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Abstract

We initiate the systematic study of the energy complexity of algorithms (in addition to time
and space complexity) based on Landauer’s Principle in physics, which gives a lower bound on
the amount of energy a system must dissipate if it destroys information. We propose energy-
aware variations of three standard models of computation: circuit RAM, word RAM, and trans-
dichotomous RAM. On top of these models, we build familiar high-level primitives such as
control logic, memory allocation, and garbage collection with zero energy complexity and only
constant-factor overheads in space and time complexity, enabling simple expression of energy-
efficient algorithms. We analyze several classic algorithms in our models and develop low-energy
variations: comparison sort, insertion sort, counting sort, breadth-first search, Bellman-Ford,
Floyd-Warshall, matrix all-pairs shortest paths, AVL trees, binary heaps, and dynamic arrays.
We explore the time/space/energy trade-off and develop several general techniques for analyzing
algorithms and reducing their energy complexity. These results lay a theoretical foundation for
a new field of semi-reversible computing and provide a new framework for the investigation of
algorithms.
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1 Introduction

Landauer limit. CPU power efficiency (number of computations per kilowatt hour of energy) has
doubled every 1.57 years from 1946 to 2009 [KBSW11]. Within the next 15–60 years, however, this
trend will hit a fundamental limit in physics, known as Landauer’s Principle [Lan61]. This principle
states that discarding one bit of information (increasing the entropy of the environment by one bit)
requires kT ln 2 energy, where k is Boltzmann’s constant and T is ambient temperature, which is
about 2.8 · 10−21 joules or 7.8 · 10−28 kilowatt hours at room temperature (20◦C). (Even at liquid
nitrogen temperatures, this requirement goes down by less than a factor of 5.) Physics has proved
this principle under a variety of different assumptions [Lan61,Pie00,LPSG07,Mar09,LCB11], and
it has also been observed experimentally [BAP+12].

Most CPUs discard many bits of information per clock cycle, as much as one per gate; for
example, an AND gate with output 0 or an OR gate with output 1 “forgets” the exact values of its
inputs. To see how this relates to Landauer’s principle, consider the state-of-the-art 15-core Intel
Xeon E7-4890 v2 2.8GHz CPU. In a 4-processor configuration, it achieves 1.2 · 1012 computations
per second at 620 watts,1 for a ratio of 7.4 ·1015 computations per kilowatt hour. At the pessimistic
extreme, if every one of the 4.3 · 109 transistors discards a bit, then the product 3.2 · 1025 is only
three orders of magnitude greater than Landauer limit. If CPUs continue to double in energy
efficiency every 1.57 years, this gap will close in less than 18 years. At the more optimistic extreme,
if a 64-bit computation discards only 64 bits (to overwrite one register), the gap will close within
59 years. The truth is probably somewhere in between these extremes.

Reversible computing. The only way to circumvent the Landauer limit is to do logically re-
versible computations, whose inputs can be reconstructed from their outputs, using physically
adiabatic circuits. According to current knowledge, such computations have no classical funda-
mental limitations on energy consumption. General-purpose CPUs with adiabatic circuits were
constructed by Frank and Knight at MIT [Fra99]. The design of reversible computers is still being
actively studied, with papers on designs for adders [NTR11], multipliers [NTR10], ALUs [MR11],
clocks [SAI+13], and processors [TAG12] being published within the last five years. AMD’s CPUs
since Oct. 2012 (Piledriver) use “resonant clock mesh technology” (essentially, an adiabatic clock
circuit) to reduce overall energy consumption by 24% [Cyc12]. Thus the ideas from reversible
computing are already creating energy savings today.

But what can be done by reversible computation? Reversible computation is an old idea, with
reversible Turing machines being proved universal by Lecerf in 1963 [Lec63] and ten years later by
Bennett [Ben73]. Early complexity results showed that any computation can be made reversible,
but with a quadratic space overhead [Ben89] or an exponential time overhead [LMT97, Wil00], in
particular models of computation. More recent results give a trade-off with subquadratic space
and subexponential time [BTV01]. These general transforms are too expensive; in particular, in a
bounded-space system, consuming extra space to make computations reversible is just delaying the
inevitable destruction of bits.

The relationship between thermodynamics and information theory is described by Zurek [Zur89].
In a series of papers, Li, Tromp, and Vitanyi discuss irreversible operations as a useful metric for
energy dissipation in computers and study the trade-off between time, space, and irreversible op-
erations. An energy cost based on Kolmogorov complexity [LV08], a precise but uncomputable
measure of the information content of a string, is introduced in [LV92] and further explored

1We follow Koomey et al.’s [KBSW11] definitions, using Cisco’s measured SPECint rate base2006 of 2,320 to
estimate millions of computations per second (MCPS).
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in [BGL+98, Vit05, LV96]. These papers study algorithms for Bennett’s pebble game as well as
simulating Turing machines; however, they still focus on universal results, eshrew RAM models,
and analyze problems more from a complexity than an algorithms perspective.

Irreversibility is just one source of energy consumption in current chips, and several other models
of computation attempt to capture them individually: switching energy of VLSI circuits [Kis91],
dynamic and leakage power loss in CMOS circuits [KA10, KAG11], and I/O or memory access
[JMR05]. Albers [Alb10] surveys many algorithmic techniques for reducing energy consumption
of current computers, including techniques like sleep states and power-down mechanisms, dynamic
speed scaling, temperature management, and energy-minimizing scheduling. Ultimately, however,
we believe that irreversibility will become a critical energy cost shaping the future of computing,
and a topic now ripe for algorithmic analysis.

Our results. This paper is the first to perform a thorough algorithmic study of partially reversible
computing, and to analyze realistic time/space/energy trade-offs. We define the (Landauer/irre-
versibility) energy cost, and use it to explore reversible computing in a novel manner. Although
there are many other sources of energy inefficiency in a computer we believe the Landauer energy
cost is a fundamental and useful measure. A key perspective shift from most of the reversible
computing literature (except [LV96]) is that we allow algorithms to destroy bits, and measure
the number of destroyed bits as the energy cost. This approach enables the unification of classic
time/space measures with a new energy measure. In particular, it enables us to require algorithms
to properly clean up all additional space by the end of their execution, and data structures to be
properly charged for their total space allocation.

We introduce three basic models for analyzing the energy cost of word-level operations, similar
to the standard word models used in most algorithms today: the word RAM, the more general
transdichotomous RAM, and the realistically grounded circuit RAM. Our models allow arbitrary
computation to be performed, but define a spectrum of “irreversibility”, from reversible (free)
computation to completely destructive (expensive) computation. On top of these basic models
(akin to assembly language), we build a high-level pseudocode for easy algorithm specification, by
showing how to implement many of the familiar high-level programming structures, as well as some
new structures, with zero energy overhead and only constant-factor overheads in time and space:

1. Control logic: If/then/else, for/while loops, jumps, function calls, stack-allocated variables.
2. Memory allocation: Dynamic allocation and deallocation of fixed-size or variable-size

blocks, in particular implementing pointer-machine algorithms.
3. Garbage collection: Reference-counting and mark-and-sweep algorithms for finding no-

longer-used memory blocks for automatic deallocation.
4. Logging and unrolling: Specific to energy-efficient computation, we describe a new programming-

language feature that makes it easy to turn energy into space overhead, and later remove that
space overhead by playing it backwards.

These models open up an entire research field, which we call energy-efficient algorithms, to find
the minimum energy required to solve a desired computational problem within given time and space
bounds. We launch this field with several initial results about classic algorithmic problems, first
analyzing the energy cost of existing algorithms, and then modifying or designing new algorithms to
reduce the energy cost without significantly increasing the time and space costs. Table 2 summarizes
these results.

Although there are many practical papers about minimizing energy in computation (favoring
instructions that use somewhat less energy than others), the algorithms community has not made
it a standard measure to complement time and space because, without the idea of reversibility,
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Primitive Time Space in Log Energy Thm.

(ops) (bits) (bits)

Control Logic

Paired Jump Θ(1) 1 0 3.1

Variable Jump Θ(1) 1 + w 0 3.1

Protected If Θ(1) 0 0 3.2

General If Θ(1) 1 0 3.2

Simple For loop Θ(l) 0 0 3.3

Protected For loop Θ(l) 0 0 3.4

General For loop Θ(l) lg l 0 3.5

Function call Θ(1) 0 0 3.6

Memory Management

Free lists Θ(N) Θ(wN) 0 3.7

Reference Counting Θ(N) Θ(wN) 0 3.8

Mark & Sweep Θ(N) Θ(wN) 0 3.9

Table 1: Summary of our reversible primitives analyses and results including control logic, memory
management, and garbage collection. In this table, w is the word size, l is the number of loop
iteration, and N represents number of memory objects.

energy is simply within a constant-factor of time. By contrast, in our model, the energy cost can
be anywhere between 0 (for reversible computation) and t ·w where t is the running time (number
of word operations) and w is the number of bits in a word.

Consequences. Reducing the energy consumption of many computations by several orders of
magnitude (n) will have tremendous impact on practice. Computer servers alone constitute 23–
31 gigawatts of power consumption, which translates to $14–18 billion annually and 1.1–1.5% of
worldwide electricity use [Koo11]; there are roughly 50 times as many PCs with an annual growth
rate of 12% [YDG+07]; and there are about as many smartphones as PCs [eMa14]. Improved
energy efficiency would save both environmental impact and money. Reducing energy consumption
would also improve the longevity of batteries in portable devices (laptops, phones, watches, etc.), or
enable the use of smaller and lighter batteries for similar performance. Perhaps most interestingly,
lower energy consumption would lead to faster CPUs, as cooling is the main bottleneck in increasing
clock speeds; reducing the energy consumption by a factor of α, we expect to be able to run the
CPU roughly α times faster. For example, the world record for CPU clock speed of 8.429 GHz was
set by AMD with liquid nitrogen cooling [Vel11].

Our approach is ambitious in that it requires rethinking both software (algorithms) and hard-
ware. Our belief is that building a rich algorithmic theory for (partially) reversible computation,
and showing the orders of magnitude in possible energy reduction for important problems, will
prove to hardware makers that reversibility is a lucrative feature worth exploring intensely, even
before it becomes inevitable by hitting the Landauer Limit.

Guide. This paper has several sections and does not necessarily need to be read in order or in full,
depending on the reader’s interest. We recommend reading Sections 2.2 and 2.4 before continuing
onto later parts of the paper, to set up the model which is used extensively in the rest of the paper.
The remainder of Section 2 further explores our energy models and useful variations. The remaining
sections of the paper can be read in any preferred order. Parts of Sections 3–6 use results from

3



Algorithm Time Space (words) Energy (bits) Thm.

