
MIT Open Access Articles

Simultaneous nearest neighbor search

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Piotr Indyk et al. "Simultaneous nearest neighbor search." 32nd International
Symposium on Computational Geometry (SoCG 2016) June 14-17, 2016 Boston, Massachusetts,
USA, edited by Sandor Fekete and Anna Lubiw, Dagstuhl Publishing, June 2016 © Piotr Indyk,
Robert Kleinberg, Sepideh Mahabadi, and Yang Yuan

As Published: http://dx.doi.org/10.4230/LIPIcs.SoCG.2016.44

Publisher: Dagstuhl Publishing

Persistent URL: http://hdl.handle.net/1721.1/111963

Version: Final published version: final published article, as it appeared in a journal, conference
proceedings, or other formally published context

Terms of use: Creative Commons Attribution 4.0 International License

https://libraries.mit.edu/forms/dspace-oa-articles.html
http://hdl.handle.net/1721.1/111963
http://creativecommons.org/licenses/by/4.0/

Simultaneous Nearest Neighbor Search∗

Piotr Indyk1, Robert Kleinberg2, Sepideh Mahabadi3, and
Yang Yuan4

1 MIT, CSAIL, Cambridge, USA
indyk@mit.edu

2 Cornell University, MSR, Ithaca, USA
rdk@cs.cornell.edu

3 MIT, CSAIL, Cambridge, USA
mahabadi@mit.edu

4 Cornell University, Ithaca, USA
yy528@cornell.edu

Abstract
Motivated by applications in computer vision and databases, we introduce and study the Simul-
taneous Nearest Neighbor Search (SNN) problem. Given a set of data points, the goal of SNN
is to design a data structure that, given a collection of queries, finds a collection of close points
that are “compatible” with each other. Formally, we are given k query points Q = q1, · · · , qk,
and a compatibility graph G with vertices in Q, and the goal is to return data points p1, · · · , pk
that minimize (i) the weighted sum of the distances from qi to pi and (ii) the weighted sum, over
all edges (i, j) in the compatibility graph G, of the distances between pi and pj . The problem
has several applications in computer vision and databases, where one wants to return a set of
consistent answers to multiple related queries. Furthermore, it generalizes several well-studied
computational problems, including Nearest Neighbor Search, Aggregate Nearest Neighbor Search
and the 0-extension problem.

In this paper we propose and analyze the following general two-step method for designing
efficient data structures for SNN. In the first step, for each query point qi we find its (approximate)
nearest neighbor point p̂i; this can be done efficiently using existing approximate nearest neighbor
structures. In the second step, we solve an off-line optimization problem over sets q1, · · · , qk
and p̂1, · · · , p̂k; this can be done efficiently given that k is much smaller than n. Even though
p̂1, · · · , p̂k might not constitute the optimal answers to queries q1, · · · , qk, we show that, for the
unweighted case, the resulting algorithm satisfies a O(log k/ log log k)-approximation guarantee.
Furthermore, we show that the approximation factor can be in fact reduced to a constant for
compatibility graphs frequently occurring in practice, e.g., 2D grids, 3D grids or planar graphs.

Finally, we validate our theoretical results by preliminary experiments. In particular, we show
that the “empirical approximation factor” provided by the above approach is very close to 1.

1998 ACM Subject Classification F.2.2 Geometrical Problems and Computations

Keywords and phrases Approximate Nearest Neighbor, Metric Labeling, 0-extension, Simultan-
eous Nearest Neighbor, Group Nearest Neighbor

Digital Object Identifier 10.4230/LIPIcs.SoCG.2016.44

∗ This work was in part supported by NSF grant CCF 1447476 [11] and the Simons Foundation.

© Piotr Indyk, Robert Kleinberg , Sepideh Mahabadi, and Yang Yuan;
licensed under Creative Commons License CC-BY

32nd International Symposium on Computational Geometry (SoCG 2016).
Editors: Sándor Fekete and Anna Lubiw; Article No. 44; pp. 44:1–44:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.SoCG.2016.44
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

44:2 Simultaneous Nearest Neighbor Search

1 Introduction

The nearest neighbor search (NN) problem is defined as follows: given a collection P of n
points, build a data structure that, given any query point from some set Q, reports the data
point closest to the query. The problem is of key importance in many applied areas, including
computer vision, databases, information retrieval, data mining, machine learning, and signal
processing. The nearest neighbor search problem, as well as its approximate variants, have
been a subject of extensive studies over the last few decades, see, e.g., [6, 4, 16, 22, 21, 2]
and the references therein.

Despite their success, however, the current algorithms suffer from significant theoretical
and practical limitations. One of their major drawbacks is their inability to support and
exploit structure in query sets that is often present in applications. Specifically, in many
applications (notably in computer vision), queries issued to the data structure are not
unrelated but instead correspond to samples taken from the same object. For example,
queries can correspond to pixels or small patches taken from the same image. To ensure
consistency, one needs to impose “compatibility constraints” that ensure that related queries
return similar answers. Unfortunately, standard nearest neighbor data structures do not
provide a clear way to enforce such constraints, as all queries are processed independently of
each other.

