[FGLE12] to argue an Ω̃(r2d2) lower bound on the number
of copies needed for constant accuracy using adaptive Pauli
measurements. Our main new contribution here is to analyze
at the same time the Holevo capacity corresponding to these
ensembles, in order to obtain bounds with simultaneously
optimal scaling with r, d and ε.

Independent Measurements.
Let us say that a POVM Mσ on (Cd)⊗n is a product

measurement if it is equal to the tensor product of n POVM’s
M (a) on Cd. Then we have,

Theorem 4. Let δ ∈ (0, 1) and η ∈ (0, 1). Suppose there
exists a product POVM Mσdσ on (Cd)⊗n such that for any
d-dimensional density matrix ρ with rank ≤ r,∫

1−F (σ,ρ)≤δ/4
dσ tr[Mσρ

⊗n] ≥ 1− η. (15)



Then,

n ≥ C dr
2

δ
(1− δ)4

for C a constant depending only on η. (Proof in Appendix D.)

4. IMPLEMENTATION ON A QUANTUM COM-
PUTER

In this section we informally describe how our tomography
strategy can be implemented in time nO(dr) on a quantum
computer.

Our measurement involves a POVM with a continuously
infinite number of outcomes. However, it can be approximated
with a finite POVM using ideas from [Win02]. The first step is
to measure λ, as proposed by Keyl-Werner [KW01]. This can
be done efficiently using the Schur transform [BCH07] or the
quantum Fourier transform over the symmetric group [Bea97,
Har05].

Next, we would like to find a collection of unitaries U1, . . . , Um
such that

1

m

m∑
i=1

M(λ,Ui) ≈ Πλ.

This can be done by choosing m = Õ(dimQλ/ε2) random
unitaries, as proven in [Win02], which in turn was based on
[AW02]). The resulting measurement can be implemented by
the isometry

V = m−1/2
m∑
i=1

√
M(λ,Ui)⊗ |i〉 .

Using the Schur transform, this reduces to performing the
isometry

Ṽ = C

m∑
i=1

√
qλ(Uiλ̄U

†
i )⊗ |i〉 ,

where C is a normalizing constant. This isometry can be
implemented using O((dimQλ)2m2) gates [ICK+15], which

is Õ(n2dr/ε2).
We conjecture that run-time poly(n, d, log(1/ε)) is possible,

but do not know how to achieve this, even in the relatively
simple case of r = 1.
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A. Rodriguez. Collective versus local
measurements in a qubit mixed-state
estimation. Phys. Rev. A, 69:010304, Jan
2004.

[BCH07] D. Bacon, I. L. Chuang, and A. W. Harrow.
The quantum Schur and Clebsch-Gordan
transforms: I. Efficient qudit circuits. In Proc.
of SODA, pages 1235–1244, 2007.

[Bea97] R. Beals. Quantum computation of Fourier
transforms over symmetric groups. In
Proceedings of the 29th Annual ACM
Symposium on the Theory of Computation
(STOC), pages 48–53, El Paso, Texas, 1997.
ACM Press.

[Bel75a] VP Belavkin. Optimal multiple quantum
statistical hypothesis testing. Stochastics: An
International Journal of Probability and
Stochastic Processes, 1(1-4):315–345, 1975.

[Bel75b] VP Belavkin. Optimum distinction of
non-orthogonal quantum signals. Radio
Engineering and Electronic Physics, 20:39–47,
1975.

[BK02] H. Barnum and E. Knill. Reversing quantum
dynamics with near-optimal quantum and
classical fidelity. J. Math. Phys.,
43(5):2097–2106, 2002.

[Chi11] Giulio Chiribella. On quantum estimation,
quantum cloning and finite quantum de
Finetti theorems. In Proceedings of the 5th
conference on Theory of quantum
computation, communication, and
cryptography, TQC’10, pages 9–25, Berlin,
Heidelberg, 2011. Springer-Verlag.

