DSMC Modeling of Micromechanical Devices
by
Edward S. Piekos
B.S.E.(Aerospace E.), University of Michigan (1992)

Submitted to the Department of Aeronautics and Astronautics
in partial fulfillment of the requirements for the degree of

Master of Science in Aeronautics and Astronautics
at the
MASSACHUSETTS INSTITUTE OF TECHNOLOGY
September 1995
(© Massachusetts Institute of Technology 1995. All rights reserved.

Department of Aeronautics and Astronautics
August 18, 1995

Kenneth S. Breuer
Assistant Professor
Thesis Supervisor

Accepted by<... e e e e e e
Harold Y. Wachman

Professor

Chairman, Departmental Graduat: Committee

LASSACHUSETTS INSTITUTE
OF TECHNOLOGY

SEP 251995

LIBRARIES

ARCHIVES

DSMC Modeling of Micromechanical Devices
by
Edward S. Piekos

Submitted to the Department of Aeronautics and Astronautics
on August 18, 1995, in partial fulfillment of the
requirements for the degree of
Master of Science in Aeronautics and Astronautics

Abstract

Application of the direct simulation Monte Carlo method (DSMC) to flows related
to micro-electro-mechanical systems (MEMS) is detailed. This effort is aimed at fur-
thering the understanding of rarefied gas behavior and providing tools to facilitate
the design and optimization of micro-devices. The code written for this work em-
ploys an unstructured grid and a trajectory-tracing particle movement scheme. It
was applied to problems suited for traditional DSMC application as well as those
which required its scaling constraints to be relaxed. The former problems included
slip-flow and transition regime micro-channels and a supersonic micro-nozzle. These
were selected to verify analytical models and to demonstrate DSMC’s value for flows
which are not amenable to other types of solution. Excellent agreement was obtained
between the code and available analytic expressions. Rarefied gas phenomena, such
as velocity and temperature slip at the wall, were also observed. The latter problems
included a Rayleigh flow, a spatially-developing shear layer, and a channel with a cir-
cular obstruction (Ni’s bump). These were selected to investigate the implications of
sizing a DSMC calculation according to the flow gradients, rather than the molecular
scales, in an effort to efficiently extend the method to smaller Knudsen numbers. Two
implications of this scaling were observed: first, when it reaches a point where each
particle suffers several collisions every time step, the method is modeling the Euler
equations, not the Navier-Stokes equations, because the particles in each cell reach
an equilibrium distribution every time step; second, the particles’ thermal velocity,
coupled with DSMC’s disregard for cellular position when selecting collision part-
ners, causes an increased diffusion of momentum through the domain, appearing as
an artificial viscosity which varies with the cell size and quickly overtakes the physical
value.

Thesis Supervisor: Kenneth S. Breuer
Title: Assistant Professor

Acknowledgments

I guess I'll start at the beginning: in the Beginning, God created fluids (OK, so maybe
a couple of other things were supposedly done first, but this was the important one).
Any topic which can have retiring professors still scratching their heads and saying
“Hmm, that’s strange” serves, I think, as evidence that there is a Creator with access
to a bigger picture than our feeble efforts have been able to construct. I have enjoyed
working in this area and with the curious group of people it attracts and am indebted
to the grace of God for somehow getting me here.

On a more local scale, I'd like to thank my advisor, Kenny Breuer, for all his
guidance along the path that led to this thesis. He is responsible for turning me from
a wide-eyed undergrad into a, well, whatever I am now, who can actually program in
C, work in UNIX, use IATgX(though I do still have mixed feelings about this one), and
keep his research notes organized (which was a great help in preparing this document,
so I thank you especially for pointing me in this particular direction). I also thank
you for putting me on this project and actually paying me to ask “why?” and “how?”,
two of my favorite pastimes in the world.

I must also thank my undergraduate advisor at the University of Michigan, Ken
Powell, for encouraging me to pursue graduate studies. I have found research to be
very rewarding and well-suited to my nature and I really can’t say grad school would
have occurred to me without you (don’t worry, this doesn’t mean I curse your name
when I am up to my eyeballs in coding bugs and problem sets).

On a daily level, I'd like to thank everyone in the FDRL (including Matt and
Becky, who aren’t actually in the FDRL, but sit with us anyway and Errol, Aravind,
and Stu who are actually with the FDRL but don’t sit with us (confusing, huh?)) for
providing a great atmosphere in which to work and putting up with all of my (numer-
ous) idiosyncrasies. This thanks is also extended to the members of CASL/SPPL,
my new place of residence (meant literally this last few weeks). I'd especially like
to thank my coworker, friend, and roommate, D.J. Orr, for patiently listening to me
babble about everything from from plants to programming and playing entertaining
games like “name that grain” (and proofreading my thesis . +—missed one!

Similarly, I thank my good friend for all time (both directions), Christianne Holly,
for discussing the especially bizarre, “big picture” topics with me, fearlessly sampling
many of my off-the-wall culinary creations, and getting me out of the office every
now and then. All my friends, in fact, scattered as they may be around the country
and globe these days, deserve thanks for being the greatest (and strangest) group of
people anyone could ever hope to know.

Of course, I wouldn't be the person I am today without my family, especially my
mother, whose tireless efforts when my sister and I were growing up were nothing
short of amazing. Though I'm not sure how the rest of the world feels about the
result, I thank you for it. Mom, Dad, Laura, and now, Bruce, I love you all.

Finally, I'd like to thank the Air Force for making this work possible; both by
funding it and providing a place for my parents to meet.

This work was supported by AFOSR. grant number F49620-93-1-0376,
monitored by Dr. J. McMichael.

“The whole of science is nothing more than a refinement of everyday think-
ing... He who can no longer pause to wonder and stand rapt in awe is as
good as dead; his eyes are closed.” - Albert Einstein

“The most interesting information comes from children, for they tell all
they know and then stop.” - Mark Twain

Contents

Nomenclature

1 Introduction

1.1 MEMS..........
1.2 Non-Continuum Flows .
1.3 Particle Methods
1.4 DSMC

1.4.1 Particle Quantity
1.4.2 Particle Movement
1.4.3 Particle Collisions
1.4.4 Result Reporting

2 Algorithm

2.1 Non-Dimensionalization

2.2 Molecular Model
23 Grids...........
2.4 Particle Movement . . .
2.5 Data Structure

2.6 Inter-Cell Communication
2.7 Boundary Conditions . .
2.7.1 Solid Walls . . .

2.7.2 Inflow/Outflow Faces

2.8 \Verification

28.1 Equilibrium Gas 43

282 1-DShock Wave 45

3 Non-Continuum Results 47
3.1 Slip Flow Regime Micro-Channel 47
3.2 Transition Regime Micro-Channel 53
3.3 Supersonic Micro-Nozzles. 56
3.3.1 Sonic Throat 58

3.3.2 Subsonic Throat 59

4 Scaling Issues 61
4.1 ScalingRules 62
4.2 Numerical Investigation 64
421 RayleighFlow 65

4.2.2 Boundary-Free Shear Flows 74

423 EulerTlow. 77

5 Conclusions 81
A Particle Movement Function 87
B Particle Communication Function 93
C Inflow/Outflow Function 97
Bibliography 101

10

List of Figures

1-1

2-1

2-3
2-4
2-5
2-6

3-1

3-3

3-4

Flowchart for a typical DSMC calculation. 26

Example of an unstructured grid with local refinement generated with

Watson’s algorithm. o oo 31
Sketch of a particle crossing near a gridnode 33
Pressure distribution for a channel with poorly-formulated IO treatment. 38
Complete streamwise velocity distribution for I/O test channel. . . . 43
Complete pressure distribution for I/O test channel. 44
Comparison of Mach 3 shock profiles from the current code and pub-

lished DSMCresults. 46

Comparison of computed and analytical pressure distributions for a
micro-channel in the slip flow regime. 49
Theoretical streamwise velocity distribution for a micro-channel in the
slipflow regime. L 50
Computed streamwise velocity distribution for the micro-channel of
Figure 3-2. e 5l
Comparison of computed and theoretical maximum and minimum sim-
ilarity speeds for a micro-channel in the slip flow regime. 92
Comparison of computed, slip-flow, and continuum pressure distribu-
tions for a micro-channel in the iransition regime. 54
Theoretical streamwise velocity distribution for a transition-regime mi-
cro channel calculated with the slip-flow analysis. 55

Computed streamwise velocity distribution for the channel of Figure 3-6 56

11

3-8 Computed and analytical similarity speeds with Knudsen number overlay. 57

3-9 Computational grid for a micro-nozzle with area ratio 2.0.
3-10 Mach number distribution for a micro-nozzle with a sonic throat.
3-11 Temperature distribution for a micro-nozzle with a sonic throat. . . .

3-12 Mach number distribution for a micro-nozzle with a subsonic throat. .

4-1 Schematic of a One-Dimensional Rayleigh Flow
4-2 Comparison of DSMC and collisionless Boltzmann solutions to the
Rayleigh problem at t =0.004.
4-3 Comparison of DSMC and slip-flow Navier-Stokes solutions to the
Rayleigh problem at ¢ =100..

4-4 Distribution of velocity perturbations for a well-resolved computation.

4-5 DSMC-computed viscosity and Knudsen number as a function of time

for a well-resolved computation.

4-6 Distribution of velocity perturbations for an over-collided (under-resolved)

computation L. Ll Lo
4-7 DSMC-computed viscosity versus cell size.
4-8 Schematic of boundary-free shear flow computational geometry.
4-9 Contours of streamwise velocity in a well-resolved DSMC computation
of a supersonic shear flow.
4-10 Development of shear layer momentum thickness as a function of down-
stream distance.
4-11 Mach number contours of an Euler solution to Ni’'s Bump.
4-12 Mach number contours of a well-resolved DSMC computation of Ni's
Bump.

4-13 Mach number contours of a scaled DSMC computation of Ni’s bump.

A-1 Schematic of cell node and face numbering.

12

o7
58
99
60

78
79

List of Tables

2.1
2.2
2.3
24

Non-Dimensionalization / Normalization Factors 29
Computed Equilibrium Collision Rates for Various Gases 44
Computed Equilibrium Collision Rates for Various Cell Particle Numbers 45
Analytical and Computed State Variable Jumps Across a Mach 8 Shock 46

13

14

Symbol

]

Nomenclature

Description

speed of sound

most probable thermal velocity
mean thermal velocity

relative speed of colliding partners

tangential momentum accommodation coeff. (1=full accom.)

channel height

nozzle throat height

Boltzmann constant, k = 1.380658 x 10~2 J/K

Knudsen number

cell Knudsen number

outlet Knudsen number
channel length

scale length of flow gradients

molecular mass

reduced mass of colliding pair, m, = mymy/(m; + ms)

Mach number

number density

reference simulation number density
total number of particles

number of particles in a cell

number of collision pairs to be sampled

pressure

15

2.8.1
1.4.3
2.7.1

3.3
2.2
1.2
4.1
3.1
3.1
1.2
2.2
2.2
4.2.1
1.4.3
4.1
1.4.2
1.4.3
2.1
2.7.2

normalized pressure, P = p/Douttet
gas constant, R = k/m

random fraction, 0 < Ry <1
time

temperature

macroscopic (mean) velocity components

microscopic (thermal) velocity components

macroscopic velocity component normal to I/O face

similarity speed

wall speed in Rayleigh problem
shear layer stream velocities
cell volume

spatial coordinates

specific heat ratio

time step

typical cell dimension
exponent in the inverse power law model
momentum thickness

mean free path

coefficient of viscosity
kinematic viscosity coefficient

particulate collision rate

similarity variable for Rayleigh flow, £ = ;=

cross section

exponent in the variable hard sphere model

16

3.1
4.2.1
2.7.2
4.2.1
2.2
2.7.2
2.7.2
2.7.2
3.1
4.2.1
4.2.2
4.1
3.1
2.7.2
4.1
4.1
2.2
4.2.2
1.2

2
J.

4.2.1
2.8.1
4.2.1
1.4.3
2.2

Chapter 1

Introduction

The direct simulation Monte Carlo method (DSMC) is a particle-based numerical
fluid modeling technique pioneered by G. A. Bird.[1] This particulate nature enables
it to remain valid where traditional, continuum-based, computational fluid dynamics
(CFD) techniques break down due to flow rarefaction. To date, most work using
this method has centered on problems related to vehicles operating at high-altitudes,
where continuum-based methods become inaccurate due to the low ambient density.
With the advent of micro-electro-mechanical systems (MEMS), however, flows around
devices with micron-scale features have also become important. Because their sharp
gradients often cause continuum methods to fail, even at standard conditions, DSMC
is an attractive tool for these flows as well.

This thesis explores DSMC’s application to geometries related to MEMS devices.
With this task in mind, the current chapter presents an introduction to MEMS, non-
continuum flows, particle methods, and DSMC. The algorithm developed for this
work is then outlined in Chaper 2. Non-continuum flows, the traditional realm of this
method, are treated in Chapter 3 to evaluate theoretical models as well as explore
regions for which no tractable models exist. Chapter 4 then examines scaling issues
inherent to efficiently applying DSMC to general continuum flows, with the intention
of expanding its useful range. Finally, Chapter 5 presents conclusions which may be
drawn from this work and points to several features which remain to be explored in

this area.

17

1.1 MEMS

Micro-electro-mechanical systems (MEMS), are very small (micron-scale) sensors and
actuators manufactured with techniques similar to those used for integrated circuit
(IC) chips. They are the subject of increasingly active research in a widening field
of disciplines. Applications for these devices range from consumer products (airbag
triggers, micro-mirror displays), to industrial and medical tools (microvalves, micro-
motors), to instrumentation (micro pressure sensors, micro shear-stress sensors). [2]

MEMS have many advantages over their macro-scale counterparts, where such
counterparts even exist. First, because these devices are fabricated in a manner
similar to IC chips, they are extremely inexpensive to manufacture in large quantities.
Second, the technology for such production is quite mature. Very precise specification
of the geometry, far beyond that possible with macro-scale fabrication techniques, is
therefore routine and a high degree of control over material properties is available.
Third, their small size and mass make them attractive where space is at a premium
or weight is limited. Finally, their minimal inertia allows them to react very quickly,
enabling the creation of actuators and sensors with frequency responses previously
unthinkable for mechanical systems.

The small size of MEMS poses unique challenges in the design phase, however.
While the mechanical properties of micromachined materials are reasonably well-
studied, fluid effects at micron scales are not. These effects, such as film damping of
resonant structures, heat transfer in mass flow sensors, and unsteady pressure fields
around microvalves, for example, must be understood if the full potential of these

devices is to be realized.

1.2 Non-Continuum Flows

The vast majority of computational and analytical tools for studying fluid behavior
are based on the Euler or Navier-Stokes equations. An important underlying assump-

tion of these equations is that the fluid may be treated as a continuum, rather than as

18

a collection of discrete particles, as is done in the, more difficult, Boltzmann equation.
This allows the transport terms to be calculated using macroscopic variables, such as
temperature, rather than microscopic variables, such as molecular velocity distribu-
tion function, yielding an expression which is much more amenable to solution, both
analytically and numerically. Unfortunately, this approximation becomes inaccurate
as the scale length of the flow gradients (L) approaches the average distance trav-
eled by a particle between collisions (the mean free path, A), which occurs for many
MEMS-related flows. The ratio of these quantities is known as the Knudsen num-
ber (Kn = A\/L) and is used to indicate the degree of flow rarefaction. The Navier-
Stokes equations neglect rarefaction effects and are therefore only strictly accurate
for vanishingly-small Kn.

As is the case for other non-dimensional numbers in fluid dynamics, such as the
Mach and Reynolds numbers, the type of analysis appropriate for a particular flow
is dictated by its Knudsen number. Consequently, the Kn domain (0 < Kn < oo)
is often divided into four flow regimes.[3] For Kn < 0.01, known as the ‘contin-
uum’ regime, the Navier-Stokes equations, as commonly expressed, are applied. For
0.01 < Kn < 0.1, known as the ‘slip-flow’ regime, the Navier-Stokes equations are
applied with the usual no-slip wall boundary condition replaced by a slip-flow condi-
tion (detailed in Section 3.1). For 0.1 < Kn < 3, known as the ‘transition’ regime,
the flow is too rarefied for Navier-Stokes-based analysis, but not rarefied enough to
apply the collisionless Boltzmann equation. The full Boltzmann equation is therefore
prescribed. For Kn > 3, known as the ‘free molecular’ regime, the flow is sufficiently
rarefied to allow molecular collisions to be neglected. The collisionless Boltzmann
equation is therefore applied.