To address this issue, we introduce the Simultaneous Nearest Neighbor Search (SNN)
problem. Given k simultaneous query points q1, q2, · · · , qk, the goal of a SNN data structure
is to find k points (also called labels) p1, p2, · · · , pk in P such that (i) pi is close to qi,
and (ii) p1, · · · , pk are “compatible”. Formally, the compatibility is defined by a graph
G = (Q,E) with k vertices which is given to the data structure, along with the query points
Q = q1, · · · , qk. Furthermore, we assume that the data set P is a subset of some space X
equipped with a distance function distX , and that we are given another metric distY defined
over P ∪Q. Given the graph G and the queries q1, · · · , qk, the goal of the SNN data structure
is to return points p1, · · · , pk from P that minimize the following function:

k∑
i=1

κidistY (pi, qi) +
∑

(i,j)∈E

λi,jdistX(pi, pj) (1)

where κi and λi,j are parameters defined in advance.
The above formulation captures a wide variety of applications that are not well modeled by

traditional NN search. For example, many applications in computer vision involve computing
nearest neighbors of pixels or image patches from the same image [14, 8, 5]. In particular,
algorithms for tasks such as de-noising (removing noise from an image), restoration (replacing
a deleted or occluded part of an image) or super-resolution (enhancing the resolution of an
image) involve assigning “labels” to each image patch1. The labels could correspond to the
pixel color, the enhanced image patch, etc. The label assignment should have the property
that the labels are similar to the image patches they are assigned to, while at the same time
the labels assigned to nearby image patches should be similar to each other. The objective
function in Equation 1 directly captures these constraints.

From a theoretical perspective, Simultaneous Nearest Neighbor Search generalizes several
well-studied computational problems, notably the Aggregate Nearest Neighbor problem [27,

1 This problem has been formalized in the algorithms literature as the metric labeling problem [19]. The
problem considered in this paper can thus be viewed as a variant of metric labeling with a very large
number of labels.

P. Indyk, R. Kleinberg, S. Mahabadi, and Y. Yuan 44:3

25, 24, 1, 20] and the 0-extension problem [18, 10, 9, 3]. The first problem is quite similar to
the basic nearest neighbor search problem over a metric dist, except that the data structure
is given k queries q1 · · · qk, and the goal is to find a data point p that minimizes the sum2∑
i dist(qi, p). This objective can be easily simulated in SNN by setting distY = dist and

distX = L · uniform, where L is a very large number and uniform(p, q) is the uniform metric.
The 0-extension problem is a combinatorial optimization problem where the goal is to
minimize an objective function quite similar to that in Equation 1. The exact definition of
0-extension as well as its connections to SNN are discussed in detail in Section 2.1.

1.1 Our results
In this paper we consider the basic case where distX = distY and λi,j = κi = 1; we refer to
this variant as the unweighted case. Our main contribution is a general reduction that enables
us to design and analyze efficient data structures for unweighted SNN. The algorithm (called
Independent Nearest Neighbors or INN) consists of two steps. In the first (pruning) step,
for each query point qi we find its nearest neighbor3 point p̂i ; this can be done efficiently
using existing nearest neighbor search data structures. In the second (optimization) step, we
run an appropriate (approximation) algorithm for the SNN problem over sets q1, · · · , qk and
p̂1, · · · , p̂k; this can be done efficiently given that k is much smaller than n. We show that the
resulting algorithm satisfies a O(b log k/ log log k)-approximation guarantee, where b is the
approximation factor of the algorithm used in the second step. This can be further improved
to O(bδ), if the metric space dist admits a δ-padding decomposition (see Preliminaries for
more detail). The running time incurred by this algorithm is bounded by the cost of k nearest
neighbor search queries in a data set of size n plus the cost of the approximation algorithm
for the 0-extension problem over an input of size k. By plugging in the best nearest neighbor
algorithms for dist we obtain significant running time savings if k � n.

We note that INN is somewhat similar to the belief propagation algorithm for super-
resolution described in [14]. Specifically, that algorithm selects 16 closest labels for each
qi, and then chooses one of them by running a belief propagation algorithm that optimizes
an objective function similar to Equation 1. However, we note that the algorithm in [14] is
heuristic and is not supported by approximation guarantees.

We complement our upper bound by showing that the aforementioned reduction inherently
yields super-constant approximation guarantee. Specifically, we show in the full version that,
for an appropriate distance function dist, queries q1, · · · , qk, and a label set P , the best
solution to SNN with the label set restricted to p̂1, · · · , p̂k can be Θ(

√
log k) times larger

than the best solution with label set equal to P . This means that even if the second step
problem is solved to optimality, reducing the set of labels from P to P̂ inherently increases
the cost by a super-constant factor.