Graph Algorithms

Breadth-first Search Θ(V + E) Θ(V + E) Θ(wV + E) 6.9

Reversible BFS [Fra99] Θ(V + E) Θ(V + E) 0 6.10

Bellman-Ford Θ(V E) Θ(V ) Θ(V Ew) 6.12

Reversible Bellman-Ford Θ(V E) Θ(V E) 0 6.13

Floyd-Warshall Θ(V 3) Θ(V 2) Θ(wV 3) 6.14

Reversible Floyd-Warshall [Fra99] Θ(V 3) Θ(V 3) 0 6.15

Matrix APSP Θ(V 3 lg V ) Θ(V 2) Θ(wV 3 lg V ) 6.17

Reversible Matrix APSP [Fra99] Θ(V 3 lg V ) Θ(V 2 lg V ) 0 6.16

Semi-reversible Matrix APSP Θ(V 3 lg V ) Θ(V 2) Θ(wV 2 lg V ) 6.16

Data Structures

Standard AVL Trees (build) O(n lg n) O(n) O(w · n lg n)
(search) O(lg n) O(1) O(lg n) 5.4
(insert) O(lg n) O(1) O(w lg n) 5.5
(k deletes) O(k lg n) O(1) O(w lg n) 5.6

Reversible AVL Trees (build) O(n lg n) O(n) 0
(search) O(lg n) O(1) 0 5.7
(insert) O(lg n) O(1) 0 5.8
(k deletes) O(k lg n) O(k) 0 5.9

Standard Binary Heap (insert) O(lg n) O(1) O(lg n) 5.10
(delete max) O(lg n) O(lg n) O(w lg n) 5.11

Reversible Binary Heap (insert) O(lg n) O(1) 0 5.10
(delete max) O(lg n) O(lg n) 0 5.12

Dynamic Array (build) O(n) O(n) 0
(query) O(1) O(1) 0 5.3
(add) O(1) O(1) 0 5.3
(delete) O(1) O(1) 0 5.3

Table 2: Summary of our algorithmic analyses and results. In this table, n is the problem size or
number of elements in the data-structure, w is the word size, lg is log2, and in graph algorithms,
V is the number of vertices, and E is the number of edges.

previous sections, but these should remain understandable without having seen the prior proofs.
Section 3 constructs and analyzes basic control logic and memory management, to enable high-
level pseudocode for algorithm specification. Section 4 provides some general techniques we have
developed for constructing (semi-)reversible algorithms. Sections 5 and 6 analyze several classic
algorithms and data structures, and construct new algorithms and data structures that are more
energy efficient. Section 7 poses open problems.

2 Energy Models

In the following sections we present three different models of computation which define an energy
complexity that attempts to capture the energy loss from Landauer’s Principle. We begin with
a circuit model due to its intuitiveness and similarity to early work done on reversible logic and
computation. We then build up RAM models which bear far more similarity to those used for the
analysis of algorithms.

4



2.1 Energy Circuit Model

At the lowest level we will consider logical gates. Every gate is a Boolean function g : x→ y. The
energy cost of a gate is defined as the log of the size ratio of the input space, X, to the output
space, Y = g(X). Thus, energy E = lg

(
X
Y

)
, whose units are bits. The energy cost cannot be

negative because a given input cannot map to more than one output. Here we forbid randomized
computation. Alternatively, one could allow the creation of b random bits at an energy cost of b.
Also, the energy cost is zero exactly when the function is bijective in which case we call the gate
reversible. A circuit is a directed acyclic graph of gates with input nodes of in-degree zero whose
outputs are the bits corresponding to the input for a problem and whose output is the collection of
outputs from the gates which do not go into another gate. The energy cost of a circuit is defined
to be the sum of the energy costs of every gate. If the energy cost of a circuit is zero we call it
reversible.

Lemma 2.1. A reversible circuit must compute a bijective function.

Proof. For a circuit to be reversible, all of its gates must be reversible, and thus bijective. The
composition of bijective functions is also bijective.

We now have a framework for understanding the energy complexity of circuits. Although we
imagine there are very interesting things that can be said about the energy complexity of circuits,
we primarily want this infrastructure to help justify pieces of further models. For that purpose,
general circuits are too powerful and we wish to specify a class of circuits which are simple enough
they may reasonably make up the logic in a computer. Normally one restricts to AND, OR, and
NOT gates; however, this would make it impossible to construct most circuits reversibly. Luckily,
there are small, universal, reversible logic gates. Thus, we will also permit the use of Fredkin gates,
also known as controlled-swap gates, and Toffoli gates, also known as controlled-controlled-not
gates. Further, we allow the (reversible) zero-input gates true and false whose outputs are 1
and 0 respectively; as well as endtrue and endfalse whose inputs are restricted to be 1 and
0 respectively and whose output is the null set. Now for a given function f , we can define a
new circuit-size complexity as the minimum number of and, or, not, true, false, endtrue,
endfalse , Toffoli, and Fredkin gates needed to create a circuit which computes f . Similarly
each circuit has a circuit-depth, corresponding to the longest path in the circuit, and thus we can
similarly define a circuit-depth complexity for f .

Fredkin and Toffoli give a universality result, showing that any reversible function can be
computed by reversible circuits, given extra or ancillary bits. Further, only a constant-factor
increase in circuit-depth and complexity is needed over a similar circuit constructed from and, or,
and not gates [FT82]. In a recent paper, Aaronson, Grier, and Schaeffer go further classifying all
reversible logic gates on bits. They also prove any reversible function can be implemented with only
a constant number of ancillary bits [AGS15]. To give some intuition, Figure 1 shows how Toffoli
gates can be used to create other logical operations.

Because Fredkin and Toffoli gates can similarly be simulated by a constant number of AND,
OR, and NOT gates, this should not impact circuit complexity beyond constant-factors; however,
it is necessary to be able to capture our notion of energy complexity in a useful way.

2.2 Energy Word RAM Model

The Energy Word RAM model allows any contiguous segment of memory of size w to be accessed
in constant time and defines a fixed set of operations that can take in O(1) word sized inputs
in constant time. We also assume memory allocation is handled in a reversible manner. This
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A

B
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1

0
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1
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(d) Copy

A

1

A

A

1

0

(e) DeleteCopy

Figure 1: Standard logic implemented using a Toffoli gate.

will become a more reasonable assumption later, when we show linked-lists and stacks can be
implemented reversibly. The program and operations have the following restrictions. First, we
restrict ourselves to the operations typically found in high-level languages as well as their reversible
analogues. Second, the operation’s energy costs should be calculated based off of what can be
constructed in the circuit model. Third, all reversible operations must come paired with their
inverse operation. Finally, all Energy Word RAM programs must return the machine to its original
state, with the exception of a copy of the output living somewhere in memory. This can be done
simply but expensively by irreversibly zeroing out every bit and paying the associated energy cost.

The reversible operations we allow include in-place addition and subtraction (e.g., a += b),
increment and decrement (e.g., a += 1), swapping two variables, testing for equality or less-than
relation, copying a variable into an initially empty variable

(Copy(a, b) ≡ b += a)

and destroying a known copy of a variable

(DestroyCopy(a, b) ≡ b −= a)

We have introduced here a useful notation, that of underlining variables whose values are empty,
which shall serve us in writing pseudocode as well. The irreversible operations we allow include
overwriting one variable with another, and computing the bitwise And or Or of two variables.

2.2.1 Irreversible Word Operations

• And(a, b): Returns bitwise And. Costs 1 unit of energy.

• Or(a, b): Returns bitwise Or. Costs 1 unit of energy.

• Set(a, b): Sets the value of a equal to the value of b. Costs w energy.

2.2.2 Reversible Word Operations

• Add(a, b): Returns a+ b and b. Inverted by Sub(a, b)

• Sub(a, b): Returns a− b and b. Inverted by Add(a, b)

• Inc(a): Returns a+ 1. Inverted by Dec(a)

• Dec(a): Returns a− 1. Inverted by Inc(a)

• Not(a): Assumes a is 0 or 1. Returns the logical negation of a. Inverted by Not(a).

• Swap(a, b): Swaps the values stored in the memory locations of a and b. Inverted by
Swap(a, b).

6



• LessThanOrEqualTo(a, b): Returns the inputs and 1 if a ≤ b and 0 otherwise. Note, if
the extra output bit is deleted after it is used, it will cost 1 energy.

• InverseLessThanOrEqualTo(a, b, c): Returns a, b, and c− 1 if a ≤ b. Returns a, b, and
c if a > b.

• Copy(a, b): Returns a and b + a. If b is known to be zero, this results in a successful copy.
Inverted by DestroyCopy(a, b).

• DestroyCopy(a, b): Returns a and b− a. If b is known to be equal to a, then b is now zero.
Inverted by Copy(a, b).

In this model, we intend that our lowest level pseudocode correspond to an assembly-like lan-
guage. For simplicity we will continue to work with variables and locations in memory as though
they are all stored in RAM, rather than deal with registers, paging, and other complications that
may arise depending on the computer architecture. At this level we also explicitly number every
line of our program and grant the code access to the program counter, PC, which is the location
in memory of the current instruction. At every instruction the PC is incremented, but it can also
be manipulated manually, allowing jumps among other operations. It is very easy to make code
irreversible by manipulating the PC, as this is implicitly adding control logic to the program. The
instruction set we will be using in this paper is the same as the one with which we defined our Word
RAM model. For an instruction set for a reversible computer that has been built see Appendix B
of Frank’s Thesis [Fra99] or [TAG12].

2.3 Energy Transdichotomous RAM Model

The Energy Transdichotomous RAM model is computationally the most powerful and flexible. As
with the Word RAM model, we allow access to memory segments of size w in constant time and
assume memory allocation is done reversibly. Generally we will assume that w = Ω(lg n), making
the word size capable of indexing the entire input of the problem. We also allow any operations
on O(1) words to be performed in constant time; however, every algorithm can only use a constant
number of different operations. The energy cost of an operation is simply the log of the ratio of
the input space to the output space, as in the circuit model. Note that this is a lower bound on
the energy cost of the operation in the circuit model, and thus a lower bound in the Energy Word
RAM model. Finally, we still need to leave the computer in its initial state, except for a copy of
the output.

This model is convenient to work in because it is relatively easy to calculate the energy cost
of many operations and the flexibility of choosing operations allows us to exploit information in
the system without having to work out the details of how it would be implemented. For example,
when dividing an integer by four would generally incur two bits of energy loss or two bits of
garbage; however, if we happen to know that the number is even, there is really only a single bit
of information being lost. Instead of having to worry about how to perform shifts and additions to
save this bit, the Transdichotomous RAM model allows us to have a ‘divide by four when evenly
divisible by 2’ operation with the restriction that it only takes even inputs.

We now develop some conventions for writing programs in the Transdichotomous RAM Model.
All lines are of the form TUPLE = TUPLE. Both tuples must contain the same number of
elements, and the number of elements must be O(1). The left tuple is a list of all of the values in
memory which are used in the computation being performed on this line, including those simply
being overwritten. The right tuple contains expressions representing the values that will be in the
corresponding variables on the left. These expressions must contain no more than O(1) constant
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time operations. One interesting convention about this language is every variable implicitly serves
two purposes depending on its location. On the left, all variables refer to the memory location
where they are stored, and on the right they refer to the values being represented at those memory
locations.

As we did above, here we shall annotate variables whose value is known to be zero (often new,
unassigned variables) with an underline. This information is often critical to the energy cost of an
expression. For example, (a, b, c) = (a, b, a+ b) would cost w units of energy because we are erasing
every bit in c before replacing it with the value a+ b. However, (a, b, c) = (a, b, a+ b) has no energy
cost because the input has the value of c assumed to be zero, thus reducing the input space by a
factor of 2w and making the number of inputs and outputs the same.

The following are some examples of common operations written in the format. All operations
are assumed to be integer operations with reasonable overflow and rounding conventions. The
following examples cost zero energy:

• Copy: (a, b) = (a, a)

• DestroyCopy: (a, b) = (a, b− a)

• Add: (a, b) = (a+ b, b)

• Add a constant: (a) = (a+ 5)

• Quotient and remainder of two numbers: (a, b, c) = (a/b, a mod b, b)

• CNOT (aka reversible XOR): (a, b) = (a, a⊕ b)
• AND: (a, b, c) = (a, b, a ∧ b)
• Multiplication: (a, b, c) = (a, a ∗ b >> w, a ∗ b mod 2w)

• LessThan: (a, b, c) = (a, b, a < b)

The following examples cost w units of energy:

• Delete: (a) = (0)

• AND: (a, b) = (a ∧ b, 0)

• XOR: (a, b) = (a⊕ b, 0)

• Add: (a, b) = (a+ b, 0)

Here are some examples of common operations that cost between 0 and w units of energy:

• AND: (a, b) = (a ∧ b, b). This has an energy cost of 1

• Right shift by 3: (a) = (a << 3). This has an energy cost of 3.

