
MIT Open Access Articles

Computing Maximum Flow with Augmenting Electrical Flows

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Madry, Aleksander. “Computing Maximum Flow with Augmenting Electrical Flows.”
2016 IEEE 57th Annual Symposium on Foundations of Computer Science (FOCS), October 9-11
2016, New Brunswick, New Jersey, USA, Institute of Electrical and Electronics Engineers (IEEE),
December 2016: 593- 602 © 2016 Institute of Electrical and Electronics Engineers (IEEE)

As Published: http://dx.doi.org/10.1109/FOCS.2016.70

Publisher: Institute of Electrical and Electronics Engineers (IEEE)

Persistent URL: http://hdl.handle.net/1721.1/111684

Version: Author's final manuscript: final author's manuscript post peer review, without
publisher's formatting or copy editing

Terms of use: Creative Commons Attribution-Noncommercial-Share Alike

https://libraries.mit.edu/forms/dspace-oa-articles.html
http://hdl.handle.net/1721.1/111684
http://creativecommons.org/licenses/by-nc-sa/4.0/

Computing Maximum Flow with Augmenting Electrical Flows

Aleksander Mądry∗
MIT

madry@mit.edu

Abstract

We present an Õ
(
m

10
7 U

1
7

)
-time algorithm for the maximum s-t flow problem (and the

minimum s-t cut problem) in directed graphs with m arcs and largest integer capacity U . This
matches the running time of the Õ

(
(mU)

10
7

)
-time algorithm of Mądry [43] in the unit-capacity

case, and improves over it, as well as over the Õ (m
√
n logU)-time algorithm of Lee and Sidford

[38], whenever U is moderately large and the graph is sufficiently sparse.
By well-known reductions, this also gives us an Õ

(
m

10
7 B

1
7

)
-time algorithm for the maximum-

cardinality bipartite b-matching problem in which the largest integer demand is B. This,
again, matches the Õ

(
(mB)

10
7

)
-time algorithm of Mądry [43], when B = 1, which corresponds

to the maximum-cardinality bipartite matching problem, and outperforms it, as well as the
Õ (m

√
n logB)-time algorithm of Lee and Sidford [38], for moderate values of B and sufficiently

sparse graphs.
One of the advantages of our algorithm is that it is significantly simpler than the ones

presented in [43] and [38]. In particular, these algorithms employ a sophisticated interior-point
method framework, while our algorithm is cast directly in the classic augmenting path setting
that almost all the combinatorial maximum flow algorithms use. At a high level, the presented
algorithm takes a primal dual approach in which each iteration uses electrical flows computations
both to find an augmenting s-t flow in the current residual graph and to update the dual solution.
We show that by maintain certain careful coupling of these primal and dual solutions we are
always guaranteed to make significant progress.

∗Supported by NSF grant CCF-1553428, and a Sloan Research Fellowship.

1 Introduction

The maximum s-t flow problem and its dual, the minimum s-t cut problem, are two of the most
fundamental and extensively studied graph problems in combinatorial optimization [51, 1, 50].
They have a wide range of applications (see [2]), are often used as subroutines in other algorithms
(see, e.g., [4, 53]), and a number of other important problems – e.g., bipartite matching problem [10]
– can be reduced to them. Furthermore, these two problems were often a testbed for development
of fundamental algorithmic tools and concepts. Most prominently, the Max-Flow Min-Cut theorem
[14, 17] constitutes the prototypical primal-dual relation.

Several decades of extensive work resulted in a number of developments on these problems (see
Goldberg and Rao [22] for an overview) and many of their generalizations and special cases. Still,
despite all this effort, the basic problem of computing maximum s-t flow and minimum s-t cut in
general graphs resisted progress for a long time. In particular, for a number of years, the best
running time bound for the problem was an O(mmin{m

1
2 , n

2
3 } log(n2/m) logU) (with U denoting

the largest integer arc capacity) bound established in a a breakthrough paper by Goldberg and Rao
[22] and this bound, in turn, matched the O(mmin{m

1
2 , n

2
3 }) bound for unit-capacity graphs due

to Even and Tarjan [15] – and, independently, Karzanov [25] – that were put forth more than 40
years ago.

The above bounds were improved only fairly recently. Specifically, in 2013, Mądry [43] presented
an interior-point method based framework for flow computations that gave an Õ

(
m

10
7

)
-time1 al-

gorithm for the unit-capacity case of the maximum s-t flow and minimum s-t cut problems. This
finally broke the long-standing Õ

(
n

3
2

)
running time barrier for sparse graphs, i.e., for m = O(n).

Later on, Lee and Sidford [38] developed a variant of interior-point method that enabled them to
obtain improvement for the regime of dense graphs. In particular, their algorithm is able to compute
the (general) maximum s-t flow and minimum s-t cut in Õ (m

√
n logU) time and thus improve over

the Goldberg-Rao bound whenever the input graph is sufficiently dense.
It is also worth mentioning that, as a precursor to the above developments, substantial progress

was made in the context of (1− ε)-approximate variant of the maximum s-t flow problem in undi-
rected graphs. In 2011, Christiano et al. [7] developed an algorithm that allows one to compute a
(1 + ε)-approximation to the undirected maximum s-t flow (and the minimum s-t cut) problem in
Õ
(
mn

1
3 ε−11/3

)
time. Their result relies on devising a new approach to the problem that combines

electrical flow computations with multiplicative weights update method (see [4]). Later, Lee et
al. [37] presented a quite different – but still electrical-flow-based – algorithm that employs purely
gradient-descent-type view to obtain an Õ

(
mn1/3ε−2/3

)
-time (1 + ε)-approximation for the case of

unit capacities. Very recently, this line of work was culminated by Sherman [54] and Kelner et al.
[26] who independently showed how to integrate non-Euclidean gradient-descent methods with fast
poly-logarithmic-approximation algorithms for cut problems of Mądry [41] to get an O(m1+o(1)ε−2)-
time (1 + ε)-approximation to the undirected maximum flow problem. Then, Peng [48] built on
these works to obtain a truly nearly-linear, i.e., Õ

(
mε−2

)
, running time.

Finally, we note that, in parallel to the above work that is focused on designing weakly-
polynomial algorithms for the maximum s-t flow and minimum s-t cut problems, there is also
a considerable interest in obtaining running time bounds that are strongly-polynomial, i.e., that do

1We recall that Õ (f) denotes O(f logc f), for some constant c.

1

not depend on the values of arc capacities. The current best such bound is O(mn) and it follows
by combining the algorithms of King et al. [28] and Orlin [47].

Bipartite Matching Problem. Another problem that is related to the maximum s-t problem –
and, in fact, can be reduced to it – is the (maximum-cardinality) bipartite matching problem. This
problem is a fundamental assignment task with numerous applications (see, e.g., [1, 40]) and long
history that has its roots in the works of Frobenius [18, 19] and König [29, 30, 31] from the early
20th century (see [52]). Already in 1931, König [32] and Egerváry [13] provided first constructive
characterization of maximum matchings in bipartite graphs. This characterization can be turned
into a polynomial-time algorithm. Then, in 1973, Hopcroft and Karp [24] and, independently,
Karzanov [25], devised the celebrated O(m

√
n)-time algorithm. For 40 years this bound remained

the best one known in the regime of relatively sparse graphs. Only recently Mądry [43] obtained an
improved, Õ

(
m10/7

)
running time. It turns out, however, that whenever the input graph is dense,

i.e., when m is close to n2 even better bounds can be obtain. In this setting, one can combine the
algebraic approach of Rabin and Vazirani [49] – that itself builds on the work of Tutte [57] and
Lovász [39] – with matrix-inversion techniques of Bunch and Hopcroft [6] to get an algorithm that
runs in O(nω) time (see [45]), where ω ≤ 2.3727 is the exponent of matrix multiplication [9, 59].
Also, later on, Alt et al. [3], and Feder and Motwani [16] developed combinatorial algorithms that
offer a slight improvement – by a factor of, roughly, log n/ log n2

m – over the O(m
√
n) bound of

Hopcroft and Karp whenever the graph is sufficiently dense.
Finally, a lot of developments has been done in the context of the (maximum-cardinality) match-

ing problem in general, i.e., not necessarily bipartite, graphs. Starting with the pioneering work of
Edmonds [11], these developments led to bounds that essentially match the running time guarantees
that were previously known only for bipartite case. More specifically, the running time bound of
O(m

√
n) for the general-graph case was obtained by Micali and Vazirani [44, 60] (see also [20] and

[21]). Then, Mucha and Sankowski [46] gave an O(nω)-time algorithms for general graphs that
builds on the algebraic characterization of the problem due to Rabin and Vazirani [49]. This result
was later significantly simplified by Harvey [23].

1.1 Our Contribution

In this paper, we put forth a new algorithm for solving the maximum s-t flow and the minimum
s-t cut problems in directed graphs. More precisely, we develop an algorithm that computes the
maximum s-t flow of an input graph in time Õ

(
m

10
7 U

1
7

)
, where m denotes the number of arcs of

that graph and U its largest integer capacity. Known reductions imply similar running time bounds
for the minimum s-t cut problem as well as for the maximum-cardinality bipartite b-matching
problem, a natural generalization of the maximum bipartite matching problem in which each vertex
v has a degree demand bv. For that problem, our algorithm yields an Õ

(
m

10
7 B

1
7

)
-time algorithm,

with B being the largest (integer) vertex demand.
In the light of the above, for the unit-capacity/demand cases, the resulting algorithms match

the performance of the algorithm of Mądry [43]. The latter algorithm, however, runs in Õ
(
mU

10
7

)
time (which translates into an Õ

(
(mB)

10
7

)
running time for the bipartite b-matching problem) in

the case of arbitrary capacities/demands. Consequently, the significantly better dependence of the
running time of our algorithm on the largest capacity U/ largest demand B makes it much more

2

favorable in that setting. In fact, even though that dependence on U/B is still polynomial it enables
our algorithm to remain competitive, for a non-trivial range of parameters, with the best existing
algorithms that run in time that is logarithmic in U/B, such as the Õ (m

√
n logU)-time algorithm

of Lee and Sidford [38].
Even more crucially, the key advantage of our algorithm is that it is significantly simpler than

both the algorithm of Mądry [43] and that of Lee and Sidford [38]). Both these algorithms rely
heavily on the interior-point method framework. Specifically, [43] designed a certain new variant of
path-following interior-point method algorithm for the near-perfect bipartite b-matching problem
that encoded the input maximum s-t flow instance. It then used electrical flow computations to
converge to the near-optimal solution for that problem. In order to break the bottlenecking Õ

(
m

1
2

)
iteration bound, however, Mądry [43] needed to, first, develop an extensive toolkit for perturbing
and preconditioning the underlying electrical flow computation and, then, to combine this machinery
with a very careful and delicate analysis of the resulting dynamics.

Our algorithm also relies on electrical flow computations but it abandons the above methodology
and works instead fully within the classic augmenting path framework that almost all the previous
combinatorial maximum s-t flow algorithms used. In this framework, developed by Ford and Fulk-
erson [17] (see also [14]), the flow is built in stages. Each stage corresponds to finding a so-called
augmenting flow in the current residual graph, which is a directed graph that encodes the solution
found so far. The algorithm terminates when the residual graph admits no more augmenting flows,
i.e., there is no path from s to t in it, since in this case the solution found so far has to be already
optimal.

The chief bottleneck in the running time analysis of augmenting path based algorithms is ensur-
ing that each flow augmentation stage makes sufficient progress. Specifically, one wants to obtain a
good trade off between the amount of flow pushed in each augmentation step and the time needed
to implement each such flow push. One simple approach is to just use here s-t path computations.
This is a nearly-linear time procedure but it only guarantees pushing one unit of flow each time.
A much more sophisticated primitive developed in this context are blocking flow computations.
Combining this primitive with a simple duality argument enabled Goldberg and Rao [22], who built
on the work of Even and Tarjan [15], to obtain an O(mmin{m

1
2 , n

2
3 } logU)-time maximum flow

that remained the best known algorithm for nearly two decades. Unfortunately, trying to improve
such blocking flow-based approaches turned out to be extremely difficult and no progress was made
here so far, even in the unit-capacity case for which the best known bounds were established over
40 years ago.