[CHW07] A.M. Childs, A. W. Harrow, and P. Wocjan.
Weak Fourier-Schur sampling, the hidden
subgroup problem, and the quantum collision
problem. In Proc. of STACS, volume 4393 of
LNCS, pages 598–609, 2007.

[CM06] Matthias Christandl and Graeme Mitchison.
The spectra of quantum states and the
Kronecker coefficients of the symmetric group.
Commun. Math. Phys., 261:789–797, 2006.

[Fan61] Robert M Fano. The transmission of
information. M.I.T. Press and John Wiley
and Sons, New York and London, 1961.

[FBK15] Christopher Ferrie and Robin Blume-Kohout.



Minimax quantum tomography: the ultimate
bounds on accuracy, 2015.

[FGLE12] Steven T. Flammia, David Gross, Yi-Kai Liu,
and Jens Eisert. Quantum tomography via
compressed sensing: Error bounds, sample
complexity, and efficient estimators. New J.
Phys., 14:095022, May 2012.

[FH04] William Fulton and Joe Harris.
Representation Theory: A first course,
volume 129 of Graduate Texts in
Mathematics. Springer, 2004.

[FL11] Steven T. Flammia and Yi-Kai Liu. Direct
fidelity estimation from few pauli
measurements. Phys. Rev. Lett., 106,:230501,
April 2011.

[FvdG99] Christopher A. Fuchs and Jeroen van de
Graaf. Cryptographic distinguishability
measures for quantum mechanical states.
IEEE Trans. Inf. Theory, 45:1216, 1999.

[Gil05] Richard D. Gill. Conciliation of Bayes and
pointwise quantum state estimation:
Asymptotic information bounds in quantum
statistics, 2005.
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APPENDIX
A. BACKGROUND ON SCHUR-WEYL DU-

ALITY
The symmetry of our problem implies that our estimators

should be invariant under permuting the n systems (Sn)
and covariant under collective rotation by elements of U(d).
More precisely, any estimator can be replaced by one that
is invariant/covariant as described above without sacrificing
any performance. Thus it is natural to make use of the
representation theory of Sn and U(d).

Schur-Weyl duality is a statement regarding joint repre-
sentations of a matrix group and the symmetric group. This
is standard material [FH04] in representation theory, but for
the reader’s convenience we explain parts that are relevant
to our results. Consider the Hilbert space H = (Cd)⊗n of n
qudits of d-dimensions. This space admits representations
of the general linear group GL(d) and the symmetric group
Sn. The matrix group acts by simultaneous “rotation” as
U⊗n for any U ∈ GL(d), and the symmetric group acts by
permuting tensor factors. Concretely, a permutation π ∈ Sn
is represented by

Pπ =
∑
{ji}

∣∣jπ−1(1)jπ−1(2) · · · jπ−1(n)

〉
〈j1j2 · · · jn| .

The two actions U⊗n and Pπ obviously commute with each
other, and hence H admits a representation of G = GL(d)×
Sn. Generally, an irreducible representation (irrep) of G is
given by the tensor product of an irrep of GL(d) and an
irrep of Sn. For both groups, the irreps are specified by
Young diagrams, or equivalently, partitions λ = (λ1, . . . , λn)
of n =

∑
i λi, where λ is sorted to be non-increasing. The

Schur-Weyl duality asserts that the decomposition of the
space H into irreps of G has a simple structure. Namely,

(Cd)⊗n =
⊕
λ`n

Πλ(Cd)⊗n =
⊕
λ`n

Qλ ⊗ Pλ

where Qλ is the irrep of GL(d) and Pλ is the irrep of Sn cor-
responding to the Young diagram λ, and Πλ is the projector
onto the component Qλ ⊗ Pλ. Direct consequences of the
decomposition are that

ΠλX
⊗nΠλ

∼= qλ(X)⊗ idPλ (16)

ΠλX
⊗n = X⊗nΠλ (17)

for any d×d matrix X, where we have defined qλ(X) to mean
the representing matrix of X. In fact, this is the main reason
we are dealing with GL(d), which is dense in the set of all
matrices, rather than the more familiar U(d). The space Qλ
is also an irrep of the unitary group U(d), and our discussion
of Schur-Weyl duality could have been formulated entirely
with U(d); however, in this case X would be restricted to be
unitary.