• Remainder: (a, b) = (a mod b, b). This has an energy cost of w − lg b

We introduce another convention to avoid writing down every variable that is not changing: If a
variable appears in the right-hand side of a line and not the left it is short-hand for that value
being assigned to the same memory location it originally came from. We will also omit parenthesis
if there is only one variable or expression. Thus, (a, b, c) = (a + b + c, b, c) becomes a = a + b + c
and (a, b) = (b, b) becomes a = b. One may initially worry that this will obscure the energy cost of
the operation; however, it actually makes no difference. If a variable appears as a single element of
the input and output tuple, it contributes the same factor to the input space as the output space.
These will cancel when calculating the entropy of the operation and thus omitting variables which
are assigned back to themselves will not change the calculated energy cost. We encourage the use
of this convention to make the code easier to understand.
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2.4 High-level Pseudocode

Although the previous section provides a nice, clean way to analyze the energy, space, and time
complexity of an algorithm; we may want a more concise and C-like language. Past research
on reversible programming languages has focused on fully reversible programming languages and
architectures. The first high-level reversible programming languages developed were Janus [LD82]
[Yok10] and R [Fra99]. The first reversible architecture, Pendulum, was developed by Vieri [Vie99]
[VAF+98]. Along with Pendulum, Vieri introduced a reversible low-level instruction set, PISA,
which is used as a basic reversible instruction set for many future works. Most recently, this
architecture has been further improved with the development of Bob [TAG12] using a slightly
modified version of PISA known as BobISA, providing more efficient branch handling and address
calculation. Axelsen [Axe11] presented the first compilation techniques to translate high-level
Janus to low-level PISA, two independently developed reversible languages, and showed that his
techniques can be extended for use in any high-level reversible language.

We modeled our pseudocode off of these previous high and low level reversible languages while
also adding a few new commands to allow for partial reversibility. We now allow lines of the form
VARIABLE = EXPRESSION as well as for loops, while loops, if/else statements, and subroutine
calls. We also introduce log blocks and unroll statements in Section 2.4.1. On lines where we are
assigning a variable, we assume that every input in the expression will remain unchanged in its
memory location after the computer performs the operation and that the variable on the left-hand
side will have its value replaced by the value of the expression. If this is a reversible operation, the
variable will merely be changed as appropriate; if it is an irreversible operation, then the variable
will be changed and an additional energy cost will be incurred based on the model being used.

Figures 2 and 3 give some simple examples of equivalent code in the three different levels of
pseudocode conventions we’ve developed (high, intermediate, low). The high level is our C-like
language. The intermediate language converts high level control logic to jumps and labels. The
low level breaks it down further to an assembly-like language. Future sections will use one or more
conventions as needed for clarity.

2.4.1 Logging and Unrolling

Dealing with garbage data tends to become tedious when writing reversible computer code. For
example, suppose that we were comparing two variables, a and b, and that we wanted to use the
result of this comparison to increase some counter; see Figure 4a.

In a normal computer, by the function’s end, a would be garbage-collected automatically; how-
ever, in our reversible computer a naive garbage collection algorithm would destroy the information
stored in a, clearing whatever value it held and costing a word of energy. Thus, the reversible al-
gorithm programmer must handle the task of deallocating a manually.

We call the process of using a series of commands to directly reverse some portion of the code
unrolling. Manually writing all such commands can be tedious and is prone to error. To expedite
the process, we introduce the high-level keywords log and unroll:

In Figure 4b, the line a = x > y is included inside the log indentation block, and so is to
be reversed at the call to unroll. For much longer programs, this extra syntax can save the
programmer a great deal of effort that would otherwise be spent writing reverse code. Note that
the log and unroll commands only exist in the highest-level language, and are translated into their
manual equivalent at compile-time. The above program, therefore, would compile to the low-level
program seen in Figure 4c.

The rules for unrolling are straightforward. Reversible commands can be unrolled simply by
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x = x+ y + z high

(x, y, z) = (x+ y + z, x, z) intermediate

101 tempx = x low

102 x += y
103 y −= x
104 x += z
105 y += tempx
106 y += tempx
107 tempx −= y

Figure 2: Simple example of code in high,
intermediate, and low-level pseudocode.

log x = 5
log x = 10
unroll

x = 5
(tempx, x) = (x, 0)

x = 10
x = x− 10
(tempx, x) = (0, tempx)
x = x− 5

101 x += 5
102 mem[lp] += x
103 x −= mem[lp]
104 lp += 1
105 x += 10
106 x −= 10
107 lp −= 1
108 x += mem[lp]
109 mem[lp] −= x
110 x −= 5

Figure 3: Simple example of logging in high,
intermediate, and low-level pseudocode.

including their inverse commands in reverse calling order. Unrolling reversible control logic is
discussed in Section 3.1.
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a = x > y
counter += a

(a) garbage data not
unrolled

log:
a = x > y

counter += a
unroll

(b) logged high-level

a = x > y
counter += a
a −= x > y
dealloc(a)

(c) logged low-level /
automatic unroll

Figure 4: Three examples detailing the mechanics of logged code.

To allow our model to unroll semi-reversible programs, which may include irreversible com-
mands, we introduce the log stack, a data structure onto which the program can push extra bits of
information to be used later to invert the otherwise-irreversible operations. We keep track of our
position in the log stack with the log pointer, lp. In the Transdichotomous model, every operation
must have its inverse and the process for logging that operation explicitly specified. Furthermore,
we assume that this garbage is encoded as efficiently as possible and thus only requires as many
bits of space as are needed to distinguish the input space from the output space. Once again,
when we log lines with operations that were previously irreversible, we are implicitly defining new
operations and should take appropriate precautions. In our Word RAM model, these operations,
their inverses, and operations capable of interfacing with lp and memory must be specified.

2.4.2 Promise Notation

We introduce another notational convention that will assist in writing low-energy pseudocode for
the Transdichotomous RAM model. At the end of a standard line of code, one may add a comma,
the keyword “assert”, and then a claimed Boolean expression restricting the values of the involved
variables. Some useful examples include:

IsTrue = 0, assert 0 ≤ IsTrue ≤ 1
x = x/y, assert 6 | x

Here IsTrue may have been the result of a comparison and is known to be either 0 or 1. Thus
the energy cost of destroying it is only 1 bit instead of w bits. In the second example, we might
know that the problem being computed has some symmetries that a compiler might not see which
restrict the values x can take on. Asserts allow us to implicitly define functions which have a
restricted input space and thus reduce energy costs. Given the convenience of defining functions in
this manner, we must be very careful that we are still using only O(1) different operations in our
algorithm.

3 Reversible Primitives

In this section, we develop many high-level primitives commonly used throughout algorithms, but
which need special care to be done in an energy-efficient manner. Before proceeding, we should
discuss in slightly more detail the architecture of our theoretical semi-reversible computer. Our
computer only has a single mode of operation, always incrementing the program counter with
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every instruction. Reversing operations comes from writing the inverse operation in a later section
of code, rather than having a separate reversal mode which travels backward along the program
counter, inverting those operations. This gives us more flexibility in how to handle irreversible
sections of code, and the manner in which we reverse operations which are not dependent upon
each other. However, it comes at the cost that we cannot recover the value of the program counter.
Thus this design will have to incur an energy cost of w every time the computer is reset. Because
we can run many programs between restarts, we do not consider this to be of major consequence.

3.1 Control Logic

Following Frank [Fra99], we can make branching logic reversible with constant space overhead
using paired branching with the destination of a branch being a branch that points back. Thus,
we have symmetry, and when running backward, we can just follow the branch we arrived on.
However, because we are not working in a fully reversible model, there are some caveats we must
pay attention to: all reversible control logic in this section depends on all of the code within the
control sequence being reversible. If this is not the case, we can make no guarantees about the
correctness when irreversible operations are being performed within some control logic, especially
if they are manipulating the variables the control logic depends on.

In Section 2.2 we noted that we can do comparisons reversibly with a single bit of extra space.
In this section, we look at jumps, branches, conditionals, for loops, and function calls.

3.1.1 Jumps and Branches

Here we consider the most basic building blocks of control logic, alterations to the program counter
in the form of jumps and branches (conditional jumps). Jumps can be performed by a reversible
addition to the program counter, we use notation goto, gotoifeq, and gotoifneq. However, if
the program counter is allowed to change, we can no longer assume every line was reached by an
increment to the program counter, thus creating an irreversible situation. To deal with this, all
program counter jumps must be paired with a comefrom, comefromifeq, or comefromifneq
statement. In our pseudocode, we allow for goto to direct an absoloute or relative jump and note
that a compiler can transform absolute to relative, as is used in most reversible architectures.

Theorem 3.1. Jumps can be implemented reversibly with constant-factor increases in time and
space and up to an extra word of space per jump.

Proof. All jumps must be paired with comefrom statements. In the case of a regular comefrom
statement, the program knows that it reached this location via a jump and thus will jump back in
the reverse. However, it is rare that an unconditional jump such as this exist. In the more general
case, the program must decide whether the comefrom was reached via a jump or from the line above
by an increment in the program counter. To address this, we log two things upon jumping: (1)
the length of the jump and (2) a bit indicating that a jump occurred. We then use a comefromif
to check this bit upon reversing. At the corresponding reverse comefromif we’ll pop the value
off the log stack and use it to either change the program counter or not depending on whether the
code jumped to that location. A general example is shown in Figure 6.

We can make an additional optimization if a comefrom statement only has one corresponding
goto. Because we know the jump location corresponding with the comefrom, this can be imple-
mented reversibly by noting the jump length directly in the source code and not logging. In this
case we only have a single bit of storage for logging whether the jump was taken. This is illustrated
in Figure 5.
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log:
[code1]
goto label1
[code2, k lines long]
label label1
[code3]

[code4]
unroll

[code1]
mem[lp] += 1
lp += 1
goto k
[code2]
lp += 1 //adds 0 to log indicating no jump
[code3]
[code4] //unroll begins
[reverse of code3]
comefromifeq(mem[lp], k)
lp -= 1 //removes 0 bit from log
[reverse of code2]
lp -= 1
mem[lp] -= 1 //removes 1 bit from log
[reverse of code1]

Figure 5: The intermediate-level and compiled low-level code for a reversible jump. The jump and
comefrom statements are paired uniquely so the jump distance can be placed directly in the low
level code.

We make the distinction above between two flavors of jumps. The first, paired jump, requires
that goto and comefrom be in a 1 : 1 pairing, meaning the jump length is pre-determined and
only a single bit of storage is required. The second, variable jump, occurs when the jump length is
determined is determined at run-time. This can occur when, for example, multiple jumps land at
the same destination(6). This requires pulling the destination off the log and takes an additional
word of space.

3.1.2 Conditional Statements

We distinguish between two different types of conditionals, a protected if statement and a general
if statement. A protected if statement is one in which the conditional is not modified within the
if statement.

Theorem 3.2. Protected If statements can be implemented reversibly with constant-factor increases
in time and space, and general If statements with an extra bit of overhead in space.