One of the key contributions of this paper is bringing a new type of primitive: electrical flows to
the augmenting path framework; and showing how to successfully use it to outperform the blocking
flow-based methods. Specifically, our algorithm finds augmenting flows by computing electrical
flows in certain symmetrization of the current residual graph – see Section 3.3 for more details.
(Note that performing such a symmetrization is necessary as residual graphs are inherently directed
while electrical flows are inherently undirected.) The key difficulty that arises in this context,
however, is ensuring that this symmetrized residual graph can still support a significant fraction
of the s-t capacity of the original residual graph. It is not hard to see that, in general, this might
not be the case. To address this problem we introduce a certain careful coupling of the primal
and dual solutions, which is inspired by the so-called centrality condition arising in interior-point
method based maximum flow algorithms (see [43]). We then show that maintaining this coupling
and applying a simple preconditioning technique let us guarantee that looking only for the flows in

3

the symmetrized version of the residual graph still provides sufficient progress in each iteration and,
in particular, immediately delivers a Õ

(
m

3
2 logU

)
-time algorithm.

We then (see Section 4) build on that basic algorithm and develop an `p-geometric understand-
ing of its running time analysis. This understanding guides us towards a simple electrical flow
perturbation technique – akin to the perturbation techniques used in [7] and [43] – that enables us
to break the Ω(

√
m) iterations bottleneck that all the blocking flow-based algorithms were suffering

from, and thus get the final, improved result.
We believe that further study of this new augmenting flow based framework will deliver even

faster and simpler algorithms.

1.2 Organization of the Paper

We begin the technical part of the paper in Section 2 by presenting some preliminaries on the
maximum flow problem and the notion of electrical flows. Then, in Section 3, we present our
framework and demonstrate how it yields an Õ

(
m

3
2 logU

)
-time maximum s-t flow algorithm.

Finally, in Section 4, we show how to refine our basic framework to obtain the improved running
time of Õ

(
m

10
7 U

1
7

)
.

2 Preliminaries

Throughout this paper, we will be viewing graphs as having both lower and upper capacities.
Specifically, we will denote by G = (V,E,u) a directed graph with a vertex set V , an arc set E (we
allow parallel arcs), and two (non-negative) integer capacities u−e and u+

e , for each arc e ∈ E. (We
will explain the role of these capacities below.) Usually, m will denote the number |E| of arcs of
the graph in question and n = |V | will be the number of its vertices. We view each arc e of G as
an ordered pair (u, v), where u is its tail and v is its head.

Observe that this perspective enables us to view undirected graphs as directed ones in which
the ordered pair (u, v) ∈ E is an (undirected) edge (u, v) and the order just specifies the orientation
of that edge (from u to v).

Maximum Flow Problem. The basic notion of this paper is the notion of a flow. Given a graph
G, we view a flow in G as a vector f ∈ Rm that assigns a value fe to each arc e of G. If this
value is negative we interpret it as having a flow of |fe| flowing in the direction opposite to the arc
orientation. (This convention is especially useful when discussing flows in undirected graphs.)

We say that a flow f is an σ-flow, for some demands σ ∈ Rn iff it satisfies flow conservation
constraints with respect to that demands. That is, we have that∑

e∈E+(v)

fe −
∑

e∈E−(v)

fe = σv, for each vertex v ∈ V . (1)

Here, E+(v) (resp. E−(v)) is the set of arcs of G that are entering (resp. leaving) vertex v.
Intuitively, these constraints enforce that the net balance of the total in-flow into vertex v and the
total out-flow out of that vertex is equal to σv, for every v ∈ V . (Observe that this implies, in
particular, that

∑
v σv = 0.)

4

Furthermore, we say that a σ-flow f is feasible in G iff f obeys the the capacity constraints:

−u−e ≤ fe ≤ u+
e , for each arc e ∈ E. (2)

In other words, we want each arc e to have a flow that is at most u+
e if it flows in the direction

of e’s orientation (i.e., fe ≥ 0), and at most u−e , if it flows in the opposite direction (i.e., fe < 0).
Note that setting all u−e s be equal to zero recovers the standard notion of flow feasibility in directed
graphs.

One type of flows that will be of special interest to us are s-t flows, where s (the source) and t
(the sink) are two distinguish vertices of G. Formally, an s-t flow is a σ-flow whose demand vector
σ is equal to F ·χs,t, where F ≥ 0 is called the value of f and χs,t is a demand vector that has −1
(resp. 1) at the coordinate corresponding to s (resp. t) and zeros everywhere else.

Now, the maximum flow problem corresponds to a task in which we are given a (directed) graph
G = (V,E,u) with integer capacities as well as a source vertex s and a sink vertex t and want to
find a feasible (in the sense of (2)) s-t flow of maximum value. We will denote this maximum value
as F ∗.

Residual Graphs. A fundamental object in many maximum flow algorithms (including ours) is
the notion of a residual graph. Given a graph G = (V,E,u) and a feasible σ-flow f in that graph
(it is useful to think σ = F · χs,t), we define the residual graph Gf (of G with respect to f) as a
graph Gf = (V,E, û(f)) over the same vertex and arc set as G and such that, for each arc e = (u, v)
of G, its lower and upper capacities are defined as

û+
e (f) := u+

e − fe and û−e (f) := u−e + fe. (3)

We will refer to û+
e (f) (resp. û−e (f)) as forward residual capacity (resp. backward residual capacity)

of e and also define the residual capacity ûe(f) of e as the minimum of these two, i.e., ûe(f) :=
min{û−e (f), û+

e (f)}. Note that the value of residual capacity depends on the flow f but we will
ensure that it is always clear from the context with respect to which flow the residual capacity is
measured. Also, observe that feasibility of f implies that all residual capacities are always non-
negative (cf. (2)).

The main reason why residual graphs are useful in computing maximum flows is that they
constitute a very convenient representation of the progress made so far. Specifically, we have the
following important fact. (Again, it is useful to think here of the maximum s-t flow setting, in which
σ = F ∗χs,t.)

Fact 2.1. Let σ be some demand and G = (V,E,u) be a graph in which a demand of σ can be
routed, i.e., there exists a σ-flow f ∗ that is feasible in G. Also, for any 0 ≤ α ≤ 1, let f be a feasible
ασ-flow in G, and Gf = (V,E, û(f)) be the residual graph of G with respect to f . We have that

(a) one can route a demand of (1− α)σ in Gf ;

(b) if f ′ is a feasible α′σ-flow in Gf , for some α′, then f + f ′ is a feasible (α+ α′)σ-flow in G.

Intuitively, the above fact enables us to reduce the task of routing a demand σ in G to a sequence
of computations of augmenting α′σ-flows in the residual graph Gf . We know that as long as we
have not yet computed a feasible σ-flow in G, Gf can route a demand of (1 − α)σ-flow, where
(1− α) > 0 is the fraction of routed demand that we are still “missing”, and each new augmenting
α′σ-flow found in Gf brings us closer to routing σ in full in G. (Note that initially Gf is equal to
G and Gf is changing after each new augmenting α′σ-flow is found.)

5

Electrical Flows and Vertex Potentials. Another notion that will play a fundamental role in
this paper is the notion of electrical flows. Here, we just briefly review some of the key properties
that we will need later. For an in-depth treatment we refer the reader to [5].

Consider a graph G and a vector of resistances r ∈ Rm that assigns to each edge e its resistance
re > 0. For a given σ-flow f in G, let us define its energy (with respect to resistances r) Er (f) to
be

Er (f) :=
∑
e

ref
2
e . (4)

For a given demand vector σ and a vector of resistances r , we define the electrical σ-flow in
G (that is determined by resistances r) to be the flow that minimizes the energy Er (f) among all
flows with demand σ in G. As energy is a strictly convex function, one can easily see that such a
flow is unique. (It is important to keep in mind that such flow is not required to be feasible with
respect to capacities of G, in the sense of (2).)

A very useful property of electrical flows is that they can be characterized in terms of vertex
potentials inducing them. Namely, one can show that a flow f with demands σ in G is an electrical
σ-flow determined by resistances r iff there exist vertex potentials φv (that we collect into a vector
φ ∈ Rn) such that, for any edge e = (u, v) in G,

fe =
φv − φu
re

. (5)

In other words, a f with demands σ is an electrical σ-flow iff it is induced via (5) by some vertex
potential φ. (Note that the orientation of edges matters in this definition.) The above equation
corresponds to the Ohm’s law known from physics.

Note that we are able to express the energy Er (f) (see (4)) of an electrical σ-flow f in terms of
the potentials φ inducing it as

Er (f) =
∑

e=(u,v)

(φv − φu)2

re
. (6)

One of the consequences of the above is that one can develop a dual characterization of the
energy of an electrical σ-flow in terms of optimization over vertex potentials. Namely, we have the
following lemma whose proof can be found, e.g., in [43] Lemma 2.1.

Lemma 2.2. For any graph G = (V,E), any vector of resistances r , and any demand vector σ,

1

Er (f ∗)
= min

φ|σTφ=1

∑
e=(u,v)∈E

(φv − φu)2

re
,

where f ∗ is the electrical σ-flow determined by r in G. Furthermore, if φ∗ are the vertex potentials
corresponding to f ∗ then the minimum is attained by taking φ to be equal to φ̂ := φ∗/Er (f ∗).

Note that the above lemma provides a convenient way of lowerbounding the energy of an elec-
trical σ-flow. One just needs to expose any vertex potentials φ such that σTφ = 1 and this will
immediately constitute an energy lowerbound.

6

Laplacian Solvers. The fact that the electrical σ-flow determined by resistances r is the only flow
with demands σ that can be induced by vertex potentials (cf. (5)) has an important consequence.
It enables us to reduce electrical σ-flow computations to solving a linear system. In fact, the task
of finding vertex potentials that induce that flow can be cast as a Laplacian linear system. That is,
a linear system in which the constraint matrix corresponds to a Laplacian of the underlying graph
with weights given by the (inverses of) the resistances r .

Now, from the algorithmic point of view, the crucial property of Laplacian systems is that we
can solve them, up to a very good approximation, very efficiently. Namely, there is a long line
of work [56, 33, 34, 27, 8, 35, 36] that builds on an earlier work of Vaidya [58] and Spielman and
Teng [55] and gives us a number of Laplacian system solvers that run in only nearly-linear time
and, in case of more recent variants, are conceptually fairly simple. In particular, this line of work
establishes the following theorem.

Theorem 2.3. For any ε > 0, any graph G with n vertices and m edges, any demand vector
σ, and any resistances r , one can compute in Õ

(
m log ε−1

)
time vertex potentials φ̃ such that

‖φ̃−φ∗‖L ≤ ε‖φ∗‖L, where L is the Laplacian of G, φ∗ are potentials inducing the electrical σ-flow
determined by resistances r , and ‖φ‖L :=

√
φTLφ.

Even though the solutions delivered by the above Laplacian solvers are only approximate, the
quality of approximation that it delivers is more than sufficient for our purposes. Therefore, in the
rest of this paper we assume that these solutions are exact. (See, e.g., [43] for discussion how to
deal with inexactness of the electrical flows computed.)

Vector Norms. We will find it useful to work with various `p-norms of vectors. To this end, for
any p > 0, we define the `p-norm ‖h‖p of a vector h as

‖h‖p :=

(∑
i

|hi|p
) 1

p

. (7)

In particular, the `∞-norm is given by ‖h‖∞ := maxi |hi|.

3 Augmenting Residual Graphs with Electrical Flows

In this section, we put forth the general framework we will use to solve the maximum s-t problem.2

In particular, we demonstrate how this framework enables us to solve the maximum s-t flow problem
in Õ

(
m

3
2 logU

)
time, where m = |E| is the number of arcs in of the input graph and U is its largest

(integer) capacity.
More precisely, for any maximum s-t flow instance G = (V,E,u) and any value F ≥ 0, our

algorithm will work in Õ
(
m

3
2 logU

)
time and either: compute a feasible s-t flow of value F in G;

or conclude that the maximum s-t flow value F ∗ of G is strictly smaller than F .
2Observe that our treatment can be immediately extended to routing arbitrary demands since this problem can

always be reduced to the directed maximum flow problem by adding a super-source and super-sink and connecting
all the surpluses in the original graph to the former and all the deficits in that graph to the latter via arcs with
appropriate capacities.