For many MEMS, Kn is driven from the continuurn regime by their extremely
small feature size, which is often comparable to A, even at standard conditions. The
gap between the sensing plate and the substrate on a floating element shear stress
sensor, for example, is typically 1-2 microns.[4] The mean free path of air at standard
conditions is approximately 60 nm. This places Kn in the slip flow regime, or even

the transition regime for lighter gases or different conditions. Non-continuum effects

19

in the gap, neglected in traditional analyses, may therefore have a significant impact
on sensor operation. As a result, new models and techniques must be developed to

correctly describe the behavior of the fluid in and around these devices.

1.3 Particle Methods

Particle methods, such as molecular dynamics (MD), particle-in-cell (PIC), and direct
simulation Monte Carlo (DSMC) are attractive tools for the study of rarefied gas flows
because they lack continuum assumptions. These techniques model gas behavior by
tracking the interaction of computational particles, each with a position, a velocity,
an internal energy, etc., mimicking the discrete molecular nature of the actual flow.
This strategy differs considerably from that of traditional CFD, which numerically
solves differential field equations formulated to describe fluid behavior in terms of
macroscopic variables.

Particle methods are intuitively attractive because fully physical simulations would
be devoid of assumptions and would therefore be valid for all flow regimes and geome-
tries. Unfortunately, a fully-physical simulation, even for a simple problem, typically
requires computational power several orders of magnitude greater than is currently
available. In addition, it is arguable that a complete understanding of intermolecular
and molecule-surface interactions is not yet reached, so some detail would necessarily
be neglected if such a calculation were even attempted.

Fortunately, many features of molecular behavior have negligible influence on most
engineering problems. The key to an efficient simulation is therefore to include the
minimum level of complexity required to correctly reproduce the important features
of a given flow. Consequently, all current particle methods make simplifications in
the quantity, movement, and/or interactions of their computational particles. The

form of these simplifications differentiates between the various techniques.

20

1.4 DSMC

DSMC is, by far, the most popular particle method for the analysis of collisional
flows, ie. flows for which intermolecular collisions significantly affect fluid behavior.
It is called a simulation (rather than a solution) scheme because it was originally
formulated to capture the important physical features of the flow, not to solve a par-
ticular set of equations. Nevertheless, Nanbu later showed that the various techniques
solve either the Kac Master equation or the Boltzmann equation.[5] As a result, some
current algorithms were subsequently derived from these equations, rather than from
physical arguments.

DSMC has undergone considerable development. by many researchers for more
than two decades. Consequently, a considerable number of variations from the original
algorithm now exist. A number of features nonetheless remain cornmon to most
implementations. These defining features are associated with the simplifications made

to the physical situation and differentiate DSMC from other particle methods.

1.4.1 Particle Quantity

The number of particles in the simulation must be reduced due to memory constraints
as well as CPU time considerations. For example, a cubic centimeter of gas at stan-
dard conditions contains approximately 2.69 x 10'® molecules. To represent only
position and velocity in 3-dimensional space for these particles with single-precision,
floating point numbers would require a total memory of 6.5 x 10! Mb, far beyond the
capacity of even modern supercomputers.

The crucial assumption made by DSMC developers in the face of this problem
is that, at any given time, a number of molecules are in virtually indistinguishable
microscopic states. These molecules may therefore be collectively represented as a
single ‘computational particle’, which is then a statistical, rather than a physical,
entity because it represents a small volume in phase space, rather than an actual
molecule.

The ratio of real to computational particles is known as the ‘weight factor’ and

21

may be constant for a given computation or vary with position and/or time. Variable
weight factors are useful in rapidly expanding and axisymmetric flows, where large
changes in number density or cell volume occur across the domain, to hold the num-
ber of particles in each cell at a computationally efficient level.[6] These weighting
schemes must be applied with caution because particles are usually ‘cloned’ when they
move into a region with a smaller weight factor. This is problematic because cloned
particles are not statistically independent. Introducing significant numbers of them
will therefore cause a larger scatter to be observed in the results than is expected for
the given number of particles. In addition, their lack of relative speed may cause a
non-physical reduction of the local temperature.

The accuracy of the particle quantity approximation increases with the number of
computational particles because each particle is required to represent a smaller region
of phase space. In addition, the statistical scatter in a given sample of the flowfield
is reduced through increased particle quantity. These factors are balanced by the
computational cost and machine requirements of the simulation, which also increase
with particle quantity. This issue is treated in detail by Chen and Boyd in Ref. [7].

It is notable that MD also uses a reduced number of computational particles but
continues to treat them as physical entities. This is justified by noting that Kn is
maintained (for flow similarity between the real and simulated cases) if the particle
diameter is increased to hold the mean free path constant as the number density
is reduced.[8] A large number of small particles may therefore be replaced with a
small number of large particles without affecting the important flow characteristics.
This argument fails, however, when the resulting particle diameters become too large

compared to the geometric feature size or the inter-particle spacing.

1.4.2 Particle Movement

In a real gas, molecules move along their current trajectories until they strike another
molecule or a boundary. This is the procedure used for movement in MD, consis-
tent with its treatment of computational particles as physical entities. Unfortunately,

each particle’s next collision depends on its trajectory and position with respect to

22

all other particles in the domain, as well as the boundaries. In the worst case, the
computational work of this combined move/collide operation therefore scales as N?,
where N is the total number of computational particles. While clever ways of mini-
mizing this work have been proposed, such as storing the time of next interaction for
all particle pairs and recalculating only when it changes through the collision of one
or both members(8|, the computation quickly becomes unmanageable as the number
of particles increases.

One of DSMC's defining assumptions is made in response to this problem: if par-
ticles are only allowed to mov: for a short time (some fraction of a molecule’s mean
time between collisions), then the movement and intermolecular collision steps may
be decoupled. The calculation is therefore divided into ‘time steps’, each consisting of
independent move and collide phases. Interactions between particles and the domain
boundaries are still handled as they occur in the move phase, but all intermolecu-
lar collisions are performed in the collide phase. This reduces movement from an
order N? to approximately an order N calculation. It may be noted that this also
makes it possible for two molecules to simultaneously occupy the same position. This
seemingly troublesome, non-physical event is not significant, however, because the
computational particles each represent a range of positions due to their statistical

nature. Their exact position on the grid is therefore not important.

1.4.3 Particle Collisions

In MD, interparticle collisions are physical events, with the collision partners and
post-collision velocities determined according to the pre-collision particle trajectories
and diameters. These diameters, as mentioned above, are scaled to maintain the
proper collision rate for the reduced number of particles in the calculation.

For DSMC, however, the simplifications made above have eliminated the physical
means for determining these collisions. An alternate approach must therefore be
supplied. This involves beth calculating the correct number of collisions to perform

and choosing proper partners for each of them.

23

Quantity Calculation

Physical arguments from classical kinetic theory may be used to develop an expression

for the number of collisions per unit time per unit volume of a gas, N,:

N, = %—n2a_c,. (1.1)
where n is the number density, o is the molecular cross-section (single-species flow),
¢, is the relative speed of the colliding partners, and the overbar signifies a mean
taken over all possible partners. Unfortunately, the computational work to evaluate
this mean scales as the total number of particles squared. Several ways of eliminating
this term have therefore been proposed, such as Bird’s Time Counter (TC) and No
Time Counter (NTC) schemes and Baganoff and McDonald's method.[9][10][11] The
current code uses the NTC scheme, where the local maximum oc, encountered in the
calculation is used in Eq. 1.1 to determine the number of particle pairs to consider
for collision. These pairs are then accepted with a probability proportional to their

oc;.

Partner Selection

Choosing potential collision pairs is best done according to some sort of ‘close physical
proximity’ criterion. The most computationally convenient of these is to divide the
domain into a number of ‘cells’, as is commonly done for traditional CFD calculations.
Collision pairs are then chosen among particles in the same cell. For this to be a valid
approximation, these cells must be ‘small’. Rigorously, this means that their linear
dimensions should be comparable to the mean free path, A\. The implications of
relaxing this requirement to the ‘negligible gradients across the cell’ constraint used

in continuum CFD, are investigated in Chapter 4.

24

1.4.4 Result Reporting

The cells required by the collision scheme are also used in reporting the results of
a simulation. This is necessary because macroscopic variables, such as pressure and
temperature, are typically the quantities of interest from a computation while the
method functions in terms of microscopic variables, such as individual particle posi-
tions and velocities. To determine the former from the latter, the state of all particles
in some small volume surrounding the point of interest must be sampled. In the
current code, the particles in each cell are used to calculate the macroscopic variables
which are reported at its centroid.

Due to the total particle quantity restrictions, imposed by computational consid-
erations, and the cell size constraints, imposed by collision and sampling concerns,
there may be as few as twenty computational particles in a given cell. Calculating
the macroscopic variables from a single sample will therefore yield unacceptably large
uncertainties. Several samples of each cell are therefore necessary. If steady-state
information is required, these samples may be taken every few time steps' until ac-
ceptable statistical convergence is reached. If time-accurate information is required,
ensemble averaging is performed, were the entire flow evolution is calculated repeat-
edly, sampling at the same temporal locations in each iteration.

A flowchart of a typical DSMC calculation is presented in Figure 1-1.

lthe samples would not be statistically independent if they were taken every time step

25

Start

Set initial molecular state

]

Move particles along their trajectories
according to At, computing interactions
with boundaries as they occur

Introduce appropriate particles at
inflow / outflow edges

l

Perform intermolecular collisions

Sample flow properties

No

. Repeat run \

...... if unsteady Yes
' calculation @

Figure 1-1: Flowchart for a typical DSMC calculation.

26

Chapter 2

Algorithm

Due to the wide variety of geometries and flow conditions present in MEMS devices,
flexibility was a primary goal in constructing the algorithm for this investigation.
DSMC has an inherent advantage over traditional CFD in this regard because its
particulate nature makes it uniformly valid for all Kn, without regime-specific modi-
fications. This is especially important for MEMS work because many devices contain
mixed-regime flows.

Flexibility concerns also drove the particular implementation of DSMC developed
for this work. First, C was chosen for the coding due to its flexible structure, dy-
namic memory allocation, and recursive function capability. In addition, the code was
written to run in non-dimensional form, use unstructured grids, and store most data

locally. The details of the resulting algorithm are discussed in the fcllcwing sections.

2.1 Non-Dimensionalization

All quantities in the code are non-dimensionalized. This generalizes the construction
of calculations and facilitates the interpretation of their results. The normalization
factors selected for this purpose are relatively common in the DSMC community.
Due to the importance of Kn in the subject geometries, the mean free path, at
some reference condition, is a logical choice for non-dimensionalizing length. Simi-

larly, DSMC'’s particulate nature points to one of the molecular speeds (ie. mean,

27

rms, or most probable) as the normalizing factor for velocity. These speeds differ by
a constant factor near unity, so the choice is essentially arbitrary. The most probable
molecular speed, c,,, is used in this work. The quotient of the length and speed nor-
malizations, A/, (2/+/7 times the mean collision time) is used to non-dimensionalize
time. Temperature, pressure, and number density are non-dimensionalized by their
values at a reference condition.

To non-dimensionalize the expression governing the number of collision pairs to

be sampled in the NTC scheme:
1,

a normalizing factor must be chosen for the collision cross-section, o. Here it should be
noted that the probability of a particular molecule suffering a collision is proportional
to the product of its cross-section, its path length, and the number density. For a
non-dimensional flow representation to be similar to its dimensional counterpart, the
collision probabilities for comparable particles must match. As a result, the scale
factors for collisicn cross-section, length, and number density must have a product
of unity. The proper cross-section scale factor is therefore 1/(nyesAres)-[12] This
conclusion may also be reached through purely dimensional arguments if the units
for o are viewed as ‘length-units squared per particle’, rather than simply ‘length-
units squared’.

The non-dimensionalization / normalization factors used in the code are summa-

rized in Table 2.1.

2.2 Molecular Model

An important defining feature of any DSMC code is its molecular model. This spec-
ifies the collision cross-section used in Eq. 2.1 as well as the post-collision scattering
law. There is, again, a tradeoff to be made between physical realism and compu-

tational efficiency. The full physical description of intermolecular interaction is not

28

| Variable | Scale Factor |

Length Aref
Velocity Moo
Time c,i-f—
Mref
Temperature T,es
Pressure Pref
Number Density Nref
Collision Cross-Section —L
refAref

Table 2.1: Non-Dimensionalization / Normalization Factors

known and, for most flows, not necessary. As a result, many models have been pro-
posed which attempt, with varying degrees of detail, to enable the computation to
reproduce the important features of a collisional flow, such as the viscosity coefficient
and its temperature dependence, without becoming unnecessarily complex. Exam-
ples include the Inverse Power Law (IPL), Hard Sphere (HS) and Maxwell models of
classical kinetic theory, the Variable Hard Sphere (VHS) model of Bird, the Variable
Soft Sphere (VSS) model of Koura and Mastumoto, and the Generalized Hard Sphere
(GHS) model of Hassan and Hash.[13][14][15][16]

The VHS model is implemented in the current code. This model grew from
the classical HS representation, which assumes a constant collision cross section and
isotropic scattering. For real molecules, however, the effective cross-section is reason-
ably constant only at very low temperatures; at higher temperatures, it decreases with
increasing translational kinetic energy and relative speed of the colliding partners.{1]
In addition, post-collision scattering is decidedly non-isotropic. Bird noted, from nu-
merical and analytical studies, that changes in collision cross-section have a strong
influence on the gas behavior while changes in the scattering law do not. He therefore
constructed a model with a c,-dependent cross-section, but with isotropic scattering;

essentially creating hard-sphere molecules with variable diameters (hence the name).

29

This retains most of the computational simplicity of the HS model, but more accu-
rately reproduces the temperature dependence of the viscosity coefficient.
In this model, an empirical constant, w, related to the exponent, 7, of the inverse

power law molecular force by
w=2/(n-1). (2.2)

is supplied to establish the working fluid. The collision cross-section is then given by

— m’"dczd -
O'd - arefd (2(2 _ w)anh) 1 (2'3)

where k is Boltzmann’s constant and m, is the reduced mass of the colliding pair,
m, = mymy/(m, +m;), which is always m/2 for the single-species gases considered in
this work (m is the molecular mass). Subscript “d” denotes a dimensional quantity.

Under the normalizations introduced in the previous section, using the VHS mean

free path given by Bird:
M = (T Tres)* [[V22 —) T(2 = w)naores,), (2.4)

the non-dimensionai coiiision cross-section becomes:

»
7= ar@e-w

where I'() denotes the gamma function.

2.3 Grids

In response to the stated goal of maximum flexibility, the current code was written
for unstructured grids. This enables it to treat geometries of arbitrary complexity
without modification. In addition, several sophisticated generation and adaptation
schemes are available for grids of this type. Though the code was written with a
generalized cell geometry in mind, all calculations discussed in Chapters 3 and 4

use 3-sided cells generated as a Delaunay triangulation of points distributed in the

30

domain and on the boundaries. This triangulation was performed using Watson'’s
algorithm|[17], which made possible the inclusion of ‘point-and-click’ node placement
for pre-calculation local refinement.

A sample grid generated in this manner is presented in Figure 2-1. The geometry
shown is a channel with a 25% bump, similar to the case run in Section 4.2.3. Grid

refinement is demonstrated at the left edge of the bump.

NN A

Figure 2-1: Example of an unstructured grid with local refinement generated with
Watson'’s algorithm.

2.4 Particle Movement

It is common practice for DSMC codes on structured grids to displace all particles
a full time step along their trajectories, then determine their resulting cell indices
through a search or mathematical operation. By their nature, however, unstructured
grids make this type of scheme very difficult. A solution to this problem was pro-
posed (though for structured 3-D grids) by Dietrich[18]: perform particle movement
and current-cell identification simultaneously by maintaining knowledge of a parti-
cle’s current cell at all points in its trajectory. To accomplish this computationally,
a particle is displaced until it contacts a face of its current cell. It is then passed
to an adjoining cell, reflected from a solid houndary, or allowed to leave the calcula-
tion through an inflow/outflow edge, as specified by a ‘neighbor identifier’ stored for
each face of the cell. This arrangement is extraordinarily flexible because the grid
need only be composed of cells with valid neighbor identifiers on each of their faces.
These cells can, strictly speaking, possess an arbitrary number of edges and be of any

shape or orientation. From a computational viewpoint, however, this method is most

31

convenient if the cells are required to be convex. This allows the faces to be treated
as infinitely long and the impacted face to be found by selecting the line that the
particle trajectory intersects at the earliest time.

