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Main Text (including First Paragraph) 

 Future food production is highly vulnerable to both climate change and air 

pollution with implications for global food security 1, 2, 3, 4. Climate change adaptation 

and ozone regulation have been identified as important strategies to safeguard food 

production 5, 6, but little is known about how climate and ozone pollution interact to 

affect agriculture, nor the relative effectiveness of these two strategies for different 

crops and regions. Here we present an integrated analysis of the individual and 

combined effects of 2000-to-2050 climate change and ozone trends on the production of 

four major crops (wheat, rice, maize and soybean) worldwide based on historical 

observations and model projections, specifically accounting for ozone-temperature co-

variation. The projections exclude the effect of rising CO2, which has complex and 

potentially offsetting impacts on global food supply 7, 8, 9, 10. We show that warming 

reduces global crop production by >10% by 2050 with a potential to substantially 

worsen global malnutrition in all scenarios considered. Ozone trends either exacerbate 

or offset a substantial fraction of climate impacts depending on the scenario, suggesting 

the importance of air quality management in agricultural planning. Furthermore, we 

find that depending on region some crops are primarily sensitive to either ozone (e.g., 

wheat) or heat (e.g., maize) only, providing a measure of relative benefits of climate 

adaptation vs. ozone regulation for food security in different regions. 

Global demand for food is expected to increase by at least 50% from 2010 to 2050 

mainly as a result of population growth and a shift toward a more “westernized” diet in 

developing regions 11. Assuming that agricultural production is able to meet the growing 

demand through a combination of economic growth and agricultural advancements, 

undernourishment rates in developing countries are projected to decline substantially 11. 

Future production is, however, sensitive to both climate change and air pollution. 



 3

Temperature extremes are highly damaging to various major crops 1, 2, 5. Surface ozone, 

formed via the photochemistry of precursor gases mainly arising from human activities, is 

phytotoxic and detrimental to crop yields 4, 12, 13. Climate adaptation and ozone regulation 

have thus been identified as important measures to tackle food insecurity, but their relative 

benefits for different crops and regions remain largely uncertain. 

In this study, we quantify the individual and combined effects of 2000-to-2050 mean 

temperature and ozone pollution trends on the global production of wheat, rice, maize and 

soybean and then on undernourishment rates in developing countries as a necessary input to 

policy formulation for food security. Fig. 1 illustrates a roadmap for our methodology and 

summarizes our results. First, we use the Community Earth System Model (CESM) to 

simulate present-day (2000) and derive future (2050) projections of hourly temperature and 

ozone concentration consistent with the representative concentration pathways (RCPs) 

represented in the IPCC Fifth Assessment Report (AR5) 14, 15. Our future ozone projections 

not only follow trends in anthropogenic emissions of precursor gases but also include the 

effects of climate and land use changes; these confounding factors are known to significantly 

impact future ozone projections 16, 17 but are not considered in previous crop impact studies. 

We consider two scenarios: RCP4.5, representing an intermediate pathway with a global 

reduction in surface ozone owing to pollution control measures worldwide (except in South 

Asia) 14; and RCP8.5, representing a more “pessimistic”, energy-intensive pathway with a 

worldwide increase in ozone except in the US and Japan (Supplementary Fig. 1) 18. The two 

scenarios represent a range of policy options regarding ozone regulation. Both scenarios 

project a global increase in surface temperature (Supplementary Fig. 1), with similar effects 

on crop production as discussed below. Previous historical crop-temperature impact analyses 

5, 19 suggest a substantial potential for crop-level adaptation to avoid losses from warming, 

but they do not consider the concurrent impacts of changing ozone levels that may offset the 
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benefits of adaptation 12. We therefore exclude adaptation in our projections, and focus on the 

potential of ozone regulation to combat the warming impacts. Other environmental factors 

such as water scarcity and land degradation may influence future food production but are 

outside the scope of this study. 

From the CESM-simulated results we derive various metrics to parameterize the 

influence of climate change and ozone pollution on crop production: growing degree days 

(GDD) and killing degree days (KDD) for climate, and different ozone exposure indices for 

ozone (see Methods). Changes in production due to climate and ozone trends for each CESM 

grid cell and each crop, ∆P, is represented as a function of current production, P, by 

ΔP = gP γ cγ p −1( )    (1) 

where g is the production growth factor accounting for technology-driven yield 

improvements and cropland area changes; γc and γp are scaling factors capturing the effects of 

climate change and ozone pollution, respectively, based on observed relationships of crop 

yields with agro-climatic and ozone exposure metrics. The individual climate (or pollution) 

effect is represented by ∆P but omitting the other factor γp (or γc) in equation (1). The growth 

factor g for 2050 is based on estimates from Food and Agriculture Organization (FAO) 11. 