7

Note that such procedure can be turned into a “classic” maximum s-t flow by applying binary
search over values of F and incurring a multiplicative running time overhead of only O(logUn). (In
fact, a standard use of capacity scaling technique [12] enables one to keep the overall running time
of the resulting algorithm be only linear, instead of quadratic, in logU .)

As mentioned earlier, our algorithm follows the primal dual augmenting paths based framework.
At a high level, in each iteration (see Section 3.2), we use electrical flow computations to compute
an augmenting flow as well as an update to the dual solution. To ensure that each augmenting
iteration makes enough progress, we maintain a careful coupling of the primal and dual solution.
We describe it below.

3.1 Primal Dual Coupling

Let us fix our target flow value F and, for notational convenience, , for any 0 ≤ α ≤ 1, let us denote
by χα the demand vector αFχs,t, i.e., the demand corresponding to routing α-fraction of the target
flow value F of the s-t flow. Also, let us define χ to be the demand equal to χ1.

Again, our algorithm will be inherently primal dual in nature. That is, in addition to maintaining
a primal solution: a χα-flow f , for some 0 ≤ α ≤ 1, that is feasible in G, it will also maintain a
dual solution y ∈ Rn, which should be viewed as an embedding of all the vertices of the graph G
into a line.

Consequently, our goal will be to either to make f be a feasible flow with demands χα and
α = 1, which corresponds to routing the target s-t flow value F in full, or to make the dual solution
y certify that the target demand χ1 = χ cannot be fully routed in G and thus F > F ∗.

Well-coupled Solutions. Our primal dual scheme will be enforcing a very specific coupling of
the primal solution f and the dual solution y . More precisely, let us define for each arc e = (u, v)

∆e(y) := yv − yu, (8)

to be the “stretch“ of the arc e in the embedding given by y . Also, let Gf be the residual graph of
G with respect to f and let us define, for a given arc e, a potential function

Φe(f) :=
1

û+
e (f)

− 1

û−e (f)
, (9)

where we recall that û+
e (f) := u+

e − fe (resp. û−e (f) := u−e + fe) are forward (resp. backward)
residual capacities of the arc e. (See preliminaries, i.e., Section 2, for details.)

Then, our intention is to maintain the following relation between f and y :

∆e(y) = Φe(f) for each arc e. (10)

Intuitively, this condition ensures that the line embedding y stretches each arc e in the direction
of the smaller of the residual capacities, and that this stretch is inversely proportional to the value of
that capacity. (Note that if G was undirected and thus the initial capacities u+

e and u−e were equal,
the direction of smaller residual capacity is also the direction in which the flow f flows through the
arc e.) It is worth pointing out that this coupling condition is directly inspired by (and, in fact,
can be directly derived from) a certain variant of centrality condition used by interior-point method
based maximum flow algorithms (see [43]).

8

Even though condition (10) expresses our intended coupling, it will be more convenient to work
with a slightly relaxed condition that allows us to have small violations of that ideal coupling.
Specifically, we say that a primal dual solution (f ,y) is γ-coupled iff

|∆e(y)− Φe(f)| ≤ γe
ûe(f)

for all arcs e = (u, v). (11)

Here, ûe(f) = min{û+
e (f), û−e (f)} is the (symmetrized) residual capacity of the arc e, and γ ∈ Rm

is the violation vector that we intend to keep very small. In particular, we say that a primal dual
solution (f ,y) is well-coupled iff its violation vector γ has its `2-norm (see (7)) be at most 1

100 , i.e.,
‖γ‖2 ≤ 1

100 .
One of the key consequences of maintaining a well-coupled primal dual pair of solutions (f ,y)

is that it enables us to use y as a dual certificate for inability to route certain demands in G. The
following lemma gives us a concrete criterion for doing that.

Lemma 3.1. Let (f ,y) be a well-coupled primal dual solution with f being a χα-flow, for some
0 ≤ α < 1. If

χTy >
2m

(1− α)

then the demand χ cannot be routed in G, i.e., F > F ∗.

Note that the choice of the constant 2 in the above lemma is fairly arbitrary. In principle, any
constant strictly larger than 1 would suffice.

Proof. Assume for the sake of contradiction that χTy > 2m
(1−α) but the demand χ can still be routed

in G. As f is an χα-flow that is feasible in G, by Fact 2.1, there has to exist a χ(1−α)-flow f ′ that
is feasible in the residual graph Gf . Observe that, by (1) and (8), we have in that case that

(f ′)T∆(y) =
∑
e

f ′e∆e(y) =
∑

e=(u,v)

f ′e (yv − yu) =
∑
v

yv

 ∑
e∈E+(v)

f ′e −
∑

e∈E−(v)

f ′e

 (12)

= (1− α)F (yt − ys) = (1− α)χTy > 2m.

We want now to use the feasibility of f ′ to derive an upper bound on the inner produce (f ′)T∆(y)
that will violate the above lower bound and thus deliver the desired contradiction.

To this end, let us consider some particular arc e. Assume wlog that f ′e ≥ 0 (handling of the
case of f ′e < 0 is completely analogous). We have that the contribution of that arc to the inner
product (f ′)T∆(y) is, by (11), at most

f ′e∆e(y) ≤ f ′eΦe(f) +
γef
′
e

ûe(f)
≤ f ′e

(
1

û+
e (f)

− 1

û−e (f)

)
+

γef
′
e

ûe(f)
,

where we recall that γ is the violation vector of (f ,y) (cf. (11)).
As f ′ is feasible in Gf , we need to have that f ′e ≤ û+

e (f). So, if û+
e (f) ≤ û−e (f), i.e., û+

e (f) =
ûe(f), then

f ′e∆e(y) ≤ f ′e
(

1

û+
e (f)

− 1

û−e (f)

)
+

γef
′
e

ûe(f)
≤ f ′e(1 + γe)

ûe(f)
≤ (1 + γe).

9

Otherwise, we have that

f ′e∆e(y) ≤ f ′e
(

1

û+
e (f)

− 1

û−e (f)

)
+

γef
′
e

ûe(f)
≤ f ′e

(
1

û+
e (f)

− 1− γe
ûe(f)

)
≤ 1− (1− γe)f ′e

ûe(f)
≤ 1,

as γe ≤ ‖γ‖∞ ≤ ‖γ‖2 ≤ 1
2 . So, in either case, this contribution is at most (1 + γe). Summing these

contributions over all arcs we get that

(f ′)T∆(y) ≤
∑
e

f ′e∆e(y) ≤
∑
e

(1 + γe) ≤ m+
√
m‖γ‖2 ≤ 2m,

which indeed contradicts the lower bound (12). The lemma follows.

In the light of the above discussion, for a given well-coupled primal dual solution (f ,y), we
should view the value of α as a measure of our primal progress, while the value of the inner product
σTy can be seen as a measure of our dual progress.

Initialization. The coupling condition (11) ties the primal and dual solutions f and y fairly
tightly. In fact, coming up with some primal dual solutions that are well-coupled, which we need
to initialize our framework, might be difficult.

Fortunately, finding such a pair of initial well-coupled solutions turns out to be easy, if our input
graph G is undirected. In that case, just taking f to be a trivial zero flow and y to be a trivial all-
zeros embedding makes condition (11) satisfied (with γes being all zero). After all, the residual graph
Gf with respect to such zero flow f is just the graph G itself and thus û+

e (f) = u+
e = u−e = û−e (f).

Furthermore, even though we are interested in solving directed instances too, every such instance
can be reduced to an undirected one. Specifically, we have the following lemma.

Lemma 3.2. Let G be an instance of the maximum s-t flow problem with m arcs and the maximum
capacity U , and let F be the corresponding target flow value. In Õ (m) time, one can construct an
instance G′ of undirected maximum s-t flow problem that has O(m) arcs and the maximum capacity
U , as well as target flow value F ′ such that:

(a) if there exists a feasible s-t flow of value F in G then a feasible s-t flow of value F ′ exists in G′;

(b) given a feasible s-t flow of value F ′ in G′ one can construct in Õ (m) time a feasible s-t flow of
value F in G.

The proof of the above lemma boils down to a known reduction of the directed maximum flow
problem to its undirected version – see, e.g., Theorem 3.6.1 in [42] for details. Consequently, from
now on we can assume without loss of generality that we always have a well-coupled primal dual
pair to initialize our framework.

3.2 Progress Steps

Once we described our basic framework and how to initialize it, we are ready to put forth its main
ingredient: progress steps that enable us to gradually improve the primal dual solutions that we
maintain. To this end, let us fix a well-coupled primal dual solutions (f ,y) with f being a χα-flow,
for some 0 ≤ α < 1, that is feasible in G. Our goal in this section will be to use (f ,y) to compute, in
nearly-linear time, another pair of well-coupled primal dual solutions (f +,y+) that bring us closer

10

to the optimal solutions. The flow f + we obtain will be a χα′-flow feasible in G, for α′ > α. So,
the resulting flow update f +− f is an augmenting flow that is feasible in our current residual graph
Gf and pushes (α′ − α)-fraction of the target s-t flow.

We will compute (f +,y+) in two stages. First, in the augmentation step, we obtain a pair of
solutions (f̂ , ŷ), with f̂ being a χα′-flow, for α′ > α, that is feasible in G. These solutions make
progress toward the optimal solutions but might end up being not well-coupled. Then, in the fixing
step, we correct (f̂ , ŷ) slightly by adding a carefully chosen flow circulation, i.e., a flow with all-
zeros demands, to f̂ and an dual update to ŷ so as to make the resulting solutions (f +,y+) be
well-coupled, as desired.

The key primitive in both these steps will be electrical flow computation. As we will see, the
crucial property of electrical flows we will rely on here is their“self-duality“. That is, the fact that
each electrical flow computation gives us both the flow and the corresponding vertex potentials
that are coupled to it via Ohm’s law (5). This enables us not only to update our primal and dual
solutions with that flow and vertex potentials, respectively, but also, much more crucially, this
coupling introduced by Ohm’s law will be exactly what will allow us to (approximately) maintain
our desired primal dual coupling property (11).

Augmentation Step. To perform an augmentation step we compute first an electrical χ-flow f̃
in G with the resistances r defined as

re :=
1

(û+
e (f))2

+
1

(û−e (f))2
, (13)

for each arc e. Note that the resistance re is proportional, roughly, to the inverse of the square of
the residual capacity ûe(f) of that arc. So, in particular, it becomes very large whenever residual
capacity of the arc e is small, and vice versa. As we will see shortly, this correspondence will allow
us to control the amount of flow that f̃ sends over each edge and thus ensure that the respective
residual capacities are not violated.

Let φ̃ be the vertex potentials inducing f̃ (via the Ohm’s law (6)). Then, we obtain the new
primal and dual solution (f̂ , ŷ) as follows:

f̂e := fe + δf̃e for each arc e (14)
ŷv := yv + δφ̃v for each vertex v,

where δ is the desired step size. Observe that this update is exactly an augmentation of our current
flow f with the (scaled) electrical flow δf̃ and adding to our dual solution the (scaled) vertex
potentials δφ̃. This, in particular, means that the new flow f̂ we obtain here is a χα′-flow with

α′ = α+ δ. (15)

The step size δ, however, will have to be carefully chosen. On one hand, as we see in (15), the
larger it is the more progress we make. On the other hand, though, it has to be small enough so as
to keep the flow δf̃ feasible in Gf (and thus, by Fact 2.1, to make the flow f̂ + f feasible in G).

Note that, a priori, we have no direct control over neither the directions in which the electrical
χ-flow f̃ is flowing thorough each arc nor the amount of that flow. So, in order to establish a grasp
on what is the right setting of δ, it is useful to define a congestion vector ρ given by

ρe :=
f̃e

ûe(f)
, (16)

11

for each arc e. One can view ρe as a normalized measure of how much the electrical flow f̃ overflows
the residual capacity ûe(f) of the arc e and in what direction. In other words, the sign of ρe encodes
the direction of the flow f̃e.

It is now not hard to see that to ensure that δf̃ is feasible in Gf , i.e., that no residual capacity
is violated by the update (14), it suffices that δ|ρe| ≤ 1

4 , for all arcs e, or, equivalently, that

δ ≤ 1

4‖ρ‖∞
, (17)

where ‖ · ‖∞ is the standard `∞-norm.
It is also worth pointing out that the congestion vector ρ turns out to capture (up to a small

multiplicative factor) the contribution of each arc e to the energy Er (f̃) of f̃ . In particular, we have
the following simple but important observation.