This portion of the code proved to be the most sensitive to numerical accuracy
issues. Due to the imperfect machine resolution of position and cell information, it is
difficult to calculate the proper destination cell for particles which are close to faces or
cross near nodes. A number of measures were implemented to combat this problem.

The first of these involves noting the face through which a particle entered its cell.
This face is then excluded from consideration as a crossing site for the remainder of
the current time step. Unfortunately, due to the unstructured nature of the grid,
no mathematical means exist for identifying the entry face of the new cell from the
(known) exit face of the old cell. A search for a face in the new cell with a neighbor
identifier pointing to the particle’s former cell is therefore performed.

From this effort, calculating a useless (and problematic) intersection time is avoided.
This quantity is problematic because particles are displaced to their intersection point
when passed to a new cell. The intersection time in the new cell for this face should
therefore be zero, but will, in practice, be a small number due to machine resolu-
tion issues. If this number is positive, this face is likely to be selected as the next
intersection because it has the smallest time to occurrence, causing the particle to be
passed back to its original cell, which will return it, resulting in an infinite loop. The
computation and memory cost of searching for and storing a particle’s entry face is
therefore justified.

Another test is included for crossings which occur very close to cell nodes, such as
that shown in Figure 2-2. In this case, the particle will be transferred from cell one to
two and then to three without difficulty. A problem is encountered when searching for
intersections in cell three, however. The face between cells two and three is rejected
because it was just crossed, but an intersection time near zero is calculated for the
other face which shares the node skirted by the particle. This causes the particle to be
(erroneously) passed to cell four without significantly moving it (due to the miniscule

intersection time). In a similar fashion, cell four transfers the particle to cell one,

32

which transfers it to cell two, and so on. This results in an unending cycle because

each of these moves has a negligible duration, so the time step is never completed.

Figure 2-2: Sketch of a particle crossing near a grid node

To avoid establishing this cycle, a ‘direction test’ is performed on potential inter-
section faces. In this test, the particle trajectory is projected onto the inward-pointing
normal of the face in question. If the projection has a positive sign, then the particle
is not moving in the proper direction to strike this face and the intersection is rejected.
To avoid encumbering routine cases with this test, a tolerance is defined. The test
is then only performed on faces whose intersection times fall within this tolerance of
zero.

A code listing of the movement function is provided in Appendix A.

2.5 Data Structure

Many DSMC codes use a single array to store the data for all particles in the simula-
tion. A ‘cross-reference vector’ is then maintained by each cell, containing the indices
of its particles in the central array. Moving a particle from cell to cell then consists
of simply transferring its index from one cross-reference vector to another. This is a
very eflicient arrangement for machines with rapid access to all their memory, such
as supercomputers, because very little data must be moved with the particle.
Dietrich and Boyd noted, however, that this scheme causes a significant loss of
computational efficiency on ‘workstation’ computers.[19] These machines, unlike su-
percomputers, have a relatively slow main memory but a very fast cache. Before

performing an operation, this cache is loaded with the segment of main memory con-

33

taining the required data. If subsequent operations access only items already in the
cache, they execute very quickly. Conversely, if the cache must be reloaded with new
data, a condition known as a ‘cache miss’, a considerable amount of time is lost in
the process. The central storage of particle data causes many cache misses when
performing inherently cell-based operations, such as collisions and sampling, because
the members of a given cell are scattered through a very large area of main memory.

The alternative is clear: physically store a particle's data in its current cel} instead
of in a large, centralized array. This increases the expense of moving a particle from
cell to cell, but greatly decreases the number of cache misses suffered by cell-based
operations.

An algorithm using the trajectory-tracing particle movement scheme outlined in
the previous section is easily written with entirely cell-based operations, so consid-
erable gains are possible from improved utilization of the cache. In addition, for
an equilibrium gas with a properly chosen cell size and time step, less than 50% of
particles typically leave their cell during a given time step, and, of these, less than
10% typically leave their new cell. The increased cost of inter-cell movement in this
arrangement is therefore greatly overshadowed by the increased speed of cell-based
data structures.

This data structure has the additional advantage of easy adaptability to a message-
passing parallel environment. If a particle moves to a cell on a different processor, the
inter-cell communication step is simply augmented with an inter-processor commu-
nication step. In addition, because a cell is now a complete data unit, containing its
geometry, neighbors, and resident particles, it is easily passed as a whole to another

processor as part of a dynamic load balancing scheme.

2.6 Inter-Cell Communication

Upon adopting a cell-based data structure, an efficient means for moving particle
information between cells is required. The simplest method, which is similar to that

used by Dietrich and Boyd for communication between parallel domains, is to main-

34

tain a ‘communication link’ for each cell. This is an array for particles waiting to
be accepted into the cell. If a particle leaves its cell during the movement step, it
is simply placed in the communication link of its destination cell. When a cell has
completed the movement step for all of its particles, it begins to process its com-
munication link: each of the incoming particles is checked to see if it will remain in
the cell; if so, it is moved to the particle list for that cell, if not, it is moved to the
communication link of its next cell. This process continues until all communication
links are empty. This arrangement was found to be fast, but extremely demanding of
memory; the communication links typically grew to be about half as large as the par-
ticle arrays for their cell. The total memory required for the program was therefore
50% larger than without links.

To circumvent this difficulty, a new scheme was devised whereby particles are
simply marked with a flag signifying that they are not leaving the cell, the index
of their destination cell, or a flag signifying that they have exited the cell and their
position on its particle list is now vacant. Once the initial movement step is completed
for all particles in all cells, a ‘communication phase’ is entered in which particles
leaving their current cells, referred to as ‘travelers’, are moved to their destination
cells. To accomplish this, the particle array in a traveler’s destination cell is checked
for empty positions. If one is found, the particle is moved to its new cell, marking its
former position as vacant. If no vacancies are found, the destination cell is searched
for travelers. If a traveler is found, the communication function is recursively called
to move this particle to its destination cell, then the original particle is moved into
the space it left. If neither vacancies nor travelers are found in the particle array of
. the destination cell, the incoming particle is simply added to the end.

After careful optimization, this scheme was found to run nearly as fast as the
communication link case, but with a 20% reduction in memory requirements for a
half-million particle calculation.

A code listing of the communication function is included in Appendix B.

35

2.7 Boundary Conditions

As for any solution method, proper specification of the boundary conditions is critical
to a successful DSMC simulation. The means of specifying these conditions in particle
methods, however, differs considerably from continuum CFD. In continuum CFD,
macroscopic variables, such as temperature and velocity, are imposed at given points
based on their intended physical state. For particle methods, these conditions must

be translated into rules for treating individual particles near these points.

2.7.1 Solid Walls

As noted for intermolecular collisions, many details of gas-surface interaction are still
unknown. Again, models which reproduce the important features of the physical
situation have been developed. The most common of these divides particle reflection
from solid surfaces into two classes: specular and diffuse. A given interaction may be
described completely by one of these classes or by some combination of the two. This
description is quantified by the tangential momentum accommodation coefficient,
F, which varies from 0, for no accommodation (specular reflection), to 1, for full
accommodation (diffuse reflection). In the code, this is accomplished by treating F'

as the probability a given particle reflection will be treated diffusely.

Specular Reflection

In a specular reflection, the normal component of the impinging particle’s velocity
vector is simply reversed and the tangential component is left unchanged. No modifi-
cation is made to the energy of the particle. This is intended to model an interaction
with a perfectly smooth (ie. frictionless) surface. It may also be used to simulate a

symmetry plane.

Diffuse Reflection

In a diffuse reflection, the impinging particle is emitted from the surface without re-

gard to its incoming state. The outgoing velocity is randomly assigned according to

36

a half-range Maxwellian distribution at the wall temperature. This is known as full
thermal and momentum accommodation and may be viewed in terms of a particle
that is absorbed, then re-emitted at equilibriumn with the surface. This is intended
to model an interaction with a completely rough surface, which is considered a valid
description of most engineering materials. MEMS devices, however, often contain
surfaces which are cut along the crystal planes of Silicon wafers. Tangential momen-
tum accommodation coefficients considerably less than one are therefore possible on

these extraordinarily smooth surfaces.

2.7.2 Inflow/Outflow Faces

Inflow/outflow (I/O) faces are considerably more difficult to treat than solid bound-
aries, particularly for low-speed cases, such as those presented in Sections 3.1 and
3.2. Ironically, this task appears to be straightforward and well-defined: simply in-
troduce and remove particles to obtain the desired flow state. Upon closer inspection,
however, it is found to be another sensitive compromise between physical detail and
computational efficiency. In this case, an improper formulation leads to a strong
flow adjustment (very similar to a shock) near the boundary. This effect is shown
in Figure 2-3 for a channel with a specified pressure ratio of 4, which relaxed to ap-
proximately 3.65. Unfortunately, the strength of this relaxation is difficult to predict,
frustrating efforts to model a specific geometry and flow condition.

In the current formulation, I/O faces are treated in two stages of the calculation:
particle movement and boundary enforcement.

During the movement stage, particles are simply removed from the calculation if
they encounter an I/O face. The data structure and communication schemes outlined
previously make this a straightforward operation: the particle’s position in its cell is
marked vacant, as if it has moved to another cell, but it is not labelled as a traveler,
effectively moving it ‘nowhere’.

During the enforcement stage, particles are introduced at I/O faces to maintain
user-specified boundary conditions, which are expressed in terms of macroscopic vari-

ables. These boundary conditions, combined with quantities calculated from the

37

3.5

25

p/p_out

1.5}

1 il 1 1 1

Y
-

0 5 10 15 20 25 30
x/H

Figure 2-3: Pressure distribution for a channel with poorly-formulated IO treatment.

current flow state, determine the number of particles to introduce and their velocity
distribution, as detailed below. It should be noted that, although the mechanism
for enforcing boundary conditions differs considerably between particle methods and
continuum CFD, the choice of which macroscopic variables to specify externally and
which to calculate from the domain is determined in both techniques by the ‘charac-
teristic lines’.

Characteristics lines, or simply ‘characteristics’, are paths in space and time, de-
rived from the Euler equations, along which certain flow variables remain constant.[20]
They are therefore said to “carry” information from one place to another. Charac-
teristics are used when formulating boundary conditions to prescribe how much in-
formation is communicated to the boundary from inside the domain and how much
is communicated from outside. This determines which variables may be specified and
which must be calculated from the flow itself.

There are four characteristic lines; one carries the entropy, one carries the trans-

38

verse speed, and two carry the Riemann Invariants, J, and J_, which are given by:

2a

Jy =
+ u:t'y—l

(2.6)

where u is the flow speed, a is the speed of sound, v is the ratio of specific heats, and
all quantities are dimensional. The first two of these move through space with speed
u and the second two with speed u + a and u — a, respectively. Thus, three of the
characteristics always point in the flow direction and the fourth points upstream for
subsonic flow (u < a) and downstream for supersonic flow (u > a). A subsonic inlet
therefore takes information from outside the domain on three characteristics and from
inside the domain on one. A supersonic inlet, however, takes all of its information
from outside the domain. Similarly, a subsonic outlet takes three characteristics
from inside the domain and one from outside while a supersonic outlet takes all its
characteristics from inside the domain. Over-constraining the boundary, by specifying
too many variables for the number of incoming characteristics, leads, in DSMC, to
strong local flow adjustments of the type shown in Figure 2-3.

Although the characteristics constrain the number of state variables that can
be specified at the I/O faces, there is some freedom to choose their identity.[21] One
possible arrangement is to specify the streamwise speed, transverse speed, and density,
calculating the pressure from the domain. This is useful for modeling aerodynamic
bodies at a given flight speed, angle of attack, and altitude, for example. A more
common arrangement is obtained by substituting temperature for density in the above
case 50 angle of attack and Mach number are the input parameters. Another possible
arrangement was used for the calculations presented in Chapter 3. For these flows, the
pressure, temperature, and transverse speed were specified and the streamwise speed
was calculated from the domain at inflow faces. Only pressure was specified at the
outflow faces of the subsonic cases and nothing was specified in the supersonic cases.
These boundary conditions are intended to model fully-developed flows in channels
and nozzles, (ie. flows which appear to represent a segment of a device which is far

from its pressure reservoirs). This is accomplished by enabling the streamwise speed

39

to self-adjust to a parabolic profile at the inlet and outlet which smoothly blends with
the velocity profiles in the remainder of the channel.

DSMC'’s statistical nature complicates the boundary enforcement process, how-
ever. To determine a cell's macroscopic variables, its microscopic state must be
sampled. Unfortunately, there may be as few as 20 particles in a given cell at a given
time, so a single sample produces unacceptable statistical scatter. This leaves two
options: neighboring cells may be included in the instantaneous sample, or it may be
replaced with a time average. The former option involves the selection of neighboring
cells with states ‘close-enough’ to that of the cell in question to yield a meaningful
spatial average. The latter option involves choosing a time-averaging method that
results in a sufficiently accurate estimate but still allows the flow to reach its steady
state with reasonable speed. The latter option was implemented in the current code.
The cell state was sampled after a movement step was completed, incoming particles
were introduced at boundary enforcement, and collisions were performed. A weighted
average was then taken between this result and a running value collected from previ-
ous time steps. The weighting of the instantaneous state may be varied to balance the
accuracy of the running estimate with the convergence speed; a large weight makes
the estimate sensitive to the statistical scatter inherent in the instantaneous average,
causing error in the estimate, while a small weight causes prior information to decay
slowly, retarding convergence to steady-state. A weight of 1/20 was chosen for the
cases presented in this work.

Once the necessary macroscopic variables are obtained from either the user or the
domain, the boundary enforcement process is identical for inflow and outflow faces:
particles are introduced in sufficient quantity and with the proper velocity distribution
to satisfy local constraints. It should be noted that a significant number of particles
are introduced at both the inflow and the outflow faces in low-speed calculations,
consistent with the existence of the backward-running characteristic discussed above.

First, the number of particles to introduce at an I/O face must be calculated. To
accomplish this, a target number density for the cell containing the face is obtained

from the specified/calculated macroscopic variables and the ideal gas relation, which

40

is simply
p=nT (2.7)

under the non-dimensionalizations of Section 2.1. A target particle quantity is then
calculated through multiplication by the cell volume. The actual particle quantity
is compared to this target to determine the number of particles to introduce. If the
actual particle quantity is greater than or equal to the target, no action is taken;
particles are never removed from a cell.

Velocity components perpendicular to the I/O face are then assigned to the in-
coming particles according to a Maxwellian distribution at the specified/calculated
temperature. In non-dimensional form, the velocity distribution for a thermal velocity

component in the transverse direction, say v', is given by:

ﬂr;,

n_ 1
f(v)_\/ﬂ_Te

Values are selected from this distribution directly using a method presented by Bird

(2.8)

in Ref. [1]: select two independent random numbers, Rj, and Ry,, then calculate v’

from:

0 = 277Rf|
r = /-TIn(Ry,) (2.9)
v' = rsin()

At inflow faces, the specified transverse velocity (which is zero for all cases in this
thesis) is added to this vaiue. At outflow faces, the calculated transverse velocity
is added. This operation is identical for all cases because one of the characteristics
discussed above carries the transverse velocity specifically and always moves in the
flow direction.

The velocity component normal to the I/O face is then assigned according to

a fluxal distribution, ie. a distribution which is shifted based on the mean normal

41

velocity through the face. The resulting (non-normalized) velocity distribution is

given by:

fu =u' e~ (W) (2.10)

where u,, is the normal component of the macroscopic (mean) velocity across the face
and a positive value denotes motion into the cell (for both v’ and u,). This distri-
bution is sampled via the acceptance-rejection method, where a randomly-selected
value for u' is either accepted, with a probability equal to fu/(u')/(fu')maz, OF rejected
and another value chosen, repeating until an acceptance is made. Situations where
v’ < 0 are non-physical, because the particle could not enter the cell, and are therefore
excluded from consideration.

