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Abstract

Active stub tuning with a fast ferrite tuner (FFT) has greatly increased the
effectiveness of fusion ion cyclotron range of frequency (ICRF) systems (50-
100 MHz) by allowing for the antenna system to respond dynamically to
changes in the plasma load impedance such as during the L-H transition or
edge localized modes (ELMs). A high power waveguide double-stub tuner
is under development for use with the Alcator C-Mod lower hybrid current
drive (LHCD) system at 4.6 GHz. The amplitude and relative phase shift
between adjacent columns of an LHCD antenna are critical for control of the
launched n|| spectrum. Adding a double-stub tuning network will perturb
the phase and amplitude of the forward wave particularly if the unmatched
reflection coefficient is high. This effect can be compensated by adjusting the
phase of the low power microwave drive for each klystron amplifier. Cross-
coupling of the reflected power between columns of the launcher must also be
considered. The problem is simulated by cascading a scattering matrix for
the plasma provided by a linear coupling model with the measured launcher
scattering matrix and that of the FFTs. The solution is advanced in an
iterative manner similar to the time-dependent behavior of the real system.
System performance is presented under a range of edge density conditions
from under-dense to over-dense and a range of launched n||. Simulations pre-
dict power reflection coefficients (Γ2) of less than 1% with no contamination
of the n|| spectrum. Instability of the FFT tuning network can be problem-
atic for certain plasma conditions and relative phasings, but reducing the
control gain of the FFT network stabilizes the system.
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1. Introduction

Stub tuning networks have been used to reduce power reflected from the
plasma on many fusion experiments in the ion cyclotron range of frequencies
(<∼ 100 MHz) [1, 2] but have not yet been deployed at higher frequencies.
A double stub matching network with electronically controlled tuning stubs
is under development for the lower hybrid current drive (LHCD) system
on Alcator C-Mod [3, 4]. The multijunction concept employed in many
LHCD experiments [5, 6, 7, 8, 9] reduces reflected power passively through
destructive interference of the reflected waves, but at the cost of n|| spectrum
control. The peak n|| of a multijunction antenna is adjustable over a small
range (n||,peak = n||,0± δn|| where δn|| ∼ 0.1 for ITER and δn|| ∼ 0.3 for Tore
Supra), but is not capable of larger changes in n|| or use in reverse current
operation. Furthermore, side lobes in the n|| spectrum of a multijunction
antenna tend to grow when the reflection coefficient at the waveguide mouth
is large. An active matching network like a double stub tuner allows for
complete control of the n|| spectrum, in either the co- or counter-current
direction, while reducing reflection coefficients to near zero.

The behavior of a double-stub tuner connected in series with a single
mismatched load, ZL, is a well known problem in microwave engineering
[10]. The matching network will reduce the input reflection coefficient, Γin,
to zero for any load impedance outside the “forbidden region”, and from Γin

to Γ2
in for load impedances inside the forbidden region. The problem is more

complicated for a phased array LHCD antenna with strong cross-coupling
between elements. The effective reflection coefficient for each element, Γn,
is a function not only of the plasma density profile but also of the relative
phase and amplitude of other nearby radiating elements. Mathematically,
this can be expressed in terms of a series of matrix multiplication operations
involving the scattering parameters of the plasma, antenna, and individual
FFT elements. The mathematical system description is discussed in the
next section of this paper, followed by simulation results of the FFT system
behavior with realistic plasma profiles.
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Figure 1: LH FFT system-level block diagram for a single klystron channel, or column.
Each column is equipped with an identical system. Two tuning stubs are located between
each klystron and the antenna.

2. System description

Figure 1 shows a block diagram for a single klystron channel of the LH
FFT system. For the simulations presented in this paper, each klystron
feeds a single column of a fully active “grill” antenna. The two stubs are
located between the klystron and the antenna, with the stubs as close to the
plasma as practical to minimize the region of recirculating power. Directional
couplers for monitoring the forward and reflected power are located on either
side of the LH FFT.