Lemma 3.3. For any arc e, ρ2
e ≤ ref̃2

e ≤ 2ρ2
e and

‖ρ‖22 ≤ Er (f̃) ≤ 2‖ρ‖22,

where ‖ · ‖2 is the standard `2-norm.

Proof. Note that, by definition of the resistance re (13), (16), and the definition of the residual
capacity ûe, we have that

ρ2
e ≤

(ρeûe(f))2

ûe(f)2
≤ f̃2

e

ûe(f)2
≤
(
(û+
e (f))−2 + (û−e (f))−2

)
f̃2
e = ref̃

2
e ≤

2f̃2
e

ûe(f)2
= 2ρ2

e.

We thus also have that

‖ρ‖22 =
∑
e

ρ2
e ≤

∑
e

ref̃
2
e = Er (f̃) ≤

∑
e

2ρ2
e = 2‖ρ‖22,

as desired.

This link between the energy-minimizing nature of the electrical σ-flow f̃ and the `2-norm of
the congestion vector ρ will end up being very important. One reason for that is the fact that
`∞-norm is always bounded by the `2-norm. Consequently, we can use this connection to control
the `∞-norm of the vector ρ and thus the value of δ needed to satisfy the feasibility condition (17).

It turns out, however, that just ensuring that our augmenting flow is feasible is not enough for
our purposes. Specifically, we also need to control the coupling of our primal dual solutions, and
the feasibility bound (17) might be not sufficiently strong for this purpose. We thus have to develop
analyze the impact of the update (14) on the coupling condition (11) more closely.

To this end, let us first notice the following fact that stems from a standard application of the
Taylor’s theorem. Its proof appears in Appendix A.1

Fact 3.4. For any u1, u2 > 0 and x such as |x| ≤ u
4 , where u = min{u1, u2}, we have that(

1

u1 − x
− 1

u2 + x

)
=

1

u1
− 1

u2
+

(
1

u2
1

+
1

u2
2

)
x+ x2ζ,

where |ζ| ≤ 5
u3
.

12

Now, the above approximation bound enables us to get an accurate estimate of how the coupling
condition evolves during the augmentation step (14). That is, for any arc e, applying Fact 3.4 with
u1 = û+

e (f), u2 = û−e (f) and x = δf̃e, gives us that

Φe(f̂) =
1

û+
e (f)− δf̃e

− 1

û−e (f) + δf̃e
= Φe(f) +

(
1

(û+
e (f))2

+
1

(û−e (f))2

)
δf̃e + (δf̃e)

2ζe, (18)

with |ζe| ≤ 5
ûe(f)3

.
Observe that the above expression tells us that the first order approximation of the change in

the primal contribution of the arc e to the coupling condition (11) caused by the update (14) is
exactly

Φe(f̂)− Φe(f) ≈
(

1

(û+
e (f))2

+
1

(û−e (f))2

)
δf̃e = reδf̃e,

where we also used (13). (In fact, the choice of the resistances r was made exactly to make the
above statement true.)

Furthermore, by Ohm’s law (5) and the definition of our augmentation step (14), we have that

reδf̃e = δ
(
φ̃v − φ̃u

)
= ∆e(ŷ)−∆e(y),

which is exactly the change in the dual contribution of the arc e = (u, v) to the coupling condition
(11) caused by the augmentation step update (14).

So, up to first order approximation, these two contributions cancel out, leaving the coupling
(11) intact. Consequently, any increase in the violation of the coupling condition must come from
the second-order terms in the approximation (18). The following lemma makes this precise and is
proved in Appendix A.2.

Lemma 3.5. Let 0 < δ ≤ (4‖ρ‖∞)−1 and the primal dual solution (f ,y) be γ-coupled. Then, we
have that, for any arc e = (u, v),∣∣∣∆e(ŷ)− Φe(f̂)

∣∣∣ ≤ 4
3γe + 7(δρe)

2

ûe(f̂)
.

Fixing Step. Although Lemma 3.5 enables us to bound the deterioration of the primal dual
coupling during the augmentation step, we cannot prevent this effect altogether. Therefore, we
need to introduce a fixing step that deals with this problem. More precisely, we develop a procedure
that uses a single electrical flow computation to significantly reduce that violation, provided it was
not too large to begin with. This is formalized by the following lemma, whose proof appears in
Appendix A.3.

Lemma 3.6. Let (g , z) be a ς-coupled primal dual solution, with g being a feasible χα′-flow and
‖ς‖2 ≤ 1

50 . In Õ (m) time, we can compute a primal dual solution (ḡ , z̄) that is well-coupled and in
which ḡ is still a χα′-flow.

Now, after putting Lemmas 3.5 and 3.6 together, we are finally able to state the condition that
δ in the update (14) has to satisfy in order to ensure that the solutions (f +,y+) we obtain after
performing the augmentation and fixing step is still well-coupled.

13

Lemma 3.7. (f +,y+) is a well-coupled primal dual solution with f + being a χα′-flow that is feasible
in G whenever

δ ≤ (33‖ρ‖4)−1 ,

The above lemma tells us that the step size δ of our augmentation step (14) should be governed
by the `4-norm (see (7)) of the congestion vector (16). Observe that the `4-norm of a vector is
always upper bounding its `∞-norm. So, the condition (17) is subsumed by this `4-norm bound.

Proof. Note that we always have that ‖ρ‖4 ≥ ‖ρ‖∞. So, the condition (17) is automatically satisfied
and the flow f + is indeed a χα′-flow that is feasible in G.

Now, to argue about well-coupling of (f +,y+), notice that, in the light of Lemma 3.6, it suffices
to argue that the primal dual solution (f̂ , ŷ) obtained after executing the augmentation step (14)
is γ̂-coupled with ‖γ̂‖2 ≤ 1

50 .
To this end, observe that by Lemma 3.5 and the fact that (f ,y) are well-coupled, i.e., γ-coupled

with ‖γ‖2 ≤ 1
100 , we have that

‖γ̂‖2 =

√∑
e

γ̂2
e ≤

√√√√∑
e

(
4

3
γe + 7(δρe)2

)2

≤ 4

3
‖γ‖2 + 7δ2

√∑
e

ρ4
e ≤

4

300
+ 7δ2‖ρ‖24 ≤

2

150
+

7

1089
<

1

50
.

The lemma follows.

3.3 Analysis of the Algorithm

We want now to analyze the overall running time of our algorithm. Recall that given our target
demand χ that corresponds to sending F units of flow from the source s to the sink t, our overarching
goal is to either route this demand fully in G or provide a dual certificate that it is impossible to
route χ in G.

We aim to achieve this goal by maintaining and gradually improving a primal dual solution
(f ,y). In this solution, f is a χα-flow (which corresponds to routing an α fraction of the desired
demand χ) that is feasible in G and f and y are well-coupled, i.e., tied to each other via condition
(11) with the violation vector γ̂ having sufficiently small `2-norm. As described in Section 3.2, each
iteration runs in nearly-linear time and boils down to employing electrical flow computations to
find an augmenting flow in the current residual graph Gf (as well as to update the dual solution to
maintain well-coupling).

Consequently, all we need to do now is to lower bound the amount of progress that each of these
iteration makes. Ideally, we would like to prove that in each iteration in which f already routed
α-fraction of the desired flow, i.e., f is a feasible χα-flow, the step size δ (see (14)) can be taken to
be at least

δ ≥ (1− α)δ̂, (19)

for some fixed δ̂ > 0. Observe that if such a lower bound was established then, by (15), it would
imply that each iteration finds an augmenting flow that routes at least δ̂-fraction of the amount of
flow still to be routed. As a result, after executing at most O(δ̂−1 logmU) iterations, the remaining
value of flow to be routed would be at most 1 and thus a simple flow rounding and augmenting path

14

finding would yield the final answer (see, e.g., [43]), making the overall running time be at most
Õ
(
δ̂−1m logU

)
.

Unfortunately, a priori, it is difficult to provide any such non-trivial unconditional lower bound
on the amount of primal progress we make in each iteration. After all, it could be the case that
the target flow cannot be even routed in G. More importantly though, even if the target flow could
be routed in G, and thus the residual graph always admitted augmenting flows of sufficiently large
value, it is still not clear that our flow augmenting procedure would be able to find them. (It is
worth noting that this problem is by no means specific to our algorithm. In fact, in all the maximum
flow algorithms that rely on the augmenting paths framework ensuring that each iteration makes a
sufficient primal progress is a chief bottleneck in the analysis.)

The root of the problem here is that our flow augmenting procedure is based on electrical flows
and these are undirected in nature. Consequently, the augmenting flows that it finds have to come
from a fairly restricted class: s-t flows that are feasible in a certain “symmetrized" version of the
residual graph.

To make it precise, given a residual graph Gf , let us define its symmetrization Ĝf to be an
undirected graph in which each arc e has its forward and backward capacity equal to ûe(f), i.e., to
the minimum of the forward û+

e (f) and backward û−e (f) residual capacities in Gf . Observe now that
each (electrical) augmenting flow δf̃ found in the augmentation step (cf. (14)) is not only feasible
in the residual graph Gf but also in its symmetrization Ĝf – this is exactly what the condition (17)
enforces.

However, not all augmenting s-t flows that are feasible in Gf have to be feasible in Ĝf too. In
fact, it can happen that a large maximum s-t flow value that the residual graph Gf supports mostly
vanishes in its symmetrization Ĝf , and thus prevents our algorithm from making a sufficient good
primal progress. (Again, a difficulty of a exactly the same nature arises in the analysis of the classic
flow augmenting algorithms such as [15, 25, 22].)

Preconditioning Arcs. It turns out, however, that there is a fairly simple way to circumvent
the above difficulty and ensure that the kind of direct, “primal-only“ analysis we hoped for above
can indeed be performed. Namely, we just need to “precondition“ our input graph by adding to it
a large number of s-t arcs of sufficiently large capacities.

More precisely, we modify our input graph G by adding to it m undirected arcs between the
source s and sink t with a forward and backward capacities equal to 2U and their orientation being
from s to t. We will call these arcs preconditioning arcs. Observe that after this modification the
number of arcs of our graph as well as its maximum capacity at most doubled, and the maximum
s-t flow value changed additively by exactly 2mU . In particular, the preconditioning arcs constitute
exactly half of all the arcs and the amount of s-t flow that they alone can support is at least twice
the s-t throughput of the rest of the graph. (Also, as these arcs are undirected they do not interfere
with our initialization procedure – cf. Lemma 3.2.3) Consequently, we can just focus on analyzing
the running time of our algorithm on this preconditioned instance and the bounds we establish will
immediately translate over to the original instance.4

3More precisely, we can just first initialize our framework for the original graph, as before, and only precondition
the undirected graph resulting from that initialization.

4Note that the preconditioning arcs have to be fully saturated in any maximum s-t flow. So, simply dropping
these arcs and the flow on them will yield the maximum s-t flow in the original graph.

15

As already mentioned, somewhat surprisingly, once such preconditioning arcs are in place and
our primal dual solution (f ,y) is well-coupled, it is always the case that the symmetrization Ĝf

of our current residual graph Gf retains a constant fraction of the s-t throughput. Intuitively
speaking, well-coupling prevents the “shortcutting” preconditioning arc from getting “clogged” too
quickly. Instead, their residual capacity is consumed at the same rate as that of the rest of the
graph. Consequently, these arcs alone are always able to provide enough of s-t throughput in the
symmetrization Ĝf of the residual graph Gf . This is made precise in the following lemma, whose
proof appears in Appendix A.4

Lemma 3.8. Let (f ,y) be a well-coupled primal dual solution in the (preconditioned) graph G and
let f be a χα-flow, for some 0 ≤ α < 1, that is feasible in G. We have either that:

(a) there exists a χ (1−α)
10

-flow f ′ that is feasible in the symmetrization Ĝf of the residual graph Gf ;

(b) or χTy > 2m
(1−α) implying that our target demand χ cannot be routed in G (cf. Lemma 3.1).

Note that if our target demand χ is exactly the demand F ∗χs,t of the maximum s-t flow, the
second condition cannot ever trigger and thus indeed it is the case that the symmetrization of the
(preconditioned) residual graph retains a constant fraction of the original s-t throughput.