For our results it is important to understand the characters
of the irrep Qλ of GL(d). We identify a partition λ with a
Young diagram in which there are λi boxes in the ith row,
e.g. the diagram for λ = (3, 2, 1, 1) is as follows

.

Define a Young tableau T with shape λ to be a way of filling
each box in λ with a number, e.g.

5 5 2
1 2 3
4
1 .

A standard Young tableau (SYT) is one in which each number
from 1, . . . , n appears exactly once and numbers strictly
increase from left to right and from top to bottom, while
in a semi-standard Young tableau (SSYT) numbers weakly
increase from left to right and strictly increase from top to
bottom. Associated with a standard Young tableau T there
are two subgroups AT and BT of Sn. AT is the set of all
permutations that permute numbers within the rows of T ,
and BT is the set of all permutations that permute numbers
within the columns of T . The Young symmetrizer is then
defined as

YT =
∑

a∈AT ,b∈BT

sgn(b)PaPb.

It can be shown that YT is proportional to an orthogonal
projector, and it turns out that YTH is an irrep of GL(d)
and is isomorphic to Qλ. Since every T with the same λ gives
rise to an isomorphic irrep of GL(d), let us set T to be the
SYT where 1, 2, . . . , n are written in order from the upper
left box towards right and down. To understand the basis of
Qλ, let |1〉 , |2〉 , . . . , |d〉 form the standard orthonormal basis
of Cd. We may regard each basis vector |E〉 = |j1, . . . , jn〉 of
H as a Young tableau E of shape λ. The Young symmetrizer
YT projects this basis vector to a vector of Qλ. If there is
any repetition along a column of E, then YT will annihilate
it, thanks to the antisymmetric sum over Pb for b ∈ BT . It
follows that Qλ = 0 whenever λ has more than d rows. More
precisely, let νi = νi(E) denote the number of times the
basis element |i〉 appears in the tableau E (also known as the
weight of E), and let ν↓ be the vector obtained by sorting ν
into non-increasing order. Then YT annihilates E whenever



∑m
i=1 ν

↓
i >

∑m
i=1 λi for some m = 1, . . . , d− 1. The negation

of the last condition is often denoted as

ν ≺ λ⇔

{∑m
i=1 ν

↓
i ≤

∑m
i=1 λi (1 ≤ m < d)∑d

i=1 ν
↓
i =

∑d
i=1 λi

and we say that ν is majorized by λ. The surviving tableaux
E with ν(E) ≺ λ form a spanning set for Qλ, or if we restrict
to SSYT, they form a basis.

Now we can derive an expression for the characters of
Qλ. Since tr qλ(X) must be a function of eigenvalues of
X, we may assume without loss of generality that X is a
diagonal matrix with eigenvalues x1, . . . , xd associated with
the standard basis elements |1〉 , . . . , |d〉. The basis vectors
of Qλ we just constructed are eigenvectors of diagonal X⊗n;
X⊗nYT |E〉 = xν11 · · ·x

νd
d YT |E〉 =: xνYT |E〉, where xν :=

xν11 · · ·x
νd
d . Hence, the character value tr qλ(X) is the sum

of these eigenvalues:

tr qλ(X) =
∑
ν

Kλνx
ν =: sλ(x). (18)

Here Kλν is called the Kostka number and denotes the num-
ber of SSYT with weight ν and shape λ. One can show that
Kλν > 0 if and only if ν ≺ λ. We also define here the Schur
polynomial sλ(x), which is a homogeneous polynomial in d
variables of degree