Proof. Let a represent the variable which holds the conditional expression of the if statement. First
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log:
[code1]
goto label1 //call this jump1
[code2]
goto label1 //call this jump2
[code3]
label label1
[code4]

[code5]
unroll

[code1]
mem[lp] += [distance from jump1 to label1]
lp += 1
mem[lp] += 1
lp += 1
goto(mem[lp-2 ]) //this is jump1
[code2]
mem[lp] += [distance from jump2 to label1]
lp += 1
mem[lp] += 1
lp += 1
goto(mem[lp-2 ]) //this is jump2
[code3]
lp += 1 //adds 0 to log indicating no jump occurred
comefromifeq(mem[lp-1 ], mem[lp-2 ]) //jump occurred, jump length
[code4]
[code5] //unroll begins
[reverse of code4]
gotoifeq(mem[lp-1 ], mem[lp-2 ]) //reverse of comefromifeq
lp -= 1
[reverse of code3]
mem[lp] −= 1 //reverse of jump2
lp −= 1
mem[lp] -= [distance from jump2 to label1]
lp −= 1
[reverse of code2]
mem[lp] −= 1 //reverse of jump1
lp −= 1
mem[lp] -= [distance from jump1 to label1]
lp −= 1
[reverse of code1]

Figure 6: High-level and compiled low-level code for a general reversible jump. The jump length is
stored so that the reverse jump can be made.
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ifp(x > y):
z += 5

x −= 6

101 a = x > y
102 gotoifneq(a, 12)
103 z += 5
. . .
114 comefromifneq(a, 12)
115 a −= x > y
116 x −= 6

Figure 7: A reversible if statement in high-
level and low-level pseudocode. The come-
from statement on line 114 is a marker
which, though it does not explicitly cause
any change to the state of the program dur-
ing forward execution, is essential to ensure
the instantaneous reversibility of the code.

log:
ifr(x > y):

z += 5
x −= 6

y += x
unroll

101 a = x > y
102 gotoifneq(a, 2)
103 z += 5
104 comefromifneq(a, 2)
105 a −= x > y
106 x −= 6
107 y += x //unroll begins
108 x += 6
109 a += x > y
110 gotoifneq(a, 2) //reverse of comefrom
111 z −= 5
112 comefromifneq(a, 2)
113 a −= x > y

Figure 8: Logged reversible if statement in
high-level code and compiled low-level code

consider a protected statement. Regardless of whether a was false and we jumped or a was true
and we entered the if statement body, a’s value will be preserved at the end of the if statement. As
described in [Fra99], two-way branching may then be employed to make the if statement reversible.

To briefly summarize Frank’s results, in the forward direction, the value of a determines whether
we enter the body of the if statement or jump to the end. In a similar way, when reversing the
operation, if we leave a marker at the end of the if statement indicating that this location may have
been reached via two different paths — either by jumping or by flowing through the if statement
body — depending on the value of a. Because a will be maintained, we can use a comefromif
conditioned on a to determine if the if statement body should be undone. Because this if statement
is reversible, it does not incur any cost in our logging space (Figure 8).

In a general if statement, because a is not protected and is subject to change, we must log the
value of a upon initial execution and use the logged value in the comefromif to determine whether
to jump in the reverse direction. This gives an extra bit of storage.

3.1.3 For Loops

We now examine a special case of for loops. A simple for loop is one in which a variable i iterates
over the values 1 through k, each time executing some piece of code which does not alter i or k.
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log:
for(i=1 ; i ≥ 1 ; i < x ; i++):

[code1]
[code2]

unroll

log:
i = 0
label beginFor
i += 1
gotoifneq ( i < x, endFor):
[code1]
goto beginFor
label endFor
[code2]

unroll

Figure 9: An example of a simple for loop being translated from high-level to intermediate-level
code consisting of jumps and branches.

Theorem 3.3. Simple for loops can be implemented reversibly with constant-factor increases in
time and space.

Proof. At the end of the body of the for loop we can simply increment i, check if it is less than or
equal to k, and if not use a branch to jump back to the beginning of the body of the for loop (Figure
9). Incrementation can be done reversibly and we have shown branching can be done reversibly.
It is easy to see one can unroll one of these loops by simply running the inverse code for i ranging
from k to 1. Because i only exists within the for loop and we know the loop was executed, we
do not need to worry about whether or not to execute the inverse code, or how many loops were
performed.

We consider an extension of the simple for loop. A for loop has internal conditions if all
variables used in the condition of the for loop only exist within the scope of the for loop. That
value is protected if it is never changed irreversibly. We define a protected for loop as a for loop
with protected, internal conditions(Figure 10).

Theorem 3.4. A protected for loop can be performed reversibly with constant factor overhead in
time and space.

Proof. This follows the same reasoning as the proof of Theorem 3.2. We can construct the for loop
out of a paired branch statement. Since we know the terminal value of the iterator is not changed
after the loop ends, then when reversing, we can check it’s value to see if the for loop ever executed.
The update function on the iterator is also promised to be reversible. Thus to determine if one is
done unwinding the loop, one can apply the inverse update to the iterator and then check whether
it has reached its initial value.
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log:
[code1]
for (i = a; g(i, b); f(i)):

[code2]
[code3]

unroll

log:
[code1]
i = f−1(a)
label beginFor
f(i) //f is a reversible function
gotoifneq ( g(i, b), endFor):
[code2]
goto beginFor
label endFor
[code3]

unroll

Figure 10: Example of high-level to intermediate-level code for a protected for loop

In general, loops cannot be performed reversibly without overhead. For example, we may not
be able to distinguish whether or not a loop ever executed because the variable checked in the
condition may have gone outside the range during the loop or have been set that way before the
loop ever executed. Even if we know a loop has executed, it is possible for the variables considered
by the loop to reach the same initial value multiple times throughout the execution of the loop. If
this is the case, then we cannot rely on these initial values to tell us to terminate the loop, as was
the case with simple for loops.

However, this issue can be addressed with a small amount of overhead. We will simply create
an extra variable at the start of the loop and increment it whenever we loop. Once the loop
terminates, we will push this variable onto the log stack, so we can recover the number of times
our loop executed. Assuming the internals of the loop are reversible, then the entirety of the loop
is now reversible. We call this a general for loop.

Theorem 3.5. A general for loop can be performed reversibly with constant factor overhead in
time and an extra word of space representing the number of loop executions.

3.1.4 Function calls

Theorem 3.6. Function calls can be implemented reversibly with constant-factor increases in time
and space.

Proof. Reversible function calls work in a similar manner to normal ones, involving the stack pointer
being pushed onto the stack, following the new pointer to the function, and then returning. There
are two major changes needed. First, every function that might be logged will create a second
function, which is the unrolling version, and appropriate pointers to move to this function when
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unrolling will be used. Second, we need to be careful to not overwrite anything when moving
around. In the case of functions, we know where the function is written in memory, and we know
where the function ends. Thus it is easy to specify a jump in our code whose comefrom is the
beginning of the function. At the end of the function, we create another jump which returns us
to our original place in the code, reading the location which was pushed onto the stack (Figure
11).

3.2 Memory Management and Garbage Collection

Allocating and reclaiming free memory are critical tasks to the function of any modern computer.
Happily, we show that some basic forms of memory allocation and garbage collection can be done
reversibly with only constant factor overhead in time and space. Free lists are a simple type of
memory allocation which involves a list of pointers to blocks of free memory. The pointer to the next
block of memory is stored in the previous block of memory. Allocation is performed by removing
the pointer from the free list and handing it to the program requesting the memory. To deallocate
a block of memory, the pointer to that block is put on the end of the free list. We assume all
deallocated memory blocks have been returned to their zeroed out state.

Theorem 3.7. Memory allocation using free lists can be done reversibly with constant-factor over-
heads in time and space.

Proof. Free lists can be handled in a similar manner to doubly-linked lists 5.1. Passing a pointer
from the memory manager to the program or back are reversible operations. To append a block of
memory to a list, we simply point the new block to the former head of the list, then point the head
pointer to the new block, an operation which is straightforward to reverse.

Garbage collection often uses a technique known as reference counting. Reference counting
keeps track of the number of references to an object or resource and deallocates the space when
it is no longer referenced. In our analysis, we do not charge the cost of freeing or destroying the
objects to the algorithm. Since this destruction would need to happen regardless of what sort
of garbage collection, if any, was performed we believe the energy costs involved are not a fair
representation of the work done by the garbage collector itself.

Theorem 3.8. Reference Counting can be done reversibly with constant-factor overhead in space
and time.

Proof. The reference counter requires lg k bits where k is the number of references to the object. We
can augment the creation of a reference to increment the counter, which is a reversible operation.
In addition, we can add a simple conditional check on the destruction of a reference to see if the
reference counter is at 1. Since this meets the condition of a protected if, it takes no auxiliary
space. We can now decrement the reference, destroy the object, and continue on with removing the
reference. Thus, maintaining the counter only incurs a constant factor increase in time and space.
The destruction of the object would have occurred regardless, and thus it is not fair to charge its
energy cost to the reference counting algorithm.

Mark and Sweep is another garbage collection algorithm which walks through every object
reachable from the heap and marks them. It then goes through all objects in memory and destroys
any which are unmarked, and unmarks the rest. Example code can be found below.
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def function(x):
[code1]
return y

def reverseFunction(y):
[reverse of code1]
return x

[code2]
z += function(x)
[code3]
unroll

def function(x):
comefrom(mem[sp-1 ]) //indicates where fxn was called from
x += mem[sp-2 ] //pulls input from stack
[code1] //body of function
r0+ = y //special register for return value
[reverse of code1]
x -= mem[sp-2 ]
goto(mem[sp-1 ]) //returns to program

def reverseFunction(x):
comefrom(mem[sp-1 ]) //indicates where fxn was called from
x += mem[sp-2 ] //pulls input from stack
[code1] //body of function
r0− = y //special register for return value
[reverse of code1]
x -= mem[sp-2 ]
goto(mem[sp-1 ]) //returns to program

[code2]
push(x)
push(pc)
goto([function start]) //jump to function
comefrom([function end])
swap(z, r0) //caller sets r0 back to 0
pop(pc-4 )
pop(x)
[code3] //begin unroll
[reverse of code3]
push(x)
push(pc)
swap(z, r0) //put output back in r0 to be reversed
goto([reverseFunction start]) //jump to function
comefrom([reverseFunction end])
pop(pc-4 )
pop(x)
[reverse of code2]

Figure 11: High-level and low-level language example of function call and unroll.
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MarkAndSweep:
for each root variable r:

Mark(r)
Sweep()

Mark(Objectp):
if !p.marked:

p.marked = True;
for each Object q
referenced by p′:

Mark(q);

Sweep():
for each Object p
in the heap:

if p.marked:
p.marked = False

else:
heap.release(p)

Theorem 3.9. Mark and Sweep can be done reversibly with constant-factor overhead in space and
time.

Proof. The reversible Mark and Sweep will be a slight variation on the standard code above. First,
each assignment to p.marked can be replaced by (reversibly) toggling that bit because we just
checked that it was in the opposite state. At this point the remaining operations are (1) following
pointers and control logic, which can be logged and done reversibly with constant-factor overhead,
and (2) destroying unmarked objects. Destroying these objects does not impact any of the variables
in the control logic and thus can safely stay unlogged.

4 Energy Reduction Techniques

This section overviews some general techniques that have been helpful in constructing reversible
algorithms and proves some general theorems about algorithms sharing certain properties.

4.1 Complete Logging

One very simple, yet surprisingly useful technique is to simply log every step of an algorithm. This
incurs a space cost of O(t(n)) words where t(n) is the runtime of the algorithm. Although this
seems wasteful, the prevalence of linear time algorithms or linear time sub-routines in algorithms
makes this important to remember.

4.2 Reversible Subroutine

Earlier we saw that function calls can be implemented reversibly. We now give a stronger result
for being able to use some reversible subroutines efficiently.

Theorem 4.1. If we have a fully reversible subroutine whose only effect on the program is through
its return value, one need only store the inputs and outputs to this subroutine to later unroll it with
only a constant-factor overhead in time.