Lower Bounding δ̂. Once we proved that the symmetrization Ĝf of the residual graph Gf retains
most of its s-t flow throughput (see Lemma 3.8), we are finally able to provide an absolute lower
bound δ̂ (cf. (19)) on the amount of primal progress each iteration of our algorithm makes. To
this end, we upper bound first the energy, or, (almost) equivalently, the `2-norm of the congestion
vector (see Lemma 3.3) of the electrical flow that we use in our augmentation step (see (14)).

Lemma 3.9. Let (f ,y) be a well-coupled primal dual solution, with f being a χα-flow that is feasible
in Gf , for some 0 ≤ α < 1. Let f̃ be an electrical χ-flow determined by the resistances r given by
(13). We have that either:

(a) ‖ρ‖22 ≤ Er (f̃) ≤ CEm
(1−α)2

, where ρ is the congestion vector defined in (16), and CE > 0 is an
explicit constant;

(b) or, χTy > 2m
(1−α) , i.e., our target demand χ cannot be routed in G.

Proof. By Lemma 3.8, we either have that χTy > 2m
(1−α) , i.e., our condition (b) triggers, or there

exists a χ (1−α)
10

-flow f ′ that is feasible in the symmetrization Ĝf of the residual graph Gf .

Let us first bound the energy Er (f ′) of that flow f ′. To this end, observe that, by definition
(13), we have that

Er (f ′) =
∑
e

re(f
′
e)

2 ≤
∑
e

(
1

(û+
e (f))2

+
1

(û−e (f))2

)
(f ′e)

2 ≤ 2
∑
e

(
f ′e

ûe(f)

)2

≤ 2m,

where the last inequality follows by the fact that the flow f ′e is feasible in Ĝf . (Recall that the
forward and backward capacities of an arc e in Ĝf are equal to ûe(f).)

16

Consequently, if we scale f ′ by 10
(1−α) then it will become a χ-flow and its energy will be at most

200
(1−α)2

m. However, by definition, the energy Er (f̃) of the electrical χ-flow f̃ cannot be larger than
the energy of any other χ-flow. We thus can conclude that

‖ρ‖22 ≤ Er (f̃) ≤ 100

(1− α)2
Er (f ′) ≤ 200

(1− α)2
m,

where we also used Lemma 3.3. So, taking CE := 200 concludes the proof.

Now, we should notice that by Lemma 3.7 it suffices that we always have that

δ ≤ 1

33‖ρ‖4
≤ 1

33‖ρ‖2
≤ (1− α)

33
√
CEm

, (20)

where we used Lemma 3.9 and the simple fact that it is always the case that ‖ρ‖4 ≤ ‖ρ‖2. Conse-
quently, by (19), we see that we can take δ̂ := (33

√
CEm)−1, which gives us the desired Õ

(
m

3
2 logU

)
time algorithm.

Finally, we want to emphasize again that even though our above analysis was based solely on
analyzing our primal progress5, maintaining the dual solution and the primal dual coupling (11)
was absolutely critical for its success.

4 An Improved Õ
(
m

10
7 U

1
7

)
-Time Algorithm

In this section, we present an improved maximum s-t flow algorithm that runs in time Õ
(
m

10
7 U

1
7

)
,

where U is the value of the largest (integer) capacity of the graph. In the case of the unit capacities,
i.e., U = 1, this running time matches the running time of the Õ (m)

10
7 -time algorithm of Mądry

[43], and improves over the best known bound of min{Õ
(

(mU)
10
7

)
, Õ (m

√
n logU)} that stems for

the work of Mądry [43] and Lee and Sidford [38] whenever U is moderately large (and the graph is
sufficiently sparse).

To achieve this goal, we will modify the Õ
(
m

3
2 logU

)
-time algorithm presented in Section 3.

These modifications will enable us to lower bound the amount of primal progress δ̂ (cf. (19)) this
algorithm makes in each iteration. Specifically, we aim to show that

δ̂ ≥
(
m

1
2
−η
)−1

, (21)

for certain η := 1
14 −

1
7 logm U −O(log logmU), whenever that modified algorithm executes progress

steps (see Section 3.2). Clearly, as discussed in Section 3.3, establish that lower bound on δ̂ ensures
that we need at most Õ

(
m

1
2
−η logU

)
= Õ

(
m

10
7 U

1
7

)
progress steps to converge to the optimum

solution.
5In fact, one could perform it even without resorting explicitly to the dual infeasibility certificates χTy .

17

4.1 Modified Algorithm

Before we explain how we modify the Õ
(
m

3
2 logU

)
-time algorithm we presented in Section 3, let

us understand first what is its main running time bottleneck.
To this end, recall that the key quantity that captures the progress that each augmentation

iteration makes is the `4-norm ‖ρ‖4 of the congestion vector ρ of the electrical χ-flow f̃ determined
by the resistances r (see (13)). More precisely, by Lemma 3.7, we need to always have that

(1− α)δ̂ ≤ δ ≤ (33‖ρ‖4)−1.

In Section 3.3, we bounded that `4-norm by simply noticing that it always has to be upper
bounded by the `2-norm of that vector and that, by Lemma 3.3, this `2-norm is directly tied to
the energy Er (f̃) of the electrical flow f̃ . Furthermore, since we were able to also prove that this
energy is always O

(
m

(1−α)2

)
(see Lemma 3.9) the final O(

√
m) bound on δ̂−1 followed. (See (20)

for details.)
Now, the key observation is that such bounding of the `4-norm of the vector ρ with its `2-norm

might be wasteful. That is, even though it is not hard to construct examples in which the congestion
vector ρ has these two norms be fairly close, such examples are inherently fragile. More precisely,
as first pointed out by Christano et al. [7] in the context of an analogous `∞- vs `2-norm trade off,
whenever ‖ρ‖4 ≈ ‖ρ‖2, it must be necessarily be the case that most of the energy of the electrical
flow f̃ is contributed by a very small set of arcs. Moreover, if one perturbs such arcs by increasing
their resistance, this will result in a great increase of the energy of the corresponding electrical flow.
Christano et al. [7], and later Mądry [43] have demonstrated that a careful exploitation of this
phenomena can lead to ensuring that such fragile worst-case instances do not appear too often and
thus a better bound on the `4-norm can be achieved.

Arc Boosting. Our improved algorithm will also follow the perturbation paradigm we outlined
above. To this end, we introduce an operation of boosting that we will use to perturb high-energy
contributing arcs whenever needed.

Formally, let us fix a primal dual well-coupled solution (f ,y) and a particular arc e = (u, v).
Let us assume wlog that û+

e (f) = ûe(f) (the case of û−e (f) = ûe(f) is completely symmetric). We
define a boost of e to be an operation that modifies the input graph and the solution (f ,y) in the
following way:

(1) The arc e is replaced by an u-v path consisting of β(e) := 2 + d 2U
ûe(f)e arcs e1, . . . , eβ(e), all

oriented towards v.

(2) The first two arcs e1, e2 are just copies of the arc e, with u+
e1 = u+

e2 := u+
e and u−e1 = u−e2 := u−e .

(3) For all the remaining (β(e) − 2) arcs, we have that u+
ei := +∞ and u−ei := ũ, for 2 < i ≤ β(e),

where ũ ≥ U is a value that we will set below.

(4) The flow f pushes the original flow fe over the created u-v path.

(5) Finally, if v0 = u, v1, . . . , vβ(e) = v are the consecutive vertices on the created path then:

• yv0 := yu and yvβ(e) := yv;

18

• yv1 := yv, and yv2 := yv1 + Φe(f) = yv + Φe(f);

• yv3 , . . . , yvβ(e)−1
are set so as ∆ei(y) = −∆e2 (y)

β(e)−2 = − Φe(f)
β(e)−2 , for each 2 < i ≤ β(e).

Observe that after the above modifications, we have that

∆e1(y)− Φe1(f) = ∆e(y)− Φe(f)

∆e2(y) = Φe2(f) = Φe(f)

Φei(f) = − 1

(ũ+ fe)
= ∆ei(y),

for each 2 < i ≤ β(e), as long as we set

ũ :=
β(e)− 2

Φe(f)
− fe.

Therefore, the solution (f ,y) remains feasible in the (modified) residual graph Gf and is well-
coupled too. Also, note that since Φe(f) ≤ 1

ûe(f) and |fe| ≤ U , the fact that (β(e) − 2) ≥ 2U
ûe(f)

ensures that u−ei = ũ ≥ U , for all 2 < i ≤ β(e). Consequently, the effective forward and backward
capacities of the created path are the same as the forward and backward capacities of the original
arc e, and thus the s-t throughput of our graph remains unchanged.

We thus see that, from our point of view, the boosting operation had only two real consequences:
one of them is the intended effect and the other one is an undesired side effect. The intended effect
is that the effective resistance with respect to the resistances r (cf. (13)) of the created path is at
least twice as large as the original resistance re of the arc e. (Note that the arcs e1 and e2 have
exactly the same residual capacities, and thus the resistances re1 and re2 are both equal to the
resistance re of the original arc e.) The undesired consequence, however, is that the number of arcs
in our graph increased by β(e)− 1.

The key impact of that (at least) doubling of the resistance of the arc e is that, intuitively, it
makes the energy of our electrical χ-flow f̃ increase proportionally to the initial contribution of
that arc to the (squared) `2-norm of the congestion vector ρ. This is made precise in the following
lemma. (This lemma is stated in a slightly more general form for future reference. For now, one
can think of the set S consisting of a single arc e.)

Lemma 4.1. Let f̃ be an electrical χ-flow determined by the resistance r in our graph G and let ρ
be the corresponding congestion vector defined by (16). If f̃

′
is the electrical χ-flow determined by

the resistances r ′ in the graph G′ that was obtained by boosting a set of arcs S then

Er ′(f̃
′
) ≥

(
1 +

1

8

(∑
e∈S

ρ2
e

‖ρ‖22

))
Er (f̃).

Proof. Let φ̃ be the vertex potentials inducing f̃ , by Lemma 2.2 and (16), we have that

1

Er (f̃)
=

∑
e′=(u′,v′)

(φ̃v′ − φ̃u′)2

re′Er (f̃)2

and χT φ̃ = Er (f̃).

19

We want now to use the same voltages φ̃ to lowerbound the energy Er ′(f̃
′
) of the electrical χ-flow

f̃
′
after boosting the arcs in S. Observe that the effective resistance r′u,v between the endpoints u

and v of some boosted arc e = (u, v) ∈ S after that boost is at least 2re. So, when we analyze the
energy of f̃

′
we can treat the u-v path that was created as just an arc e but with the resistance r′e

equal to r′u,v ≥ 2re.
Therefore, by using Lemma 2.2 again, we can conclude that

1

Er ′(f̃
′
)
≤

 ∑
e′=(u′,v′)/∈S

(φ̃v′ − φ̃u′)2

re′Er (f̃)2

+
∑

e=(u,v)∈S

(φ̃v − φ̃u)2

r′eEr (f̃)2

≤

 ∑
e′=(u′,v′)

(φ̃v′ − φ̃u′)2

re′Er (f̃)2

− ∑
e=(u,v)∈S

(φ̃v − φ̃u)2

2reEr (f̃)2
=

1

Er (f̃)

1−
∑

e=(u,v)∈S

(φ̃v − φ̃u)2

2reEr (f̃)

≤ 1

Er (f̃)

(
1−

∑
e∈S

ref̃
2
e

2Er (f̃)

)
≤ 1

Er (f̃)

(
1−

∑
e∈S

ρ2
e

4‖ρ‖22

)
,

where we also used Lemma 3.3 and Ohm’s law (5). The lemma follows by noticing that 1
(1−ε) ≥

(1 + ε
2) whenever 0 ≤ ε ≤ 1

4 .

Boosting Use and Early Termination. Once we introduced the boosting operation, we can
state the two modifications of the basic algorithm from Section 3 that we will make.

The first one is relatively minor: we terminate our algorithm whenever

(1− α)F ≤ m
1
2
−η. (22)

That is, once we know that we are within an additive factor of m
1
2
−η of the target flow, we do not

execute progress steps anymore. Observe that in that case we can just round our current flow and
compute the optimal solution using at most m

1
2
−η augmenting paths computation (see, e.g., [43] for

details). So, if we perform these operations, our algorithm will still run within the desired running
time bound.