∑
i νi = n. Because the character tr qλ(X)

depends only on the eigenvalues, we will overload notation
and denote this character also by sλ(X). For the same reason,
it follows that sλ(XY ) = sλ(Y X). The number of terms of
the Schur polynomial is equal to

sλ(idd) = tr qλ(idd) = dimQλ =
∏
i<j

λi − λj + j − i
j − i . (19)

B. PROOF OF BOUND ON SCHUR POLY-
NOMIALS

Proof of Eq. (3). Consider a positive semi-definite ma-
trix X and a number k ≥ 0. The largest term in the Schur
polynomial sλ(Xk) at eigenvalues x1 ≥ · · · ≥ xd ≥ 0 of X is

xkλ1
1 · · ·xkλdd = e−nkH(λ̄)e−nkD(λ̄‖x̄)(trX)kn

where x̄ = (x1, . . . , xd)/ tr(X), and D(p‖q) =
∑
i pi ln(pi/qi)

is the relative entropy. This is because majorization implies
that

max
ν≺λ

xν = xλ,

i.e. the maximum is attained by putting the largest number
x1 with the largest possible exponent ν1 = λ1 and the second
largest x2 with ν2 = λ2 and so on, subject to the majorization
condition ν ≺ λ.

It follows that

sλ(Xk) ≤ dimQλ · e−nkH(λ̄)e−nkD(λ̄‖x̄)(trX)kn. (20)

Now, we set X =
√√

ρ σ
√
ρ and observe sλ(ρσ) = sλ(X2).

Using the fact that D(λ̄‖x̄) is always non-negative and = +∞
when the rank of λ̄ is larger than that of x̄, we arrive at
Eq. (3).

C. CONSTRUCTION OF NETS
This section constitutes the proof of Lemma 3. To give

some intuition for the construction, recall the arguments

in the introduction for lower bounds of Ω(1/ε2) and Ω(d2)
(or Ω(dr) in the rank-r case). In terms of our information
theoretic strategy, these have two implications. The first one
is that an ensemble of states that are contained in a radius t
ball around a fixed full-rank state will have vanishing Holevo
information in the limit t→ 0. In this regime, χ is analytic
and has a local minimum at t = 0; thus, it should scale as
O(t2) for small t.

The second one is that radius-t ball has volume that scales
like tD, where D is the dimension of the manifold of allowed
states. For rank-r states this is Θ(dr). Even if our ensemble
has small diameter (say t) if we demand precision that is
smaller by a constant factor (say t/3) then there will be
exp(Ω(D)) well-separated states. Indeed this is the approach
used in [Sza81, Sza83].

In order to find the states, we use a probabilistic existence
argument. We will define a set of states ρU = UρIU

† where
U is any element of some subgroup G ⊆ U(d). Suppose

Pr
U

[ ‖ρU − ρI‖1 ≤ ε ] ≤ ζ

for Haar random U ∈ G. We wish to find a set {Ui} of
unitaries with cardinality at least d1/ζe such that ‖ρUi −
ρUj‖1 > ε whenever i 6= j. This can be done inductively
starting with the singleton {I}. Since Haar measure is left-
invariant, PrU [ ‖ρU − ρV ‖1 ≤ ε ] ≤ ζ for any unitary V ∈ G.
If m < d1/ζe unitaries are chosen, the probability of choosing
a unitary U such that ρU is ε-close to any previously chosen
ρUi is at most ζm, which is strictly smaller than 1. This
proves the existence of one more desired unitary, and we
obtain a set of d1/ζe elements. The probability ζ will be
repeatedly estimated using the following fact.