A low aspect ratio channel with a pressure ratio of 3 and the fully-developed flow
boundary conditions described above served as the test case during IO boundary
development. This case was chosen because it produces strong gradients yet remains
subsonic at the outflow, presenting a significant challenge to boundary enforcement.
The channel geometry was 150x30 A (referenced to the inlet) with 4000 uniform cells
and approximately 180,000 particles at steady-state. A sample run is presented to
demonstrate the effectiveness of the current boundary formulation.

Figure 2-4 contains the complete (ie. all cells were plotted) streamwise velocity
distribution. End-effects are almost imperceptable at both the inlet and the outlet.
The “icng channel” boundary conditions were therefore successfui and the flow in
the entire domain can be considered fully-developed. The corresponding pressure
distribution is shown in Figure 2-5, also with good results, exhibiting very little of
the flow adjustment present in Figure 2-3.

A code listing of the boundary enforcement function is given in Appendix C.

2.8 Verification

Before treating more complicated cases, simple verification runs were made to test

the algorithm formulation and coding. Cases with either an analytical solution or

42

Figure 2-4: Complete streamwise velocity distribution for I/O test channel.

published results were chosen for this task to facilitate comparison with the current

code. An equilibrium gas in a box and a 1-D shock wave are examined below.

2.8.1 Equilibrium Gas

All flows examined in this work have Knudsen numbers which place them comfortably
in the collisional regime. The proper treatment of inter-particle encounters is therefore
crucial to an accurate simulation. To test the mechanisms governing the collision
frequency, the equilibrium collision rate of several different gases was calculated by
simulating a resting fluid in a closed domain. The results were then compared to the
theoretical prediction.

The theoretical equilibrium particulate collision rate, v,, represents the average
number of collisinns suffered per particle per unit time. It is given by the mean
molecular speed, ¢, divided by the mean free path, A\. From Section 2.1, the non-
dimensionalization factors for length and speed are A and c},, respectively, both at
a reference condition. Noting that ¢ = 2/\/7 ¢}, the non-dimensional equilibrium

collision rate is found to be:

43

Figure 2-5: Complete pressure distribution for I/O test channel.

v, = % =113 (2.11)

To verify that the DSMC code correctly produces this rate, a 10x10 domain,
composed of 100 cells and specularly-reflecting walls, was constructed. Five-thousand
particles were distributed in this domain with velocities selected from a Maxwellian
distribution at the reference temperature. The flow was then run for 1000 time steps,
to allow any initial condition effects to die out, then sampled every four time steps
until 1000 samples were obtained. This was performed for four gases with significantly

different values of w and the results are presented in Table 2.2.

| Gas | w | v |
[Neon 0.16 [1.15
Nitrogen 0.24 | 1.15
Argon 0.31 | 1.15
Carbon Dioxide | 0.43 | 1.15

Table 2.2: Computed Equilibrium Collision Rates for Various Gases

First, it may be noted that the collision rate is independent of molecular species.

This is supported by the theoretical prediction, as no gas constants appear in Equa-

44

tion 2.11. In addition, the computed rate is within 2% of the theoretical value. This
error was found to be a function of the number of particles per cell, N, in accor-

dance with the statements made in Section 1.4.1. This dependence is demonstrated

in Table 2.3.

| N.| vp | %Error |
100 | 1.14 1.0
50 [1.15 1.9
20 | 1.17 3.7
10 | 1.23 9.0

511.32 17.0

Table 2.3: Computed Equilibrium Collision Rates for Various Cell Particle Numbers

2.8.2 1-D Shock Wave

To assess the accuracy of the non-equilibrium collision rate and the post-collision
scattering law, a 1-D shock wave was computed. This case was selected because
analytical expressions exist for the state variable jumps across the shock and published
DSMC results for the shock profile are available.

This calculation was performed on a 100x40 grid with 4000 uniform rectangular
cells. The simplicity of this geometry allowed a particle’s current cell to be determined
by mathematical means, based on its position, the grid dimensions, and the number of
cells. The trajectory-tracing movement scheme outlined in Section 2.4 was therefore
not required. This enabled the shock to be created by moving the left side of the
domain, compressing the entire grid with each time step to maintain its regularity.
The grid was initialized with a resting fluid, and the wall was set in motion at {=0.
Ensemble averaging was performed for a total of 50 ensembles.

The resulting jump in state variables across the shock may be compared to the
analytical predictions derived from the 1-D flow equations.[20] This comparison is
presented in Table 2.8.2 for a Mach 8 shock in Argon (uye = 5.39, w = 0.31). An

excellent agreement is obtained in all cases, with a maximum error of less than 2%.

45

| Variable | Analytical | Computed | %Error |

Pressure 79.75 79.54 -0.26
Temperature 20.87 20.58 -1.39
Density 3.82 3.86 +1.05
Wave Speed 8.00 8.08 +1.00

Table 2.4: Analytical and Computed State Variable Jumps Across a Mach 8 Shock

The spatial profile of the shock may also be compared to other DSMC results,
such as those presented by Baganoff and McDonald.[11] This comparison is shown in
Figure 2-6 for a Mach 3 shock in a Maxwellian gas, which is equivalent to a VHS gas
with w = 0.5. The agreement is, again, excellent, providing evidence that the code is

indeed properly simulating the fluid behavior.

: T ' !
1 —— s e oo ~ 10 Cument Work H
: : : — Published DSMC
<06
(\']
£
o4l
£
- 1 i 1
15 20 25 30 35 40

Figure 2-6: Comparison of Mach 3 shock profiles from the current code and published
DSMC results.

46

Chapter 3

Non-Continuum Results

As discussed in Chapter 1, DSMC is primarily used for flows in non-continuum
regimes, for which Navier-Stokes based methods break down. Formerly, most of
these flows involved high-altitude flight. Now, MEMS devices provide a rich array of
interesting flows in these regimes that have practical applications in a wide variety of
areas. A sampling of these cases are examined in this chapter. This effort is intended
to investigate DSMC’s ability to accurately and efficiently model micro-flows as well

as illuminate some of their unique features which are important to MEMS designers.

3.1 Slip Flow Regime Micro-Channel

The first case explored was a steady flow through a micro-channel with an outlet
Knudsen number of 0.05, placing it in the slip flow regime. This geometry is similar
to those investigated experimentally by Harley et al.[22] and Arkilic et al.[23] and
numerically (with spectral element methods) by Beskok and Karniadakis.[24] This is,
historically, an important canonical case for determining the effect of rarefaction on
the transport terms in the Navier-Stokes equations. It is also useful as a representation
of the flow along certain features common in MEMS devices, such as the space under
the floating plate of a shear stress sensor or accelerometer, which is typically only one
micron high but hundreds of microns in breadth and depth. In addition, it serves

as an interesting calibration case to assess the accuracy of the numerical algorithm

47

because analytical solutions have been developed for this geometry.

In one such effort, Arkilic et al. show that the Navier-Stokes equations may be
solved analytically for a long, high aspect-ratio, isothermal channel in the slip flow
regime if the boundary conditions are modified to include a Kn-dependent streamwise

velocity (slip) at the wall, given by:

Uwall = F Kn — (3.1)

where u is the streamwise velocity, Kn is the local Knudsen number, y is the transverse
coordinate, which has its zero at the channel centerline, and F is the tangential
momentum accommodation coefficient, discussed in Section 2.7.1.

Through this analysis, an expression may be obtained for the pressure distribution
in a microchannel with diffusely-reflecting walls as a function of streamwise channel

location and overall pressure ratio:

P(z) = —6Kn, + \/(ﬁKno +P) = TP - 1)+ 12Kn (P~ 1)] (32)

where P(z) and P; are the local and inlet pressures, respectively, normalized by the
outlet value, Kn, is the outlet Knudsen number, z is the streamwise coordinate,
and L is the channel length. The distribution predicted by Equation 3.2 may be
compared to a DSMC result as a test of both theory and code. Such a comparison is
presented in Figure 3-1 for a 600 x 20\ (referenced to the outlet) channel run with
Nitrogen (w = 0.24) at a pressure ratio of 2.47 with the infinite channel boundary
conditions discussed in Section 2.7.2. A good agreement is obtained (max error =
1.5%), including the nonlinear pressure distribution that occurs due to the large
pressure drop down the length of the channel.
A theoretical expression for the streamwise velocity distribution was also devel-
oped by Arkilic et al.:
H2

ldp(, 2
_Ldp(. H° oy 3
u 2pds (y 1 HKn), (3.3)

48

2.5 L) T L) T Ll
—— DSMC
- - Navier-Stokes
2} AN 1
N
X N
3 S
o' Q
~ N
— N
x ~
o N
N
N
1.5} N .
N
\J
\Y
\y
\§
\3
1 L A A L 1
0 5 10 15 20 25 30
x/H

Figure 3-1: Comparison of computed and analytical pressure distributions for a micro-
channel in the slip flow regime.

where p is the coefficient of viscosity, p is the pressure, and H is the channel height.

This equation is plotted in Figure 3-2 for the geometry and conditions used above.
Several features unique to a flow of this type are visible. First, the fluid accelerates
as it moves down the channel, unlike in the familiar Poiseuille result. This is a
consequence of the density drop caused by the decreasing pressure in the streamwise
direction (the flow is effectively isothermal). The mean streamwise velocity must
therefore increase to maintain a constant mass flow. Second, the velocity at tire walls
is nonzero and increases with increasing z-coordinate. This is the aforementioned
‘slip flow’, which, by Equation 3.1, is essentially zero for continuum flows due to their
very small Knudsen number. The increase in slip velocity down the channel is a result
of growth in both Kn (from the decreasing pressure) and velocity gradient at the wall
(from the accelerating flow).

The DSMC result for this configuration is presented in Figure 3-3. Comparing
this to the previous figure, it may be concluded that the DSMC calculation qualita-

tively reproduces the mean flow acceleration and the increasing slip flow predicted

49

Figure 3-2: Theoretical streamwise velocity distribution for a micro-channel in the
slip-flow regime.

by the theory. In addition, good quantitative agreement is obtained in the velocity
distributions.

A further comparison with the theoretical analysis of Arkilic et 2l. may be found
by normalizing the velocity distribution of Equation 3.3 by the average velocity at a
given z-location, obtained by integrating u from the lower wall to the upper wall and

dividing by H:

H? dp
Ugpe = —m a;(l + GK‘I’I) (34)
Rearranging the resulting expression yields:
—Kn+(1+Kn) u —1—(1)2 (3.5)
6 Uge 4 \H '

The left side of this equation, which will be referred to as the ‘similarity speed’,

u,, is a function of z and y, while the right is a function of y only. Consequently, if

50

",
o4 2 "11[‘,’,A It‘.
, I;":!’.‘:";o"

! o'W !‘\;.{“
Vil \

AR (X
ORI \\'
RN
DI () WY
RO

.
R
e \\“\\'n

i
SADA/RALARCANAS \
h\‘ ‘,’.l\n ‘:’\\‘..,;:\.\\ \

N\ L)N
() §‘\"\\‘\\\\\\;\\\\:\\\\\\t\\\\\\
, by AT AT \\\
y \4.\'.“‘\\ 4‘\\‘\“\\\&\:\\3\\\\:\\\\\0.‘§.\\\\ 8

\ \\ \\tl\\\
KA\

AN

R ROV TR AN
V) \\\\‘.t:‘.‘\\\:.\\.\\.\\ :\f "\\ \\‘.\ .\\\‘ J
AR W
e .\\‘\“\\\\‘ \
N \‘\.‘\h‘\‘\““\“‘

Figure 3-3: Computed streamwise velocity distribution for the micro-channel of Fig-
ure 3-2.

the slip-flow analysis holds, calculating the similarity speed using the local Kn(z) and
u(z,y) will yield identical parabolas at all z-stations down the length of the channel.

This assertion was tested by computing a similarity speed distribution from the
DSMC output. The maximum and minimum of the result at each z-location is shown
in Figure 3-4. It should be noted that the upper theoretical line is not placed exactly
at 0.25 because an even number of cells was used in the DSMC run, so there is no
data point in the center of the channel. Also, the lower line is not at zero because
the macroscopic quantities for a cell are assumed to be associated with its centroid,
so there are no data points on the walls themselves.

It may be concluded from this figure that the similarity assertion indeed holds for
the slip flow channel. As predicted by the analysis, the down-channel variation of the
streamwise velocity profile seen in Figure 3-3 has given way to a constant similarity
speed profile. In addition, the maximum and minimum similarity speeds compare

well with the predicted values.

51

020}]
:]
. 0.15 - DSMC B
=]
: ----- Theory i
0.10 |- -
L 4
-]
005 — —
o - - - -
0.00 |-
[]
N B B P BT
0 5 10 15 20 25 30

x/H

Figure 3-4: Comparison of computed and theoretical maximum and minimum simi-
larity speeds for a micro-channel in the slip flow regime.

Overall, excellent agreement was obtained between the analytical solution of Ark-
ilic et al. and the DSMC results. This supports the accuracy of both techniques.
For the DSMC code, however, it is just the beginning; many more interesting flows,
for which there are no reliable analytical solutions, may be easily treated with this
method. The remaining cases presented in this chapter are intended to demonstrate

this capability.

3.2 Transition Regime Micro-Channel

One of the great strengths of DSMC is its validity for dilute gases in all Knudsen
number regimes. One of the most interesting of these is the transition regime, de-
fined in Section 1.2 as 0.1 < Kn < 3. Here the mean free path is comparable to
the characteristic dimension of the flow. This makes analytical solution very difficult
because the approximation of transport terms tased on macroscopic quantities be-

comes inaccurate, precluding the use of the Navier-Stokes equations (even with the

92

slip-flow boundary condition of Equation 3.1). Collisions are still important, however,
so the collisionless Boltzmann equation is not yet an option. This leaves only the full
Boltzmann equation; a very difficult expression to solve, either analytically or with
numerical techniques.

DSMC is therefore a very attractive tool for investigating the transition regime. It
is also one of the few tractable techniques which is uniformly valid in mixed Kn-regime
flows. These are important features because, due to the aforementioned difficulties,
relatively little is known about these cases. Such knowledge is critical, however,
because many MEMS devices contain flows of this nature.

The micro-channel was again used as a sample case, this time to observe the failure
of the slip-low analysis as Kn enters the transition regime. The channel treated here
is 136.4 x 2.3 A, with a pressure ratio of 4.2 and an outlet Knudsen number of 0.44.

The working fluid is, again, Nitrogen.

4-5 T T T T T
~. — DSMC
4+ "\‘-\\\ -~ NS:Kno=044 T
\‘:\._ -=-= NS: Kno = 0.00
S OTN,
ast N]
\\\'_\.
~
105 al \\\ ~ \'\ .
0.‘ \\ ~,
= O
3 .
o 25F \\\ \'_ 4
N N
\\\ \.\
2r \\ N i
N
\\ N
R
. "\ 4
15 .
Y \.
\.
1 A i L 1 1
0 10 20 30 40 50 60
x/H

Figure 3-5: Compariscn of computed, slip-flow, and continuum pressure distributions
for a micro-channel in the transition regime.

Proceeding as in the slip-flow case, the computed pressure distribution is compared

to the slip-flow prediction in Figure 3-5. The continuum curve (Kn = 0.0) is also

53

shown for reference. As expected, the excellent agreement between DSMC and theory
obtained for the slip-flow case (Figure 3-1) is no longer present. The error between the
curves has grown from less than 2% to more than 4%. The form of this disagreement
is also significant: the computed curve is more linear than its analytical counterpart.
A trend of increasing pressure curve linearity with increasing rarefaction is therefore
established by the relative shape of the continuum, slip-flow, and transition curves.
The analytical prediction for the streamwise velocity distribution in this channel
is presented in Figure 3-6. Note that the theory predicts a flatter profile than for
the previous case. This may be attributed to the last term in Equation 3.3, which
is constant across the channel and proportional to Kn. The Knudsen number is an
order of magnitude larger in this case, so this term has a much stronger influence on

the shape of the distribution.

Figure 3-6: Theoretical streamwise velocity distribution for a transition-regime micro
channel calculated with the slip-flow analysis.

Upon plotting the computed distribution for comparison (Figure 3-7), it becomes

evident that the assumptions supporting Equation 3.3 are beginning to fail. Both

o4

y
1

A\ A AN

Figure 3-7: Computed streamwise velocity distribution for the channel of Figure 3-6

the slip flow and maximum speeds at a given z-location are higher than predicted by
as much as 40%. This allows the channel to support a much larger mass flow than
would be predicted by the slip flow theory, which, in turn, predicts a larger mass flow
than the traditional Navier-Stokes analysis.

