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Summary  

Objective: 

New devices are needed for monitoring seizures, especially those associated with sudden 

unexpected death in epilepsy (SUDEP). They must be unobtrusive, automated and provide 

false alarm rates bearable in everyday life. This study quantifies the performance of new 

multimodal wrist-worn convulsive seizure detectors. 

Methods:  

Hand-annotated video-electroencephalography seizure events were collected from 69 patients 

at 6 clinical sites. Three different wristbands were used to record electrodermal activity 

(EDA) and accelerometer (ACM) signals, obtaining 5,928 hours of data, including 55 

convulsive epileptic seizures (6 focal tonic-clonic seizures and 49 focal-to-bilateral-tonic-

clonic seizures) from 22 patients. Recordings were analyzed off-line to train and test two new 

machine learning classifiers and a published EDA and ACM-based classifier. Moreover, 

wristband data were analyzed to estimate seizure-motion duration and autonomic responses. 

Results: 

The two novel classifiers consistently outperformed the previous detector. The most efficient 

(Classifier III) yielded sensitivity of 94.55%, and false alarm rate (FAR) of 0.2 events/day. 

No nocturnal seizures were missed. Most patients had less than 1 false alarm every 4 days 

with FAR below their seizure frequency. When increasing the sensitivity to 100% (no missed 

seizures) the FAR is up to 13 times lower than the previous detector. Furthermore, all 

detections occurred before the seizure ended, providing reasonable latency (median: 29.3 s, 

range: 14.8-151 s). Automatically estimated seizure durations were correlated with true 

durations, enabling reliable annotations. Finally, EDA measurements confirmed the presence 

of post-ictal autonomic dysfunction, exhibiting a significant rise in 73% of the convulsive 

seizures. 
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Significance: 

The proposed multimodal wrist-worn convulsive seizure detectors provide seizure counts that 

are more accurate than previous automated detectors and typical patient self-reports, while 

maintaining a tolerable FAR for ambulatory monitoring. Furthermore, the multimodal system 

provides an objective description of motor behaviour and autonomic dysfunction,	 aimed at 

enriching seizure characterization, with potential utility for SUDEP warning. 
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1. Introduction   

Epilepsy is among the most common neurological disorders, with an estimated 65 million 

patients worldwide1. While rare,“sudden unexpected death in epilepsy” (SUDEP) is the most 

common cause of death in epilepsy1. SUDEP is more likely to occur in patients who have at 

least one (primary or secondarily) generalized tonic-clonic (GTC) seizure a year, and when a 

patient is unattended after a seizure2-3. While SUDEP’s general cause remains unknown, 

SUDEP can occur after prolonged post-ictal generalized EEG suppression (PGES), and is 

associated with autonomic dysfunction such as terminal apnea preceding terminal asystole4,5,6. 

It is crucial to develop systems to detect seizures, to measure possible biomarkers of SUDEP, 

and to alert caregivers for assistance, as an early application of aid can be protective6,7. 

The gold standard for monitoring seizures is video-electroencephalography (v-EEG) in 

epilepsy monitoring units (EMUs), an impractical procedure for long-term use. Moreover, 

patients may experience seizures with different semiology, or may not experience any during 

admission. Today’s clinical trials rely on seizure counts and symptoms observed by 

patients/caregivers, despite that self-reported counts are often inaccurate8, especially during 

sleep9. 

Wearable automated seizure detectors may improve existing practice by providing continuous 

ambulatory monitoring, potentially more accurate seizure counts, and alerts for early 

intervention10,11,12. Existing automated seizure detectors11 measure motion to detect seizures 

with a motor manifestation. Algorithms based on wrist acceleration (ACM)13,14,15 or 

electromyogram (EMG)16,17 have been commercialized into the SmartWatch13,18, Epi-Care 

Free watch15,19, Epilert14, Brain Sentinel16 and EDDI alarm17. Except for two studies15,18, most 

algorithms have been tested on relatively small datasets,  (number of seizures and recording 

hours), which prevents robust estimates of sensitivity and false alarm rates. Rarely are 
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objective characterizations about seizure events, beyond seizure counts, provided to the 

patient or clinician11. 

While only small studies have been performed to date, multimodal systems (e.g. combining  

ACM with EMG20,21 or with electrodermal activity, EDA22) have shown increased sensitivity 

with reduced false alarms10,12. Moreover, physiological parameters may be useful to assess 

SUDEP risk; for example, the amplitude of EDA accompanying GTC seizures has been 

shown to correlate to the duration of PGES23. 