The plasma scattering matrix, Sp, can be calculated based on the linear
coupling theory first developed by Brambilla [11]. The scattering matrix is
determined by the geometry of the antenna (primarily the waveguide height
and septum thickness) and the plasma profiles in front of the LH antenna
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(electron density, density gradient, and thickness of evanescent region). Sp

is an n × n matrix, where n is the number of radiating elements in the
antenna. The (n, n) elements are of order 0.3, while the (n, n± 1) elements
are of order 0.5. The magnitude of matrix elements decreases farther away
from the diagonal since radiating elements spaced farther apart have weaker
cross-coupling. The magnitude and phase of Sp for the fundamental mode as
calculated by the ALOHA code [12] for a plasma with n0 = 2.7 × 1017 m−3

and ∇n = 4.7 × 1020 m−4 are plotted in Figure 2. The pitch-angle of the
magnetic field is not included in this calculation of Sp. Finite pitch angle
will introduce non-reciprocity to the Sp matrix.

The 2-port scattering matrix for a single FFT can be calculated given
the reactive admittance of the two stubs, B1 and B2, the wave propagation
constant of the waveguide, β, and the distance between the stubs, l. The
most straightforward way to determine this scattering matrix is to convert
from a series of three cascaded ABCD matrices

ABCDFFT = ABCDstub2ABCDinterstubABCDstub1 (1)

where

ABCDstub2 =

[
1 0
iB2 1

]

ABCDinterstub =

[
cos(βl) iZ0 sin(βl)

iY0 sin(βl) cos(βl)

]

ABCDstub1 =

[
1 0
iB1 1

]
(2)

For simplicity we will assume Z0 = Y0 = 1. From this ABCD matrix the
S-matrix for the kth FFT can be calculated as follows

SFFTk =

A+B/Z0−CZ0−D
A+B/Z0+CZ0+D

2(AD−BC)
A+B/Z0+CZ0+D

2
A+B/Z0+CZ0+D

−A+B/Z0−CZ0+D
A+B/Z0+CZ0+D

 (3)

where A,B,C,D are the four elements of the matrix ABCDFFT .
The individual S-matrices for the n FFTs are combined into a larger
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Figure 2: Magnitude and phase of the plasma scattering matrix, Sp, for n0 = 2.7×1017 m−3

and ∇n = 4.7 × 1020 m−4. This S-matrix is calculated with the ALOHA coupling code
[12].
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Figure 3: A block diagram of the network connections between the plasma scattering
matrix, Sp, the FFT scattering matrix, SFFT , and the input power wave vector, Vin.

2n× 2n S-matrix where

SFFT (k, k) = SFFTk(2, 2)
SFFT (k + n, k + n) = SFFTk(1, 1)
SFFT (k + n, k) = SFFTk(1, 2)
SFFT (k, k + n) = SFFTk(2, 1)

(4)

for the kth FFT.
At this point, the two scattering matrices, Sp and SFFT , can be cascaded

[13] to get the total scattering matrix, Stotal. Figure 3 shows a block diagram
of the cascaded system. Multiplying Stotal by the driving waveform power
wave (V/

√
Ω) vector Vin ≡

√
Pin (e.g. {1, i,−1,−i, . . .} for 90◦ phasing)

gives the reflected wave for each input port of the combined FFT/plasma
system. Since it is convenient to solve for the FFT stub lengths based on
the reflection coefficient on the unmatched side of the FFT network, rather
than the matched side, the unmatched reflection coefficient, Γu, must be
calculated:

Γu = SpVout � Vout (5)

where � represents the element-wise division of the column vector SpVout by
the column vector Vout and

Vout = [Incol
−SFFT (1 : ncol, 1 : ncol)Sp]−1SFFT (1 : ncol, ncol+1 : 2ncol)Vin (6)

Once Γu is calculated, the necessary reactive admittance of the two FFT
stubs can be determined analytically [10]:

B1k = −BL +
Y0±
√

(1+t2)GLY0−G2
Lt2

t

B2k =
±Y0

√
Y0GL(1+t2)−G2

Lt2+GLY0

GLt

(7)
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Here, Yk = GL + iBL is the normalized unmatched load admittance corre-
sponding to the kth element of Γu, and t = tan(βl). The electrical length of
the short-circuited stub is:

ls
λ

=
−1

2π
tan−1

(
Y0

B

)
(8)

These new values for B1 and B2 are then inserted into Equation 2, and
the process must be repeated. At each iteration Γu may change based on the
new values of B1 and B2 for each column.