Crop-ozone responses are based on an ensemble of statistical relationships represented in the 

literature. For crop-temperature responses, we develop a constrained linear regression model 

to quantify the sensitivities of relative crop yield to GDD and KDD for different regions 

worldwide based on historical observations from 1960 to 2000 (see Methods). The 

correlations with other climate variables such as precipitation are partially encapsulated in 

these agro-climatic variables (Supplementary Methods). In general, for each crop we find 

strong but spatially varying responses to both GDD and KDD, likely due to cultivar 

differences. We observe globally a strong trend of increasing sensitivity to excess heat from 

warmer to colder regions (in terms of growing season temperature) for wheat, maize and 
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soybean, reflecting a spatial gradation of heat tolerance and local climate adaptability 

(Supplementary Fig. 5). The observed sensitivity for US maize is generally consistent with 

Butler and Huybers 5. 

Ozone formation is strongly correlated with temperature 16, so the observed crop-

temperature relationships may arise in part from ozone damage at high temperature instead of 

warming per se. Previous studies 1, 5, 19 typically do not consider this confounding effect. We 

specifically correct for ozone-temperature co-variation (see Methods), and find that on 

average, 24%, 9.8% and 46% of the observed sensitivity to KDD for wheat, maize and 

soybean, respectively, arise from higher ozone associated with high KDD (inconclusive for 

rice). We use the corrected sensitivity to estimate future crop-temperature responses. 

 Figs. 1a through 1f represent the individual and combined effects of climate change 

and ozone pollution on total crop production for both the RCP4.5 and RCP8.5 scenarios, 

expressed as the sum of ∆P per unit harvested area multiplied by the equivalent food energy 

for all four crops (Supplementary Table 2). We find that the effects of ozone pollution on 

crop production are highly dependent on the scenario. On a global scale, more severe ozone 

pollution expected for RCP8.5 leads to substantial crop damage (except in the US and South 

Korea) reducing global total crop production by 3.6% (Fig. 1d), but aggressive pollution 

control worldwide expected for RCP4.5 leads to substantial gains in many regions (except 

South Asia) with an overall 3.1% increase in global production (Fig. 1a). In contrast, the 

effects of climate change (Figs. 1b and 1e) are similar across the two scenarios, both with an 

overall reduction in global production by 11% caused primarily by more extreme 

temperatures associated with higher KDD. We see that ozone pollution control as represented 

in RCP4.5 has the potential to partially offset the negative impact of climate change, leading 

to a smaller combined decrease of 9.0%, compared with RCP8.5 where ozone pollution and 

climate change combine to reduce global crop production by 15%. We further evaluate how 
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such combined changes may shift the current (2000) distribution of per capita food 

consumption in developing countries, leading to a change in the rate of undernourishment as 

a proxy for the potential societal impacts (see Methods). We use the current 

undernourishment rate of 18% as the baseline for estimation, and do not account for 

agricultural advances, land use change and international politics, which is beyond the scope 

of this study. For RCP8.5, more serious ozone pollution worldwide and climate change 

combine to increase undernourishment rate in developing countries by 49% (from a rate of 

18% to 27%). For RCP4.5, undernourishment rate increases by only 27% because ozone 

regulation partially offsets the warming effect, suggesting the importance of air quality 

management in devising strategies for food security. 

 Fig. 1c shows that though ozone regulation may be able to offset some of the 

warming impacts on agriculture on a global scale, the effects vary greatly across regions for 

different crops. To devise the best measures to guard regional agriculture, the relative effects 

of warming vs. ozone pollution for individual crops are needed. Fig. 2 shows by regions the 

projected combined effects of and relative contributions from warming and ozone trends 

using current production as baseline, with uncertainty ranges quantified using a Monte Carlo 

approach from the variability of statistical parameters embedded in γc and γp (Supplementary 

Methods). Wheat in all major producing regions is mostly sensitive to ozone policy, with the 

ozone effect generally much higher than temperature effect. Ozone regulation as represented 

in RCP4.5 has the potential to completely reverse the warming impact and lead to substantial 

gain in wheat production in the US and China. In South Asia where ozone pollution is 

projected to worsen in both scenarios, wheat production is reduced by up to 40%. Wheat in 

South America is more sensitive to temperature likely because of the relatively small ozone 

changes projected there (Supplementary Fig. 1). We find that rice and maize production in 

China is mostly sensitive to ozone pollution. In contrast, maize in major producing regions 
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including the US, Europe and South America, as well as soybean in South America, are 

mostly sensitive to temperature. In both scenarios, maize and soybean production in these 

regions is projected to decrease by 20-50% due to higher and more frequent extreme 

temperatures, regardless of ozone trends. For maize, climate adaptation may have the 

potential to reduce such losses by more than half in temperate regions 5, but may not be 

effective in tropical regions 19. The projection for soybean in the largest producer, the US, is 

uncertain for both scenarios, due to the similar contribution (in magnitude) but opposite 

effect (in sign) from warming and ozone reduction. 