Lemma 5 (Lemma III.5 of Ref. [HLW06]). Let P and
Q be projectors on Cd of rank p and q, respectively. Let
U ∈ U(d) be Haar random. It holds that

∀z > 0 : Pr
U

[
d

pq
trQUPU† ≥ 1 + z

]
≤ exp[−pqf(z)],

∀z ∈ (0, 1) : Pr
U

[
d

pq
trQUPU† ≤ 1− z

]
≤ exp[−pqf(−z)],

where

f(z) = z − ln(1 + z) ≥


(1 + z)/2 z ∈ [5,∞)

(1− ln 2) z2 z ∈ (−1, 1]

z2/2 z ∈ (−1, 0]

.

Ref. [HLW06] does not explicitly cover the z > 1 case for the
first inequality, though it implicitly covered in their proof.

Packing net I.
Suppose 3r < d. Let

U =

Ir 0 0
0 Ar×r Br×(d−2r)

0 C(d−2r)×r D(d−2r)×(d−2r)

 (21)

be a unitary matrix of U(d − r) with blocks as indicated,
embedded into U(d). For 0 ≤ t ≤ 1, define

ρt,I =

 (1− t2)Ir/r t
√

1− t2Ir/r 0

t
√

1− t2Ir/r t2Ir/r 0
0 0 0d−2r

 , (22)

ρt,U = Uρt,IU
†.



It is a maximally mixed state on an r-dimensional subspace.
We claim that the distance between ρt,U satisfies

‖ρt,U − ρt,Id−r‖1 ≥
t
√

1− t2
r

trC†C (23)

where C is as in Eq. (21). To prove this, observe that ‖ρt,U −
ρt,Id−r‖1 ≥ | tr[(ρt,U − ρt,Id−r )V ]| where

V =

A 0 BF
0 E 0
C 0 DF


and E ∈ U(r) and F ∈ U(d− 2r) are arbitrary. Abbreviate
as α = (1− t2)/r, β = t

√
1− t2/r, and γ = t2/r. Expanding

the formula,

tr[(ρt,U − ρt,Id−r )V ]

= tr

 0 β(A† − I) βC†

β(A− I) γ(AA† − I) γAC†

βC γCA† γCC†

A 0 BF
0 E 0
C 0 DF


= tr

βC†C ? ?
? (γAA† − I)E ?
? ? (βCB + γCC†D)F

 .

For some unitary E and F , the trace of the last two entries
become the trace norm of the matrices in the parentheses,
which are non-negative. This proves Eq. (23).

Lemma 6. If 0 < t < 1/2 and r < d/3, there exists a
finite subset {Ui} ⊂ U(d− r) of cardinality N ≥ exp(dr/54)
such that ‖ρt,Ui − ρt,Uj‖1 > t/4 for any i 6= j. The Holevo

χ0 of {ρt,Ui}Ni=1 fulfills χ0 ≤ t2 ln ed
t2r
.

Proof. Lemma 5 states that if U is a Haar random uni-
tary matrix of dimension k, then any k1 × k2 subblock K of
U satisfies

Pr

[
k

k1k2
tr(K†K) < 1− z

]
≤ exp(−k1k2z

2/2)

for z ∈ (0, 1). Eq. (23) says that ‖ρt,Id−r − ρt,U‖1 ≤ t/4

implies d−r
r(d−2r)

trC†C ≤ 1√
3
< 1− 1

3
. Therefore,

Pr[‖ρt,Id−r − ρt,U‖1 ≤ t/4] ≤ e−r(d−2r)/18 < e−rd/54,

and we resort to the probabilistic existence argument.
Next, we estimate the Holevo information χ. Since U

is unitary, we have S(ρt,U ) = S(ρt,Id−r ) = ln r. By the
concavity of entropy, the ensemble average may be replaced
with ρ̄t =

∫
dUρt,U , only to increase the entropy. By Schur’s

lemma, the matrix ρ̄t is diagonal, and has entropy

S(ρ̄t) = H(t2) + (1− t2) ln r + t2 ln(d− r),

where H(t2) = −t2 ln(t2)− (1− t2) ln(1− t2) is the binary
entropy. Combining, we have χ/n ≤ H(t2) + t2 ln d−r

r
. Using

H(z) ≤ z ln(e/z), we finish the proof.