3. Simulation results

The simulations presented in this paper begin with the stub lengths set
for a matched load impedance. The system can be perfectly matched on the
first iteration if the off-diagonal terms of Sp are zero and the load does not
lie within the forbidden region. For an LHCD launcher the cross-coupling
between waveguides is significant (higher, in fact, than the diagonal elements
of Sp in most cases). In many cases the system converges quickly to a solution
with very low reflection coefficients on the matched side, particularly when
the off-diagonal terms of Sp are weak or ncol ≤∼ 4. For larger, more coupled
antenna arrays the system can be unstable if each FFT matching solution is
calculated independently.

The behavior of the FFT/plasma system is studied here with a variety of
plasma edge densities (nco, 2nco, 5nco where nco = 2.7×1017 [m−3] is the cutoff
density for 4.6 GHz LH waves), density gradients (4.7×1020, 1.2×1021, 2.4×
1021 [m−4]) and launched n|| (1.63, 1.95, 2.60, 3.9; or 75◦, 90◦, 120◦, 180◦ phas-
ing). The plasma S-matrices used here are generated by the linear coupling
code ALOHA [12]. Figure 4 shows the average matched reflection coeffi-
cient as a function of iteration number for a set of representative plasma
conditions and phasings. The lowest and highest phasings exhibit unstable
behavior under some conditions, while the reflection coefficient for moderate
phasings drop quickly to very low levels (Γ2 < 10−4).

The launched n|| spectrum is also perturbed by the matching network.
This effect can be compensated by adjusting Vin such that the magnitude
and phase of Vout matches that of the desired amplitude and phase for each
waveguide, Vdemand. The magnitude and phase of the forward wave at each
waveguide aperture are plotted in Figure 5. In this scenario the phase error
due to the matching network is largely a linear offset to the demanded phase,

7
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Figure 4: Overall power reflection coefficient Γ2 of the LH FFT system for a single grill
comprised of 16 columns with unity control system gain. The system is allowed to step
forward for 100 time iterations. At each iteration a new set of FFT stub lengths is
calculated and implemented based on the value of Γ for each column in the previous
iteration. The gain, G, is 1 for this simulation.
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but there is a noticeable increase in the amplitude of the forward wave for
most columns. This adjustment can also introduce instability in some cir-
cumstances. Figure 6 shows the same information as in Figure 4 but with
the addition of phase and amplitude compensation for the forward wave of
each column. the compensation process introduces additional instability for
75◦ and 90◦ phasings across a range of plasma loading scenarios.

Reducing the “gain” of the FFT control system can help to stabilize the
response. Here, the gain, G, is defined as:

G =
Bn+1 −Bn

Bcalc −Bn

(9)

where Bn is the stub reactive admittance at the nth iteration, Bn+1 is the
programmed reactive admittance for the subsequent iteration, and Bcalc is
the calculated “ideal” reactive admittance for the subsequent iteration. The
value of G represents the fractional amount of correction applied to the stub
lengths between successive iterations. Figures 7 and 8 show the effect of
reducing the gain without and with spectrum compensation, respectively.
The iterative behavior is stable for all phasings and all plasma scenarios
without spectrum compensation, and with spectrum compensation only 180◦

“heating” phasing shows instability.

4. Discussion

The simulations show that system stability is dependent on both the
plasma profiles and waveguide-to-waveguide phasing used, although it is not
obvious from the governing equations why certain sets of density and phasing
produce stable behavior while others are unstable. The 180◦ case may be
unstable due to the symmetry of the ∠Sp matrix plotted in Figure 2. For a
given waveguide, N , the cross coupling contributions from waveguides N − 1
and N + 1 will interfere constructively. It is important to note that the
values used for Sp do not include effects of magnetic field pitch-angle, and
the results may change somewhat when these symmetry-breaking effects are
included.