A final exposition of transition behavior may be made via the similarity analysis of
the previous section. As discussed in Section 1.2, the transition regime is commonly
considered to begin at Kn = 0.1. This assertion may be tested by noting that Kn
increases with downstream position. The similarity profiles, which depend on the slip-
flow solution, may then be computed for each position and compared to the analytical
prediction. Because each position has a Knudsen number associated with it, the value
for which the slip flow analysis fails may be determined by finding the point where
the experimental and analytical curves begin to diverge. Toward this end, Figure 3-8
contains the computed maximum and minimum similarity speeds, plotted with the

analytical prediction in a fashion identical to that of Figure 3-4. The Kn distribution

35

was then overlaid to fzcilitate determining its value when the slip-flow analysis fails.

— DSMC

- - == Prediction [7¢ pp——
0.3 e[T T

0.2 /o4
.§ ,-"’! j 03 g_
&8 7 1 &
t!r - |, Z
= Tl 102 3
.‘% otk e] g

-
-
-
-
,,,,,
]

x/H

Figure 3-8: Computed and analytical similarity speeds with Knudsen number overlay.

It may be concluded from this figure that the slip flow analysis begins to fail at
approximately Kn = 0.15. This supports the oft-used boundary for the transition
region, Kn = 0.1. This limit may be understood if the slip boundary condition,
Equation 3.1, is viewed as an expansion of the wall velocity in powers of Kn. The
no-slip condition is then the zeroth-order solution, and Equation 3.1 is the first-order
solution. It is therefore logical that the neglected higher-order terms would begin to
significantly affect the result when Kn exceeds 0.1. A second-order accurate boundary
condition in terms of the continuum variables is presented in Ref. (24], though it
should be remembered that the Navier-Stokes equations themselves are only strictly

valid to first order in Kn.

56

3.3 Supersonic Micro-Nozzles

The final cases presented in this chapter are supersonic micro-nozzles. These may
be viewed as channels whose upper and lower walls form a parabolic contraction /
expansion. Two such nozzles are discussed, one with an area ratio of 3.5 and sonic
flow at the throat, and one with an area ratio of 2.0 and subsonic flow at the throat.

The grid for the latter case is shown in Figure 3-9.

Sres . <[]

Lr AR

7452237;:».? IR

A e e I e MR A RS

Rioas o SRR

o s R R AR INRERY

. b R AR ERERO N

I 1 G L A
~ ®

> S A AT AT
> R = :,-.’:;?‘4‘ Grarirg SN A

R §> 5 IR : ::5:‘5:?:5315‘4%3'7%1 a??

0.5 RERFRRERIERRER AR,

SESNESEIEE PR

SRR R 0%l

0')-‘)‘ 1 1 1 1 1)

0 1 2 3 4 5 6

x/H_t

Figure 3-9: Computational grid for a micro-nozzle with area ratio 2.0.

Analytically, a sufficiently long nozzle can be considered quasi-1D and the solu-
tion given in Section 3.1 may be used, with appropriate modifications for the slowly
varying channel height. The nozzles presented in this section, however, have a total
length of only six times their throat height, so the quasi-1D assumption is not valid.
In addition, the significant expansion may cause the Kn-regime to change at one or
more streamwise positions. These factors make analytical and continuum-based nu-
merical treatment of these geometries difficult. Nonetheless, nozzles such as these
may play important roles in devices such as micro-rocket thrusters and micro-gas
turbine generators, for example. Investigating their behavior is therefore a valuable
task for which DSMC is well-suited.

Both cases were run with an inlet at 10 times the reference pressure and ex-
hausted to ‘vacuum’. The latter condition was implemented by simply removing
from the simulation any particle which crossed the outlet boundary and refraining

from introducing new particles at those faces. The walls were isothermal at the ref-

o7

erence temperature with full thermal and momentum accommodation. The working

fluid was Helium (w = 0.20), which was supplied at the reference temperature.

3.3.1 Sonic Throat

The first nozzle presented has an area ratio of 3.5 and 4200 cells. With the boundary
conditions given above, the resulting pressure ratio was approximately 24 and the
outlet Knudsen number, based on the bassage height, was 0.03.

The Mach number distribution for this case is shown in Figure 3-10, A number
of interesting features are visible. First, as normally expected, the flow is sonic at
the throat. Second, a Mach number of 2.4 is reached. This is considerable when it
is noted that the nozzle is only approximately 600 inlet mean free paths in length.

Finally, the slip flow speed is substantial, exceeding Mach 0.5 near the outlet.

The temperature distribution for this micro-nozzle is shown in Figure 3-11. It
is clear that, unlike the channel case, this flow cannot be considered isothermal. A
strong temperature gradient exists in both the streamwise and transverse directions,
creating another obstacle to analytical treatment. This is also a very notable feature

when the diminutive dimensions of the nozzle are considered. Though the walls are

o8

only about 30 local mean free paths apart at the exit and are isothermal with full
energy accommodation, the fluid is still able to realize a substantial reduction in
temperature. The effect of rarefaction has therefore been to significantly reduce the
thermal communication between the wall and the fluid. This assertion is supported

by noting the large thermal slip at the wall.

Figure 3-11: Temperature distribution for a micro-nozzle with a sonic throat.

3.3.2 Subsoric Throat

The second nozzle presented is identical to the first, excej)t its area ratio is reduced
to 2.0 and its grid to 2400 cells. With the boundary conditions given above, the
resulting pressure ratio was 10.2 and the outlet Knudsen number was 0.03.

The Mach number distribution for this case is shown in Figure 3-12. This dis-
tribution was plotted in the Same manner as the previous case, only the viewpoint
was shifted to look along the y-axis. An interesting feature is now visible: the outlet
flow is supersonic, but the sonic point is downstream of the throat. This result is at
odds with the inviscid, quasi-1D conclusion that sonic flow may only be attained at

a point of minimum area.[20] The highly viscous nature of this flow (due to the close

99

proximity of the walls) invalidates this prediction, however, causing the gas to con-
tinue to accelerate downstream of the throat despite the fact that it is still subsonic

and the duct is diverging.

20

15

05

x/H,

Figure 3-12: Mach number distribution for a micro-nozzle with a subsonic throat.

Because a significant portion of this nozzle is subject to the competing effects
of deceleration due to geometry and acceleration due to viscosity, its outlet Mach
number is considerably (= 30%) smaller than the previous case for similar boundary
conditions. This highlights the importance of proper design in such a device. As one
of the few analysis tools valid for these flows, DSMC has considerable value to such

an effort.

60

Chapter 4

Scaling Issues!

The previous chapter demonstrated that a conventional DSMC code can accurately
treat many geometries of interest to MEMS designers. Unfortunately, the demanding
cell size and time step constraints outlined in Chapter 1 make DSMC modeling of
even certain micro-devices very difficult. For example, the mean free path and most
probable molecular velocity of air at standard, sea level conditions are approximately
60nm and 414 m/s, respectively. Sizing the cell lengths at one A and the time steps
at 3¢}, as called for in Chapter 1, a 2-D simulation of the smallest micro-channel of
Arkilic et al. (1.33x5000 pm) [23] would require over a million cells and, consequently,
at least ten million particles. In addition, the time steps would be only 36 ps, causing
unsteady cases, even those with microsecond time scales, to be very expensive.

In response to this situation, the consequences of relaxing the cell size and time
step requirements commonly placed on DSMC are explored in this chapter. The goal
of this effort is to allow the cells in these calculations to be sized by the flow gradients,
as in continuum CFD, rather than by the molecular scales. This is a complex issue,
howevei, because this sizing violates some of DSMC'’s underlying assumptions as
the scale length of the gradients increases, reducing the Knudsen number. Certain
features of the physical situation are therefore altered or lost. The key to a successful

simulation, and the goal of this chapter, is to identify these features and assess their

1The author is iidebted to David Gonzales, a co-author of the paper (AIAA-95-2088) on which
this chapter was bascd, for allowing the material to be presented here.

61

importance to the flow.

4.1 Scaling Rules

As discussed in Section 1.4.3, the cell size in a DSMC calculation should be comparabie
to the mean-free-path of the gas so collision partners may be selected without regard
to their position in the cell. In this chapter, it will be convenient to express this

constraint in terms of a ‘cell Knudsen number’, Kn,:

A
= —_——
Kn, = 1 (4.1)

where Az, is a typical cell dimension (again, the subscript “d” refers to dimensional
quantities).

A second requirement (discussed in Section 1.4.2) is that the time step, Aty be
small compared to a characteristic time so particle movement and collisions may be
decoupled:

Azg

Aty < (42)

m
where c;, is the most probable molecular speed.
Borrowing from traditional computational mechanics, this constraint may be con-
veniently expressed as a ‘CFL’, or Courant-Friedrich-Lewy condition:

¢ Aty

Az, <L (4.3)

Physically, satisfying this condition requires a particle to reside in the same cell for
a few time-steps to provide it with ample opportunity to interact with other particles.
This ensures that its information can be distributed properly through the computa-
tional domain. It is important to realize that, unlike its CFD counterpart, this CFL
condition is not a stability requirement, but a validity requirement. Violation of the
condition will still yield results, but they may be inaccurate. A DSMC computation

must therefore be constructed with very careful attention to its scaling constraints

62

because the algorithm itself will give no indication that its results are completely
non-physical.
Under the NTC collision method outlined in Section 1.4.3, the number of collision

pairs, Ny, to be considered in a given cell is computed through the equation:

N2
< 4.4
Np x AtﬂVc (4.4)

where V, is the normalized cell volume, N, is the number of computational particles in
the cell, and 71 is the reference simulation number density, which is the total number
of computational particles divided by the non-dimensiona! domain volume.

Noting that the normalized cell volume scales like Kn.~* and the simulation num-

ber density scales like N.Kn.>, it may be concluded that:

%’: ox At. (4.5)

Thus, for a fixed size computation (N, held constant), N, depends only on the time
step chosen to advance the solution.

The ratio of potential collision pairs to the number of particles in a cell will be
referred to as the ‘over-collision ratio’. A value of one implies that, on average, each
particle will considered for a collision during every time step. In a well-resolved
DSMC computation, where At = 0.2, roughly 20% of a given cell’s particles will be
considered for collisions.

The preceding expressions reveal the essential scaling issues involved in applying
DSMC methods to low-Kn flows: as the physical size of the problem increases, it
becomes computationally impractical to maintain a cell size on the order of the mean-
free-path. It must therefore increase or, using the terminology introduced above, Kn,
must decrease, violating the constraint of Equation 4.1. In addition, as the cell size
increases, the time step should be reconsidered. Two options exist: scale At so the
CFL number remains censtant, or hold it at some small value and let the CFL number
decrease.

The first option maintains proper information propagation across the domain,

63

preserving computational efficiency. Unfortunately, increasing At also causes rapid
growth in the number of collision pairs to be considered, resulting in an over-collision
ratio greater than one, as well as a large number of computationally expensive colli-
sions to process.

The second option maintains a reasonable value of N,/N¢, but results in a very
small CFL number, causing an inefficient advancement of the solution and accumu-
lation of statistics. This inefficiency springs from the fact that a small CFL number
implies that most particles will require many time steps to cross a given cell. The
collision phase of each time step will then involve essentially the same group of parti-
cles as the previous time step because very few particles leave or enter the cell. This
situation is therefore equivalent to using a large time step but adding the compu-
tationally pointless exercise of moving the particles some small distance at several
points in the collision phase. It may therefore be argued that it only makes sense to
maintain a constant CFL number, regardless of the cell Knudsen number.

A solution to this problem was proposed by Bartel et al.[25], who recognized that
many of the large number of collisions called for by Equation 4.4 serve no purpose
other than to reinforce a Maxwellian distribution amongst the particles in a given
cell. It should therefore be sufficient to restrict the number of collisions to some small
value (comparable to the number of particles in the cell) and still take large time
steps during the computation. In the current terms, Bartel’s suggestion was to limit
the over-collision ratio to some (arbitrary) value less than its “true” value given by
Equation 4.4. This approach was applied by Bartel et al. to a Couette flow and an

expanding nozzle flow with good results.

4.2 Numerical Investigation

To explore these issues in detail, two canonical cases were run with the current code:
a Rayleigh flow and a free shear layer. These cases were chosen for their simplicity,
the existence of either analytical or published solutions, and their relatively small

CPU time requirements. Ni’s bump was also run to confirm assertions made in the

64

course of this work.

4.2.1 Rayleigh Flow

One-dimensional, unsteady Rayleigh flow was chosen as the first model problem for
this investigation. This flow, illustrated in Figure 4-1, consists of a stationary gas
subjected to the sudden acceleration of its lower boundary to a constant speed, U,.
It is well-suited to this investigation because its length scales are not imposed by
geometry, but rather by time and viscosity. In addition, it is a one-dimensional
flow so computations are compact and run quickly, allowing several test cases to be

considered.

Figure 4-1: Schematic of a One-Dimensional Rayleigh Flow

For this series of calculations, the wall velocity, U,, was set to 0.2 (Ma = 0.22) in
order to ensure the applicability of the incompressible Navier-Stokes solution (given
below). All cases were run with Helium (w = 0.20) and the CFL number was held at

0.3.

Analytical Solution

The analytical solution of the Rayleigh problem has two distinct regimes based on

the Knudsen number. For large Kn, the collisionless Boltzmann equation is applied.

65

The resulting solution is given by [9]:

u= %erfc (\/z_ngt) (4.6)

where R is the gas constant, T is the temperature, and erfc() is the complimentary
error function.

For small Kn, the incompressible Navier-Stokes equation is applied. For the
Rayleigh probiem, this reduces to:

du _ 0*u

where v is the kinematic viscosity coefficient, which is proportional to the mean free
path.
This expression can be solved using the slip-flow boundary condition of Equa-

tion 3.1, resulting in:

. erfe()
¢ o K+ 1 (48)
where £ is a similarity variable:
Y
= , 4.9
=i (49

and Kn is the Knudsen number, defined here in a somewhat unusual, but convenient

manner as:

A
Vvt |

This is a more general version of the classical Rayleigh solution.[26] Note that,

Kn = (4.10)

in this solution, Kn is a function of time and becomes infinite as ¢t — 0. This
makes intuitive sense because the characteristic scale of the solution is the momentum
thickness of the viscous layer, which is initially zero, but grows with time. One
implication of this time-dependent Knudsen number, however, is that care must be
taken in evaluating the solution at £ = 0 and oo, where appropriate limits of both ¢

and y must be computed.

66

Well-Resolved Computation

This section presents DSMC results for well-resolved cases (i.e. where Kn, > 1).
These are intended to demonstrate the resolution of the current grid, which was used
for all Rayleigh flow cases, as well as to serve as points of comparison for later sections,
where the geometries are not fully resolved and scaling issues are important.

The first of these results, Figure 4-2, shows the computed near-wall velocity pro-
file, u(y), at t = 0.004. Because this time is significantly smaller than the mean
collision time (1/7/2, under the non-dimensionalizations of Section 2.1), the collision-
less Boltzmann solution (Equation 4.6) applies. The solid line represents the analytic
solution while the symbols represent the DSMC result. For this computation, the
cell Knudsen number was 1.3 x 10* and the time-step 2.5 x 1075, The agreement is
excellent, providing evidence that the grid is sufficiently dense to accurately resolve

the profile.

0.02 ‘ . T - T

0.018f
o DSMC

— Analytical

T
i

0.016

0.014

T

T

0.012

> 0.01f

0.008

0.006

0.004

-8.1 0 0.1 0.2 0.3 0.4 0.5
u/ Uy

Figure 4-2: Compariscn of DSMC and collisionless Boltzmann solutions to the
Rayleigh problem at ¢t = 0.004.

As the boundary layer grows with time, Kn increases through the point where

collisions become important and the fluid begins to behave as a continuum. When

67

Kn leaves the transition regime (defined in Section 1.2 as 0.1 < Kn < 3), the slip-
flow Navier-Stokes solution of Equation 4.8 becomes applicable. Figure 4-3 contains
a comparison of DSMC results with this solution at ¢ = 100. It may be noted that
Kn = 0.07, so there is still a perceptible velocity slip at the wall (ie. u(0) < U,).

50 L T T T

45 ° o DSMC

°4

S — Analytical
(o]

?