In this work we started from a pioneering study on secondarily GTC, i.e. focal motor to 

bilateral tonic-clonic seizures (FTCb), showing that combining EDA with ACM leads to more 

sensitive and specific detection than ACM alone22. The combination takes advantage of the 

detection, by a comfortably-worn wristband, of a wide range of motor seizures using ACM 

sensors - tonic-clonic, tonic, clonic, myoclonic, hypermotor24 - and of the measurement of the 

sympathetic nervous system activity using EDA25, including peri-ictal autonomic 

dysregulation6,23,26. The primary contribution of this work is two improved detection 

algorithms trained on a significantly larger dataset containing focal motor tonic-clonic (FTC) 

and FTCb seizures (hereafter referred to as CS, convulsive seizures). The secondary 

contribution is a new automated ability to quantify each seizure’s autonomic dysfunction and 

motor duration to help objectively characterize seizures and possible biomarkers of SUDEP. 

2. Methods 

Patients 

69 patients diagnosed with epilepsy (24 children, ages 4-18 years, median: 14 years, 9 

females; 45 adults, ages: 19-60 years, median: 37 years, 28 females) were admitted for v-EEG 

monitoring at 6 clinical sites: Children’s Hospital Boston (14 patients), New York University 

Langone Medical Center (18 patients), Rhode Island Hospital (5 patients), Emory University 
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Hospital (15 patients) and Children’s Healthcare of Atlanta (CHOA), Egleston and Scottish 

Rite hospitals (12 patients) and Niguarda Hospital (5 patients). The study was approved by 

their Institutional Review Boards, and participants (or their caregivers) provided written 

informed consent. Two board-certified clinical neurophysiologists at each clinic examined the 

v-EEG recording and labeled the EEG seizure onset time and the duration of clinically 

relevant variations in the v-EEG signals. Seizure terminology was revised according to the 

International League Against Epilepsy (ILAE) seizure classification27.  

Wrist acceleration and electrodermal activity recordings 

During v-EEG monitoring, patients wore one of three wristbands measuring ACM and EDA, 

synchronized with the v-EEG at the start of each monitoring period. Wristbands included the 

E3 and E4 (Empatica Inc.), and the iCalm (MIT Media Lab), all featuring comparable 

embedded 3-axis ACM sensors and EDA sensors placed on the ventral side of the forearm. If 

seizure semiology reported an asymmetric involvement of arms, the wristband was placed on 

the wrist where convulsions appeared earlier and/or were more evident; otherwise the device 

was usually worn on the non-dominant arm. Five patients wore devices on both wrists. The 

resulting dataset consisted of 246 days (5,928 hours, hours per patient: median=74.3, 

range=3.5-386.8) of ACM and EDA measurements. 

Seizure detection: development of automated classifiers based on wristband data  

The next step was to build an automated classifier that could detect whether or not an ACM 

and EDA measurement exhibited seizure patterns. The process is depicted in Fig. 1. Starting 

from the feature set introduced in prior work22, a feature set derived from time-domain, 

frequency-domain and nonlinear analyses was constructed. The features were computed on 

10-second epochs of 3-axis ACM, ACM magnitude, and EDA signals, with 75% overlap of 

epochs22. Three different feature sets were extracted: (I), the set employed in Poh’s study (19 

features, 16 ACM and 3 EDA features)22; (II), a larger set (46 features, 40 ACM and 6 EDA 
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features); and (III), a reduced set (25 of the 46 features, 22 ACM and 3 EDA features). 

Feature set III was built to maximize classifier performance and minimize computational cost 

for future real-time implementation. On each feature set, a supervised machine learning 

classifier was built in order to classify each epoch as seizure or non-seizure. All signals were 

analyzed off-line using MATLAB (MathWorks Inc.). To simulate on-line detection, all 

“future-time” datapoints were hidden. 

Seizure detection: performance assessment 

A double cross-validation approach was adopted to test the three classifiers22. We split the 

dataset into three non-overlapping parts, each part containing epochs from 1/3 of the patients 

experiencing seizures and 1/3 of the patients without seizures. Two parts were used for 

training and tuning a nonlinear support vector machine using a leave-one-seizure-patient-out 

cross-validation. The held-out third part was used as a testing set. This procedure was 

repeated three times, i.e. holding out a different third part in each tournament. Thus 

performances could be evaluated on the whole dataset (5,928 hours), using no data for both 

training/tuning and testing at the same time.  