Packing nets II & III.
Assume that d is an even number, and fix a projector

Q = diag(1, . . . , 1, 0, . . . , 0) of rank r ≤ d/2. For any d× d
unitary U and 0 ≤ t ≤ 1, define

τt,U =
1 + t

2r
UQU† +

1− t
2(d− r) (Id − UQU†). (24)

Given an ensemble {τt,U}, the entropy of the ensemble
average is certainly at most ln d. The entropy of τt,U is equal
to H((1 + t)/2) + 1+t

2
ln r + 1−t

2
ln(d− r), where H(·) is the

binary entropy. Therefore, the Holevo χ0 is bounded as

χ0 ≤
1

2
ln

d2

r(d− r) +
t

2
ln
d− r
r
−H

(
1 + t

2

)
. (25)

Next, if A denotes the upper-left r × r and C the lower-left
(d− r)× r submatrix of U , we have

trAA† + trCC† = r

trBB† + trDD† = d− r (26)

trCC† + trDD† = d− r

and

τt,U − τt,Id =(
αAA† + βBB† − αIr ?

? αCC† + βDD† − βId−r

)
where α = (1 + t)/2r and β = (1− t)/2(d− r). Multiplying
a unitary diag(−Ir, Id−r) on the right of τt,U − τt,Id , we see
that

‖τt,U − τt,Id‖1
≥ α tr(CC† −AA†) + β(DD† −BB†) + (d− r)β − rα

= 2(α− β) tr(CC†) by Eq. (26)

=

(
1 + t

r
− 1− t
d− r

)
trCC†. (27)

Lemma 7. Suppose r = d/2. Then, there exists a finite
subset {Ui} ⊂ U(d) of cardinality N ≥ exp(d2/32) such that
‖τt,Ui − τt,Uj‖1 > t/2 for any i 6= j. The Holevo χ0 fulfills

χ ≤ t2.

Proof. Eq. (25) becomes χ/n ≤ ln 2−H((1 + t)/2) ≤ t2.
Eq. (27) says that if ‖τt,U−τt,I‖1 ≤ t/2, then (4/d) trCC† ≤
1/2. Lemma 5 states that this happens with probability
at most exp(−d2/32). The probabilistic existence argument
applies.

Lemma 8. Set t = 1. Suppose ε ∈ (0, 1), and r < d(1 −
ε)/6. Then, there exists a finite subset {Ui} ⊂ U(d) of cardi-
nality N ≥ exp((1− ε)rd/2) such that ‖τ1,Ui − τ1,Uj‖1 > 2ε
for any i 6= j. The Holevo χ0 fulfills χ0 ≤ ln(d/r).

Proof. Eq. (25) becomes χ0 ≤ ln(d/r). Eq. (27) says
that if ‖τt,U −τt,I‖1 ≤ 2ε, then d

r2
trAA† ≥ (1−ε)d/r, which

is greater than 6 when r < d(1 − ε)/6. By Lemma 5, this
happens with probability at most exp(−r2(1 − ε)d/2r) =
exp(−rd(1 − ε)/2) . The probabilistic existence argument
applies.

D. PROOF OF INDEPENDENT MEASURE-
MENT LOWER BOUND

Proof of Theorem 4. Since
√

1− F is a metric (Bures
metric) on the space of states, if there is a set of states ρi
such that 1 − F (ρi, ρj) > δ for all i 6= j, then for any ρ
there is at most one ρi such that 1− F (ρi, ρ) ≤ δ/4. Thus,
we will take an almost identical strategy as the proof of
Theorem 2 to construct δ-packing net of states and compute



the Holevo information. In the regime where δ is close to
1, we can use Packing Net III of Lemma 3. Since 1 − T ≥
1−
√

1− F 2 ≥ F 2/2, we obtain a packing net of cardinality
N = exp(Ω(rd(1− δ)4)).