 Climate change adaptation by, for example, selecting more heat-tolerant cultivars 

traditionally grown in warmer regions, has been proposed to reduce heat-related losses under 

warming for at least certain crops 5, 19. Our results show that while this may be effective for 

maize and soybean for major producing regions due to their strong sensitivity to temperature 

(except China for both crops and US for soybean), adaptation may be less effective than 

reducing ozone damage for other crops (most notably wheat) and regions where ozone 

sensitivity dominates. Another modulating factor is future elevated atmospheric CO2, which 

stimulates photosynthesis while reducing stomatal conductance and thus the flux-based risk 

of ozone damage 7, 8, 9. Evidence suggests, however, that elevated CO2 reduces zinc, iron and 

protein content in C3 crops 10, and may therefore only alleviate warming and ozone impacts 

on total food calorie production but not the broader nutritional outcome. Furthermore, rising 

CO2 may neither prevent accelerated senescence from elevated ozone nor improve yield 8, 20, 

and ozone exposure may alter crop responses to rising CO2 
21, 22, 23. 

It has been suggested that careful crop management such as selecting ozone-resistant 

cultivars can bring substantial gain in wheat production 6. Such potential is not explored in 

this study and warrants further investigation for ozone-sensitive crops. However, considering 

the challenge of implementing such a strategy, the questionable efficacy of other crop 
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management practices 24, as well as the public health co-benefit of ozone control, ozone 

regulation may prove to be a practical and preferable alternative to help secure global food 

production in addition to climate adaptation, depending on the crop of concern. This 

highlights the need for greater collaboration between farmers, agricultural policy makers and 

air quality managers to achieve coordinated goals concerning public health and food security. 

 

Methods 

 We use the Community Earth System Model (CESM) to simulate present-day and 

project future surface ozone and climate in 2050. Our configuration employs coupled 

atmosphere and land components but fixed data ocean and cryosphere consistent with current 

and future climates, at a latitude-by-longitude resolution of 1.9°×2.5°. Anthropogenic 

emissions of greenhouse gases and ozone precursors follow the RCP4.5 and RCP8.5 

scenarios represented in IPCC AR5. See Supplementary Methods for details of these 

simulations, data sources, and definitions of various metrics used below. 

 The influence of ozone pollution on crop production is parameterized using the 

statistical relationships of relative yield for various crops with four ozone exposure indices 

(AOT40, SUM06, W126, and M7 or M12): 

Y

Y0

= f (M )   (2) 

where Y is the yield, Y0 is the maximum potential yield with zero ozone exposure, M is any 

one of the four ozone exposure metrics, and f(M) represents a function of M. We use the 

exact forms of f(M) obtained from an ensemble of statistical studies in the literature 

(Supplementary Table 1). The scaling factor, γp, for pollution effect in equation (1) is then 

γ p = f (M 2050 )

f (M 2000 )
   (3) 

where M2000 and M2050 refer to M evaluated in year 2000 and 2050, respectively. 
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 The influence of climate change on crop production is parameterized using statistical 

relationships of crop yield with growing degree day (GDD), which is the summation (over 

the growing season) of daily mean temperature in excess of a minimum temperature 

threshold, essentially capturing the beneficial effect of warmth; and killing degree day (KDD) 

5, which is the summation of daily maximum temperature in excess of an optimal growth 

temperature and captures the adverse effect of temperature extremes. A rise in both the mean 

temperature and frequency of temperature extremes can increase KDD. We find relationships 

for each 1.9°×2.5° grid cell and each crop using a multiple linear regression model on 1961-

2010 annual crop yield and meteorological data 

ln
Y

Ym

= β0 + βGDD GDD − GDDm( ) + βKDD KDD − KDDm( )  (4) 

where Y is the annual crop yield from FAOSTAT, GDD and KDD are annual values 

calculated from NCEP/NCAR Reanalysis 1 meteorological data, m denotes 5-year moving 

averages for detrending the data, and βGDD and βKDD are the observed sensitivities of crop 

yield to GDD and KDD. Equation (4) is constrained such that βGDD ≥ 0 and βKDD ≤ 0, which 

helps separate between the beneficial effect of warmth and adverse effect of temperature 

extremes, and remove collinearity when GDD and KDD are too strongly correlated. 