For performance evaluation, we considered non-overlapping segments labeled as seizure, 

defined as intervals between the clinical onset and the clinical offset according to v-EEG 

labelling, and non-seizure segments, defined as intervals not including seizure events. To 

facilitate comparisons and performance computation, non-seizure segments were split into 

sub-segments with a duration equal to the mean duration of seizure segments, in order to deal 

with non-seizure events of approximately the same length as seizure events. This procedure  

allowed for better estimates of true negatives, a complicated task for systems trained to detect 

only the event of interest28. The number of seizure and non-seizure segments containing at 

least one alarm were accumulated for each of the three held-out third parts of data, obtaining 

the total number of true positives and false positives across all 5,928 hours (247 days). Table 
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S1 details the results from each held-out third of the data (i.e. each tournament) and the 

cumulative performances we report in Results. Note that our reported Results are more 

conservative than if the performances of the three cross-validation runs were simply averaged. 

Sensitivity (Sens) was obtained by dividing the total number of true positives (accumulated 

over the held-out thirds) by the total number of seizures. False Positive Rate (FPR) was 

obtained by dividing the total number of false positives by the total number of non-seizure 

segments (Equivalently: 100% - Specificity). The False Alarm Rate (FAR) was computed as 

the total number of false alarms divided by the total of 247 days. The resulting (FPR, Sens) 

and (FAR, Sens) pairs corresponding to different values of the classifier decision threshold 

were used to build Receiver Operating Characteristic (ROC) curves (Fig. 2). The area under 

the curve (AUC) was computed on (FPR, Sens) ROC curves29. The optimal decision 

threshold was selected in order to provide the highest Sens with the lowest FAR, i.e. the point 

closest to the upper left corner in the (FAR, Sens) ROC. To statistically compare the 

classifiers, 95% confidence intervals (CI) for the Sens, the difference in Sens (ΔSens), the 

FPR, the difference in FPR (ΔFPR)30 and the AUC31 were used. 

Additional performance metrics included: the number of seconds between the seizure clinical 

onset and the classifier detection time (seizure detection latency); the number of detected 

seizures with respect to the total number of alarms (precision); the weighted mean between 

sensitivity and precision32 (F-score), and the ratio between FAR and seizure rate (SR), both 

measured per day. The number of false alarms triggered during resting/sleeping periods was 

determined applying a rest detection algorithm to ACM measurements33. 

Seizure characterization: estimating motion duration and post-ictal EDA response 

To estimate the seizure motor duration, an on-line algorithm was implemented to designate a 

neighborhood of “where the standard deviation of the ACM was above 0.05 g”. Pearson’s 

correlation was then performed between these estimated durations and the durations assessed 
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by v-EEG labeling.  

To quantify each seizure’s peri-ictal EDA response (EDR), peri-ictal EDA recordings were 

segmented from 60 minutes before v-EEG seizure onset to 120 minutes afterward. A 

“significant EDR” was identified when EDA increased more than twice the standard deviation 

of the pre-ictal baseline23,34. The EDR was considered ended when the EDA fell below 10% 

of the EDA peak value. Significant EDRs were analyzed in terms of the peak amplitude with 

respect to the baseline, their response latency (i.e., the difference between the starting time of 

the EDR and the v-EEG onset), the response duration (i.e., the difference between the starting 

time and the ending time of the EDR), and the natural logarithm of the area under the curve of 

the rising phase from the starting time to the peak of the EDR, and of the total response from 

the starting time to the ending time of the EDR, called respectively LogAUCrise and 

LogAUCtot. These features were computed only for significant EDRs. Comparisons of pre-

ictal vs post-ictal measurements were performed through a two-sample Kolmogorov-Smirnov 

test. To account for multiple comparisons, the resulting p-values were adjusted through the 

false discovery rate (FDR) procedure23. 

3. Results 

Seizure data collected with the ACM and EDA wristbands 

Of 69 patients, 22 experienced at least one CS during their admission, providing a total of 55 

recorded CSs, including 6 FTC and 49 FTCb. None of the captured seizures were 

nonepileptic. 32 CSs (12 patients) were recorded with Empatica E4, 9 CSs (4 patients) with 

Empatica E3, and 14 CSs (6 patients) with the MIT iCalm. A more detailed summary of the 

recordings is in Table 1. 135 seizures other than FTC and FTCb were recorded and are not 

considered in this work. Individual ACM magnitude and EDA signals during the peri-ictal 

period are shown in Figs. S1 and S2, respectively. Since patients were not confined to bed 

during the monitoring period, recorded data contain activities in the clinical environment that 
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involve convulsive-like movements of the wrist such as brushing teeth, eating, and washing. 