Proof. To do this, we use a slightly more complicated, two-step unrolling process. First, after
the subroutine has initially run, we copy out the output and immediately unroll the subroutine.
This copy of the output looks no different to the rest of the program from what would normally
be computed, and we’ve already stipulated that the subroutine cannot alter the program through
any other means. When it comes time to unroll the subroutine, we may have lost important
logged information needed to take us from the output back to the input. At this point, we run
the subroutine forward, recovering all of that needed information. Next we delete the copy of the
output and unroll the subroutine normally.
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4.3 Pointer Swapping

Depending on how it is managed, pointer destruction will generally take energy. Many data struc-
tures liberally create and destroy pointers to various nodes or other pieces of data. In many cases,
one can keep back-pointers or self-referential pointers which would allow them to simply be moved
around. In general, moving pointers around has zero energy cost, and thus this is one simple way
to reduce the energy complexity of many data structures.

4.4 Data Structure Rebuilding

When attempting to implement data structures which support insert and delete operations re-
versibly, we run into a new challenge. Often the insertion or deletion operation will create some
amount of garbage data which is necessary to reverse it in the future. We also need the result of the
operation to remain in place, so we cannot immediately reverse the operation. Thus over the life of
the data structure, its size will depend on the total number of insert and delete operations, rather
than just the number of elements in the data structure. To circumvent this we can use a technique
we call periodic unwinding. Note, this technique depends exceedingly on what is considered the
data-structure and what is an algorithm that uses the data-structure. This is discussed more below
and in Section 5.

Theorem 4.2. If a data structure which allows reversible insertions, deletions, and traversals can be
constructed reversibly from k insertions in O(k) time and space, and its operations can be performed
reversibly with constant-factor overhead in time and space, then it can be maintained reversibly in
amortized time with constant-factor overheads in space and time via periodic unwinding.

Proof. If there are only O(n) deletions, then we can simply log and unroll all of the operations. If
not, we need to keep track of the number of insertions and deletions that have occurred because
the last rebuilding. We will keep track of these counts and increment them as part of the insertion
or deletion routine. We also track the number of elements in the data structure. Whenever a delete
is called, we then check to see whether the number of deletions is more than twice the number
of nodes in the data structure. If this is true, we will proceeded to rebuild the data structure.
We perform a reversible traversal of the tree, with the addition that we make an extra copy of
the inserted data at every node. Now that we have this copy, we can proceed to unroll the data
structure, clearing the log. Once this is done we construct a new data structure with the same
values as before the reversing, but with none of the accumulated garbage. Construction of the new
data structure takes O(n) time. To trigger a rebuilding, we must have called delete a larger number
of times than the size of the data structure we are building. We charge the amortized constant cost
per element being added to the new data structure to the number of deletes performed, giving us
constant amortized time. Our counters and copies of the data all require O(n) space, meaning we
never use more than a constant-factor overhead in space.

With this method, after rebuilding and clearing the log, the data structure can no longer provide
any information about past items which were deleted from the data structure. This is covered by
the assumption that the algorithm interacting with the data structure makes copies of all of its
inputs and if it needs them to reverse itself, it is responsible for maintaining that information.
Thus, depending on how the data structure is being used, this technique can be superfluous or very
powerful.
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5 Data Structures

Data structures are meant to be used in the context of an algorithm. In the standard model for
algorithms, we can draw a nice abstraction between these two and analyze their properties sepa-
rately. We also wish to do so in the energy complexity model; however, we need to be more careful
about the responsibilities of the data structure and the algorithm for maintaining information and
reversibility. First, we assume the data structure is only accessed through the prescribed opera-
tions; we don’t want the algorithm irreversibly altering stored elements or manually altering the
data structure in an unknown way. Second, if it is a reversible data structure, every operation
must have a reverse operation. Third, when inserting, the algorithm gives a copy of the data to
the data structure and is responsible for maintaining its own reversibility after an insert has been
reversed. Fourth, the algorithm will handle zeroing of the bits of elements removed from the data
structure. For this purpose, the common delete operation will be replaced with Extract(x) which
removes an element from a data structure and returns it; however, we will generally still call this
operation delete. Fifth, for a reversible algorithm, it is responsible for making the correct calls to
reverse functions to reset the data structure.

This is certainly not the only way to treat this interface. We could just as well require the data
structure to remember all of the calls performed on it so it could reverse itself upon command.
Similarly, we could imagine that a deleted item cannot be handed back to the algorithm, but must
in some way be removed by the data structure, most likely when unrolling. We’ve chosen our
conventions because it more closely matches our idea of how subroutines should work and because
it is clearer to us how to analyze such cases.

5.1 Stacks and Linked Lists

Theorem 5.1. Doubly-linked lists can be implemented reversibly with constant-factor overheads in
time and space.

Proof. Doubly linked lists need to support adding, removing, and finding items. To search for an
item x, one begins at one end of the list, performs a comparison of x and the next value in the
data structure, and then either returns a match or follows a pointer. Match-checking and following
pointers can be done reversibly. In this case, we change neither x nor the values in the data
structure, so we can use a Protected If to perform our comparisons. This leaves us with a constant
factor overhead in time and space.

To add an element in position i, we follow pointers in the list until we reach the element at
position i − 1. Our counter can be kept reversibly as was done for For Loops 3.1.3. We move the
forward pointer from element i− 1 into our new element, and then similarly move the back-pointer
from element i into our new element. Next we copy the pointer to our new element into the forward
pointer slot of element i− 1 and into the back-pointer slot of element i. We then destroy our copy
of the pointer to the new element. Since moves, copies, and destroy copies are all reversible, we
incur only constant factor overheads in insertion of a new item.

Removing an element from a data-structure is very similar to adding one, and also only requires
moves, copies, and delete-copies. To remove element i, we delete the copies of it’s pointer which
elements i− 1 and i+ 1 contain. We then copy the forward and back pointers from elements i− 1
and i+ 1 into the appropriate positions. The pointer to our removed element is then handed back
to the algorithm which called the remove item method on our data structure.
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Corollary 5.2. Stacks, queues, and dequeues can be implemented reversibly with constant-factor
overheads in time and space.

5.2 Dynamic Arrays

Dynamic arrays store elements in an ordered array that grows and shrinks depending on the number
of elements currently being stored. They support the basic operations add(e), delete(), and
query(i). add and delete append or remove an element from the end of the array respectively.
query returns the element stored at a specific index of the array. Dynamic arrays can also support
the optional operations add(i, e) and delete(i) which specify at which index to add or delete an
element, adjusting all elements stored after that index accordingly.

A dynamic array stores a length attribute and a size attribute. The length attribute represents
the number of active elements are in the array. The size attribute represents the amount of space
allocated for the array. length is incremented and decremented corresponding to add and delete
operations. Upon an add, if length = size, we double the array size by allocating new memory,
copying over the elements and deallocating the old array. Similarly upon a delete, if length =
size/4, we halve the array size by deallocating the second half.

Theorem 5.3. Dynamic arrays can be implemented reversibly with constant time and space over-
head with an extra bit of space for add/delete operations. Size of the structure grows with the
number of add/delete operations.

Proof. We now consider how to handle these operations reversibly. Because both add/delete
operations work at the end of the array, we check the length attribute to find where to perform
the reverse operation. For reverse-add, we remove the element and decrement length. And for
reverse-delete, we must log the deleted element to add it back and increment length. We must
also consider how to handle table doubling. On an add/delete operation, table doubling (or
halving) occurs based on the result of a single comparison of length and size. We can log a single
bit representing the result of this comparison for each add/delete operation that will indicate
whether a table doubling (or halving) needs to be reversed.

This bit is necessary in order to undo table doubling because we can not determine whether a
table doubling operation occurred just by looking at the resulting length and size attributes. For
example, consider a table with length n and size 2n where the last operation was an add. This
state could have been reached in two ways. (1) length n− 1, size n incurring a table doubling; (2)
length n− 1, size 2n.

We maintain the dynamic array to preserve the order and length of its elements in the reverse
direction, thus a reverse-query operation can be run in the same way as a query operation
by simply making the same query again. Periodic rebuilding of this data structure follows from
Theorem 4.2 because all operations are reversible with constant factor overhead and rebuild can
be done in linear time.

5.3 AVL Trees

Using and maintaining standard AVL trees incurs an energy cost proportional to the time of the
associated operations.

Theorem 5.4. Search(x) can be performed on standard AVL trees in Θ(lg n) time, O(1) auxiliary
space and O(lg n) energy.
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Proof. To search an AVL tree we follow a pointer to the root of the tree and compare our value to
the value in the current node. If it is the same we have found the value. If it is smaller we follow
the left child pointer in the tree and repeat the comparison, if it is larger we follow the right child
pointer. We must check that those pointers are not null, and if they are we terminate knowing the
item is not in the tree. Following pointers incurs no energy cost, but each irreversible compassion
takes one bit of energy. AVL trees are guaranteed to have a max depth of O(lg n) and thus we
use O(lg n) time and energy. Since we need only maintain the pointer to the current node and the
value we are searching for there is only a constant amount of space needed.

Theorem 5.5. Insert(x) can be performed on standard AVL trees in Θ(lg n) time, O(1) auxiliary
space and O(w lg n) energy.

Proof. To insert a new element, we perform comparisons and follow child pointers, as with a search,
until we reach a null pointer. We replace this with our item to be inserted, potentially deleting
the value previously in the memory address holding the pointer. The tree may now need to be
rebalanced. Every insertion may incur up to O(lg n) rotations. The details of the four different
cases for rotation can be seen in [CLRS01] and the time analysis remains the same. For energy, we
note that all rotations in the standard AVL algorithm involve a constant number of comparisons,
each costing 1 unit of energy, and the creation and deletion of at least one pointer, each costing
O(w) energy. This leads to a total of O(w lg n) energy. If we are slightly more clever and use
pointer swapping techniques, the energy drops to a constant amount per rotation and comparison,
resulting in O(lg n) energy.

Theorem 5.6. Delete(x) can be performed on standard AVL trees in Θ(lg n) time, O(1) auxiliary
space and O(w lg n) energy.

Proof. To delete an item we first perform a search on the tree for the element to be deleted,
incurring the associated costs. The element and the pointer to it are then deleted at a cost of w
units of energy. We may then need to rebalanced the tree. Just as with insertion, re-balancing after
a deletion may incur up to O(lg n) rotations. The standard AVL algorithm involves the creation
and deletion of a pointer during a rotation, each costing O(w) energy. If we are slightly more
clever and use pointer swapping techniques, the energy drops to a constant amount per rotation
and comparison, resulting in O(lg n).

We will show that, provided only Search and Insert operations are invoked, reversible AVL
trees can be maintained with only constant-factor auxiliary space consumption. If Delete is to be
invoked, then the structure will accumulate an extra Θ(k) words of space for k Delete operations
invoked over the lifetime of the tree. Such space consumption can still be made reasonable within
the context of a larger algorithm, provided that runs of Insert and Delete form a small part of
the algorithm, and are unwound periodically to refresh log space.

Note that because these algorithms employ only conditional branches which do not modify their
conditions (for example, in Search when comparing a value against a node of the tree to choose
a branch, we leave the value of the comparison intact post-search), they are completely reversible
with no logging penalty.

Theorem 5.7. Search(x) can be performed on reversible AVL trees in Θ(lg n) time, O(1) auxiliary
space and 0 energy.

Proof. Provided that our reversible AVL tree is constructed using two-way nodes, performing
Search(x) reversibly is straightforward. Upon reaching a node v in the tree, we compare its
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value with x and use the resulting bit to determine whether to jump left or right. After jumping, as
we have maintained in memory a pointer back to v, we can compare x to v again to destroy this bit
and free the space gain. Once the final node is reached and our answer is found or determined to
be absent, we can log our result somewhere and reverse our computation to destroy any remaining
garbage bits. This procedure uses constant auxiliary space, and produces our answer reversibly in
O(lg n) time.