40

20

15

10

-8.2 0 0.2 0.4 0.6 0.8 1
u/u wall

Figure 4-3: Comparison of DSMC and slip-flow Navier-Stokes solutions to the
Rayleigh problem at ¢ = 100.

If, as Figure 4-3 suggests, DSMC is correctly solving the Navier-Stokes equations,
the velocity distribution should be a slight perturbation from Maxwellian, given by

the Chapman-Enskog distribution for a one-dimensional isothermal shear flow [1] as:

vu'v 6u) (4.11)

1 =51~ G,

where f, is the Maxwellian distributicn. This distribution was computed and is shown
in figure 4-4, sampled at y = 2.33, t = 40. Here, the mean velocity, u, has been
subtracted and the four quadrants of (u/,v') have been collapsed onto one through
algebraic operations which reinforce the perturbation by taking advantage of its anti-

symmetry. It should be noted that the Chapman-Enskog distribution is formally only

68

valid for small perturbations. Because this is a low Mach number computation, the
thermal fluctuations are significant and therefore only qualitative comparisons are
appropriate. Nevertheless, the deviation from Maxwellian computed in the DSMC
simulation is in good agreement with its predicted structure, indicating, as expected,

that the gas is weakly perturbed from equilibrium by the shear.

T

25} -

Figure 4-4: Distribution of velocity perturbations for a well-resolved computation.

In the following section, where this case is recomputed with various values of Kn,,
a quantitative comparison of the shear layers will be needed. One such a measure
is obtained by performing a non-linear least-squares fit of the streamwise velocity
data to the profile of Equation 4.8, with v as the free parameter. To demonstrate the
dependability of this measure, Figure 4-5 shows the time-dependence of the computed
viscosity for the well-resolved computation as it evolves from ¢ = 0 to 200.

With the non-dimensionalizations used in the code, the normalized kinematic
viscosity coefficient of Helium is 0.64. From Figure 4-5, it may be seen that the DSMC
solution under-predicts this viscosity for small times, but appears to asymptote to
nearly the correct value as Kn -+ 0. The under-prediction at early times may be
explained by noting that Kn is not yet in the region of validity for Equation 4.8. The

slight over-prediction at later times is most likely due to a variety of factors including

69

I) 1) 0.20
07
[A o © o o ©° °
[o °
06 |- o
5 —<0.15
§ g
S c
§ 05 - ° g
5| o v
L 4
A 1
_E A Kn 5
8 | lo &
S o4t 010
| A]
[A
03| A
s A R
A
F A L, doos
0'2 " L A PR | " " " L 1 " " " A 1 N L M " |
1] 50 100 150 200
Time

Figure 4-5: DSMC-computed viscosity and Knudsen number as a function of time for
a well-resolved computation.

statistical scatter due to the low-Mach number and, a weak influence of the far wall

(located 200 A from the moving surface).

Under-Resolved Computations

The previous section demonstrated that the DSMC code can accurately reproduce the
analytical solution of the Rayleigh problem. This is not surprising, however, because
the method’s ability to model the true gas physics was demonstrated in the previous
chapter and by many other researchers. These results were presented mainly as a
means of verifying the proper matching of the code and grid to the problem and for
calibrating the measures used in the scaling investigation.

This investigation is begun in the current section by manipulating the previous
Rayleigh calculaticn. In all cases, the grid geometry was maintained, but it’s lin-
ear dimensions were increased by a multiplicative factor. To hold the CFL number

constant?, this factor was also applied to the time step. The number of particles was

2Selected computations performed with lower CFL numbers yielded almost identical results,
supporting the assertions made in Section 4.1.

70

not changed.

In a scaled calculation with a high over-collision ratio, it is expected, as argued
above, that the particles in each cell will approach a Maxwellian distribution, rather
than the proper, perturbed Maxwellian shown in Figure 4-4. This hypothesis was
tested by running a case with an over-collision ratio of approximately 5 (Kn. = 0.05).
The distribution was then sampled from the same grid location as the previous case
at a time selected to obtain approximately the same point in the profile (ie. the
same value of u(y)/U,). With the current scaling, this corresponds to y = 46.67
and t = 2700. The resulting distribution is shown in Figure 4-6, collapsed onto one

quadrant in the same manner used in Figure 4-4.

T T L T L
25} \ :

Figure 4-6: Distribution of velocity perturbations for an over-collided (under-resolved)
computation

In contrast to the previous case, there is no well-defined structure to the pertur-
bations in Figure 4-6. This lack of structure may be quantified by noting that the
integral of the collapsed distribution shown here is an order of magnitude smaller
than that for the well-resolved case. The implications of this result are somewhat
subtle: if each cell in the over-collided computation contains an equilibrium distri-

bution, then the Navier-Stokes equations, which correspond to a weak perturbation

71

from the Maxwellian state, are not being solved, but rather the Euler equations, which
represent an ideal gas in a perpetual state of equilibrium. Indeed, the closer each cell
is driven to equilibrium, the more “ideal” the fluid should become. If this is in fact
true, one could argue, then the computed viscosity of the Rayleigh layer should go to
zero as the cell Knudsen number decreases, confining the effect of the wall motion to
an increasingly narrow layer which asymptotes to a vortex-sheet singularity at y = 0.

When this assertion is tested through a series of runs with different grid scalings,
however, a surprising result is found: instead of a decrease in viscosity as Kn, — 0,
the opposite occurs. As Figure 4-7 indicates, the gas viscosity calculated from the

DSMC computations increases as a function of the cell size (Ax = 1/Kn,).

3

10 : - : .
;
10°
2 10I
10°
q
-1
10 1 aaal 1
10° 10' 10° 10° 10*
1/Kng

Figure 4-7: DSMC-computed viscosity versus cell size.

Three sets of data are reported in Figure 4-7: in the first set, denoted by circles,
the number of collisions computed during each time step was not limited; in the second
set, denoted by stars, a collision limiter of 5 was enforced; in the last set, denoted by
crosses, a collision limiter of 1 was employed. (A collision limiter of 1 implies that

N, = N, regardless of the value of called for by the NTC equation (Equation 4.4).)

72

At low values of 1/Kn,, the correct v is produced. However, as the cell size rises
above about 10, the effective viscosity begins to increase. This increase appears to
be linear over a very wide range of Kn,.

This behavior stems from the particulate nature of the simulation. At low Mach
numbers, the random thermal velocity of the gas will always result in particles mov-
ing in the y-direction even though there is no net motion normal to the surface. In
addition, because DSMC chooses collision partners in a given cell without regard to
their location, momentum is uniformly diffused through the cell within a few time-
steps. In a properly-resolved computation, where the cell dimension is approximately
one mean-free-path, this behavior is molecularly “correct” and results in the proper
physical viscosity of the fluid (helped, of course, by an appropriate value of the VHS
exponent, w). However, in an under-resolved computation, the disregard for a par-
ticle’s location in the cell results in a diffusion of momentum due to thermal motion
that is far in excess of the physical viscosity and it is this artificial viscosity that is
exhibited in these results. In many cases, this thermal motion would not present a
problem. However in the presence of a strong mean velocity gradient (as in the case
of the wall-driven Rayleigh problem), the thermal motion, coupled with the mean
shear, results in an artificial Newtonian viscosity, inversely proportional to the cell
Knudsen number, Kn., and greater than the physical viscosity.

This argument suggests that the artificial viscosity should be most apparent at
low Mach number and will abate as Ma increases because the relative importance of
thermal fluctuations is reduced. In other words, at high speeds, particles will be
swept from the domain by the mean flow before they have the opportunity to diffuse
appreciably in the transverse direction. This was not found to be the case for the
Rayleigh problem, however. The apparent discrepancy is explained by noting the
flow’s one-dimensional nature, which was exploited in this calculation by employing
a ‘wrap-around’ boundary condition. Here, exiting particles are reintroduced to the
domain on the opposite edge, where they can continue to diffuse in the y-direction.

A 2-D, spatially-developing flow is therefore needed to verify the above argument.

73

4.2.2 Boundary-Free Shear Flows

A boundary-free shear flow was selected to test the above assertion. Here, two streams
at different velocities are introduced at z = 0; the upper stream moving at U, and

the lower at U,. This arrangement is illustrated in Figure 4-8.

A

U,

e x

AAA

_>

__.h
_h

Figure 4-8: Schematic of boundary-free shear flow computational geometry.

U,

Figure 4-9 shows contours of velocity in the z—y plane for a well-resolved calcu-
lation where U; = 1.5 (Ma = 1.6), U, = 2.0 (Ma = 2.2), and the working fluid is
Argon (w = 0.31). Note that the singularity at £ = 0 quickly diffuses and a slowly
thickening shear layer develops.

By integrating the streamwise velocity across the layer, a flow can be characterized
by its momentum thickness, 6:

6= HLUIZ [- we - vy (4.12)

where 6 has been normalized by the upper stream velocity, U, and the computational
domain height, H. This momentum thickness is shown in Figure 4-10 as a function
of z for several computations at different Kn..

Theoretically, the spatial evolution of a laminar shear layer shows a square-root

74

25 T T T T

0 20 40 60 80 100 120

Figure 4-9: Contours of streamwise velocity in a well-resolved DSMC computation of
a supersonic shear flow.

growth in momentum thickness [26]:

6 x /x (4.13)

which is well captured by all of the test cases. Anamolies are observed, however,
when comparing these cases to one another.

First, comparing the well-resolved case (120x60) to the first scaled case (2400x
1200), it is expected that the twenty-fold increase in linear dimensions will result
in a V20 = 4.47 decrease in the shear layer thickness at the same value of z/H.
In Figure 4-10, however, the shear layer only decreases by a factor of approximately
1.3. This is again explained by the artificial viscosity introduced by the under-resolved
grid: as the grid is scaled from the well-resolved case, this artificial viscosity surpasses
the physical viscosity, altering the proper relationship between the curves because the
cases appear to be run with different fluids.

Second, a further doubling from a scale factor of 20 to 40 (relative to the base-

line case) is expected to further reduce the shear layer thickness, but was found

75

o_m7 T T T Y T T T Y T T Y T -r \J T -
— 120x60
[-oeoeee- 2400x1200]
0.008 - —-—m - 4800x2400 .
[T T T~ 4800x2400 High Speed 1
0.005 |- T
T J"-, ‘-;“". . - y
] PPN S T
< 0004 f v
E .,:-'-.’:’ i]
@ Mad /;‘/’ /""‘ﬂ
L ’_:’_r ___"-’- 4
0.003 _" _.r',,." J_/"/ —.
4.7 —_
.114"\ /"/v -
3 A _’f‘ -
N . v i
0.002 [”;\, //./’]
./ _
7
- -l’/ﬂ//, 1
0.001 :" ’l—/l ,/ —-
-~
Y ,\/
L 2 | A s i " 1 N " N n 1 i
0.5 1.0 15
x/H

Figure 4-10: Development of shear layer momentum thickness as a function of down-
stream distance.

to have a negligible influence. This “saturation” effect is related to the particle-
transport/collisional-smearing mechanism causing the artificial viscosity. Because the
grid dimensions and time step were scaled by the same factor (ie. the CFL number
was held constant) identical particles moving through the two cases will pass through
the same locations on the grid and undergo the same number of collision phases. In
other words, for this Mach number, a characteristic levei of artificial viscosity has
been reached which is dependent on the grid itself. For these scaling factors, this
grid-based viscosity is so much greater than the physical viscosity that the flow has
become insensitive to its physical dimensions.

Finally, when the Mach number of the incoming flow is increased, keeping the
ratio U; /U, constant, the theory predicts no change in the shear layer thickness. The
trace in Figure 4-10 for this case (labelled ‘4800x2400 High Speed) shows a thinner
shear layer, however (still not reaching its correct value, but closer nonetheless). This
improvement is due to the lower importance of thermal velocities with respect to the

stream velocity, which results in a lower artificial viscosity. It should be noted that,

76

as in the Rayleigh problem presented in the previous section, the artificial viscosity
was observed to be relatively insensitive to the use of a collision limiter and to the
choice of the CFL number. In this geometry, however, it was observed that a collision
limiter did thin the layer very slightly. This is perhaps due to the fact that, with a
collision limiter, there is slightly less “uniformity” within each cell because there are

fewer collisions, so momentum is not smeared across the shear layer as rapidly.

4.2.3 Euler Flow

The results of the preceding section illustrate two competing trends in DSMC com-
putations as the cell Knudsen number decreases. On one hand, a high value of the
over-collision ratio, N,/N,, drives the particles in each cell toward a Maxwellian, or
equilibrium, distribution. If this were the only effect present, DSMC would therefore,
in these cases, formally solve the Euler equations, which are the governing dynamic
equations for an equilibrium gas. A competing effect exists, however, because the
essential nature of DSMC - the random motion of particles coupled with a disregard
for the location of collision partners in a cell - creates an artificial viscosity from the
diffusion of momentum through the domain.

From this, one might expect that a scaled DSMC code should fail most dramati-
cally when attempting a low Mach number viscous flow and be optimal for modeling
a high Mach number, inviscid flow. The former assertion was demonstrated in the
previous sections; this section presents results to confirm the latter.

The test case selected for this task, known as “Ni’s Bump”, is often run to demon-
strate inviscid CFD methods.[27) The geometry consists of a two-dimensional duct
with a circular-arc excrescence placed on the floor. A bump with 20% of the duct
height was chosen for this work. This geometry and a traditional Euler code solution
are shown in Figure 4-11. The inlet Mach number is 3.28 and the working fluid is

Argon.

77

100

LI B

50

llllllll

0 1 1
0

Figure 4-11: Mach number contours of an Euler solution to Ni’s Bump.

Results

Figure 4-12 shows Mach Number contours for a well-resolved DSMC computation of
Ni’s bump with duct dimensions of 125x30 A. This run utilized about 42,000 particles
on a grid of 1,860 cells with w = 0.31. The flow reached statistical equilibrium
in approximately 10 minutes, but an additional two hours were required to gather
adequate statistics for data analysis (on an SGI Indigo). Although specular walls
were employed, and thus a viscous solution is not being attempted, it is instructive
to note that the effective Reynolds number of the DSMC computation, based on the
inlet Mach number and the bump length (which is dimensional due to the mean free

path grid scaling), is 243.

3°E = |

20; L
- 4/

10 |

N g)| %ﬁ
0 20 40 60 80 100 120

Figure 4-12: Mach number contours of a well-resolved DSMC computation of Ni’'s
Bump.

By comparing this solution to that of the Euler code, it may be concluded that
the flow is faithfully reproduced except for an apparently large shock thickness in
the DSMC result. This is to be expected since, although there are no viscous effects
due to the boundaries, the DSMC method is accurately solving the shock structure,

where viscous effects are strong. Because the entire grid is only 125 mean free paths in

78

30000

20000 |-
[
r

0 : 1 1 1 L U1 N g 1 3 L | ﬂ

20000 40000 60000 80000 100000 120000

Figure 4-13: Mach number contours of a scaled DSMC computation of Ni’s bump.
extent, however, this shock appears excessively thick, though its thickness is actuaily
quite comparable to the physical case (= 10 A). In addition, other features of the flow,
including the shock angles, the leading and trailing edge shocks, the shock reflections
and the shock-shock interaction toward the rear of the duct, are properly reproduced.

Figure 4-13 shows the same computation, scaled by a factor of 1,000 so the di-
mensions of the duct are now 125,000 x 30,000 A (approximately 9 x 2 millimeters at
atmospheric conditions). For this case, a collision limiter of one was used. The grid
resolution was also doubled in each direction (compared to the last case) to 7,750
cells. This was necessary because the shock thickness was observed to asymptote to a
larger-than-expected minimum value as the cell Knudsen number decreased. This was
identified as a grid resolution issue and it was found that, in common with standard
CFD practice, the computed flow converged to a grid-independent solution through
successive refinements in the grid (the average number of particles per cell was held
constant).

When compared with the previous case, the shock appears to be much thinner,
although it is now actually thicker than a physical shock due to the much larger grid
dimensions. This large shock thickness is due to the artificial viscosity inherent in a
continuum application of DSMC. This does not render the solution invalid, however; it
is, in fact, common practice in inviscid continuum CFD codes to explicitly introduce
an artificial viscosity (usually second-order) in order to stabilize the solution near
steep gradients such as shocks. The effect of this artificial viscosity is, as in the
DSMC solution, a thickening of the shocks. DSMC does not require any explicit

introduction of artificial viscosity, however; it provides its own, as demonstrated by

79

these results. Additionally, no oscillations in the solution are observed in the regions

surrounding the shock.