Additionally, some patients at Emory Healthcare, while being monitored during admissions, 

engaged in dancing (non-seizure related). 

Performance comparison of convulsive seizure detectors 

A trade-off exists between Sens and FAR, which can be described as follows: consider the 

case of a detector that outputs “there is a seizure” at every moment. This detector will never 

miss a single seizure and will obtain Sens=100%; however, getting an alert every moment 

would be insufferable. Dually, if a detector outputs “there is no seizure” at every moment, it 

will have FAR=0, but it will also miss all the seizures (Sens=0%). Therefore, we compared 

classifiers by means of ROC curves, which quantify the trade-off between Sens and FAR, to 

maximize the Sens while minimizing the FAR. Overall, Classifier II and Classifier III have 

ROC curves that lie above Classifier I’s ROC curve (Fig. 2), thus outperforming the 

previously published classifier. Comparisons between the AUC values of Classifier I and 

Classifier II (ΔAUC=0.0691, p=0.015) and between the AUC values of Classifier I and 

Classifier III (ΔAUC=0.0728, p=0.012) demonstrate statistically higher AUC values for the 

two novel classifiers (Table 2). At high levels of Sens, Classifier II and Classifier III achieved 

a FAR almost one order of magnitude lower than Classifier I (Fig. 2). Note that all three 

classifiers were able to detect all CSs (Sens=100%) but with a much higher FAR for 

Classifier I: 16.7 compared to 1.26 for Classifier II (13 times higher) and 5.9 for Classifier III 

(3 times higher). 

At their optimal thresholds, marked by black squares (Fig. 2), Classifier I detected 46 out of 

55 CSs (Sens=83.64%), including 3 (50%) FTC and 43 (87.7%) FTCb seizures; Classifier II 

detected 51 out of 55 CSs (Sens=92.73%), including 3 (50%) FTC and 48 (97.9%) FTCb 

seizures, and Classifier III detected 52 out of 55 CSs (Sens=94.55%), including 3 (50%) FTC 

and 49 (100%) FTCb seizures (Table 2). Fig. 3A shows the positive detections per patient. 



Onorati et al. 

	

11	

Sens values at the optimal thresholds were statistically different between Classifier II and 

Classifier I (ΔSens=9.09%, CIΔSens=[0.41%-19.31%]) and between Classifier III and 

Classifier I (ΔSens=10.91%, CIΔSens=[1.78%-21.74%]). All classifiers detected the seizures 

before the v-EEG offset (Fig. 3B) with comparable latencies (Table 2), i.e., median 31.2 s, 

range 14.9-116 s (Classifier I); median 29.3 s, range 13.8-153 s (Classifier II); median 29.3 s, 

range 14.8-151 s (Classifier III). 

At each optimal threshold, 71 false alarms were generated by Classifier I (overall FAR=0.29), 

51 by Classifier II (FAR=0.21) and 50 by Classifier III (FAR=0.20) over the 69 patients. FPR 

values at the optimal threshold (Table 2) were statistically different between Classifier II and 

Classifier I (ΔFPR=0.008%, CIΔFPR=[0.001%-0.016%]) and between Classifier III and 

Classifier I (ΔFPR=0.009%, CIΔFPR=[0.002%-0.017%]). Fig. 3C shows histograms of 

individual patients’ FAR values for each classifier. Most patients had fewer than 1 false alarm 

every 4 days (FAR<0.25): 41 of 69 patients (60%) for Classifier I, rising to 49 patients (71%) 

for Classifier II and 47 patients (69%) for Classifier III. In the worst case, some patients had 

up to 2 false alarms/day. The overall FAR/SR was lower for Classifier II and III compared to 

Classifier I (Table 2) with FAR/SR < 1 for 20 out of 22 seizure patients (90%) for both 

Classifier II and Classifier III. Classifier I showed a FAR/SR < 1 for 14 seizure patients 

(64%) (Fig. 3D). For Classifier I, 4 of 71 false alarms were generated during rest, while 

Classifiers II and III triggered no false alarms during rest. 