Insert is the next operation we address. It includes the task of reversibly rebalancing the tree,
a slightly more complicated task than that of Search.

From a given tree, there may be multiple legal trees that underwent a different rotation to
produce it. Thus, if we didn’t store any auxiliary information about the AVL rotations as we
performed them, it would not be possible to immediately reverse a tree’s configuration. A key
insight into the space consumption of this process is to note that, for a tree containing n unique
elements, each of those elements must occupy at least Ω(lg n) bits of space each on average (in
the word model in particular, each element takes a constant w = Θ(lg n) bits of space). Thus, we
must store a Θ(lg n)-sized entry to a rotation log for each inserted element. The space cost of this
logging is absorbed into the space cost of the element’s value in the tree itself. This is the premise
of the following theorem:

Theorem 5.8. Insert(x) for x not yet present in the reversible AVL tree can be performed in
Θ(lg n) time, preserving the Θ(n) space cost of the tree and using 0 energy.

Proof. Insertion consists of traversing the reversible AVL tree, adding the new element to the tree,
and making any rotations that are necessary to balance the tree.

Traversing the tree can be done reversibly as in Search(x), and we refer to its proof for
reversibility. Once we know where x is to be added into the tree, we create a new node for it and
proceed to rebalance the tree.

During the balancing step, rotations begin at the lowest level and proceed upward. To perform
our operations reversibly, we will keep a log of every rotation performed at each of the lg n levels
of the tree. For each level, we will store 01 for a right-rotation, 10 for a left-rotation, and 00 for no
rotation. By keeping this log, we have enough information to go in the reverse direction, proceeding
from the top of the tree to its bottom and checking x’s value against those of the encountered nodes
to progress. In this way, we keep our Insert(x) action reversible.

Each log entry need only store a number of bits proportional in size to the maximum height
of the tree. Because there are n unique entries in the tree at any given time, each call to Insert
incurs only O(lg n) bits of space cost. Thus our log, which stores Θ(lg n) additional bits per element,
results in only a constant-factor increase in the space consumption of the tree. This holds even if
deletions from the tree have also been performed, as inserting into a tree will always grow the tree’s
space consumption asymptotically by Ω(lg n) bits per insertion, while the log size will grow by
O(lg n) bits per insertion. The space consumption of the tree is thus preserved to within constant
factors.

Theorem 5.9. Delete(x) can be incorporated into reversible AVL trees, taking O(lg n) time and
incurring an additional Θ(k lg n) = O(kw) bits or O(k) words of space for k delete operations.

Proof. Delete(x) simply requires the same traversal operations as Search(x), followed by the
extraction of the desired node. Given that it takes no more than O(lg n) bits to specify a location
in the tree, and because we will need Θ(lg n) bits to store the subsequent rotation information, we
must, as is the case for Insert(x), store additional information in the log proportional to the size
of the original elements. This incurs a cost while simultaneously reducing the size of the tree, and
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MaxHeapify(A, i):
(i, left) = (i, 2 ∗ i)
(i, right) = (i, 2 ∗ i+ 1)
(i, largest) = (i, i)
if left ≤ A.length()
and A[left] > A[largest]:

largest = left
if right ≤ A.length()
and A[right] > A[largest]:

largest = right
if largest 6= i:

Swap(A[largest], A[i])
MaxHeapify(A, largest)

Insert(a):
heapSize = heapSize+1
A[heapSize] = a
for i = 0 to blg(heapSize)c:

if A[bheapSize/2i+1c]
< A[bheapSize/2ic]:

swap(A[b heapSize/2i+1c],
A[b heapSize/2ic])

DeleteMax():
Swap(A[1], A[heapSize])
(A[heapSize],maxValue) = (0, A[heapSize])
MaxHeapify(A, 1)
Return maxValue

Figure 12: Binary Heap Code

ReversibleMaxHeapify(A, i):
(i, left) = (i, 2 ∗ i)
(i, right) = (i, 2 ∗ i+ 1)
if right ≤ A.length
and A[right] > A[largest]:

largest = right
else if left ≤ len(A)
and A[left] > A[largest] :

largest = left
if largest 6= 0:

swap(A[i], A[largest])
ReversibleMaxHeapify(A, largest)

left = left− 2 ∗ i
right = right− 2 ∗ i− 1

ReversibleDeleteMax():
deleteCount = deleteCount + 1
if deleteCount > heapSize :

Rebuild(A)
(A[1], A[heapSize]) = (A[heapSize], A[1])
(A[heapSize],MaxV alue) = (0, A[heapSize])
ReversibleMaxHeapify(A, 1)
ReturnMaxValue

Figure 13: Reversible Binary Heap

thus for k deletions we require Θ(k lg n) = O(kw) extra bits or O(k) words of space beyond that
occupied by the tree itself, for a total space consumption of O(n+ k) words.

5.4 Binary Heaps

Binary heaps are binary trees with the property that all children are either less than their parent,
in the case of max-heaps or greater in the case of min-heaps. They support inserting an arbitrary
element into the data-structure as well as popping the max/min element. We give a brief energy
analysis as well as an efficient reversible algorithm.

Theorem 5.10. Binary Heaps can have items inserted irreversibly with Θ(lg n) time, Θ(1) space,
and Θ(lg n) energy; or reversibly with Θ(lg n) time, Θ(1) space, and 0 energy.

Proof. Insert begins by incrementing the heap size and assigning an empty entry in the array to
the value to be inserted. These are both reversible operations. We then proceed to fix the heap by
checking whether the current node is smaller than the parent, and if so swapping them. Normally
the comparison and loop would destroy bits, leading to a O(lg n) energy cost, however this is a
protected if and simple for loop so Lemmas 3.2 and 3.3 allow us to do so reversibly with no energy
cost.
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Theorem 5.11. Binary Heaps can have the root node deleted irreversibly with Θ(lg n) time, Θ(lg n)
space, and Θ(w lg n) energy.

Proof. DeleteMax moves out the largest element of the heap and then restructures it with a recursive
call to MaxHeapify. This can be called up to O(lg n) times. Every call to MaxHeapify looks at the
children of the current node, determines if it is larger than the value in the current node, and if so
swaps them. The maintenance of the current largest value as well as those of the children involves
overwriting those values. The conditionals additionally take a constant amount of energy, leading to
an energy complexity of O(w lg n). The standard time and space analysis remains unchanged.

To implement Reversible Binary Heaps, we make two changes: MaxHeapify is written reversibly,
and we use periodic unwinding to keep O(n) space. The Rebuild function is not given here, but
can be derived from Theorem 4.2

Theorem 5.12. Binary Heaps can have the root node deleted reversibly with Θ(lg n) time, Θ(lg n)
space, and 0 energy.

Proof. MaxHeapify has been rewritten to ensure that no values are ever overwritten during the
function call by reordering the logic and subtracting away known values from variables. Figure 13
shows the substitutions to ensure no values are overwritten. We then note that the conditionals
are protected if statements, and thus reversible by Theorem 3.2.

As with AVL trees, binary heaps subject to k insertions and deletions will accumulate an extra
O(k) space to be maintained. In some cases this can be resolved by periodic unwinding.

6 Algorithms

This section includes the analysis for the time, space, and energy complexity of several standard
algorithms in our model. We also give a number of improved algorithms. Some of our results for
algorithms with zero energy complexity are similar to results claimed or proved in [Fra99] about
reversible algorithms. However, we prove these results within our own model, which differers slightly
from [Fra99].

6.1 Sorting

Sorting is among most fundamental and well understood algorithmic problems. In this section
we give reversible algorithms for comparison and counting sorts which match the time and space
complexities of know irreversible algorithms. It is especially interesting to see this is achievable
despite the known entropy change during comparison sorts which give us a lower bound on their
time complexity.

6.1.1 Comparison Sort

Theorem 6.1. A comparison sort destroying its input must consume Ω(lg n!) energy.

Proof. Given a list of n unique items, there are n! permutations of that list, only one of which is
in sorted order. Thus the end-to-end entropy of a sorting function is lg(n!), resulting in an energy
complexity of Θ(lg n!). This was noted in [Fra99].
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We can achieve this energy bound with Merge Sort. Merge Sort takes in an array of numbers,
recursively calls itself on half of the array until it reaches the sorted array of size 1. It then merges
the returned arrays by iteratively comparing the smallest values in each array and moving it to the
beginning of a new sorted array.

Theorem 6.2. Comparison sort destroying its input can be done in Θ(n lg n) time, Θ(n) space,
and Θ(n lg n) energy.

Proof. Here we look at the standard merge sort which runs in Θ(n lg n) time and Θ(n) space. This
sorting algorithm recursively divides up the items to be sorted, then sorts increasingly larger groups
during the merge step. For the merge step, one takes two sorted lists and starts comparing the
smallest element. The smaller one is put into the new sorted list and the process continues. The
Θ(n lg n) comparisons will consume Θ(n lg n) energy. We also need to ensure that all of the entries
are moved into empty arrays, so no overwriting of values occurs. If one copies and deletes during
this process there will be an extra factor of w in the energy cost.

If we do not destroy the input and are careful with our algorithm, we can do better:

Theorem 6.3. Comparison sort, not destroying its input, if performed on an array of n w-bit
elements with lg n = O(w), can be done reversibly in Θ(n lg n) time, Θ(n) auxiliary space, and 0
energy.

Proof. This algorithm is a modification of Merge Sort. In summary, we will we augment each
element of the array with its index in the array, and so-equipped shall reversibly merge sort the
elements in Θ(n lg n) time. After we remove these indices from the sorted array, the output of the
algorithm will be the original array L and a sorted copy of the array Lsorted.

During a traditional Merge Sort, there are three main steps: dividing the array in two, recursing
on each half of the array, and merging the two resultant arrays into a complete, sorted array.

The first step, dividing an array in two, is reversed trivially: Given the two resultant lists of
such an operation L[r : s] and L[s+ 1 : t], the original subarray L[r : t] is their concatenation.

The second step, recursing, will be reversible if our entire algorithm is reversible. We know the
base case of sorting a size-1 array is reversible, and thus if steps 1 and 3 of our algorithm are also
reversible, then this recursive step will be as well.

The third step, in contrast to the first two, presents us with some difficulties. Given a resultant,
fully-merged subarray Lsorted[r : t], it is not at all obvious how to go backwards, i.e. how to
reproduce the input subarrays Lsorted[r : s] and Lsorted[s + 1 : t]. Information will be lost in this
merge step, and to allow our algorithm to be done reversibly, we must find some way to preserve
it.

Our augmentation makes this step possible. Before sorting, we transform L into a new array L′

of twice the size, which consists of the elements of L each augmented with their index in L. Thus,
the elements of our array are 2-tuples (v, i) of each element’s value and original location in L. The
above transformation is sufficient to make the merge step reversible. To see why, consider any step
in the algorithm in which we are trying to merge two sorted subarrays L[r :s] and L[s+1:t]. Denote
the merge subroutine that we are trying to compute as Ms+ 1

2
(L[r : s], L[s + 1 : t]); that is, we are

merging around a pivot s+ 1
2 , determined by which step of the algorithm we are presently carrying

out. All elements (v, i) with i < s + 1
2 must have come from L[r : s], and elements with i > s + 1

2
from L[s + 1 : t]. Given a resultant array Lsorted[r : t] = Ms+ 1

2
(Lsorted[r : s], Lsorted[s + 1 : t]), we

can reverse the merge operation step-by-step simply by checking each element’s index against the
pivot s+ 1

2 to determine where it came from. This enables us to construct two-way branches that
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perform the merge in a way that is instantaneously reversible. Because the pivot is fixed for each
step in the algorithm, no information is lost in computing and decomputing it, and thus this step
of the algorithm may be implemented reversibly with only constant additional auxiliary space.