In order to compute Holevo information and to account
for the small δ regime, we consider the following set of states.
Define for t ∈ [0, 1] and U ∈ U(d− r)

ωt,I =

(1− t)Ir/r
tIr/r

0d−2r

 (28)

ωt,U = Uωt,IU
† (29)

where U is embedded into U(d) as in the paper. ωt,U has
rank 2r < d. Applying the defining formula

F = tr
√√

ωt,Iωt,U
√
ωt,I

with the observation that ωt,U is a mixture of two orthogonal
states, we obtain

1− F (ωt,U , ωt,I) = t(1− F (τI , τU )) (30)

where τU = UτIU
† is the (d− r)× (d− r)-maximally mixed

state of rank r. Since

T 2 ≤ 2(1− F )

by Eq. (1), we can apply the probabilistic existence argument
to find a large set of states of cardinality exp(Ω(rd)) that
are δ = Ω(t)-separated in infidelity.

Next, we bound the Holevo information. Let ~M (a) denote
a POVM on Cd, measuring the a-th tensor component (a-th
copy) of the input state ρ⊗n. The measurement outcome
follows the product distribution

tr

(
ρ⊗n

n⊗
a=1

~M (a)

)
.

The first term in the Holevo information is the Shannon
entropy of the distribution

p = E
ω

tr

(
ω⊗n

n⊗
a=1

~M (a)

)
(31)

whose marginal is equal to Eω tr(ω ~M (a)). By the subadditiv-
ity of entropy, we have

H(p) ≤
n∑
a=1

H(E
ω

tr(ω ~M (a))). (32)

The other term is −
∑n
a=1 EωH(tr(ω ~M (a))). We are going

to bound

χa = H(E
ω

tr(ω ~M (a)))− E
ω
H(tr(ω ~M (a))) (33)

for each a, so we shall drop the superscript (a) from now on.
We may assume that EU is over the Haar random unitary

U ∈ U(d− r). Given the POVM ~M (a), Alice and Bob choose
a specific set of message carrier states such that Holevo
information is minimal: Fix a δ-net ωUj , a finite set, and
consider ωV Uj for V ∈ U(d− r). There exists W ∈ U(d− r)
such that

χ(ωWUj ) ≤ min
V

∑
a

χa(V Uj) ≤ E
V

∑
a

χa(V Uj).

Using concavity of H, we are effectively replacing Uj in χa
with Haar random U .

The state ωt,U has U(r) symmetry acting on the upper-
left corner. If M is any element of POVM, we have for any
V ∈ U(r)

tr(Mωt,U ) = tr(MV ωt,UV
†) =

∫
U(r)

dV tr(V †MV ωt,U ).

Therefore, without loss of generality, we can assume that
any POVM commutes with V ∈ U(r). In addition, a POVM
element is a positive semi-definite operator, it suffices to
consider rank-1 POVM element since one can alwasy de-
compose it into rank-1 projectors of some positive weight. If
Mi = dwi |ai〉 〈ai|, then |ai〉 〈ai| acts either (i) on the upper-
left r × r corner or (ii) on the complement. In the first case
i = 1, . . . ,m′,

pi = tr(Miωt,U ) = dwi
1− t
r

(34)

and in the second case i = m′ + 1, . . . ,m,

pi = tr(Miωt,U ) = dwi
t

r
tr(P1UPrU

†) =:
twid

d− rZi. (35)

The dependence of Zi on U is implicit. Let Z̄i denote EU Zi.
Now,

χa =

m∑
i=1

−p̄i ln p̄i + E
U
pi ln pi (36)

=

m∑
i=m′+1

twid

d− r (E
U
Zi lnZi − Z̄i ln Z̄i) (37)

≤
m∑

i=m′+1

twid

d− r (E
U
Z2
i − Z̄i − Z̄i ln Z̄i) (38)

By the invariance of the Haar measure, Zi’s now become
identical and independent distributions. We only need to
know

∑m
i=m′+1 wi. This is equal to (d−r)/d since

∑m
i=m′+1 Mi

must be equal to the projector onto the (d− r)-dimensional
subspace. For the expectation value, we may use Lemma 5,
but in the present situation we may also directly compute
EU Zi and EU Z2

i using the fact that a column of Haar ran-
dom unitary matrix is a normalized gaussian distribution.
Let d′ = d− r.