However, we further show that the aforementioned limitation can be overcome if the
compatibility graph G has pseudoarboricity r (which means that each edge can be mapped to
one of its endpoint vertices such that at most r edges are mapped to each vertex). Specifically,
we show that if G has pseudoarboricity r, then the gap between the best solution using labels
in P , and the best solution using labels in P̂ , is at most O(r). Since many graphs used in
practice do in fact satisfy r = O(1) (e.g., 2D grids, 3D grids or planar graphs), this means
that the gap is indeed constant for a wide collection of common compatibility graphs.

2 Other aggregate functions, such as the maximum, are considered as well.
3 Our analysis immediately extends to the case where the we compute approximate, not exact, nearest

neighbors. For simplicity we focus only on the exact case in the following discussion.

SoCG 2016

44:4 Simultaneous Nearest Neighbor Search

In Appendix A we also present an alternative algorithm for the r-pseudoarboricity case.
Similarly to INN, the algorithm computes the nearest label to each query qi. However,
the distance function used to compute the nearest neighbor involves not only the distance
between qi and a label p, but also the distances between the neighbors of qi in G and p. This
nearest neighbor operation can be implemented using any data structure for the Aggregate
Nearest Neighbor problem [27, 25, 24, 1, 20]. Although this results in a more expensive query
time, the labeling computed by this algorithm is final, i.e., there is no need for any additional
postprocessing. Furthermore, the pruning gap (and therefore the final approximation ratio)
of the algorithm is only 2r + 1, which is better than our bound for INN.

Finally, we validate our theoretical results by preliminary experiments comparing our SNN
data structure with an alternative (less efficient) algorithm that solves the same optimization
problem using the full label set P . In our experiments we apply both algorithms to an image
denoising task and measure their performance using the objective function (1). In particular,
we show that the “empirical gap” incurred by the above approach, i.e, the ratio of objective
function values observed in our experiments, is very close to 1.

1.2 Our techniques
We start by pointing out that SNN can be reduced to 0-extension in a “black-box” manner.
Unfortunately, this reduction yields an SNN algorithm whose running time depends on the
size of labels n, which could be very large; essentially this approach defeats the goal of having
a data structure solving the problem. The INN algorithm overcomes this issue by reducing
the number of labels from n to k. However the pruning step can increase the cost of the
best solution. The ratio between the optimum cost after pruning to the optimum cost before
pruning is called the pruning gap.

To bound the pruning gap, we again resort to existing 0-extension algorithms, albeit
in a “grey box” manner. Specifically, we observe that many algorithms, such as those in
[9, 3, 10, 23], proceed by first creating a label assignment in an “extended” metric space
(using a LP relaxation of 0-extension), and then apply a rounding algorithm to find an actual
solution. The key observation is that the correctness of the rounding step does not rely
on the fact that the initial label assignment is optimal, but instead it works for any label
assignment. We use this fact to translate the known upper bounds for the integrality gap of
linear programming relaxations of 0-extension into upper bounds for the pruning gap. On the
flip side, we show a lower bound (which will appear in the full version) for the pruning gap
by mimicking the arguments used in [9] to lower bound the integrality gap of a 0-extension
relaxation.

To overcome the lower bound, we consider the case where the compatibility graph G

has pseudoarboricity r. Many graphs used in applications, such as 2D grids, 3D grids or
planar graphs, have pseudoarboricity r for some constant r. We show that for such graphs
the pruning gap is only O(r). The proof proceeds by directly assigning labels in P̂ to the
nodes in Q and bounding the resulting cost increase. It is worth noting that the “grey box”
approach outlined in the preceding paragraph, combined with Theorem 11 of [9], yields an
O(r3) pruning gap for the class of Kr,r-minor-free graphs, whose pseudoarboricity is Õ(r).
Our O(r) pruning gap not only improves this O(r3) bound in a quantitative sense, but it
also applies to a much broader class of graphs. For example, three-dimensional grid graphs
have pseudoarboricity 6, but the class of three-dimensional grid graphs includes graphs with
Kr,r minors for every positive integer r.

Finally, we validate our theoretical results by experiments. We focus on a simple de-
noising scenario where X is the pixel color space, i.e., the discrete three-dimensional space

P. Indyk, R. Kleinberg, S. Mahabadi, and Y. Yuan 44:5

space {0 . . . 255}3. Each pixel in this space is parametrized by the intensity of the red, green
and blue colors. We use the Euclidean norm to measure the distance between two pixels.
We also let P = X. We consider three test images: a cartoon with an MIT logo and two
natural images. For each image we add some noise and then solve the SNN problems for
both the full color space P and the pruned color space P̂ . Note that since P = X, the set of
pruned labels P̂ simply contains all pixels present in the image.

Unfortunately, we cannot solve the problems optimally, since the best known exact
algorithm takes exponential time. Instead, we run the same approximation algorithm on
both instances and compare the solutions. We find that the values of the objective function
for the solutions obtained using pruned labels and the full label space are equal up to a small
multiplicative factor. This suggests that the empirical value of the pruning gap is very small,
at least for the simple data sets that we considered.