Seizure characterization based on wrist ACM and EDA signals 

The automated estimation of seizure intervals reflected expert-labeled seizure duration. 

Correlation between the estimated duration of motor convulsions and the v-EEG-based 

duration was statistically significant (r=0.73, p<0.0001, Fig. 4A) for the detected seizures by 

Classifier III. Furthermore, 40 out of 55 CSs (73%) exhibited a significant EDR upon seizure 

onset, including 3 of 6 FTC (50%) and 37 of 49 FTCb (76%). According to the FDR 
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procedure, the autonomic dysregulation following CSs with a significant EDR lasted 13 

minutes, as shown in Fig. 4B. Features of EDA profiles in the post-ictal period are 

summarized in Table S2. 

4. Discussion  

The present work introduces two novel automated machine learning classifiers for detecting 

convulsive epileptic seizures, by combining motor activity using ACM sensors with 

sympathetic activity measured as EDA. Both signals exhibit marked changes upon the onset 

of most CSs22,23,34. Both classifiers can operate within a nonstigmatizing wrist-worn device, 

the location preferred by most patients35, providing wearability for EMU and home use. 

4.1 Seizure detection 

There have been previous attempts to build an automated motor seizure detector that 

combines EDA and ACM. The main limitation was a relatively low sample number of 

seizures (16 FTCb seizures from 7 pediatric patients22 and 21 predominantly motor seizures 

from 4 patients36) recorded with one type of device at a single clinical site22,36. As a 

significant advance, we developed two new automated detectors and tested them on a much 

larger and more diverse pool of EMU data (55 CSs from 22 patients, adult and pediatric) 

collected at six clinical sites, with different clinical teams, and recorded with three different 

devices. This diversity, while requiring greater effort, boosts generalizability and overcomes 

the limitations of most studies11. 

The results presented in the current study contribute to advancing the state of the art. The new 

Classifier II and Classifier III significantly and consistently outperformed Classifier I, trained 

using Poh’s study feature set22. While Classifier I missed 9 seizures at its optimal threshold, 

Classifiers II and III missed 4 and 3 seizures, respectively. When tuning the three classifiers 

to the decision threshold at the same Sens level, Classifiers II and III yielded FAR’s one order 



Onorati et al. 

	

13	

of magnitude lower than Classifier I. As the training phases were performed on the same 

dataset, this direct comparison between Classifier I and the two novel classifiers is 

meaningful because none of the classifiers had an easier task than the others. Moreover, at 

their optimal decision thresholds, the two new classifiers were able to detect all nocturnal 

seizures, while Classifier I missed three (seizures 10, 24 and 25, Figs. S1 and S2). Also, the 

two new classifiers did not trigger any false alarms during quiescent periods. Many seizures 

and most SUDEPs are sleep-related37; thus, accurate performance at night is vital.  

All three classifiers provided detection latencies acceptable for most patients38. However, all 

failed to detect three FTC seizures from our youngest pediatric patient (age 4). Visual 

inspection of wristband signals reveals mild motor activity and no significant ictal EDR 

(seizures 32, 33 and 34, Figs. S1-S2). To detect these seizures, it would be necessary to lower 

the decision threshold. In return, the FAR values of Classifier II and III would increase to 

values which may be too disruptive for some patients and families (i.e. FAR>1)38, even if 

they would be considerably lower (13 and 3 times, respectively) than the Classifier I’s FAR.   

The two new methods in this study perform better than other published wrist-worn CSs 

detectors using ACM alone. At its best decision threshold, Classifier III yields Sens=94.55% 

and FAR=0.19. A Sens≈95% is acceptable for most patients38 and is higher than the 

sensitivities reported for other devices, including SmartWatch (Sens=31%, 16/51 GTC/FTCb 

seizures18; Sens=88%, 7/8 GTC/FTCb seizures13; and Sens=92%, 12/13 GTC/FTCb 

seizures39), Epi-Care Free (Sens=56%, 9/16 FTCb seizures19, Sens=90%, 35/39 FTCb 

seizures15), and Epilert (Sens=90%, 20/22 tonic/tonic-clonic seizures14). The Epi-Care Free 

and Epilert showed respectively FAR=0.215 and FAR=0.1114, both comparable to Classifier 

III’s FAR=0.20. On the other hand, our two new methods achieved better sensitivity with 

similar FAR, on a larger dataset, over more clinical sites and using three different devices. 