The output of the above algorithm is a list L′sorted of (v, i) tuples sorted in the v keys (whereas
our original list L′ was “sorted” in the i keys). Now we need only remove the auxiliary indices
from the elements (v, i) to produce our unaugmented sorted list Lsorted. This step must be handled
with care to ensure that every step is reversible. We begin by reproducing the original array L
via a single pass over L′sorted, a simple operation that has not yet destroyed any data. Next, we
copy out Lsorted, the final, sorted array that we care about. What remains is to dismantle L′sorted,
and here we shall employ a special trick: We will perform a single pass over the original array L,
and for every value v encountered we will perform a logged binary search for this element in the
unaugmented sorted list Lsorted. When the element is found, we will know the value v, index i,
and the location of the element (v, i) in the augmented sorted array L′sorted. This is sufficient to
destroy this element, setting its entry to zero before unrolling the log of our binary search. The
complete dismantling operation uses only Θ(lg n) additional logging space total, and only takes
time Θ(n lg n), so our runtime and space consumption are preserved.

This algorithm is instantaneously reversible at every step, and could be implemented using only
simple for loops and two-way conditional branches. Thus, the algorithm is completely reversible
under our model. Given an array of size n = O(2w) which occupies nw space in memory, we can
reversibly comparison-sort the array using Θ(nw) bits of auxiliary space in Θ(n lg n) time, matching
the best irreversible algorithm to within constant-factors of space and time.

Theorem 6.4. Comparison sort, not destroying its input, can be done reversibly on an array of n
d-bit elements which require nd space in Θ(n lg n) time, Θ(nd) auxiliary space, and 0 energy.

Proof. As we saw in the preceding theorem, reversible comparison sort is straightforward to perform
if we first augment each element in the array with a number corresponding to its index in the original
list. When the size of the values d is Ω(lg n), then we attain the optimum space bound as the lg n-
sized indices get absorbed into the space cost of the d-bit elements. However, we are faced with a
conundrum when d is o(lg n).

To handle this case, we shall employ counting sort in order to reduce the problem of sorting
L to the problem of sorting the unique keys of L. We utilize a reversible AVL tree (described in
Section 5.3) to achieve this.

This algorithm works by reducing the array L only to its unique elements, to sort those elements,
and finally to perform a Counting Sort of the original array, consulting our sorted elements to
determine the final order. Let k be the number of distinct elements of L. We employ a reversible
AVL tree, with actions carefully specified so as to keep them reversible. First, we read the distinct
elements of L into the tree, bringing it to a size O(kd), and keeping an O(n)-bit uniqueness log and
an O(nd)-bit rotation log (see reversible AVL trees discussion) as we go. This step takes O(n lg n)
time. Next, we apply Counting Sort on the original array (see Section 6.1.2), consulting the static
tree in O(lg n) time for each element and achieving the O(n lg n) runtime in this step as well. The
output array may be copied and the entire algorithm reversed (Note: not an unrolling of a log, but
rather an execution of a reversed version of the algorithm) to leave us with our desired arrays L
and Lsorted.

This algorithm works by reducing the array L only to its unique elements, to sort those elements,
and finally to perform a Counting Sort of the original array, consulting our sorted elements to
determine the final order. Let k be the number of distinct elements of L. We employ a reversible
AVL tree, with actions carefully specified so as to keep them reversible. First, we read the distinct
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elements of L into the tree, bringing it to a size O(kd), and keeping an O(n)-bit uniqueness log and
an O(nd)-bit rotation log (see reversible AVL trees discussion) as we go. This step takes O(n lg n)
time. Next, we apply Counting Sort on the original array (see Section 6.1.2), consulting the static
tree in O(lg n) time for each element and achieving the O(n lg n) runtime in this step as well. The
output array may be copied and the entire algorithm reversed (Note: not an unrolling of a log, but
rather an execution of a reversed version of the algorithm) to leave us with our desired arrays L
and Lsorted.

In terms of the intricate details glossed over above, the most involved are in the first step:
reversibly constructing a reversible AVL tree out of the unique elements of L. We proceed as
follows: making a single pass over our array L, we add every element into the tree. If an element is
the first of its exact value to be encountered, we store a corresponding uniqueness bit as true and
add the element to the tree. If an element’s value already exists in our tree, we store its uniqueness
bit as false and move on (never adding duplicates to the tree). These n uniqueness bits allow us to
reverse the algorithm, as we know for which elements we modified the tree and on which ones we
did not. By theorem 5.8, these insertions take Θ(nd) space and O(n lg n) time.

Once the AVL tree is constructed, the rest of the algorithm is a straightforward Counting Sort
with a slower Θ(lg k) lookup time, yielding the O(n lg k) time which is optimal for Comparison-
based Sort. In addition to the fully-reversible AVL tree data structures, our algorithm employs only
simple for-loop passes over the input and reversible two-way branching in the AVL tree, ensuring
its reversibility. The entire algorithm takes Θ(nd) space and O(n lg n) time, matching the best
irreversible comparison sorts up to constant-factors of space and time.

We can also create reversible version of other sorting algorithms.

Duplicated-Insertion-Sort(A)
fori = 1 to A.Length:

count = 0
forj = 1 to A.Length:

ifA[i] > A[j]:
count += 1

B[count] = A[i]

Theorem 6.5. Reversible Duplicated Insertion Sort runs in Θ(n2) time, Θ(n) space, and 0 energy.

Proof. The primary adaption we will make to the algorithm is unrolling after each iteration of the
outer for loop. The for loops are simple for loops and thus incur only constant-factor overheads
when done reversibly. During each inner loop, we perform n comparisons, O(n) increments, and
a single addition, because we know the output array, B, will be empty. This takes Θ(n) space in
the log and after every iteration we will unroll all operations except for the addition to B. This
unrolling returns our counter back to zero. The counter and log are empty after each unrolling, so
we are finished once we perform the final insertion into B.

6.1.2 Counting Sort

Counting sort involves counting the number of elements at or below a specific value, and then
running through them and adding them to an array based on how many elements are below them.
This achieves Θ(n + k) time and space where k is the size of the maximum integer to be sorted.
Pseudocode is given below.
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Counting-Sort(A, k) :
for j=1 to length[A]: //simple for loop, lg(length[A]) energy

C[A[j]]=C[A[j]]+1 //inc is free
for i=1 to k: //simple for loop, lg k energy

C[i]=C[i]+C[i− 1] //addition is free
for j=length[A] to 1: //simple for loop, lg(length[A]) energy

B[C[A[j]]]=A[j] //free if we assume the sorted elements are unique
// otherwise unconstrained replacement costs w energy
C[A[j]]=C[A[j]]-1 //dec is free

delete(C) //free delete because we promised C is now empty
return(B)

log Counting-Sort(A, k) :
for j=1 to length[A]: //simple for loop, lg(length[A]) space

C[A[j]]=C[A[j]] + 1 //inc is free
for i=1 to k: //simple for loop, lg k space

C[i]=C[i]+C[i− 1] //reversible and the answer is always available,
for j=length[A] to 1: //simple for loop, lg(length[A]) space

B[C[A[j]]]=A[j] //free if we assume the sorted elements are unique
//otherwise unconstrained replacement costs w space
C[A[j]]=C[A[j]]-1 //dec is free

delete(C) //free delete because we promised C is now empty
return(B)

Theorem 6.6. Counting Sort can be done in Θ(n + k) time, Θ(n + k) space, and Θ(wn + lg k)
energy.

Proof. The time and space complexity comes from maintaining and iterating over the input as well
as an array of size k which represents the range of the numbers. The unconstrained replacement
when sorting the numbers results in an O(wn) energy cost and irreversibly running the for loop
over the range requires Θ(lg k) energy, because we lose the index which ranged up to k.

Theorem 6.7. If all entries are unique, then Counting Sort has an energy complexity of Θ(lg n+
lg k) energy.

Proof. If all the entries in the Counting Sort are unique, then the final for loop never overwrites a
previous value, thus not incurring that cost. However, we still must pay the cost for the irreversible
for loop, yielding an energy complexity of Θ(lg n+ lg k).

Theorem 6.8. Reversible Counting Sort can be done in Θ(n + k) time, Θ(n + k) space, and 0
energy.

Proof. Increments, addition, and simple for loops can all be done reversibly with constant-factor
overheads. The assignment in the third loop is the only potential problem; however, we cannot have
more than n items overwritten, so if we log these values we suffer no more than a constant-factor
overhead in space.
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6.2 Graph Algorithms

Frank [Fra99] argues that Breadth-first Search and Depth-first search can be done reversibly. We
reproduce this result in our model and give a different analysis. Breadth-first search requires
keeping a list of visited nodes and a queue of nodes to be visited. The visited node is selected from
the queue and then checked to see if it is the target node. If not, its neighbors are checked to see
if they are in the list of visited nodes, and if not they are added to the queue.

Theorem 6.9. Breadth-first Search runs in Θ(V +E) time, Θ(V ) space, and Θ(wV +E) energy.

Proof. In a BFS we visit every node at most once and we check to see if a node should be queued
up no more than once for every edge. We also have this number of comparisons which each require
one bit of energy if done irreversibly. Further, an irreversible queue requires the creation and
destruction of pointers, and the list of visited nodes must be cleared, leading to Θ(V ) words being
overwritten.

Theorem 6.10. Reversible Breadth-first Search can runs in Θ(V ) time, Θ(V + E) space, and 0
energy.

Proof. Comparison and pointer following can be done reversibly. If the queue maintained as a
doubly-linked list, then we can add and remove things reversibly via pointer swapping. Copying
values into a list is also a reversible operation.

Corollary 6.11. Reversible Depth First Search can runs in Θ(V + E) time, Θ(V ) space, and 0
energy.

Proof. A DFS works exactly the same as a BFS except a stack of nodes to be visited is used instead
of a queue. Stacks can be maintained reversibly with the same time, space, and energy complexity
as queues, so the resulting DFS algorithm will have the same time, space and energy complexity
as the BFS.

6.3 Bellman-Ford

Bellman-Ford() :
for each v in vertices:

if v 6= source then v.distance =∞ //rest are 0
v.predecessor = null

for i = 1 to vertices.size −1 :
for each edge (u, v) with weight w in edges:

(w, u.distance, tempDist) = (w, u.distance, u.distance+w)
if tempDist < v.distance:

v.distance = tempDist
(u, v.predecessor) = (u, u) //overwriting costs w energy

for each edge (u, v) with weight w in edges:
(w, u.distance, tempDist) = (w, u.distance, u.distance +w)
if tempDist > v.distance:

print “negative weight cycle detected”
fail
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Theorem 6.12. Bellman-Ford runs in Θ(V E) time, Θ(V + E) space, and Θ(V Ew) energy.

Proof. In the primary nested for loops which iterate over the verticies and edges, we potentially
overwrite the distance between two nodes with increasingly smaller distances, and overwrite the
edges making up the shortest path. These each require w energy to perform and are potentially
called Θ(V E) times. This for loop is also what dominates the time complexity, as can be seen in
any standard analysis. The algorithm requires storing the graph, as well as two arrays of size V ,
thus running in Θ(V + E) space.

Theorem 6.13. Reversible Bellman-Ford runs in Θ(V E) time, Θ(V E) space, and 0 energy.

Proof. First, at the end of each for loop involving the variable tempDist, we can subtract distance[u]
and w from the value to ensure it is zero before we next need to set it, thus avoiding the energy
cost of zeroing it out. Rewriting v.distance and v.predecessor do not appear to have an obvious
way of making them reversible. We can; however, simply log the entire algorithm and pay the cost
in writing their values to our log sheet whenever they are overwritten. This potentially requires
Θ(V E) values to be stored in the log, resulting in a total space complexity of Θ(V E).