2 Definitions and Preliminaries

We define the Unweighted Simultaneous Nearest Neighbor problem as follows. Let (X,dist)
be a metric space and let P ⊆ X be a set of n points from the space.

I Definition 1. In the Unweighted Simultaneous Nearest Neighbor problem, the goal is to
build a data structure over a given point set P that supports the following operation. Given
a set of k points Q = {q1, · · · , qk} in the metric space X, along with a graph G = (Q,E) of k
nodes, the goal is to report k (not necessarily unique) points from the database p1, · · · , pk ∈ P
which minimize the following cost function:

k∑
i=1

dist(pi, qi) +
∑

(qi,qj)∈E

dist(pi, pj) (2)

We refer to the first term in sum as the nearest neighbor (NN) cost, and to the second sum
as the pairwise (PW) cost. We denote the cost of the optimal assignment from the point set
P by Cost(Q,G,P).

In the rest of this paper, simultaneous nearest neighbor (SNN) refers to the unweighted
version of the problem (unless stated otherwise). Next, we define the pseudoarboricity of a
graph and r-sparse graphs.

I Definition 2. Pseudoarboricity of a graph G is defined to be the minimum number r, such
that the edges of the graph can be oriented to form a directed graph with out-degree at most
r. In this paper, we call such graphs as r-sparse.

Note that given an r-sparse graph, one can map the edges to one of its endpoint vertices
such that there are at most r edges mapped to each vertex. The doubling dimension of a
metric space is defined as follows.

I Definition 3. The doubling dimension of a metric space (X,dist) is defined to be the
smallest δ such that every ball in X can be covered by 2δ balls of half the radius.

It is known that the doubling dimension of any finite metric space is O(log |X|). We then
define padding decompositions.

I Definition 4. A metric space (X,dist) is δ-padded decomposable if for every r, there is a
randomized partitioning of X into clusters C = {Ci} such that, each Ci has diameter at most
r, and that for every x1, x2 ∈ X, the probability that x1 and x2 are in different clusters is at
most δdist(x1, x2)/r.

SoCG 2016

44:6 Simultaneous Nearest Neighbor Search

It is known that any finite metric with doubling dimension δ admits an O(δ)-padding
decomposition [15].

2.1 0-Extension Problem

The 0-extension problem, first defined by Karzanov [18] is closely related to the Simultaneous
Nearest Neighbor problem. In the 0-extension problem, the input is a graph G(V,E) with a
weight function w(e), and a set of terminals T ⊆ V with a metric d defined on T . The goal
is to find a mapping from the vertices to the terminals f : V → T such that each terminal is
mapped to itself and that the following cost function is minimized:∑

(u,v)∈E

w(u, v) · d(f(u), f(v))

It can be seen that this is a special case of the metric labeling problem [19] and thus a
special case of the general version of the SNN problem defined by Equation 1. To see this,
it is enough to let Q = V and P = T , and let κi = ∞ for qi ∈ T , κi = 0 for qi 6∈ T , and
λi,j = w(i, j) in Equation 1.

Calinescu et al. [9] considered the semimetric relaxation of the LP for the 0-extension
problem and gave an O(log |T |) algorithm using randomized rounding of the LP solution.
They also proved an integrality ratio of O(

√
log |T |) for the semimetric LP relaxation.

Later Fakcharoenphol et al. [10] improved the upper-bound to O(log |T |/ log log |T |), and Lee
and Naor [23] proved that if the metric d admits a δ-padded decomposition, then there is an
O(δ)-approximation algorithm for the 0-extension problem. For the finite metric spaces, this
gives an O(δ) algorithm where δ is the doubling dimension of the metric space. Furthermore,
the same results can be achieved using another metric relaxation (earth-mover relaxation), see
[3]. Later Karloff et al. [17] proved that there is no polynomial time algorithm for 0-extension
problem with approximation factor O((logn)1/4−ε) unless NP ⊆ DTIME(npoly(logn)).

SNN can be reduced to 0-extension in a “black-box” manner via the following lemma
whose proof will appear in the full version.

I Lemma 5. Any b-approximate algorithm for the 0-extension problem yields an O(b)-
approximate algorithm for the SNN problem.

By plugging in the known 0-extension algorithms cited earlier we obtain the following:

I Corollary 6. There exists an O(logn/ log logn) approximation algorithm for the SNN
problem with running time nO(1), where n is the size of the label set.

I Corollary 7. If the metric space (X,dist) is δ-padded decomposable, then there exists an
O(δ) approximation algorithm for the SNN problem with running time nO(1). For finite
metric spaces X, δ could represent the doubling dimension of the metric space (or equivalently
the doubling dimension of P ∪Q).

Unfortunately, this reduction yields a SNN algorithm with running time depending on
the size of labels n, which could be very large. In the next section we show how to improve
the running time by reducing the labels set size from n to k. However, unlike the reduction
in this section, our new reduction will no longer be “black-box”. Instead, its analysis will use
particular properties of the 0-extension algorithms. Fortunately those properties are satisfied
by the known approximation algorithms for this problem.