One study using Smartwatch reported more than 204 false alarms13 and another 81 false 
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alarms39; however, their total recording hours were not reported, making their FAR 

indeterminate.  

Another variable to evaluate the impact of a wearable seizure detector for patients is the ratio 

of the number of false alarms vs. the number of seizures per patient12. Our novel classifiers 

achieved a ratio lower than 1 for most of the patients and overall, the ratio of the total number 

of false alarms to the total number of seizures was ~1, which is acceptable for most patients 

and caregivers38. 

It was not possible to perform a direct comparison on our dataset with respect to the 

ACM+EDA classifier proposed by another group36. These authors achieved a sensitivity of 

90.5% on 21 motor seizures and they reported that “while in the aforementioned study (n.b., 

Poh’s study22) only one false alarm per day was encountered, we encountered a high number 

of false alarms”36. Comparing our two new classifiers at Sens=90%, Classifier II and 

Classifier III reached a FAR of approximately 0.12 and 0.16 respectively, which is a 

substantial improvement. 

4.2 Seizure characterization 

EDA and ACM data offer the opportunity to objectively characterize seizure physiology, 

beyond capabilities provided by systems based on motion alone (ACM and/or EMG). ACM 

analysis permitted reliably estimating seizure durations, except in one case in which 

convulsions were preceded by a long non-motor lead in (seizure 52 on Fig. S1, an outlier on 

Fig. 3A). Moreover, our data confirmed previous findings showing considerable autonomic 

activation in the early post-ictal phase reflected by a significant EDR, comparable to values 

reported in Poh’s study23. However, Poh’s study reported that all FTCb seizures (12/12) 

exhibited an EDR significantly higher than baseline for more than 50 minutes, while we 

observed such a response for 73% of CSs (50% of FTC and 76% of FTCb) lasting 13 minutes 
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on average. This discrepancy could be explained by the fact that we analyzed a larger, more 

heterogeneous population, whereas Poh’s population focused on pharmacologically refractory 

pediatric patients undergoing a workup toward epilepsy surgery23. A possible explanation is 

that more severe cases of epilepsy (e.g., with earlier age of onset, refractory to multiple anti-

epileptic drugs, and needing presurgical evaluation) are associated with higher and longer 

EDRs. The measure of the autonomic impact of each seizure has previously been found to 

correlate with the duration of PGES after FTCb and GTC seizures23,34, which has been 

proposed as a biomarker for SUDEP5. While no device has been shown to reduce the risk of 

SUDEP, which would require very large studies, incorporating EDA analysis in a home 

seizure detector may help to identify, characterize and alert caregivers to potentially 

dangerous seizures. 

4.3 Limits and future work 

The main limitation of our study and of all studies in this space is that patients were not in 

their home settings. While patients could get out of bed, shake dice, dance, play gesture-

controlled video games, brush their teeth, etc., in everyday life patients may be more likely to 

engage in sports and physical labor that may lead to higher FARs. Real-time performance 

assessment outside of EMUs is essential to ascertain that the system will perform well for 

most patients12. To this aim, the main challenge will be to collect accurate ground truth data 

in real-life, which would likely require a multimodal system32. Even if ambulatory-EEG 

devices are reliable40, they are uncomfortable, encumbering, and less preferred to wristbands 

by patients35. Self-reports are not an accurate standalone alternative8,9.  

New technologies offer the opportunity for applying machine learning as a tool within 

precision medicine, tuning the classifier to provide optimal tailored performance for each 

patient, taking into account the patient’s unique seizure features and cost of false alarms 



Onorati et al. 

	

16	

compared to true detections, which can depend upon seizure frequency38. Thus, future 

systems may be personalized to provide the best performance for each patient based on 

longitudinal real-life data collection. 

Another important limitation of this study is that analyses were done retrospectively, 

differently from above-mentioned studies with real-time analysis13,15,18,19,39. Based on the 

robust cross-validation approach on a large number of CSs and on our simulated real-time 

processing, our expectation is that performance of an algorithm embedded in a real-time 

system will not change significantly (as verified by preliminary tests underway). Future work 

will train a classifier using feature set III on all the data, and apply it on a separate test set in a 

prospective validation study, with real-time analysis and seizure detection. 