80

Chapter 5

Conclusions

This thesis has presented many aspects of DSMC’s application to micromechanical
devices. In the preceding chapters, the motivation behind this application, the al-
gorithm developed for it, some of its results, and the issues involved with scaling it
beyond its traditional range were discussed. This chapter draws conclusions from
these efforts to evaluate DSMC'’s potential as a tool for MEMS development.

As discussed in Chapter 1, the high Knudsen numbers of many flows of interest
to MEMS designers make them inaccessible to continuum-based numerical methods.
While analytical models are being developed for moderately-rarefied flows in simple
geometries [23], the complexity and mixed-regime nature of many MEMS limits the
applicability of these methods. Experimental study of these flows has also proven to
be difficult due to the miniscule quantities which must be measured. In the course
of their micro-channel investigation, for example, Arkilic et al. [23] were required to
develop a system capable of measuring mass flows on the order of nanograms per
second. In response to this situation, Chapter 3 presented a small subset of the
micro-flows of interest, to both the fluid-dynamicist and the MEMS designer, which
are easily treated with DSMC.

In Section 3.1, DSMC results for a slip-flow regime micro-channel were compared
to an analytical solution presented by Arkilic et al.[23] Several aspects of the computed
and theoretical streamwise velocity and pressure distributions were considered. In

all cases, the numerical results were found to compare well with their analytical

81

predictions. In addition, by manipulating the analytical relations, an expression for a
streamwise velocity ‘similarity’ profile was developed. It was subsequently found that
the computed velocity distribution, which is a functicn of z, collapsed quite well to
the predicted z-independent profile when the flow variables were processed according
to the theoretical expression.

These findings support the accuracy of both the code and the analytical work
and demonstrate another valuable function of DSMC computations: the evaluation
of analytical models for rarefied flow behavior. Developing these models is an impor-
tant task because a great number of MEMS geometries fall into the slip-flow regime.
Analytical tools have great value to the designer because they are much less expensive
than a full DSMC calculation but are able, for certain geometries and flow regimes,
to quantify behavior invisible to continuum techniques. They are difficult to validate,
however, because, as mentioned above, the effects they describe are often too small
for effective experimental investigation.

In Section 3.2, a DSMC solution for a transition regime micro-channel was com-
pared to predictions from the slip-flow expressions of Arkilic et al. By considering
the form of disagreement between these results, several aspects of flow behavior in
this regime were illuminated. This is an especially important application of DSMC
because very few techniques, either analytical or numerical, are available for analyz-
ing these flows. This is, consequently, the least understood of the four Kn-regimes,
posing a significant problem for the MEMS community because the geometries and
working conditions for many devices place them here. Additionally, through the sim-
ilarity analysis developed in the previous section, the onset of transition behavior was
observed as the Knudsen number increased down the channel. This type of work is
intended to determine the applicable range of various models and the mode of their
failure. This is valuable because applying convenient models to the largest possible
range of problems is preferable to performing large numerical simulations, especially
early in the design process.

In the final section of Chapter 3, parabolic micro-nozzles were examined. These

cases are intended to represent devices which contain complexities not amenable to

82

other forms of solution. Their more complicated geometry, lack of isothermal flow,
and sharp gradients pose serious problems for many types of analysis. No special
considerations for these features were required to perform the DSMC calculation,
however. This demonstrates the versatility of the method and its value for complex
flows, which are common in MEMS devices and will become more so as the field
matures.

Chapter 4 extended this work by investigating the issues inherent in scaling a
DSMC code to treat continuum flows. It is important to understand these issues
because many MEMS devices contain regions in this regime. Due to its molecular-
level scaling, however, treating them with a fully-resolved DSMC calculation is very
computationally expensive. A greater understanding of DSMC'’s behavior when its
scaling constraints are relaxed is therefore valuable because it may enable the simpli-
fied treatment of certain geometries.

In this chapter, two primary effects were observed when the grid was scaled beyond
the traditional constraints of DSMC calculations. The first of these was previously
identified by Bartel et al. [25]: when the scaling reaches a point where particles
undergo multiple collisions every time step, the velocity distribution in each cell
approaches an equilibrium (Maxwellian) form. The implication of this, which was
not previously realized, is that the DSMC technique is formally solving the Euler
equations, not the Navier-Stokes equations, in these regions. In cases where this is
appropriate, Bartel et al. note that the computation may be greatly accelerated by
employing a ‘collision limiter’ large enough to enable each cell to reach equilibrium,
but not so large that this state is needlessly reinforced through continued interaction.

A second implication of DSMC'’s application to continuum flows is that the thermal
velocity of the computational particles, coupled with the physically large cell size,
results in an artificial viscosity which is proportional to the cell Knudsen number
and decreases with flow Mach number (because the thermal fluctuations become less
important). This is a consequence of the DSMC collision algorithm, which tends to
distribute momentum and energy uniformly through the entire cell due to its disregard

for the position of colliding partners within that cell. This tendency is particularly

83

strong when a large number of collisions are performed during each time step, as is
the case when Kn, is small. This artificial viscosity can be a nuisance when solving
the Navier-Stokes equations at low Reynolds numbers, where the physical viscosity
is important to the overall flow behavior, because it is implicit to the scheme and
represents a first-order error term. Large reductions must therefore be made in the
cell size to bring the computed viscosity acceptably close to the true value. This
artificial viscosity may be an asset for solving Euler flows, however, because it acts
as a built-in, self-adjusting means of broadening poorly-resolved flow features such
as shock structures, serving a similar function as the artificial viscosity explicitly
included in many traditional CFD methods.

In summary, the unique features of rarefied flows have many implications for
MEMS designers. The larger mass flow rate for a given geometry and inlet conditions,
found in Sections 3.1 and 3.2, must be considered when designing control systems for
micro-chemical reactors and the decreased thermal communication between the fluid
and its boundaries, demonstrated in Section 3.3, must be considered in applications
involving temperature measuring devices or heaters, for example. These flows are
not well-studied, however, due to the breakdown of the transport assumptions which
characterize the Navier-Stokes equations, the basis of most common fluid-dynamic
analysis tools.

DSMC'’s ability to calculate in any of the four Kn-regimes without modification
makes it ideal for investigating flows related to MEMS devices, particularly those with
regions in different regimes. It is therefore useful to MEMS researchers for validating
analytical models, investigating flow behavior, and modeling potential devices. In
addition, it is quite straightforward to include flow features such as chernical reactions,
multi-species mixing and particle transport in the code due to its particulate nature
and modular construction. In addition, inclusion of unstructured grid capability
and the trajectory-tracing movement scheme enable the code to handle arbitrary
geometries. This is a valuable asset when analyzing the complex structures included
ir many of these devices. Finally, its cell-based structure makes it well-suited for

parallel computation, which is an increasingly important attribute for a large-scale

84

numerical scheme on modern computers.

These attributes are especially important to consider in light of the scaling inves-
tigation performed in Chapter 4. Given the speed and maturity of continuum CFD
methods, it appears, at first glance, that the scaling attempted in this chapter is
irrelevant because, given the choice, the continuum method would always be selected.
This is not necessarily true, however, because continuum methods are often more dif-
ficult to parallelize and complexities, such as those mentioned above, each represent
large increases in computational work. It is therefore possible that the speed of a
DSMC calculation in certain problems and on certain machines, may be quite com-
parable to that of a continuum technique. In addition, mixed regime flows are not
generally treatable with continuum methods because they cannot effectively model
the rarefied areas. While hybrid continuum/particulate codes are under development
[28] for these flows, it would be desirable to treat the entire domain uniformly to max-
imize code flexibility and avoid, if possible, the problems associated with interfacing
two techniques of entirely different natures.

Many aspects of DSMC'’s application to MEMS remain to be explored and devel-
oped. To model actual devices in their entirety, for example, the current code will
require an upgrade to three-dimensional calculations. The corresponding increase in
computational requirements will then make it necessary to move from the current,
workstation-class, computers to large-scale supercomputers. As mentioned previously,
DSMC’s structure is very amenable to efficient parallelization, so this move will likely
be to a parallel machine. On these architectures, many computational issues remain
to be explored which promise to increase the speed and efficiency of the technique.
In complex cases for which a particle description is an asset, such as multispecies and
chemically reacting flows, this method may then be advantageous even in regimes to
which continuum techniques are currently applied. For mixed-regime flows, hybrid
DSMC-continuum techniques represent a promising area which still requires signif-
icant investigation. When mature, these techniques wili allow both methods to be
applied where they are most desirable and ‘swapped out’ where they become inefhi-

cient or inaccurate. A numerical solution will then involve applying the best of each

85

discipline to a problem, rather than choosing one or the other when setting up the

calculation and patching together corrections and modifications for certain portions

of the flow.

86

Appendix A

Particle Movement Function

This appendix contains the function which performs particle movement. It is intended
to serve only as an annotated listing; the full description of the movement operation

is given in Section 2.4.

Arguments

The movement function takes four arguments. The first argument, ‘cel’ is a pointer
to the current cell of the particle(s) to be moved. The second argument, ‘particles’
is a pointer to the first particle in a list of those to be moved. Ir the case of a
routine global move, such as at the beginning of a time step, this is simply the
cell’s particle list. For single particle moves, such as when one is introduced at an
inflow/outflow face or emitted from a diffusely-reflecting surface, this is simply the
address of the particle to be displaced. The third argument, ‘nparts’ is simply the
number of particles to be moved. The final argument ‘sel_move_flag’, is an integer
constant that tells the function whether or not to read the movement times remaining
for individual particles. When the flag is set to 0, all particles are considered to be

moving an entire time step, as is the case in a global move.

87

Cell Face/Node Numbering Scheme

When calculating intersection times, a simple relation between the face and node
indices is required. In order to preserve the trajectory-tracing method’s ability to
function in cells with an arbitrary number of faces, the following scheme was adopted:
face i connects nodes ¢ and (i + 1)%n, where i is an index which starts at zero, n, is
the total number of sides for the cell, and % is the modulus operator, which returns
the remainder resulting from the division of its operands. The macro, ‘IRING’, that
appears in this function performs this modulo-division operation to cycle through cell

nodes. For the current, triangulated mesh, it is given by:
#define IRING(A) = ((A) % 3))

This numbering scheme is shown in Figure A-1.

0 2

Figure A-1: Schematic of cell node and face numbering.

Code Listing

void Move Particle(struct cell_unit *cel, struct atom *particles,
unsigned short n_parts, short sel_move_flag)

short fc, face, entry_face, y_intersect;
float time_interval, t_int, t_min, traj_slope;
unsigned curr_cell;

struct atom *part;

if(!sel_move flag){

[**** Set particle movement time interval to be the time step ****/
time_interval = T_STEP;

/**** Set the entry face to be a nonemstant side ****/ 10
entry face = 3;

38

}
for (part = particles; part < particles + n_parts; part++){

] **** Skip if this is an empty particle position ****/
if (part—>dest_cell == 0) continue;

[**** If particle has somehow left grid, bring it back ****/
if (part—>x > x_max+0.1 || part—>y > y_max+0.1 || part—>x <-0.1
|| part—>y<—0.1){
printf("Relocating Particle at t = %f:\n",t global);

printf(" x: %f y: %f u: %.24f v: %.24f cell: Yd particle: Y%d\n",

part—>x, part—>y, part—>u, part—>v, cel — cell, part — particles);
Random_Plemt2(cel, part);
}

if(sel_move_flag){

/ **** Determine time interval over which to attempt to move particle ****/

time_interval = part—>mvmt_time;

[**** Skip if this particle is finished moving “***/
if (time_interval == 0.) continue;

}

[**** Determine which face is ineligible for intersection because it was
just crossed (selective moves only) ****/
if(sel_move_flag)
entry_face = (short)part—>crosd_face;

/ ¥*** Calculate the slope of the particle trajectory ****/
if(part—>u == 0.)
traj_slope = INFINITY;
else
traj_slope = part—>v / part—>u;

if (traj_slope * traj_slope > 1.)
y_intersect = 1;

else
y_intersect = 0;

[**** Initialize t min with a large value ***¥/
t_min = 1.05 * T_STEP;

for (fc = 0; fc < 3; fe++){
if (fc == entry_face) continue;

| **** If particle path is parallel to face, they will never intersect ****/
if(cel—>slope[fc] == traj_slope) continue;

| ¥*¥** If particle’s vertical component is greater than its horizontal (in
absolute value), use y—intersects for time determination ****/
if(y_intersect)
t_int = (((traj_slope *cel—>slope[fc] *(cel—>x|[fc] — part—>x)
+ cel—>slope[fc] *part—>y —traj slope *cel—>yl[fc])
/ (cel—>slopeffc] —traj_slope)) — part—>y) /part—>v;
else
t_int = ({(cel—>yl[fc] — part—>y + traj_slope*part—>x
— cel—>slopeffc]*cel—>x|fc]) / (traj_slope ~ cel—>slope|fc]))

89

20

30

40

50

— part—>x) / part—>u;

[**** If t_int<0 then particle is heading the wrong way to hit this face ****/
if (t_int < —I_TEST) continue; 60

[**** If the intersect time is zero, make sure this particle is heading
in a direction which makes striking this face possible before accepting
it to avoid an infinite loop of zero time steps ****/
if (t_int <= [TEST && ((part—>y + part—>v — cel->y(fc])

* (cel - >x[IRING(fc+1)] —cel->x[fc]) —(part—>x + part—>u
— cel—>x[fc]) *(cel->y[IRING(fc+1)] —cel->y][fc]))
/ ((cel=>y[IRING(fc+2)] —cel->y[fc])*(cel->x[IRING(fc+1)]
— cel->x|[fc]) — (cel->x[IRING(fc+2)] —cel—>x[fc])
* (cel—>y[IRING(fc+1)] —cel->y[fc])) >= 0.0) continue; 70

if (t_int < 0) t_int = 0;

[**** If this is the minimum time so far, record it and current face ****/
if (t_int < t_min){
t_min = t_int;
face = fc;

}

[**** If the time to collide with all faces is greater than time remaining
for movement, displace particle along trajectory and mark it as maintaining
its current cell ****/ 80
if (t_min >= time_interval){
part—>x += part—>u * time_interval,
part—>y += part—>v * time_interval;
part—>dest _cell = 1;
part—>mvmt_time = 0.;

}

| **** If the min time for collision is smaller than remaining time, particle
has hit something, determine what that was and act appropriately ****/
else{
if (cel—>nbr[face] == SOLID_BOUNDARY){ 90

/**** If a solid boundary was contacted, displace particle to boundary
and call function to process reflection ****/
part—>x += part—>u * t_min;
part—>y += part—>v * t_min;

part—>mvmt_time = time_interval — t_min;
part—>crosd_face = (char)face;
Solid_Boundary(part, cel, face);

}
else if (cel—>nbr[face] == INFLOW_OUTFLOW){
#ifdef I0O_BOUNDARY 100
/ **** If particle left grid, mark its place as empty and decrement
the number of particles in this cell ****/
part—>dest_cell = 0;
cel—>n_particles——;
cel—>n_vacancies++;
Felse
/ **** If we’re not doing inflow/ outflow, make these bounds solid ****/

90

F#endif

part—>x += part—>u * t_min;
part—>y += part—>v * t_min;
part—>mvmt_time = time_interval — t_min;
part—>crosd_face = (char)face;
Solid_Boundary(part, cel, face);

}
else(

/* If it didn’t hit a boundary of some sort, particle has cressed
into another cell */

/ **** Displace particle to boundary ****/

part—>x += part—>u * t_min;

part—>y += part—>v * t_min; 120
/**** Increment the current cell traveler counter ****/

cel=>n_tvlrs++;

/ **** Decrement the current cell particle counter ****/
cel—>n_particles——;

[**** Find current cell index ****/
curr_cell = cel - cell;

/ **** Find indez of intersection face in new cell ***¥/
for(fc = 0; fc < 3; fc++)
if(cell{cel - >nbr(face]].nbr{fc] == curr_cell) break;

/ ¥*** Store indez of crossed face in new cell ***¥/ 130
part—>crosd _face = (char)fc;

[**** Store destination cell ****/
part—>dest_cell = cel—>nbr[face];

/ **** Store time remaining for movement ***¥/
part—>mvmt_time = time_interval — t_min;

91

92

Appendix B

Particle Communication Function

This appendix contains the function which transfers particles between cells. It is
intended to serve only as an annotated listing; the full description of intercell com-

munication is given in Section 2.6.