P. Indyk, R. Kleinberg, S. Mahabadi, and Y. Yuan 44:7

Algorithm 1 Independent Nearest Neighbors (INN) Algorithm

Input Q = {q1, · · · , qk}, and input graph G = (Q,E)
1: for i = 1 to k do
2: Query the NN data structure to extract a nearest neighbor (or approximate nearest

neighbor) p̂i for qi
3: end for
4: Find the optimal (or approximately optimal) solution among the set P̂ = {p̂1, · · · , p̂k}.

3 Independent Nearest Neighbors Algorithm

In this section, we consider a natural and general algorithm for the SNN problem, which
we call Independent Nearest Neighbors (INN). The algorithm proceeds as follows. Given
the query points Q = {q1, · · · , qk}, for each qi the algorithm picks its (approximate) nearest
neighbor p̂i. Then it solves the problem over the set P̂ = {p̂1, · · · , p̂k} instead of P . This
simple approach reduces the size of search space from n down to k.

The details of the algorithm are shown in Algorithm 1.
In the rest of the section we analyze the quality of this pruning step. More specifically,

we define the pruning gap of the algorithm as the ratio of the optimal cost function using
the points in P̂ over its value using the original point set P .

I Definition 8. The pruning gap of an instance of SNN is defined as α(Q,G,P) = Cost(Q,G,P̂)
Cost(Q,G,P) .

We define the pruning gap of the INN algorithm, α, as the largest value of α(Q,G,P) over
all instances.

First, in Section 3.1, by proving a reduction from algorithms for rounding the LP solution of
the 0-extension problem, we show that for arbitrary graphs G, we have α = O(log k/ log log k),
and if the metric (X,dist) is δ-padded decomposable, we have α = O(δ) (for example, for
finite metric spaces X, δ can represent the doubling dimension of the metric space). Then,
in Section 3.2, we prove that α = O(r) where r is the pseudoarboricity of the graph G. This
would show that for the sparse graphs, the pruning gap remains constant. Finally, in the
full version, we present a lower bound showing that the pruning gap could be as large as
Ω(
√

log k) and as large as Ω(r) for (r ≤
√

log k). Therefore, we get the following theorem.

I Theorem 9. The following bounds hold for the pruning gap of the INN algorithm. First
we have α = O(log k

log log k), and that if metric (X,dist) is δ-padded decomposable, we have
α = O(δ). Second, α = O(r) where r is the pseudoarboricity of the graph G. Finally, we
have that α = Ω(

√
log k) and α = Ω(r) for r ≤

√
log k.

Note that the above theorem results in an O(b · α) time algorithm for the SNN problem
where b is the approximation factor of the algorithm used to solve the metric labeling problem
for the set P̂ , as noted in line 4 of the INN algorithm. For example in a general graph b
would be O(log k/ log log k) that is added on top of O(α) approximation of the pruning step.

3.1 Bounding the pruning gap using 0-extension
In this section we show upper bounds for the pruning gap (α) of the INN algorithm. The
proofs use specific properties of existing algorithms for the 0-extension problem.

I Definition 10. We say an algorithm A for the 0-extension problem is a β-natural rounding
algorithm if, given a graph G = (V,E), a set of terminals T ⊆ V , a metric space (X, dX), and
a mapping µ : V → X, it outputs another mapping ν : V → X with the following properties:

SoCG 2016

44:8 Simultaneous Nearest Neighbor Search

∀t ∈ T : ν(t) = µ(t)
∀v ∈ V : ∃t ∈ T s.t. ν(v) = µ(t)
Cost(ν) ≤ βCost(µ), i.e.,

∑
(u,v)∈E dX(ν(u), ν(v)) ≤ β ·

∑
(u,v)∈E dX(µ(u), µ(v))

Many previous algorithms for the 0-extension problem, such as [9, 3, 10, 23], first create
the mapping µ using some LP relaxation of 0-extension (such as semimetric relaxation or
earth-mover relaxation), and then apply a β-natural rounding algorithm for the 0-extension
to find the mapping ν which yields the solution to the 0-extension problem. Below we give a
formal connection between guarantees of these rounding algorithms, and the quality of the
output of the INN algorithm (the pruning gap of INN).

I Lemma 11. Let A be a β-natural rounding algorithm for the 0-extension problem. Then
we can infer that the pruning gap of the INN algorithm is O(β), that is, α = O(β).

Proof. Fix any SNN instance (Q,GS , P), where GS = (Q,EPW), and its corresponding INN
invocation.