Future work should also involve evaluation of the algorithm for other types of motor seizures, 

e.g. hypermotor or clonic. The EDA might also help detect and characterize seizures with 

subtle or no motor movement. A recent review suggests that the EDA signal is one of the 

most promising alternatives for a widespread variety of epileptic episodes24. A study with an 

Empatica E3 wristband reported that 97% of 34 predominantly non-motor seizures could be 

detected with a hierarchical classifier based on EDA36. However, using mainly EDA 

dramatically decreased specificity; thus, information from other physiological signals is 

necessary to detect non-convulsive seizures, such as heart rate and arterial oxygenation41. 

Finally, a seizure detector incorporating EDA could be suitable for other important 

applications, such as identifying triggering factors reflected in autonomic activations (e.g. 

stress or deep sleep) or using EDA biofeedback for training patients to prevent epileptic 

seizures42. 
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Key points 

• Two multimodal automated convulsive seizure detectors were developed using 

accelerometry and electrodermal activity data, recorded with wrist-worn devices. 

• A more diverse pool of data than prior clinical studies (55 seizures, 22 adult and 

pediatric patients, 6 sites, 3 devices) was used to test the algorithms. 

• Direct comparison with the best state-of-the-art system using accelerometry and 

electrodermal activity showed significantly higher sensitivity (≈95 %). 

• Most patients had fewer than 1 false alarm every 4 days and 90% of patients had a rate 

of false alarms lower than their seizure rate. No false alarms occurred during resting 

periods. 

• In addition to seizure detection, the algorithm allowed reliable annotation of motor 

convulsion lengths and revealed post-ictal autonomic dysfunction in 73% of cases. 
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Supporting Information 

Additional Supporting Information may be found in the online version of this article. 
 

Figure S1. ACM magnitude signals of the 55 convulsive seizures (CSs) recorded, identified 

by seizure ID and patient (PT) ID. The signals are zoomed in a short neighborhood of the 

seizure (from 1 minute before the onset to 3 minutes after the end of the epileptic event). The 

pink line marks the seizure onsets. Asterisks (*) identify CSs that occurred during the night. 

Focal motor seizures are marked with “FTC” (all other events are focal motor to bilateral 

tonic-clonic seizures, i.e. FTCb). 

Figure S2. EDA signals during the 55 individual convulsive seizures (CSs) recorded, 

identified by seizure ID and patient (PT) ID. EDA recordings are zoomed-in around the 

seizure onset (from 5 minutes before the onset to 100 minutes after the end of the epileptic 

event) and are expressed in normalized units. The pink line marks seizure onset. Asterisks (*) 

identify CSs that occurred during the night. Focal motor seizures are marked with “FTC” (all 

other events are focal motor to bilateral tonic-clonic seizures, i.e. FTCb)

Table S1. Cross-validation results. 

Results related to the three feature sets under comparison in this work highlighting 

performances obtained at each tournament of the cross-validation analysis (black font). Each 

tournament corresponds to training/tuning a classifier on 2/3 of data and testing it on the left-

out third. Average and cumulative performances along the three tournament reported in the 

main text are shown (blue font). Note that the paper reports the more conservative test, which 

accumulates the errors instead of averaging them. 

 

Table S2. Summary of post-ictal EDA profiles. 
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Characteristics of post-ictal EDRs, reported as median (25th, 75th percentiles / min-max), for 

CSs exhibiting a statistically significant EDR (N=40). 
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Figures 

 

Figure 1. Overview of the workflow used for the development of convulsive seizure detectors 

tested in the present work. EDA and ACM signals were segmented in sliding epochs of 10 s 

(75% overlap). Three different feature sets were computed on each epoch: one made of 19 

features, originally used in Poh et al 201222 (feature set for Classifier I), one of 46 features 

(feature set for Classifier II) and one of 25 features (feature set for Classifier III, a subset of 

the 46 features). Classifiers were constructed and validated using a cross-validation approach. 

For each epoch, a posterior probability estimate was provided as output by the classifier. Each 

epoch was classified as a seizure or non-seizure epoch by applying a decision threshold to the 

posterior probability estimates. 
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Figure 2. Receiver operating characteristic (ROC) curves of the three classifiers under 

comparison obtained with a double cross-validation approach. The three classifiers differ in 

the feature set they use: Classifier I uses 19 features originally proposed by Poh et al 201222, 

while Classifier II and Classifier III employ new sets of 46 and 25 features, respectively. The 

x-axis shows the false positive rate (FPR) and the false alarm rate (FAR, i.e. the number of 

false alarms in 24 hours), while the y-axis shows the sensitivity (Sens, i.e. the percentage of 

detected seizures). A Zoom at the top-left corner of the ROC is provided to better view the 

performances at higher Sens levels. In particular, at Sens@85%, FAR=0.6 for Classifier I, 

FAR=0.06 for Classifier II and FAR=0.04 for Classifier III. At Sens@90%, FAR=1.5 for 

Classifier I, FAR=0.16 for Classifier II and FAR=0.155 for Classifier III. Finally, at 

Sens@95%, FAR=2 for Classifier I, FAR=0.8 for Classifier II and FAR=0.2 for Classifier III. 