The second modification specifies how and when we apply boosting operations. To this end,
given an electrical χ-flow f̃ and its congestion vector ρ, let us define an arc e to be high-energy if

|ρe| ≥ ρ∗ =
m

1
2
−3η

Cρ∗(1− α)
, (23)

for certain constant Cρ∗ > 0 that we will set later (see (28) below).
Now, recall that our goal is to ensure that (21) holds, which corresponds to ensuring that, by

Lemma 3.7, ‖ρ‖4 ≤ m
1
2−η

33(1−α) . However, for reasons that will be clear shortly, we will actually want
to have a stronger, `3-norm bound on ρ. Specifically, we want to make a progress step only when

‖ρ‖3 ≤
m

1
2
−η

33(1− α)
, (24)

and then use the step size

δ =
δ̂

(1− α)
=

1

33(1− α)‖ρ‖3

20

when making the augmentation step described in Section 3.2. Observe that as ‖ρ‖3 ≥ ‖ρ‖4, this
new condition still satisfies the `4-norm requirement set forth in Lemma 3.7.

Unfortunately, as mentioned earlier, it can sometime happen that the bound (24) is violated.
Therefore, we want to use our boosting technique to enforce that such violations do not happen too
often. Specifically, whenever condition (24) does not hold we boost all the arcs in the set S∗, which
is defined to be the set of up to k∗ := m4η high-energy arcs e with highest values of |ρe|. In other
words, we order all the high-energy arcs in a non-increasing order with respect to |ρe| and take S∗

to consist of the first up to k∗ of them. (Note that, in principle, in some iterations there can be
only very few, or even no, high-energy arcs.)

Once we boost the set S∗, we simply proceed to the next iteration (in the new version of the
graph that our boosting operation created). Note that, at first glance, there is nothing preventing
us from needing to execute such a boosting step in each iteration, and thus to never be able to
execute progress steps. However, as we argue in the next section, we are actually guaranteed to be
able to execute progress steps often enough and thus make sufficiently good progress overall.

4.2 Analysis of the Improved Algorithm

We proceed now to analyzing our modified algorithm and establishing the improved running time
bound. This will require tackling two issues.

First one is controlling the increase in the number of arcs resulting from performing of all our
boosting operations. Specifically, we want to maintain the following invariant.

Invariant 4.2. The total increase in the number of arcs is at most m
10 .

As we will see, ensuring that this invariant is maintained will be what determines our final bound
on the value of η (cf. (21)).

We need to maintain this invariant in order to be able to use the machinery we developed in
Section 3. (It is not hard to check that, as long as that invariant is not violated, the whole analysis
performed there is still valid, subject to slight adjustment of the corresponding constants.)

The other issue we need to tackle corresponds to bounding the total number of boosting steps
we execute. After all, we want to ensure that we execute progress steps often enough. In order
to obtain such a bound we will perform a potential based argument with our potential function
being the energy Er (f̃) of the electrical χ-flow f̃ we compute in each iteration. (Note that this
electrical flow f̃ is always determined by the resistances r (cf. (13)) in the current version of the
graph G.) One can easily convince oneself that this energy has to be at least 1

U2 at the beginning
of the algorithm and, by Lemma 3.9 (and provided Invariant 4.2 holds), it is never larger than

Er (f̃) ≤ CEm

(1− α)2
≤ O(m3U2).

(Here, the second inequality follows due to the fact that 1 ≤ F ≤ 2mU and we have our termination
condition (22).) We want now to establish two claims:

(I) Whenever a boosting step is executed, the energy Er (f̃) increases by a factor of at least(
1 + CBm

−2η
)
, for some constant CB > 0. (To prove this statement we will use Lemma 4.1.)

(II) Whenever a progress step is performed, with the condition (24) satisfied, the energy Er (f̃)
decreases by at most

(
1 + CDm

−2η
)
, for some other constant CD > 1. (Proving this statement

is where we leverage the fact that we enforce the stronger, `3-norm condition (24) on ρ.)

21

Observe that once the above two claims are established, we can amortize the number of boosting
steps against the number of good progress steps. Specifically, a simple calculation shows that unless
the number of boosting step is within a O(logm logU) factor of the number of the progress steps,
the resulting increase of the energy Er (f̃) would violate the absolute upper bound O(m3U2) we
established. Furthermore, since we execute a progress step only when condition (24) is satisfied,
this means that our desired lower bound (21) on δ̂ holds. Therefore, by our reasoning in Section
3.3, we know that the number of progress steps is at most Õ

(
δ̂−1 logmU

)
= Õ

(
m

1
2
−η logmU

)
.

As each boosting and progress step can be executed in nearly-linear time, our desired improved
running time bound will then follow.

In the light of the above, it remains to only argue that claims (I) and (II) are indeed correct
and that the Invariant 4.2 is never violated.

Preservation of the Invariant 4.2. To prove that the Invariant 4.2 is indeed preserved, let us
recall that each arc boosting operation increases the number of arcs by β(e) − 1 ≤ 2U

ûe(f) , where
ûe(f) is the residual capacity of the arc e at the time the boosting occurred. As it turns out, since
we only boost arcs that are high-energy, i.e., arcs e with |ρe| ≥ ρ∗ at the time of the boosting,
one can use a simple vertex potential based argument to argue that β(e) has to be always at most
O(m4ηU).

Lemma 4.3. Assume that Invariant 4.2 holds, let f̃ be an electrical χ-flow determined by the
resistances r and let e = (u, v) be a high-energy arc that was boosted. Then, the total arc number
increase β(e)− 1 is at most O(m4ηU).

Proof. Recall that β(e) − 1 ≤ 2U
ûe(f) . So, it suffices that we prove that ûe(f) ≥ Ω(m−4η). To this

end, let φ̃ be vertex potentials inducing the electrical flow f̃ and let Rs,t be the effective resistance
between the source s and sink t in our graph. As f̃ is an s-t flow of value F , we need to have that

F 2Rs,t = Er (f̃) ≤ CEm

(1− α)2
,

where we used Lemma 3.9 and the fact that Invariant 4.2 holds.
On the other hand, we know that the vertex potential drop φ̃t−φ̃s between s and t is non-negative

(as the electrical flow has to flow from s to t) and at most

φ̃t − φ̃s = FRs,t ≤
CEm

(1− α)2F
≤ CEm

1
2

+η

(1− α)
,

where the last inequality follows as (1− α)F ≥ m
1
2
−η due to our termination condition (22).

However, as f̃ is an s-t flow it must be the case that the vertex potential difference between the
endpoints of our arc e = (u, v) cannot be larger than such difference between the vertex potentials
of s and t. That is, we have that

|φ̃v − φ̃u| ≤ |φ̃t − φ̃s| ≤
CEm

1
2

+η

(1− α)
. (25)

But, by Ohm’s law (5) and definition (13) of the resistance r , we have that

|φ̃v − φ̃u| = |f̃e|re ≥
|f̃e|

ûe(f)2
=
|ρe|
ûe(f)

≥ ρ∗

ûe(f)
≥ m

1
2
−3η

Cρ∗(1− α)ûe(f)
,

22

where we used the definition (23) of the high-energy arcs.
So, putting this inequality together with the bound (25), gives us the desired lower bound on

ûe(f). The lemma follows.

Observe now that as our boosting operation never boosts more than k∗ = m4η arcs at a time
and we have at most Õ

(
m

1
2
−η logU

)
boosting steps, by Lemma 4.3, the total arc number increase

throughout the whole algorithm is at most

m4η · Õ
(
m

1
2
−η logU

)
·O(m4ηU) = Õ

(
m

1
2

+7ηU
)
<
m

10
,

provide we set η := 1
14 −

1
7 logm U − O(log logmU) with appropriately chosen constant in the

O(log logmU) term. Thus Invariant 4.2 is indeed never violated.

Establishing Claim (I). We want now to prove that each boosting step results in an increase
of the energy Er (f̃) by a factor of at least

(
1 + Ω(m−2η)

)
. In the light of Lemma 4.1, it suffices we

show that if S∗ is the set of high-energy arcs that got boosted due to the condition (24) not holding
then these arcs had to have a large contribution to the (square) of the `2-norm of the congestion
vector ρ. That is, we want to argue that∑

e∈S∗

ρ2
e

‖ρ‖22
≥ Ω(m−2η). (26)

Clearly, once we establish that then the desired energy increase will follow from Lemma 4.1 applied
to S = S∗.

To prove (26), let us first consider the case that S∗ has maximum size, i.e., |S∗| = k∗ = m4η.
Note that all the arcs in S∗ are high-energy arcs. Therefore, (23) gives us in this case that

∑
e∈S∗

ρ2
e

‖ρ‖22
≥ m4η · (ρ∗)2

‖ρ‖22
≥ m1−2η

C2
ρ∗(1− α)2‖ρ‖22

≥ Ω(m−2η),

where we used the fact that Lemma 3.9 implies that ‖ρ‖22 ≤
CEm

(1−α)2
. So, (26) holds in this case

and we can focus on the situation when |S∗| < m4η. Observe that this means that there is no
high-energy arcs that are not in S∗.

We want to argue that in such situation the arcs of S∗ contribute at least a half of the total
(cubed) `3-norm of the vector ρ. That is, that we have that

∑
e∈S∗
|ρe|3 ≥

(
m

1
2
−η

66(1− α)

)3

. (27)

To this end, observe that the contribution of arcs that are not high energy (and thus not in S∗)
to that (cubed) `3-norm is, by the Cauchy-Schwartz inequality, (23) and Lemma 3.9, at most(∑

e/∈S∗
|ρe|3

)
≤
(

max
e/∈S∗
|ρe|
)(∑

e/∈S∗
ρ2
e

)
≤ ρ∗‖ρ‖22 ≤

CEm
3
2
−3η

Cρ∗(1− α)3
≤

(
m

1
2
−η

66(1− α)

)3

, (28)

23

provided the constant Cρ∗ is set to be large enough. Therefore, since the condition (24) does not
hold, we must have that the inequality (27) is indeed valid.

Now, if there exists an arc e ∈ S∗ such that |ρe| ≥ m
1
2−η

(1−α) then the contribution of this arc

alone suffices to make (26) true. We can thus assume that maxe∈S∗ |ρe| < m
1
2−η

(1−α) and apply the
Cauchy-Schwartz inequality to (27) to obtain that

∑
e∈S∗

ρ2
e ≥

∑
e∈S∗ |ρe|3

maxe∈S∗ |ρe|
≥ 1

66

(
m

1
2
−η

66(1− α)

)2

,

which, by Lemma 3.9, establishes (26). Claim (I) is thus proved.

Establishing Claim (II). To prove Claim (II) we will tie the potential decrease of energy during
progress steps to the quantity that we already control: the `3-norm of the congestion vector ρ. (In
fact, the desire to control the energy decrease is precisely the reason why we enforce the stronger
`3-norm condition (24) instead of the `4-norm condition that Lemma 3.7 suggests.)

We make this connection precise in the following lemma, whose proof appears in Appendix A.5.

Lemma 4.4. Let (f ,y) be a well-coupled feasible primal dual solution and let f̃ be the corresponding
electrical χ-flow determined by the resistances r and congestion vector ρ that satisfies the `3-norm
condition (24). Then, after execution of the progress steps, as described in Section 3.2, the energy
Er (f̃) decreases by a factor of at most (

1 +O

(
‖ρ‖23
‖ρ‖22

))
.

Observe that, by (24) and Lemma 3.9, we have that

‖ρ‖23
‖ρ‖22

≤ m1−2η(1− α)2

(33)2CEm(1− α)2
= O(m−2η),

which immediately establishes Claim (II) and thus concludes the analysis of the improved algorithm.

Acknowledgments. We are grateful to Michael Cohen, Slobodan Mitrović, Dimitris Tsipras, and
Adrian Vladu for a number of helpful discussions on this topic.

24

A Appendix

A.1 Proof of Fact 3.4

Let us define
g(x) :=

(
1

u1 − x
− 1

u2 + x

)
.