We construct the inputs to the algorithm A from the INN instance as follows. Let
the metric space of A be the same as (X,dist) defined in the SNN instance. Also, let
V be a set of 2k vertices corresponding to P̂ ∪ P ∗ with T corresponding to P̂ . Here
P ∗ = {p∗1, · · · , p∗k} is the set of the optimal solutions of SNN, and P̂ is the set of nearest
neighbors as defined by INN. The mapping µ simply maps each vertex from V = P̂ ∪ P ∗ to
itself in the metric X defined in SNN. Moreover, the graph G = (V,E) is defined such that
E = {(p̂i, p∗i)|1 ≤ i ≤ k} ∪ {(p∗i , p∗j)|(qi, qj) ∈ EPW }.

First we claim the following (note that Cost(µ) is defined in Definition 10, and that by
definition Cost(Q,GS , P) = Cost(Q,GS , P ∗))

Cost(µ) ≤ 2Cost(Q,GS , P ∗) = 2Cost(Q,GS , P)

We know that Cost(Q,GS , P ∗) can be split into NN cost and PW cost. We can also
split Cost(µ) into NN cost (corresponding to edge set {(p̂i, p∗i)|1 ≤ i ≤ k}) and PW cost
(corresponding to edge set {(p∗i , p∗j)|(qi, qj) ∈ EPW }). By definition we know the PW costs
of Cost(Q,GS , P) and Cost(µ) are equal. For NN cost, by triangle inequality, we know
dist(p̂i, p∗i) ≤ dist(p̂i, qi) + dist(qi, p∗i) ≤ 2 · dist(qi, p∗i). Here we use the fact that p̂i is the
nearest database point of qi. Thus, the claim follows.

We then apply algorithm A to get the mapping ν. By the assumption on A, we know
that Cost(ν) ≤ βCost(µ). Given the mapping ν by the algorithm A, consider the assignment
in the SNN instance where each query qi is mapped to ν(p∗i), and note that since ν(p∗i) ∈ T ,
this would map all points qi to points in P̂ . Thus, by definition, we have that

Cost(Q,GS , P̂) ≤
k∑
i=1

dist(qi, ν(p∗i)) +
∑

(qi,qj)∈EP W

dist(ν(p∗i), ν(p∗j))

≤
k∑
i=1

dist(qi, p̂i) +
k∑
i=1

dist(p̂i, ν(p∗i)) +
∑

(qi,qj)∈EP W

dist(ν(p∗i), ν(p∗j))

≤
k∑
i=1

dist(qi, p̂i) + Cost(ν)

≤ Cost(Q,GS , P) + βCost(µ)
≤ (2β + 1)Cost(Q,GS , P)

where we have used the triangle inequality. Therefore, we have that the pruning gap α of
the INN algorithm is O(β), as claimed. J

P. Indyk, R. Kleinberg, S. Mahabadi, and Y. Yuan 44:9

Algorithm 2 r-Sparse Graph Assignment Algorithm

Input Query points q1, · · · , qk, Optimal assignment p∗1, · · · , p∗k, Nearest Neighbors p̂1, · · · , p̂k,
and the input graph G = (Q,E)
Output An Assignment p1, · · · , pk ∈ P̂
1: for i = 1 to k do
2: Let j0 = i and let qj1 , · · · , qjt

be all the neighbors of qi in the graph G
3: m← arg mint`=0 dist(p∗i , p∗j`

) + dist(p∗j`
, qj`

)
4: Assign pi ← p̂jm

5: end for

Using the previously cited results, and noting that in the above instance |V | = O(k), we
get the following corollaries.

I Corollary 12. The INN algorithm has pruning gap α = O(log k/ log log k).

I Corollary 13. If the metric space (X,dist) admits a δ-padding decomposition, then the
INN algorithm has pruning gap α = O(δ). For finite metric spaces (X,dist), δ is at most the
doubling dimension of the metric space.

3.2 Sparse Graphs
In this section, we prove that the INN algorithm performs well on sparse graphs. More
specifically, here we prove that when the graph G is r-sparse, then α(Q,G,P) = O(r). To
this end, we show that there exists an assignment using the points in P̂ whose cost function
is within O(r) of the optimal solution using the points in the original data set P .

Given a graph G of pseudoarboricity r, we know that we can map each edge to one of its
end points such that the number of edges mapped to each vertex is at most r. For each edge
e, we call the vertex that e is mapped to as the corresponding vertex of e. This would mean
that each vertex is the corresponding vertex of at most r edges.

Let p∗1, · · · , p∗k ∈ P denote the optimal solution of SNN. Algorithm 2 shows how to find
an assignment p1, · · · , pk ∈ P̂ . We show that the cost of this assignment is within a factor
O(r) from the optimum.

I Lemma 14. The assignment defined by Algorithm 2, has O(r) approximation factor.