The three classifiers are able to detect all the CSs (Sens=100%) at the cost of a much higher 

FAR for Classifier I: 16.7 compared to 1.26 for Classifier II and 5.9 for Classifier III. Black 

squares superimposed to each curve mark performance at the optimal decision threshold 

selected with a cost function maximizing Sens and minimizing FAR. 
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Figure 3. A. Number of detected convulsive seizures (CSs) per seizure patient (N=22) using 

the three different classifiers. B. Latencies of detection (seconds relative to the start of the 

seizure determined using v-EEG) for each seizure with the 3 classifiers. Each seizure is 

identified by seizure number (N=55) and patient (PT) ID. The absence of colored bars 

indicates undetected CSs. C. Histograms of false alarm rates (FAR, i.e. number of false 

alarms per 24 hours) per patient (N=69) using the three classifiers. D. Histograms of FAR/SR, 

i.e. number of false alarms divided by the number of seizures per seizure patient (N=22), 

using the three classifiers. 
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Figure 4. Seizure characterization. A. Correlation (Pearson’s correlation coefficient, r) 

between seizure duration assessed by v-EEG labeling and estimated duration based on ictal 

ACM analysis, performed on CS detected by Classifier III at its optimal threshold (N=52). 

The green dotted line represents the linear regression line. B. High-resolution profiles of 

autonomic alterations computed every minute during a peri-ictal period of 3 hours (1 hour 

before the onset, 2 hours afterward), aligned to the EEG seizure onset. The square box 

associated with each epoch represents the median EDA level across CSs, while the bars span 

the inter-quartile range (N=55). Each 60-second post-ictal measurement epoch was 

sequentially compared with the baseline level taken as the average of the entire 60-minute 

pre-ictal period. Epochs in red indicate statistically significant epochs after accounting for 

multiple comparisons using the false discovery rate controlling procedure (p<0.05, two-

sample Kolmogorov-Smirnov test). 
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Tables 

Table 1: Summary of recorded convulsive seizures  

Number of patients (number with seizures) 69 (22) 

Total number of CS 55 

Number of CS per patient (range) 1-7 

Median seizure duration (range) 72 (38-410) seconds 

Number of FTCb seizures (number of patients) 49 (20) 

Number of FTC seizures (number of patients) 6 (2) 

Number of seizures occurring during sleep 19 (35%) 
 

 

Characteristics of convulsive seizures (CSs) recorded with wristband sensors. FTCb= Focal 

motor to bilateral tonic-clonic; FTC= focal motor tonic-clonic (unilateral). 
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Table 2: Seizure detector performance comparison 

 
 
 Classifier I Classifier II Classifier III 

AUC 
0.86 

CI=[0.80 0.93] 

0.93 

CI=[0.89 0.98] 

0.94 

CI=[0.89 0.98] 

Sens 83.64 % 
CI=[71.75-91.14] % 

92.73 % 
CI=[82.74-97.14] % 

94.55 % 
CI=[85.15-98.13] %  

FPR 
0.029 % 

CI=[0.023 0.037] % 

0.021 % 

CI=[0.016 0.028] % 

0.02 % 

CI=[0.015 0.027] % 

FAR (false alarms 

per day) 
0.29 0.21 0.20 

Detection latency (s) 

31.2  

range=[14.9-116] 

N=47 

29.3  

range=[13.8-153] 

N=51 

29.3  

range=[14.8-151] 

N=52 

Precision 39 % 50 % 51 % 

F-score 0.53 0.65 0.67 

FAR/SR 1.3 0.93 0.91 

 

Performance metrics for the three classifiers under comparison. All metrics apart from the 

area under the ROC curve (AUC) refer to performances at each classifier’s optimal decision 

threshold. CI=confidence interval at 95% confidence. Range=Min/max range. N=number of 

detected seizures. FAR=false alarm rate. SR=convulsive seizure rate. Detection latency is 

reported as median and range values. 