By Taylor’s theorem, we have that

g(x) = g(0) + g′(0)x+ g′′(z)
x2

2
=

1

u1
− 1

u2
+

(
1

u2
1

+
1

u2
2

)
x+ x2

(
1

(u1 − z)3
− 1

(u2 + z)3

)
(29)

where z is some value with |z| ≤ |x|. As a result, we can conclude that

|ζ| =
∣∣∣∣(1

(u1 − z)3
− 1

(u2 + z)3

)∣∣∣∣ ≤ (64

27u3
1

+
64

27u3
2

)
≤ 5

u3
, (30)

as we wanted to show.

A.2 Proof of Lemma 3.5

By the definition of our update (14) and the approximation bound (18) as well as the coupling
condition (11), we have that∣∣∣∆e(ŷ)− Φe(f̂)

∣∣∣ =

∣∣∣∣∆e(y) + δ(φ̃v − φ̃u)− Φ(f)−
(

1

(û+
e)2

+
1

(û−e)2

)
δf̃e − (δf̃e)

2ζe

∣∣∣∣
≤

∣∣∣δ ((φ̃v − φ̃u)− ref̃e
)
− (δf̃e)

2ζe

∣∣∣+
γe

ûe(f)

=
∣∣∣(δf̃e)2ζe

∣∣∣+
γe

ûe(f)
≤

7δ2 f̃
2
e
û2e

+ 4
3γe

ûe(f̂)
=

7(δρe)
2 + 4

3γe

ûe(f̂)
,

where the second to last equality follows by Ohm’s law (6), the last equality follows by (16) and we
also used the fact that ûe(f̂) ≥ 3

4 ûe(f) since δ ≤ (4‖ρ‖∞)−1. The lemma follows.

A.3 Proof of Lemma 3.6

For each arc e, let us define

θe :=

(
1

(û+
e (g))2

+
1

(û−e (g))2

)−1

(∆e(z)− Φe(g)) . (31)

Intuitively, θe is the first-order correction to the coupling of the primal dual solution (g , z) with
respect to the arc e.

Note that by the fact that (g , z) is ς-coupled we have that

|θe| ≤
(

1

(û+
e (g))2

+
1

(û−e (g))2

)−1

|∆e(z)− Φe(g)| ≤ ûe(g)2

(
ςe

ûe(g)

)
= ςeûe(g). (32)

25

Let us now define a flow g ′ to be the flow g with the “correcting“ flow θ added. That is,

g′e := ge + θe,

for each arc e. Observe that, as ‖ς‖∞ ≤ ‖ς‖2 ≤ 1
50 and, by (32), |θe| ≤ ςeûe(g), this flow g ′ is

feasible in Gg and, in fact, 51
50 ûe(g) ≥ ûe(g ′) ≥ 49

50 ûe(g).
Furthermore, if we analyze the coupling of (g ′, z), by Fact 3.4, for each arc e, we get that

∣∣∆e(z)− Φe(g
′)
∣∣ =

∣∣∣∣∆e(z)−
(

1

û+
e (g)− θe

− 1

û−e (g) + θe

)∣∣∣∣
=

∣∣∣∣∆e(z)− Φe(g)−
(

1

(û+
e (g))2

+
1

(û−e (g))2

)
θe − θ2

eζ
′
e

∣∣∣∣
=

∣∣−θ2
eζ
′
e

∣∣ ≤ 5ûe(g)2ς2
e

ûe(g)3
=

5ς2
e

ûe(g)
≤ 51ς2

e

10ûe(g ′)
,

where the third equality follows by the definition of θe (31) and the second to last inequality follows
by (32).

We thus see that the solutions (g ′, z) are well-coupled. In fact, they are γ̃-coupled with

‖γ̃‖2 =

√∑
e

γ̃2
e =

√√√√∑
e

(
11ς2

e

2

)2

≤ 51

10
‖ς‖22 ≤

51

25000
. (33)

So, these solutions (g ′, z) have all the desired properties except g ′ is an (χα′ + σ̂)-flow, where
σ̂ are the demands of the “correcting“ flow θ we added – and not a χα′-flow we need.

To remedy this deficiency, we compute an electrical (−σ̂)-flow θ̂ determined by the to resistances

r̂e :=
1

(û+
e (g ′))2

+
1

(û−e (g ′))2
, (34)

and obtain our desired solutions (ḡ , z̄) by adding this electrical flow to the flow g ′, and simulta-
neously adding the vertex potentials φ̂ that induce θ̂ to the dual solution z . In other words, we
set

ḡ := g ′ + θ̂ (35)
z̄ := z + φ̂.

Clearly, ḡ is a χα′-flow, as desired. It thus only remains to ensure that the solutions (ḡ , z̄) are still
well-coupled.

To analyze the coupling of (ḡ , z̄) one should note first that the procedure we used to obtain
these solutions from the solutions (g ′, z) is analogous to the one we used obtain the solutions (f̂ , ŷ)
from the solutions (f ,y) in our augmentation step. More precisely, the update (35) is an exact
analogue of the update (14) with δ = 1.

So, to quantify the change in coupling we can follow the approach we used when analyzing the
augmentation step. Specifically, let us define a congestion vector ρ̃ as

ρ̂e :=
θ̂e

ûe(g ′)
,

26

for each arc e. By Lemma 3.3, we know that

‖ρ̃‖22 ≤ Er̂ (θ̂) ≤ Er̂ (−θ),

where the second inequality follows by the energy minimizing property of electrical flows. (Note
that −θ is a (−σ̂)-flow.) We thus have that, by (34),

Er̂ (−θ) =
∑
e

r̂e(−θe)2 =
∑
e

(
1

(û+
e (g ′))2

+
1

(û−e (g ′))2

)
θ2
e

≤
∑
e

2

ûe(g ′)2
(ςeûe(g))2 ≤

∑
e

2

(
51ςe
50

)2

≤ 21

20
‖ς‖22 ≤

1

2000
,

where the first inequality follows by (32). As a result, we can conclude that

‖ρ̃‖22 ≤ Er̂ (−θ) ≤ 1

2000
, (36)

which ensures, in particular, that our analogue of condition (17) (for δ = 1) is satisfied.
Consequently, we can use Lemma 3.5 to conclude that the solutions (ḡ , z̄) is γ̂-coupled with

‖γ̂‖2 =

√∑
e

γ̂2
e ≤

√√√√∑
e

(
4

3
γ̃e + 7ρ̂2

e

)2

≤ 4

3
‖γ̃‖2 + 7‖ρ̃‖22 ≤

204

75000
+

7

2000
<

1

100
,

where we used the estimates (33) and (36). So, (ḡ , z̄) is well-coupled, as desired.

A.4 Proof of Lemma 3.8

Let us assume that χTy ≤ 2m
(1−α) . Otherwise, by Lemma 3.1, we have a dual certificate that the

target demand χ cannot be routed in G, i.e., the condition (b) triggers.
As all the preconditioning arcs have s and t as their endpoints and are oriented from s to t, we

have that

∆e(y) = yt − ys =
χTy

F
≤ 2m

(1− α)F
, (37)

for each such arc e. Also, all these preconditioning arcs are completely indistinguishable from the
point of view of our algorithm. They have the same endpoints, orientation, and initial (residual)
capacities and stretch. Consequently, their resistances are always equal when we compute our
electrical flows (see, e.g., (13)) and thus, in turn, their forward and backward residual capacities
evolve in exactly the same way during each of the augmentation and fixing steps (see Section 3.2).

We want to argue that, for each such arc e,

ûe(f) ≥ (1− α)F

5m
. (38)

As the residual capacity ûe(f) is exactly the capacity of e in the symmetrization Ĝf of the residual
graph Gf , and preconditioning arc constitute exactly half of all the m arcs, a flow f ′ that just routes
(1−α)F

5m units of flow from s to t on each such arc will be the desired χ (1−α)
10

-flow feasible in Ĝf , and
our proof will follow.

27

To establish (38), let us fix some representative preconditioning arc e and assume for the sake
of contradiction that (38) does not hold. Since the total preconditioning arc capacity constitutes at
least 2

3 -fraction of the total s-t capacity F ∗ of the graph G, we must have that

u+
e = u−e ≥

2

m
· 2

3
F ∗ =

4F ∗

3m
, (39)

where u+
e and u−e are the initial capacities of the preconditioning arcs. As a result, if (38) did not

hold, by (3), we know that

|fe| ≥ max{u+
e − û+

e (f), u−e − û−e (f)} ≥ 4F ∗

3m
− (1− α)F

5m
≥

5
2F
∗ + αF

3m
>

2F ∗

3m
,

where we used the fact that F ≤ 3
2F
∗ as otherwise we would be able to immediately tell that it is

impossible to route at least 2
3 -fraction of the s-t flow only via preconditioning arcs.

In fact, we also know that fe > 0. This is so, as e is oriented from s to t and thus having
fe < 0 would mean that there is a flow of strictly more than F ∗

3 from t towards s over all the
preconditioning arcs. It would, however, be impossible to balance this “backward” t-s flow via an
s-t flow over the remaining arcs as they can support an s-t flow of at most F ∗

3 . So, indeed fe > 0.
Furthermore, if (38) would indeed not hold then fe > 0, (3) and (39) would imply that

û+
e = ûe(f) <

(1− α)F

3m
≤ F ∗

2m
≤ 1

2
u−e =

1

2
(û−e (f)− fe) ≤

û−e (f)

2
,

where we again used the fact that F ≤ 3
2F
∗.

Now, combining the above bound with the fact that (f ,y) is well-coupled (11), we can conclude
that, for any preconditioning arc e,

∆e(y) ≥ Φe(f)− γe
ûe(f)

=
1

û+
e (f)

− 1

û−e (f)
− γe
ûe(f)

≥ (1− γe)
ûe(f)

− 1

2ûe(f)

=
(1− 2γe)

2ûe(f)
≥

5m(1− 2√
m

)

2(1− α)F
>

2m

(1− α)F
,

where we again used the assumption that (38) does not hold as well as the fact that γe ≤ 1√
m

since
otherwise the contribution of all the m

2 preconditioning arcs to the `2-norm of the violation vector
γ alone would make this norm violate the well-coupling bound. However, the above lower bound on
∆e(y) directly violates our bound (37). So, we reached a contradiction that proves (38) and thus
our lemma follows.

A.5 Proof of Lemma 4.4

By examining the augmentation and fixing steps that are performed during the progress steps (cf.
(14) and (35) in the proof of Lemma 3.6) and applying standard Taylor approximations to the
resulting changes in the resistances r (cf. (13)), one obtains that, for each arc e, the resulting arc
resistance r′e change is such that

r′e ≤ (1 +O(δ|ρe|+ κe))
−1 re, (40)

28

where ρ is the congestion vector (16), δ = (33‖ρ‖3)−1 is the step size, and κ is a vector such that
‖κ‖2 ≤ 1. (Roughly speaking, the δρe term corresponds to augmentation step and the κe term
corresponds to the fixing step.)

Now, let φ̃ be the vertex potentials inducing the electrical χ-flow f̃ . By Lemma 2.2, we know
that

1

Er (f̃)
=

∑
e=(u,v)

(φ̃v − φ̃u)2

reEr (f̃)2
.

Furthermore, if Er ′(f̃
′
) is the energy of an electrical χ-flow f̃

′
determined by the new resistances

r ′, applying Lemma 2.2 again, we obtain that

1

Er ′(f̃
′
)
≤

∑
e=(u,v)

(φ̃v − φ̃u)2

r′eEr (f̃)2
≤

∑
e=(u,v)

(1 +O(δ|ρe|+ κe)) (φ̃v − φ̃u)2

reEr (f̃)2

=
1

Er (f̃)

(
1 +O

(∑
e

(δρe + κe)(ref̃
2
e)

Er (f̃)

))

≤ 1

Er (f̃)

(
1 +O

(∑
e

(δρ3
e + κeρ

2
e)

‖ρ‖22

))
,

where we used (40), Ohm’s law (5) and Lemmas 3.3 and 3.9.
Finally, observe that since δ = (33‖ρ‖3)−1 and ‖κ‖2 ≤ 1, an application of the Cauchy-Schwartz

inequality gives us that∑
e

(δρ3
e + κeρ

2
e) ≤ δ‖ρ‖33 + ‖κ‖2‖ρ‖24 ≤ δ‖ρ‖33 + ‖κ‖2‖ρ‖23 ≤ O(‖ρ‖23),

as desired. The lemma thus follows.