Proof. For each qi ∈ Q, let yi = dist(p∗i , qi) and for each edge e = (qi, qj) ∈ E let xe =
dist(p∗i , p∗j). Also let Y =

∑k
i=1 yi and X =

∑
e∈E xe. Note that Y is the NN cost and X is

the PW cost of the optimal assignment and that OPT = Cost(Q,G,P) = X + Y . Define
the variables y′i, x′e, Y ′ , X ′ in the same way but for the assignment p1, · · · , pk produced by
the algorithm. That is, for each qi ∈ Q, y′i = dist(pi, qi), and for each edge e = (qi, qj) ∈ E,
x′e = dist(pi, pj). Moreover, for a vertex qi, we define the designated neighbor of qi to be qjm

for the value of m defined in the line 3 of Algorithm 2 (note that the designated neighbor
might be the vertex itself). Fix a vertex qi and let qc be the designated neighbor of qi. We
can bound the value of y′i as follows.

y′i = dist(qi, pi)
= dist(qi, p̂c)
≤ dist(qi, p∗i) + dist(p∗i , p∗c) + dist(p∗c , qc) + dist(qc, p̂c) (by triangle inequality)
≤ yi + dist(p∗i , p∗c) + 2dist(p∗c , qc) (since p̂c is the nearest neighbor of qc)
≤ yi + 2[dist(p∗i , p∗c) + dist(p∗c , qc)]
≤ 3yi (by definition of designated neighbor and the value m in line 3 of Algorithm 2)

SoCG 2016

44:10 Simultaneous Nearest Neighbor Search

Thus summing over all vertices, we get that Y ′ ≤ 3Y . Now for any fixed edge e = (qi, qs)
(with qi being its corresponding vertex), let qc be the designated neighbor of qi, and qz be
the designated neighbor of qs. Then we bound the value of x′e as follows.

x′e = dist(pi, ps)
= dist(p̂c, p̂z) (by definition of designated neighbor and line 4 of Algorithm 2)
≤ dist(p̂c, qc) + dist(qc, p∗c) + dist(p∗c , p∗i) + dist(p∗i , p∗s)
+ dist(p∗s, p∗z) + dist(p∗z, qz) + dist(qz, p̂z) (by triangle inequality)
≤ 2dist(qc, p∗c) + dist(p∗c , p∗i) + dist(p∗i , p∗s)
+ dist(p∗s, p∗z) + 2dist(p∗z, qz) (since p̂c(p̂z respectively) is a NN of qc(qz respectively))
≤ 2[dist(qc, p∗c) + dist(p∗c , p∗i)] + dist(p∗i , p∗s) + 2[dist(p∗s, p∗z) + dist(p∗z, qz)]
≤ 2yi + xe + 2[xe + yi]

(since qc(qz respectively) is designated neighbor of qi(qs respectively))
≤ 4(xe + yi)

Hence, summing over all the edges, since each vertex qi is the corresponding vertex of at
most r edges, we get that X ′ ≤ 4X + 4rY . Therefore we have the following.

Cost(Q,G, P̂) ≤ X ′ + Y ′ ≤ 3Y + 4X + 4rY ≤ (4r + 3) · Cost(Q,G,P)

and thus α(Q,G,P) = O(r). J

4 Experiments

We consider image denoising as an application of our algorithm. A popular approach to
denoising (see e.g. [13]) is to minimize the following objective function:∑

i∈V
κid(qi, pi) +

∑
(i,j)∈E

λi,jd(pi, pj)

Here qi is the color of pixel i in the noisy image, and pi is the color of pixel i in the output.
We use the standard 4-connected neighborhood system for the edge set E, and use Euclidean
distance as the distance function d(·, ·). We also set all weights κi and λi,j to 1.

When the image is in grey scale, this objective function can be optimized approximately
and efficiently using message passing algorithm, see e.g. [12]. However, when the image
pixels are points in RGB color space, the label set becomes huge (n = 2563 = 16, 777, 216),
and most techniques for metric labeling are not feasible.

Recall that our algorithm proceeds by considering only the nearest neighbor labels of the
query points, i.e., only the colors that appeared in the image. In what follows we refer to
this reduced set of labels as the image color space, as opposed to the full color space where
no pruning is performed.

In order to optimize the objective function efficiently, we use the technique of [13]. We first
embed the original (color) metric space into a tree metric (with O(logn) distortion), and then
apply a top-down divide and conquer algorithm on the tree metric, by calling the alpha-beta
swap subroutine [7]. We use the random-split kd-tree for both the full color space and the
image color space. When constructing the kd-tree, split each interval [a, b] by selecting a
random number chosen uniformly at random from the interval [0.6a+ 0.4b, 0.4a+ 0.6b].

To evaluate the performance of the two algorithms, we use one cartoon image with MIT
logo and two images from the Berkeley segmentation dataset [26] which was previously used

P. Indyk, R. Kleinberg, S. Mahabadi, and Y. Yuan 44:11

Table 1 The empirical values of objective functions for the respective images and algorithms.

Avg cost for full color Avg cost for image color Empirical pruning gap
MIT 341878 ± 3.1% 340477 ± 1.1% 0.996
Snow 9338604 ± 4.5% 9564288 ± 6.2% 1.024
Surf 8304184 ± 6.6% 7588244 ± 5.1% 0.914

in other computer vision papers [13]. We use Matlab imnoise function to create noisy images
from the original images. We run each instance 20 times, and compute both the average and
the variance of the objective function (the variance is due to the random generating process
of kd tree).