Decreasing the control system gain, G, is effectively equivalent to reducing
the slew rate of the control coil current, or alternatively increasing the update
rate of the reflection coefficient measurement/stub length calculation, with
other parameters held constant. Effort has been expended to increase the
slew rate of the electromagnet coil currents and decrease the penetration time
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Figure 6: Overall power reflection coefficient Γ2 of the LH FFT system for a single grill
comprised of 16 columns with unity control system gain. The system is allowed to step
forward for 100 time iterations. At each iteration a new set of FFT stub lengths is
calculated and implemented based on the value of Γ for each column in the previous
iteration. The phase and amplitude of the forward wave for each column is compensated
at every other iteration step. The gain, G, is 1 for this simulation.
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Figure 7: Overall power reflection coefficient Γ2 of the LH FFT system for a single grill
comprised of 16 columns. The system is allowed to step forward for 100 time iterations.
At each iteration a new set of FFT stub lengths is calculated and implemented based on
the value of Γ for each column in the previous iteration. The gain, G, is 0.75 for this
simulation.
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Figure 8: Overall power reflection coefficient Γ2 of the LH FFT system for a single grill
comprised of 16 columns. The system is allowed to step forward for 100 time iterations.
At each iteration a new set of FFT stub lengths is calculated and implemented based on
the value of Γ for each column in the previous iteration. The phase and amplitude of the
forward wave for each column is compensated at every other iteration step. The gain, G,
is 0.75 for this simulation.
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for the resulting magnetic fields into the ferrite [14]. The simulations in this
paper show that it may be necessary to slow down the response of the coils
to avoid instability in the matching network.

Decreasing the gain has some negative impact on the final matched value
of the reflection coefficient with an asymptote just under Γ2 = 10−2. With a
gain of 1 and no spectrum compensation Γ2 < 10−4 in most cases. In practice
a value of 10−2 is sufficiently low that the reflected power is still negligible
so long as a circulator is used to protect the klystron amplifier from any
reflected power.

The simulations presented in this paper consider only a single row of
waveguides for the antenna, although in most LHCD experiments the antenna
consists of several poloidal rows of waveguides. Adding multiple waveguide
rows is not expected to substantively change the simulation results since the
cross coupling between rows is very weak. Figure 2 shows that the cross-
coupling between waveguides is very small for distant waveguides on the
same field line (recall that the pitch-angle is zero in these simulations). The
small magnetic field pitch-angle at the edge of a tokamak (∼ 10◦) creates
a long connection length between waveguide rows. For the dimensions of
the C-Mod LHCD launcher (7 × 60 mm waveguides with a 1.5 mm septum
between columns and a 20 mm separation between rows) the connection
length between the two rows is ∼ 115 mm, or ∼ 13.5 columns. Figure 2
shows that the cross-coupling between waveguides at this distance within
the same row is weak, and should also be weak for coupling between rows at
this distance.

Although the simulations presented here are particular to the case of
a LHCD phased array antenna, the simulation framework can be used to
analyze stub-tuning performance in any phased array with cross-coupling
between radiating elements. Only a new plasma scattering matrix, Sp, is
required to adapt this simulation framework for analysis of other types of
multi-element antennas with active double stub tuning (e.g. the ICRF or
high harmonic fast wave (HHFW) regimes for fusion plasmas, or phased ar-
ray radar systems) antennas. Most present generation ICRF antennas have
a small number of radiating elements (n ∼ 4), which lessens the detrimental
effect of cross coupling and can be addressed with a small number of decou-
pling loops in the air-side transmission line network. If the number of ICRF
straps increases greatly it may be necessary to investigate the stability of the
tuning network.
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5. Summary

A simulation model has been developed to assess the stability of a double
stub tuner in a phased array with strong cross coupling. This model has
been applied to the particular case of a LHCD antenna launching waves into
a tokamak plasma at a frequency of 4.6 GHz. Simulations using a represen-
tative set of plasma scattering matrices, as computed by the ALOHA code,
show that the LH FFT system is stable and produces clean n|| spectra with
good matching across a variety of plasma conditions and relative phasings.
Reduction of the control system gain may be necessary for some conditions,
although the decrease in system performance with reduced gain is acceptable.
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