References

[1] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin. Network flows: theory, algorithms, and applica-
tions. Prentice-Hall, 1993.

[2] R. K. Ahuja, T. L. Magnanti, J. B. Orlin, and M. R. Reddy. Applications of Network Optimiza-
tion, volume 7 of Handbooks in Operations Research and Management Science. North-Holland,
1995.

[3] H. Alt, N. Blum, K. Mehlhorn, and M. Paul. Computing a maximum cardinality matching in
a bipartite graph in time O(n1.5

√
m/ log n). Inf. Process. Lett., 37(4):237–240, 1991.

[4] S. Arora, E. Hazan, and S. Kale. The multiplicative weights update method: a meta-algorithm
and applications. Theory of Computing, 8(1):121–164, 2012.

[5] B. Bollobas. Modern Graph Theory. Springer, 1998.

[6] J. R. Bunch and J. E. Hopcroft. Triangular factorization and inversion by fast matrix multi-
plication. Mathematics of Computation, 28(125):231–236, 1974.

29

[7] P. Christiano, J. Kelner, A. Mądry, D. Spielman, and S.-H. Teng. Electrical flows, Lapla-
cian systems, and faster approximation of maximum flow in undirected graphs. In STOC’11:
Proceedings of the 43rd Annual ACM Symposium on Theory of Computing, pages 273–281,
2011.

[8] M. B. Cohen, R. Kyng, G. L. Miller, J. W. Pachocki, R. Peng, A. B. Rao, and S. C. Xu. Solving
SDD linear systems in nearly m log1/2 n time. In STOC’14: Proceedings of the 46th Annual
ACM Symposium on Theory of Computing, pages 343–352, 2014.

[9] D. Coppersmith and S. Winograd. Matrix multiplication via arithmetic progressions. Journal
of Symbolic Computation, 9:251–280, 1990.

[10] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algorithms. The
MIT Press, 3rd edition, 2009.

[11] J. Edmonds. Paths, trees, and flowers. Canadian Journal of Mathematics, 17:449–467, 1965.

[12] J. Edmonds and R. M. Karp. Theoretical improvements in algorithmic efficiency for network
flow problems. Journal of the ACM, 19(2):248–264, 1972.

[13] J. Egerváry. Matrixok kombinatorius tulajdonságairól. Matematikai és Fizikai Lapok, 38:16–28,
1931.

[14] P. Elias, A. Feinstein, and C. E. Shannon. A note on the maximum flow through a network.
IRE Transactions on Information Theory, 2, 1956.

[15] S. Even and R. E. Tarjan. Network flow and testing graph connectivity. SIAM Journal on
Computing, 4(4):507–518, 1975.

[16] T. Feder and R. Motwani. Clique partitions, graph compression and speeding-up algorithms.
Journal of Computer and System Sciences, 51(2):261Ű–272, 1995.

[17] L. R. Ford and D. R. Fulkerson. Maximal flow through a network. Canadian Journal of
Mathematics, 8:399–404, 1956.

[18] F. G. Frobenius. Über matrizen aus nicht negativen elementen. Sitzungsberichte der Königlich
Preussischen Akademie der Wissenschaften zu Berlin, pages 456–477, 1912.

[19] F. G. Frobenius. Über zerlegbare determinanten. Sitzungsberichte der Königlich Preussischen
Akademie der Wissenschaften zu Berlin, pages 274–277, 1917.

[20] H. N. Gabow and R. E. Tarjan. Faster scaling algorithms for general graph matching problems.
Journal of the ACM, 38(4):815–853, 1991.

[21] A. V. Goldberg and A. V. Karzanov. Maximum skew-symmetric flows and matchings. Mathe-
matical Programming, 100(3):537–568, 2004.

[22] A. V. Goldberg and S. Rao. Beyond the flow decomposition barrier. Journal of the ACM,
45(5):783–797, 1998.

[23] N. J. A. Harvey. Algebraic algorithms for matching and matroid problems. SIAM Journal on
Computing, 39(2):679–702, 2009.

30

[24] J. Hopcroft and R. Karp. An n5/2 algorithm for maximum matchings in bipartite graphs.
SIAM Journal on Computing, 2(4):225–231, 1973.

[25] A. V. Karzanov. O nakhozhdenii maksimal’nogo potoka v setyakh spetsial’nogo vida i nekoto-
rykh prilozheniyakh. Matematicheskie Voprosy Upravleniya Proizvodstvom, 5:81–94, 1973. (in
Russian; title translation: On finding maximum flows in networks with special structure and
some applications).

[26] J. A. Kelner, Y. T. Lee, L. Orecchia, and A. Sidford. An almost-linear-time algorithm for ap-
proximate max flow in undirected graphs, and its multicommodity generalizations. In SODA’14:
Proceedings of the 25th Annual ACM-SIAM Symposium on Discrete Algorithms, pages 217–226,
2014.

[27] J. A. Kelner, L. Orecchia, A. Sidford, and Z. A. Zhu. A simple, combinatorial algorithm for
solving SDD systems in nearly-linear time. In STOC’13: Proceedings of the 45th Annual ACM
Symposium on the Theory of Computing, pages 911–920, 2013.

[28] V. King, S. Rao, and R. Tarjan. A faster deterministic maximum flow algorithm. Journal of
Algorithms, 17(3):447–474, 1994.

[29] D. König. Vonalrendszerek és determinánsok. Mathematikai és Természettudományi Értesitö,
33:221–229, 1915.

[30] D. König. Über graphen und ihre anwendung auf determinantentheorie und mengenlehre.
Mathematische Annalen, 77:453–465, 1916.

[31] D. König. Sur un probléme de la théorie générale des ensembles et la théorie des graphes.
Revue de Métaphysique et de Morale, 30:443–449, 1923.

[32] D. König. Graphok és matrixok. Matematikai és Fizikai Lapok, 38:116–119, 1931.

[33] I. Koutis, G. L. Miller, and R. Peng. Approaching optimality for solving SDD systems. In
FOCS’10: Proceedings of the 51st Annual IEEE Symposium on Foundations of Computer Sci-
ence, pages 235–244, 2010.

[34] I. Koutis, G. L. Miller, and R. Peng. A nearly m log n-time solver for SDD linear systems.
In FOCS’11: Proceedings of the 52nd Annual IEEE Symposium on Foundations of Computer
Science, pages 590–598, 2011.

[35] R. Kyng, Y. T. Lee, R. Peng, S. Sachdeva, and D. A. Spielman. Sparsified cholesky and
multigrid solvers for connection Laplacians. In STOC’16: Proceedings of the 48th Annual
ACM Symposium on Theory of Computing, 2016.

[36] R. Kyng and S. Sachdeva. Approximate Gaussian elimination for Laplacians: Fast, sparse,
and simple. In FOCS’16: Proceedings of the 57th Annual IEEE Symposium on Foundations of
Computer Science, 2016.

[37] Y. T. Lee, S. Rao, and N. Srivastava. A new approach to computing maximum flows using
electrical flows. In STOC’13: Proceedings of the 45th Annual ACM Symposium on the Theory
of Computing, pages 755–764, 2013.

31

[38] Y. T. Lee and A. Sidford. Path finding methods for linear programming: Solving linear pro-
grams in Õ(

√
rank) iterations and faster algorithms for maximum flows. In FOCS’14: Proceed-

ings of the 55th Annual IEEE Symposium on Foundations of Computer Science, pages 424–433,
2014.

[39] L. Lovász. On determinants, matchings and random algorithms. Fundamentals of Computation
Theory, 565–574, 1979.

[40] L. Lovász and D. M. Plummer. Matching Theory. Elsevier Science, 1986.

[41] A. Mądry. Fast approximation algorithms for cut-based problems in undirected graphs. In
FOCS’10: Proceedings of the 51st Annual IEEE Symposium on Foundations of Computer Sci-
ence, pages 245–254, 2010.

[42] A. Mądry. From Graphs to Matrices, and Back: New Techniques for Graph Algorithms. PhD
thesis, Massachusetts Institute of Technology, 2011.

[43] A. Mądry. Navigating central path with electrical flows: from flows to matchings, and back.
In FOCS’13: Proceedings of the 54th Annual IEEE Symposium on Foundations of Computer
Science, pages 253–262, 2013.

[44] S. Micali and V. V. Vazirani. An O(
√
|V | · |E|) algoithm for finding maximum matching in

general graphs. In FOCS’80: Proceedings of the 21st Annual IEEE Symposium on Foundations
of Computer Science, pages 17–27, 1980.

[45] M. Mucha. Finding maximum matchings via Gaussian elimination. PhD thesis, University of
Warsaw, 2005.

[46] M. Mucha and P. Sankowski. Maximum matchings via Gaussian elimination. In FOCS’04:
Proceedings of the 45th Annual IEEE Symposium on Foundations of Computer Science, pages
248–255, 2004.

[47] J. B. Orlin. Max flows in O(nm) time, or better. In STOC’13: Proceedings of the 45th Annual
ACM Symposium on the Theory of Computing, pages 765–774, 2013.

[48] R. Peng. Approximate undirected maximum flows in O(mpolylog(n)) time. In SODA’16:
Proceedings of the 27th Annual ACM-SIAM Symposium on Discrete Algorithms, pages 1862–
1867, 2016.

[49] M. O. Rabin and V. V. Vazirani. Maximummatchings in general graphs through randomization.
J. Algorithms, 10(4):557–567, Dec. 1989.

[50] A. Schrijver. On the history of the transportation and maximum flow problems. Mathematical
Programming, 91:437–445, 2002.

[51] A. Schrijver. Combinatorial Optimization: Polyhedra and Efficiency. Springer, 2003.

[52] A. Schrijver. On the history of combinatorial optimization (till 1960). In R. W. K. Aardal,
G.L. Nemhauser, editor, Handbook of Discrete Optimization, pages 1–68. Elsevier, 2005.

32

[53] J. Sherman. Breaking the multicommodity flow barrier for O(
√

log n)-approximations to spars-
est cuts. In FOCS’09: Proceedings of the 50th Annual IEEE Symposium on Foundations of
Computer Science, pages 363–372, 2009.

[54] J. Sherman. Nearly maximum flows in nearly linear time. In FOCS’13: Proceedings of the 54th
Annual IEEE Symposium on Foundations of Computer Science, pages 263–269, 2013.

[55] D. A. Spielman and S.-H. Teng. Solving sparse, symmetric, diagonally-dominant linear sys-
tems in time O(m1.31). In FOCS’03: Proceedings of the 44th Annual IEEE Symposium on
Foundations of Computer Science, pages 416–427, 2003.

[56] D. A. Spielman and S.-H. Teng. Nearly-linear time algorithms for graph partitioning, graph
sparsification, and solving linear systems. In STOC’04: Proceedings of the 36th Annual ACM
Symposium on the Theory of Computing, pages 81–90, 2004.

[57] W. T. Tutte. The factorization of linear graphs. Journal of the London Mathematical Society,
22:107–111, 1947.

[58] P. M. Vaidya. Solving linear equations with symmetric diagonally dominant matrices by con-
structing good preconditioners. Unpublished manuscript, UIUC 1990. A talk based on the
manuscript was presented at the IMA Workshop on Graph Theory and Sparse Matrix Compu-
tation, October 1991, Mineapolis.

[59] V. Vassilevska Williams. Multiplying matrices faster than Coppersmith-Winograd. In
STOC’12: Proceedings of the 44th Annual ACM Symposium on the Theory of Computing,
pages 887–898, 2012.

[60] V. V. Vazirani. A theory of alternating paths and blossoms for proving correctness of the
O(
√
|V ||E|) general graph matching algorithms. Combinatorica, 14 (1):71–109, 1994.

33

	Introduction
	Our Contribution
	Organization of the Paper

	Preliminaries
	Augmenting Residual Graphs with Electrical Flows
	Primal Dual Coupling
	Progress Steps
	Analysis of the Algorithm

	An Improved Õ(m^(10/7) U^(1/7)-Time Algorithm
	Modified Algorithm
	Analysis of the Improved Algorithm

	Appendix
	Proof of Fact 3.4
	Proof of Lemma 3.5
	Proof of Lemma 3.6
	Proof of Lemma 3.8
	Proof of Lemma 4.4