Arguments

The communication function takes two arguments. The first argument, ‘cel’ is a
pointer to the cell that the particle is departing. The second argument, ‘p_indx’, is
the index of this particle on the list in its current cell. It may be noted that the
function accesses other cells in the course of its task. This is possible because the cell

data was made globally-accessible to shorten the argument lists of oft-called functions.

Code Listing

void Commui. ute(struct cell_unit *cel,unsigned short p_indx)

unsigned short d_cell, dcp_indx;
struct atom *dc_part;

[**** Decrement the traveler counter for old cell ****/
cel->n_tvlrs——;

[**** Note this particle’s intended destination ****/
d_cell = cel—>particle[p_indx].dest_cell;

[**** Mark destination cell as having received a traveler ****/
cell[d_cell].tvir_recd = 1;

93

[**** Mark this particle as stationary so it is not moved by a subsequent recursive
call, leading to an infinite loop ****/
cel—>particle[p_indx].dest_cell = 1;

[**** Don’t bother searching through particle list if this cell has no
vacancies and no travelers ****/
if (cell[d_cell].n_vacancies != 0 || cell[d_cell}.n_tvirs != 0){

] **** Cycle through destination cell’s particles, locking for an open space ***/
for (dc_part = cell[d_cell].particle; dc_part < cell[d_cell].particle
+ cell[d_cell].plist_length; dc_part++){

] ¥*** If destination cell for a particle is one, its space is unavailable
(it’s not leaving current cell) so keep looking ****/
if (dc_part—>dest_cell == 1) continue;

[**** If dest. cell is zero, space is open. Place particle and return ****/
else if(dc_part—>dest_cell == 0){

/ **** Place particle in new cell ****/
*dc_part = cel—>particle[p_indx];

/ **** Increment new cell’s particle counter ****/
cell[d_cell].n_particles++;

/ **** Decrement new cell’s vacancy counter ****/
cell[d_cell].n_vacancies— —;

] **** Mark its old position as vacant ****/
cel—>particle[p_indx].dest_cell = 0;
cel—>n_vacancies++;
return;

}

[**** If dest. cell is a true cell, recursively call this function to move
the particle to its new cell then put current particle in its place ****/
else{
dcp_indx = dc_part — cell[d_cell].particle;
Communicate(dcp_indx, &cell{d_cell]);
cell[d_cell].particle[dcp_indx] = cel—>particle[p_indx];
cell[d_cell].n_particles++;
cell[d_cell].n_vacancies— —;
cel—>particle[p_indx].dest_cell = 0;
cel—>n_vacancies++;
return;

}

/* If no spaces are found in list, place particle at the end */

| ¥*¥** First ensure there is room, making some if necessary ****/
if (cell[d_cell].plist_length == cell[d_cell].pll_max){
cell[d_cell].pll_max += P_LIST INCREMENT;
cell[d_cell].particle = (struct atom *)realloc(cell[d_cell].particle,
(size_t)(cell[d_cell].pll_max * sizeof(struct atom)));

}
if(cell[d_cell].particle == NULL) printf("FAILED REALLOC!'\n");flush(NULL);

94

10

20

30

40

50

/ **** Now place particle, increment the particle counter of destination cell
and decrement traveler counter of old cell ****/
cell[d_cell].particle[cell[d_cell].plist_length++] = cel—>particle[p_indx];
cell[d_cell].n_particles++;
cel—>particle[p_indx].dest_cell = 0;
cel—>n_vacancies++;

return;

95

60

96

Appendix C

Inflow/Outflow Function

This appendix contains the function which enforces boundary conditions at inflow /
outflow cells. It is intended to serve only as an annotated listing; the full description

of the inflow outflow boundary treatment is given in Section 2.7.2.

Arguments

The IO boundary function takes only one argument. This is a pointer to an array of
structures containing IO cells, named ‘io_cell’. Each of these structures contains the
computed mean velocities as well as a pointer to the cell in the main array to which

the 10 face belongs.

Code Listing

void Process IO(struct io *io_cell)
{
float u, u_mean, u_norm, u_ext, u_distmax, dist_max, dist, xtemproot,
x_temp, y_temp, z_temp, temp, v_mean, w_mean,
int inp_diff, sgn, flag, pl_pos, ip;
unsigned long which;
struct io *io_cl;
struct cell_unit *cel;
struct atom *part;

| ¥*** Enforce boundary conditions at IO cells ****/ 10
for (io_cl = io_cell; io_ci < io_cell + n_iocells; io_cl++) {

/ **** Figure out to which cell this IO face corresponds ****/
cel = &cellfio_cl—>cell];

97

u_mean = io_cl—>u mean;

| **** Determine sign of inward—facing normal ***¥/

if (cel—>x[1] < 0.5%x_max){

/**** If this is an inflow face, enforce temperature and transverse speed ****/
sgn = 1;
x_temp = y_temp = z_temp = 1.0;
v_mean = w_mean = 0;
temp = 1;

else{

| ¥*** If this case is ezhausting to vacuum, skip outflow faces ****/

#ifdef VACOUT

continue;
#endif

] *¥** If this is an outflow face, get temp and t.v. speed from flow sample taken
elsewhere (ofter the collision routine) ****/

sgn = —1;

v_mean = io_cl—>v_mean;

w_mean = io_cl—>w_mean;

x_temp = 2*(io_cl—>u2 — u_mean*u_mean);

y_temp = 2*(io_cl->v2 — v_mean*v_mean);

7 temp = 2*(io_cl—>w2 — w_mean*w_mean);

temp = (x_temp + y_temp + z_temp) / 3.0;

if (temp == 0.0) temp = 1;

}

| ¥*** Calculate difference between target and actual number of particles,
adding any round— off from previous steps and storing that from this
step to lessen its effect in overall number of particles introduced **/
io_cl—>fnp_diff += cel—>n_particles —
(io_cl—>pressure * cel—>volume * n_inf / temp);
inp_diff = io_cl—>fnp_diff;
io_cl—>fnp_diff —= inp_diff;

[/ * Add particles if there aren’t enough in cell */
if (inp_diff < 0) {

/ **** Normal velocity is positive for inflow uhbb)

u_norm = sgn * u_mean;

/ **** Calculate the mazimum of the incoming velocity distribution****/
u_distmax = sgn*0.5*(—u_norm +sqrt(u_norm*u_norm +2));
dist_max = sgn*(u_distma.x+sgn*u_norm)*exp(—-(u_distmax)*(u_distmax));

xtemproot = sqrt(x_temp);

| ¥¥** Set the extremum of particle speed. If v and u_norm are equel and
opposite, the particle will not cross the boundary linflow only)**/
if (u_norm < 3.0)
u_ext = —u_norin;
else
u_ext = —3.0*xtemproot; / *restrict the selection range to lower rejections */

/ **** First, ensure there is room on cell’s list for incoming particles ***/

98

20

30

40

50

60

if (cel—>plist_length + —inp_diff —cel—>n_vacancies >= cel—>pll_max){
cel—>pll.max += 2 * (—inp_diff —cel—>n_vacancies);
cel—>particle = (struct atom *)realloc(cel—>particle,
(size_t)(cel—>pll_max * sizeof(struct atom)));

}
/ **** Initialize particle list position pointer ****/
pl_pos = 0;

for (ip = 0; ip < --inp_diff; ip++){

/ **¥** Search remaining positions in particle list for empty spots ****/ 70
for(; pl_pos < cel—>plist_length; pl_pos++)
if (cel—>particle|[pl_pos).dest_cell == 0){
cel—>n_vacancies——;

break;
}

| **** Incerement the cell’s particle counter ****/
cel—>n_particles++;

| ¥*** If above search put us off particle list, eztend it ****/
if (pl_pos >= cel—>plist_length) cel ->plist_length++;

/ ¥*** Assign a pointer to this particle for later convenience ****/ 80
part = &cel—>particle[pl_pos];

/ **** Increment particle list position for nezt cycie ****/
plpos++;

[**** Set particle’s destination cell and crossed face registers ****/
part—>dest_cell = 1;
part—>crosd_face = (char)io_cl—>face;

/ **** Place the particle randomly on the cell’s IO edge ****/
part—>x = cel—>x[io_cl—>face];
part—>y = cel—>y[io_cl—>face] + ran2(seed)*
(cel=>y[IRING (io_cl—>face + 1)] — cel—>y[io_cl—>face]); 90

[¥*** Assign tangential velocities according to equilibrium
distribution ****/
part—>v = v_mean -+ sqrt(y_temp*—log(ran2(seed))) * sin(2.0 * M_PI
*ran2(seed));
part—>w = w_mean + sqrt(z_temp*—log(ran2(seed))) * sin(2.0 * M_PI
*ran2(seed));

[**** Set u using a sclection/rejection technique on a fluzal
distribution ****/
do
100
[**** Randomly select a value of u ****/
if (sgn>0)
u = (u_ext 4 (3.0 *xtemproot — u_ext) *ran2(seed));
else
u = (—(u_mean + 3.0 *xtemproot) + 3.0 *xtemproot *ran2(seed));

/ **** Compute the value of the distribution for this u ****/
dist = sgn*(u/xtemproot + u_mean)*exp(—(u*u)/x_temp)/dist_max:

99

}while (dist < ran2(seed));

] **** Add mean velocity to assigned thermal speed ****/
part—>u = u_mean + u/xtemproot; 110

/**** Move new particle a random fraction of one time step ****/

part—>mvmt_time = ran2(seed) * T_STEP;
Move_Particle(cel, part, 1, SELECTIVE_ MOVE);

}
/ **** Process communication links until all are empty
do{
flag = 0;
for(cel = &cell[2]; cel < &cell[2]+N_CELLS; cel++){ 120

/] **** Skip if this cell has no traveler: ****/
if (cel—>n_tvirs == 0) continue;

**I’*/

[¥*** Set a flag to signify that o traveler was found ****/
flag = 1;
/ **** Process all travelers in this cell ****/
/*NOTE: Do not use pointers into the particle array in Communicate
or its calls because it contains a realloc*/
for(ip = 0; ip < cel—>plist_length; ip++){

*¥¥% Grin if this is an empty position or stationary particle ****
p P

if (cel—>particle[ip].dest_cell < 2) continue; 130

Communicate,ip, cel);

/**** Go on to the nexzt cell if we just placed the last traveler ****/
if (cel—>n_tvlrs == 0) break;

}

| **** If communication was performed, move newly—placed traveler

if (flag){
for(cel = &cell[2]; cel < &cell[2]+N_CELLS; cel++){

[**** Skip this cell if it received no travelers ****/ 140
if (!cel—>tvir_recd) continue;

S #*#*/

/ **** Reset cell 'traveler received’ flag ****/

cel—>tvir_recd = 0;

/ **** Move any particles which have remaining time ****/
Move_Particle(cel, cel—>particle, cel—>plist_length, SELECTIVE_MOVE);

}
}
}while(flag);

return,;
150

100

Bibliography

1]

[2]

[3]

(4]

[5]

[6]

[7]

G.A. Bird. Molecular Gas Dynamics and the Direct Simulation of Gas Flows.
Oxford Engineering Science. Oxford University Press, New York, NY, 1994.

W.B. Scctt. Micro machines hold promise for aerospace. Awviation Week and

Space Technology, 138(9), March 1993.

S.A. Schaff and P.L. Chambre. Fundamentals of Gas Dynamics, chapter H.

Princeton University Press, Princeton, New Jersey, 1958.

A. Padmanabhan, H.D. Goldberg, K.S. Breuer, and M.A. Schmidt. A silicon
micromachined floating-element shear stress sensor with optical position sensing
by photodiodes. In Proceedings of Transducers ’95 and Eurosensors IX - 8th

International Conference on Solid State Sensors and Actuators, 1995.

K. Nanbu. Theoretical basis of the direct simulation Monte Carlo method. In
Proceedings, 15th International Symposium on Rarefied Gas Dynamics, Grado,

Italy, 1986, Stuttgart, 1986. Teubner.

K.C. Kannenberg, I.D. Boyd, and S. Dietrich. Development of an object-oriented
parallel DSMC code for plume impingement studies. Paper 95-2052, ATAA,
Washington, DC, 1995.

G. Chen and I. Boyd. Statistical error analysis for the direct simulation Monte

Carlo technique. Paper 95-2316, AIAA, Washington, DC, 1995.

[8] I. Greber and H. Wachrnan. Scaling rules and time averaging in molecular dynam-

ics computations of transport properties. In Rarefied Gas Dynamics: Theoretical

101

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

and Computational Techniques; 16th International Symposium, Pasadena, CA,

1988, Washington, DC, July 1989. AIAA.

G.A. Bird. Molecular Gas Dynamics. Oxford Engineering Science. Oxford Uni-
versity Press, London, 1976.

G.A. Bird. Perception of numerical methods in rarefied gasdynamics. In Rar-
efied Gas Dynamics: Theoretical and Computational Techniques, volume 118 of

Progress in Aeronautics and Astronautics. AIAA, Washington, DC, 1989.

D. Baganoff and J.D. McDonald. A collision-selection rule for a particle simu-
lation method suited to vector computers. Physics of Fluids A, 2(7):1248-1259,
July 1990.

James B. Elgin. Getting the good bounce: Techniques for efficient Monte Carlo
analysis of complex reacting flows. Technical Report SSI-TR-28, Spectral Sci-

ences, Inc., Burlington, MA.

W. G. Vincenti and C. H. Kruger. Introduction to Physical Gas Dynamics. Wiley,
New York, NY, 1965.

K. Koura and H. Matsumoto. Variable soft sphere molecular model for inverse-

power-law or Lennard Jones potential. Physics of Fluids A, 3:2459-2465, 1991.

G.A. Bird. Monte Carlo simulation in an engineering context. In Proceedings,
12th International Symposium on Rarefied Gas Dynamics, Cherlottesuille, VA,
1980, volume 74 of Progress in Aeronautics and Astronautics. AIAA, Washing-
ton, DC, 1981.

H. A. Hassan and D. B. Hash. A generalized hard-sphere model for Monte Carlo
simulations. Physics of Fluids A, 5:738-744, 1993.

D.F. Watson. Computing the n-dimensional Delaunay tesselation with applica-

tion to Voroner polytopes. Computer Journal, 24(2), 1981.

102

(18] S. Dietrich. Efficient computation of particle movement in 3-D DSMC calcula-
tions on structured body-fitted grids. In Proceedings, 17th International Sym-
posium on Rarefied Gas Dynamics, Aachen, Germany, 1990, Weinheim, 1991.

VCH.

[19] S. Dietrich and I. Boyd. A scalar optimized parallel implementation of the DSMC
method. Paper 94-0355, AIAA, Washington, DC, 1994.

[20] J.D. Anderson. Modern Compressible Flow with Historical Perspective. McGraw-
Hill, New York, NY, second edition, 1990.

[21] C. Hirsch. Numerical Computation of Internal and Ezternal Flows, volume 2.

Wiley, Chichester, 1990.

[22] J.C. Harley, Y. Huang, H.H. Bau, and J.N. Zemel. Gas flow in micro-channels.
Journal of Fluid Mechanics, 284, February 1995.

[23] E.B. Arkilic, M.A. Schmidt, and K.S. Breuer. Slip flow in microchannels. In
Proceedings of the 19th Rarefied Gas Dynamics Symposium, Washington, DC,
July 1994. ATAA.

[24] A. Beskok and G.E. Karniadakis. Simulation of heat and momentum trans-
fer in complex microgeometries. Journal of Thermophysics and Heat Transfer,

8(4):647-655, 1994.

[25] T.J. Bartel, T.M. Sterk, J.L. Payne, and B. Preppernau. DSMC simulation of
nozzle expansion flow fields. Paper 94-2047, AIAA, Washington, DC, 1994.

[26] F.M. White. Viscous Fluid Flow. McGraw-Hill, New York, NY, second edition,
1991.

[27] R.H. Ni. A multiple grid scheme for solving the euler equations. ATAA Journal,
20(11):1565-1571, 1982.

[28] D.B. Hash and H.A. Hassan. A hybrid DSMC/Navier-Stokes solver. Paper 95-
0410, AIAA, Washington, DC, 1995.

103