Historical data for 1961-2010 are available from FAOSTAT only at national level, so we 

derive finer resolution (1.9°×2.5°) historical maps of crop yield by applying a data fusion 

technique on the fine resolution map of crop yield for year 2000 25. Since the observed 

sensitivities βGDD and βKDD may arise in part from ozone damage at high GDD and KDD 

instead of warming per se, we estimate the true sensitivities, βG̃DD and βK̃DD, as 

   (5) 

where ∂lnY/∂M is the sensitivity of crop yield to ozone exposure estimated as 
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∂lnY

∂M
= ′f (M )

f (M )
   (6) 

f’(M) being the first derivative of f(M) in equation (2) with respect to M; D is either of the 

two agro-climatic variables GDD and KDD, and dM/dD is the observed sensitivities of ozone 

exposure indices to GDD or KDD estimated from simple linear regression using 1993-2010 

hourly ozone observations in the US and Europe. The scaling factor, γc, for climate effect is 

   (7) 

where ∆GDD and ∆KDD are 2000-to-2050 average changes in GDD and KDD. We refer to 

Supplementary Methods for further technical details of statistical models, and Supplementary 

Figs. 3-5 for maps of βD and the spatial correlation between β̃KDD and growing season 

temperature. 

Globally averaged values for production growth factor g in equation (1) for year 2050 

are 1.46, 1.37, 1.95 and 2.35 for wheat, rice, maize and soybean, respectively 11. Following 

FAO methodology 26 (Supplementary Methods), the distribution of per capita food 

consumption or dietary energy supply (DES) (kcal/person/day) for the population in 

developing countries can be modeled as a lognormal distribution f(x) (x representing DES) 

with parameters related to the actual arithmetic mean DES (xm). Undernourishment rate (ru) is 

defined to be the fraction of population with a DES below the minimum dietary energy 

requirement (MDER). Any change in xm can result in a shift in the distribution f(x) and affect 

ru as in Fig. 1g. The change in mean DES (∆xm) is estimated by 

Δxm = abΔE

365 d a−1( ) N
   (8) 

where ∆E is the change in total global crop production (Fig. 1 and Supplementary Table 5) in 

terms of food equivalent energy (kcal a-1), a is the fraction of global crop production 

consumed by developing countries 27, b is the fraction consumed as food (as opposed to non-
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food use) 27, and N is total population in developing countries. The analysis assumes that: 1) 

population has flexible dietary habits; 2) there is little barrier for international trade. 

Violation of these assumptions would likely further increase ru. 
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Figure legends 

 

Figure 1. Methodology and results. Using Community Earth System Model (CESM), we 

derive future (2050) projections for ozone exposure indices and agro-climatic variables, 

which are used to estimate subsequent effects on total annual crop productivity based on 

statistical crop-ozone and crop-climate relationships. Effects are expressed as sum of ∆P in 

equation (1) per unit harvested area multiplied by equivalent food energy for all four major 

crops (wheat, rice, maize, soybean). Upper (lower) panels represents changes following 

2000-to-2050 RCP4.5 (RCP8.5) anthropogenic emissions and land use scenario. Panels (a) 

and (c) represent effects of ozone pollution only, (b) and (d) effects of climate change only, 

and (e) and (f) represent combined effects. In purple boxes below panels (a)-(f) are global 

total effects (∑∆P×A over all grid cells, where A is harvested area). Here we use current 

production as baseline (g = 1) with global total of 7.09×1015 kcal a-1; see Supplementary 

Table 5 for results based on 2050 projections. Panel (g) represents shift in distribution of per 

capita dietary energy supply (DES) in developing countries (by 2000 definition) following 

2000-to-2050 ozone and temperature changes (for RCP8.5 as an example). Shaded in color is 

proportion of population consuming below minimum dietary energy requirement (MDER). 

 

Figure 2. Impacts of climate change and ozone pollution on crop production by regions and 

by individual crops. Top panels show the contributions to current (2000) global production 

from major producing countries/regions (see Supplementary Table 6 for region definitions). 

Middle and bottom panels show the combined effects of climate change and ozone pollution 

trends on crop production for major producing countries/regions (using current production as 

baseline). For each box plot, the two ends of box span the 67% confidence intervals, the 

notches span the 90% confidence intervals, and the thick line indicates mean. Color of box 
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indicates individual contribution to the combined effects from climate change and ozone air 

pollution. 
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