Zir/d
′ = trP1UPrU

† = |u11|2+· · ·+|u1r|2 =
x2

1 + · · ·+ x2
2r

x2

where xi ∼ N (0, 1/2). Since the direction and magnitude
are independent, EZir/d′ = [E(x2

1 + · · · + x2
2r)]/Ex2 =

2r/2d′, so EU Zi = 1. Similarly, EZ2
i r

2/d′2 = [E(x2
1 + · · ·+

x2
2r)

2]/Ex4 = (r2 + r)/(d′2 + d′). Therefore,

χ ≤
n∑
a=1

χa ≤ nt
(

1 + 1/r

1 + 1/d′
− 1

)
≤ nt

r
(39)

E. SAMPLE COMPLEXITY IN [KRT14]
The previously best achievable sample complexity for state

tomography was described in [KRT14]. Their setting does not
naturally translate into our framework, so for convenience
we sketch here how that is achievable. First we restate one
of their main theorems:



Theorem 9. There are universal constants C1, C2, C3 >
0 such that the following holds for any r, d. Let a1, . . . , am ∈
Cd be independent standard Gaussian vectors; i.e. normal-
ized such that E[|ai〉 〈aj |] = Idδij. If m ≥ C1dr, then with
probability ≥ 1− e−C2m our choice of a1, . . . , am is “good.”

For X a matrix, define A(X) =
∑
j 〈aj |X |aj〉 |j〉 ∈ Rm.

Given a d-dimensional density matrix ρ, a vector b ∈ Rm
and a noise parameter η, define σ be any minimum of the
following convex program:

min ‖σ‖1 subject to ‖A(σ)− b‖2 ≤ η.

Suppose further that ‖A(ρ)−b‖2 ≤ η. If the vectors a1, . . . , am
are good, then we have

‖ρ− σ‖2 ≤ C3
η√
m
. (40)

To translate this into a quantum measurement, observe
that by the operator Chernoff bound [AW02], we have

1

m

m∑
i=1

|ai〉 〈ai| ≈ Id

with high probability. (For the purpose of this analysis, we
neglect the error here.) We can then define a POVM with
elements Ei = |ai〉 〈ai| /m. Measuring this POVM yields
outcome i with probability pi := tr[Eiρ]; in the notation of

[KRT14] we have p = A(ρ)/m. We will define the vector b
of observed probabilities by measuring n independent copies
of ρ using this POVM. If the resulting vector of frequencies
is f , i.e., outcome i occurs fi times, then we define b = m

n
f .

Thus b is an unbiased estimator of A(ρ); i.e. E[b] = m
n
E[f ] =

m
n
np = A(ρ). We can also estimate the error by

E ‖b− E[b]‖22 =
m2

n2

m∑
i=1

Var[fi] ≤
m2

n2

m∑
i=1

npi =
m2

n
.

We thus have η ≤ O(m/
√
n) with high probability. According

to (40) we then have ‖ρ− σ‖2 ≤ O(
√
m/n) = O(

√
dr/n). It

follows that

‖ρ− σ‖1
≤ 2
√

min(rank(ρ), rank(σ))‖ρ− σ‖2
≤ O(

√
dr2/n).

In other words, trace-distance error ε can be achieved with
n = O(dr2/ε2). While this bound is significantly worse than

our bound of Õ(dr/ε2), their approach does have the signif-
icant advantage of not requiring entangled measurements.
The improved performance of our bound (as well as that
of [OW15a]) can be seen as the advantage that entangled
measurements yield for tomography.
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