6.4 Floyd-Warshall

The Floyd-Warshall algorithm calculates the shortest paths between all pairs of nodes in Θ(V 3) time
and Θ(V 2) space. Aside from initializing the path matrix to contain the edge weights, pseudocode
for the algorithm is as follows [?]:

FloydWarshall():
for k = 1 to n:

//simple for loop adds lg n extra energy or space
for i = 1 to n: //another lg n

for j = 1 to n : //one last lg n giving a total of lg3 n after nesting
path[i][j] = min(path[i][j], path[i][k] + path[k][j])
//unconstrained replacement takes w energy

Frank [Fra99] argues that the Floyd-Warshall algorithm can be adapted to run reversibly with
Θ(V 3) space. This is a substantial increase in space to make the program reversible and thus save
energy.

Theorem 6.14. Floyd-Warshall runs in Θ(V 3) time, Θ(V 2) space, and Θ(V 3w) energy.

Proof. The algorithm acts on a matrix of size v2 and performs Θ(V 3) updates which consist of a
comparison, addition, and possible replacement. Each replacement requires w energy, yielding a
total energy complexity of Θ(V 3w).

Theorem 6.15. Reversible Floyd-Warshall runs in Θ(V 3) time, O(V 3) space, and 0 energy.

Proof. Simple for loops, as well as addition and minimum can all be performed reversibly; however,
we will need to log the replacements done during the updates for the algorithm. Thus running the
algorithm reversibly will require O(V 3) space, despite constant-factor overheads in time.
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6.5 All Pairs Shortest Path via (min,+) Matrix Multiplication

Another algorithm for solving APSP involves using the adjacency matrix representation of a graph
A and noticing that the relaxations over the edges can be expressed by calculating a new matrix,
C, whose entries are given by cij =

k
min(aik +akj). Further, this operation is associative, so we can

speed up the calculation by using repeated squaring. Thus we have O(lg V ) iterations over (V 2)
elements which take O(V ) time to compute. Frank [Fra99] claims without proof that this leads to
a reversible algorithm that runs in Θ(V 3 lg V ) time and Θ(V 2 lg V ) space. We give a proof of this
result.

Theorem 6.16. Reversible APSP using repeated squaring with (min,+) matrix multiplication runs
in O(V 3 lg V ) time, O(V 2 lg V ) space, and 0 energy.

Proof. In this algorithm, information is lost when we overwrite our previous entries after calculating
the minimum, an irreversible operation. To make this reversible, we can simply store a log of all
intermediate matrices, using O(V 2 lg V ) space. From each intermediate state, we can recompute
the values needed to unroll the last step of the matrix squaring. We need only recompute these
values a single time, leading to a constant-factor increase in time, giving the desired result. Let
us take a closer look at an individual matrix multiply. Here we can loop over every new entry in
our matrix and calculate each term individually. Given a graph represented by adjacency matrix

W = (wi,j), and a matrix L(m) = (l
(m)
i,j ) representing the shortest paths between two vertices with

path length at most m. Each entry is updated as

l
(m+1)
i,j =

1≤k≤|V |
min

(
l
(m)
i,j + wk,j

)
This section of the algorithm perform Θ(V ) reversible additions but also O(V ) irreversible oper-
ations to perform the min over all of the entries. We can log all of these operations with O(wV )
space overhead and then proceed to unwind leaving our new matrix entry. Now to unwind a whole
matrix multiply, we will simply recalculate each individual entry, delete the copy, and unwind. Now
that we know we can reverse each matrix multiply given the previous one, we will simply store all
O(lg n) intermediate matrices which are calculated. This leads to O(V 2 lg V ) space and a constant
factor overhead in time.

Theorem 6.17. APSP using repeated squaring with (min,+) matrix multiplication runs in O(V 3 lg V )
time, O(V 2) space, and O(wV 3 lg V ) energy.

Proof. The time analysis is the same as with the reversible case. In terms of space, we only
need to store the current matrix, and thus only need O(V 2) space. At every calculation of a
new matrix element, we overwrite the previous one, expending a word of energy for each of these
computations.

We now present a new variation on APSP which demonstrates a non-trivial trade-off between
energy and space. By exploiting reversible subroutines, we’re able to reach the APSP with repeated
squaring bounds on time and space, but beat it in energy cost. The reversible, semi-reversible, and
standard APSP using repeated squaring demonstrate there are semi-reversible algorithms that
actually achieve bounds not reached by the fully reversible or fully irreversible counterparts.

Theorem 6.18. Semi-reversible APSP using repeated squaring with (min,+) matrix multiplication
runs in O(V 3 lg V ) time, O(V 2) space, and O(wV 2 lg V ) energy.
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Proof. To begin, we will examine how each individual entry in the matrix is updated. Say we have

a graph represented by adjacency matrix W = (wi,j), and a matrix L(m) = (l
(m)
i,j ) representing the

shortest paths between two vertices with path length at most m. Each entry is updated as

l
(m+1)
i,j =

1≤k≤|V |
min

(
l
(m)
i,j + wk,j

)
This subroutine runs in O(V ) time and O(wV ) energy and can thus be trivially made reversible
by logging everything, using O(V ) time and space. We replace our normal update function with
the new reversible one, and by Theorem 3.6 we have a new, more energy efficient algorithm. The
subroutine does not use asymptotically more time than before, the temporary use of O(V ) space is
much smaller than that needed to store the matrices and is freed upon completion of the subroutine,
and the energy cost drops by a factor of V which reduces the algorithms total energy cost by a
factor of V .

7 Future Directions

This paper built up a framework for designing and analyzing the energy cost of algorithms caused
by irreversibility, and started the quest for positive results for basic algorithms and data structures.
In many cases, we obtained fully reversible versions of algorithms, but other problems seem more
resistant. For example, is there a reversible all-pairs shortest path algorithm with only constant
factor overheads in time and space? We managed to give a reduced-energy semi-reversible algorithm
for the problem, but a fully reversible algorithm still seems elusive. Shortest-path algorithms more
generally seem like a category that are difficult to make reversible, as they use very little space
and make frequent use of rewriting old values. We anticipate other graph problems such as max-
flow/min-cut may also be challenging and interesting for similar reasons.

There are more fundamental algorithms that should be given high priority given their use
in many other results: hashing, predecessor data structures (e.g., van Emde Boas trees), max-
flow/min-cut, Fast Fourier Transforms, and dynamic programming. Geometric algorithms offer
more nontrivial challenges to attain reversibility, such as line intersection, orthogonal range finding,
convex hull, and Delaunay triangulations. We also see the field of machine learning being an
interesting target for analysis in the semi-reversible model: these algorithms often have significantly
higher time complexities than space complexities, fundamental updates (such as Bayes’ rule) which
appear reversible, and many conditional updates or data overwrites.

One important question for any practical application is how to deal with long-running programs.
Although we are perfectly happy to log some auxiliary information during the execution of a specific
program, it may be more problematic to maintain reversibility for the entire operating system of
a computer or a long-lived database. This is an area we believe ideas like semi-reversibility and
periodic rebuilding will become particularly important.

There are some areas where we see slight extensions of the model opening up interesting ques-
tions. First, incorporating randomness seems a practical necessity and carries interesting thermo-
dynamic implications depending on how it is modeled. Assuming there is an energy cost associated
with the production of randomness (say, equal to the number of random bits), this may give fur-
ther reason to investigate exactly how much randomness is needed for an algorithm’s correctness.
Streaming algorithms and other models where the working space is much smaller than the problem
input seem like a rich source of problems. Because we now use sublinear space, our trivial transform
is no longer applicable. Further, the larger the gap in space and time, the less ability we have to
accrue garbage. Finally, succinct data structures, which try to minimize the bits of space used up
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to sublinear factors, seem like another challenge: many of our transforms double or triple the space
being used by an algorithm, while in the succinct setting, this overhead must be considered.

Finally, a major open direction is to obtain lower bounds. The additional constraints on semi-
reversible algorithm design might allow showing algorithms cannot be obtained without some min-
imum time-space-energy trade-off.
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Information distance. IEEE Transactions on Information Theory, 44(4):1407–1423,
1998.

[BTV01] Harry Buhrman, John Tromp, and Paul Vitnyi. Time and space bounds for reversible
simulation. In Fernando Orejas, Paul G. Spirakis, and Jan van Leeuwen, editors, Pro-
ceedings of the 28th International Colloquium on Automata, Languages and Program-
ming, volume 2076 of Lecture Notes in Computer Science, pages 1017–1027. Springer
Berlin Heidelberg, 2001.

[CLRS01] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Intro-
duction to Algorithms. The MIT Press, 2 edition, 2001.

[Cyc12] Cyclos Semiconductor. Cyclos Semiconductor announces first commercial imple-
mentation of resonant clock mesh technology. http://www.cyclos-semi.com/news/
first commercial implementation.html, February 2012.

[eMa14] eMarketer. Smartphone users worldwide will total 1.75 billion in 2014. http://www.
emarketer.com/Article/Smartphone-Users-Worldwide-Will-Total-175-Billion-2014/
1010536, January 2014.

[Fra99] Michael Patrick Frank. Reversibility for efficient computing. PhD thesis, Massachusetts
Institute of Technology, 1999.

[FT82] E. Fredkin and T. Toffoli. Conservative logic. International Journal of Theoretical
Physics, 21, 1982.

36

http://www.cyclos-semi.com/news/first_commercial_implementation.html
http://www.cyclos-semi.com/news/first_commercial_implementation.html
http://www.emarketer.com/Article/Smartphone-Users-Worldwide-Will-Total-175-Billion-2014/1010536
http://www.emarketer.com/Article/Smartphone-Users-Worldwide-Will-Total-175-Billion-2014/1010536
http://www.emarketer.com/Article/Smartphone-Users-Worldwide-Will-Total-175-Billion-2014/1010536


[JMR05] Ravi Jain, David Molnar, and Zulfikar Ramzan. Towards a model of energy complex-
ity for algorithms. In Proceedings of the 2005 IEEE Wireless Communications and
Networking Conference, volume 3, pages 1884–1890, 2005.

[KA10] Vijay Anand Korthikanti and Gul Agha. Towards optimizing energy costs of algorithms
for shared memory architectures. In Proceedings of the 22nd Annual ACM Symposium
on Parallelism in Algorithms and Architectures, pages 157–165, New York, NY, USA,
2010. ACM.

[KAG11] Vijay Anand Korthikanti, Gul Agha, and Mark R. Greenstreet. On the energy complex-
ity of parallel algorithms. In Guang R. Gao and Yu-Chee Tseng, editors, Proceedings
of the 2011 International Conference on Parallel Processing, pages 562–570, 2011.

[KBSW11] Jonathan G. Koomey, Stephen Berard, Maria Sanchez, and Henry Wong. Implications
of historical trends in the electrical efficiency of computing. IEEE Annals of the History
of Computing, 33(3):46–54, March 2011.

[Kis91] Gloria Kissin. Upper and lower bounds on switching energy in vlsi. J. ACM, 38(1):222–
254, January 1991.

[Koo11] Jonathan G. Koomey. Growth in data center electricity use 2005 to 2010. Analytics
Press, August 2011.

[Lan61] R. Landauer. Irreversibility and heat generation in the computing process. IBM Journal
of Research and Development, 5(3):261–269, 1961.

[LCB11] B. Lambson, D. Carlton, and J. Bokor. Exploring the thermodynamic limits of compu-
tation in integrated systems: magnetic memory, nanomagnetic logic, and the Landauer
limit. Phys Rev Lett, 107(1):010604, 2011.

[LD82] Christopher Lutz and Howard Derby. Janus: a time-reversible language. Caltech class
project, 1982.

[Lec63] Yves Lecerf. Logique mathematique. machines de Turing réversibles. récursive insol-
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