The results are presented in Figure 1 and Table 1. In Figure 1, one can see that the images
produced by the two algorithms are comparable. The full color version seems to preserve a
few more details than the image color version, but it also “hallucinates” non-existing colors
to minimize the value of the objective function. The visual quality of the de-noised images
can be improved by fine-tuning various parameters of the algorithms. We do not report these
results here, as our goal was to compare the values of the objective function produced by the
two algorithms, as opposed to developing the state of the art de-noising system.

Note that, as per Table 1, for some images the value of the objective function is sometimes
lower for the image color space compared to the full color space. This is because we cannot
solve the optimization problem exactly. In particular, using the kd tree to embed the original
metric space into a tree metric is an approximate process.

4.1 De-noising with patches
To improve the quality of the de-noised images, we run the experiment for patches of the
image, instead of pixels. Moreover, we use Algorithm 3 which implements not only a pruning
step, but also computes the solution directly. In this experiment (see Figure 2 for a sample
of the results), each patch (a grid of pixels) from the noisy image is a query point, and the
dataset consists of available patches which we use as a substitute for a noisy patch.

In our experiment, to build the dataset, we take one image from the Berkeley segmentation
data set, then add noise to the right half of the image, and try to use the patches from the
left half to denoise the right half. Each patch is of size 5× 5 pixels. We obtain 317× 236
patches from the left half of the image and use it as the patch database. Then we apply
Algorithm 3 to denoise the image. In particular, for each noisy patch qn (out of 317× 237
patches) in the right half of the image, we perform a linear scan to find the closest patch pi
from the patch database, based on the following cost function:

dist(qn, pi) +
∑

pj∈neighbor(qn)

dist(pj , pi)
5

where dist(p, q) is defined to be the sum of squares of the l2 distances between the colors of
corresponding pixels in the two patches.

After that, for each noisy patch we retrieve the closest patch from the patch database.
Then for each noisy pixel x, we first identify all the noisy patches (there are at most 25
of them) that cover it. The denoised color of this pixel x is simply the average of all the
corresponding pixels in those noisy patches which cover x.

Since the nearest neighbor algorithm is implemented using a linear scan, it takes around 1
hour to denoise one image. One could also apply some more advanced techniques like locality
sensitive hashing to find the closest patches with much faster running time.

SoCG 2016

44:12 Simultaneous Nearest Neighbor Search

Figure 1 MIT logo (first column, size 45 ∗ 124), and two images from the Berkeley segmentation
dataset [26] (second & third columns, size 321 ∗ 481). The first row shows the original image; the
second row shows the noisy image; the third row shows the denoised image using full color space;
the fourth row shows the denoised image using image space (our algorithm).

Figure 2 Two images from the Berkeley segmentation dataset [26] (size 321 ∗ 481). The first
column shows the original image; the second column shows the half noisy image; the third column
shows the de-noised image using our algorithm for the patches.

P. Indyk, R. Kleinberg, S. Mahabadi, and Y. Yuan 44:13

Acknowledgements. The authors would like to thank Pedro Felzenszwalb for formulating
the Simultaneous Nearest Neighbor problem, as well as many helpful discussions about the
experimental setup.

References

1 Pankaj K Agarwal, Alon Efrat, and Wuzhou Zhang. Nearest-neighbor searching under
uncertainty. In Proceedings of the 32nd symposium on Principles of database systems.
ACM, 2012.

2 Alexandr Andoni, Piotr Indyk, Huy L Nguyen, and Ilya Razenshteyn. Beyond locality-
sensitive hashing. In Proceedings of the Twenty-Fifth Annual ACM-SIAM Symposium on
Discrete Algorithms, pages 1018–1028. SIAM, 2014.

3 Aaron Archer, Jittat Fakcharoenphol, Chris Harrelson, Robert Krauthgamer, Kunal Tal-
war, and Éva Tardos. Approximate classification via earthmover metrics. In Proceedings
of the fifteenth annual ACM-SIAM symposium on Discrete algorithms, pages 1079–1087.
Society for Industrial and Applied Mathematics, 2004.

4 Sunil Arya, David M Mount, Nathan S Netanyahu, Ruth Silverman, and Angela Y Wu. An
optimal algorithm for approximate nearest neighbor searching fixed dimensions. Journal
of the ACM (JACM), 45(6):891–923, 1998.

5 Connelly Barnes, Eli Shechtman, Adam Finkelstein, and Dan Goldman. Patchmatch: A
randomized correspondence algorithm for structural image editing. ACM Transactions on
Graphics-TOG, 28(3):24, 2009.

6 Jon Louis Bentley. Multidimensional binary search trees used for associative searching.
Communications of the ACM, 18(9):509–517, 1975.

7 Yuri Boykov and Vladimir Kolmogorov. An experimental comparison of min-cut/max-flow
algorithms for energy minimization in vision. Pattern Analysis and Machine Intelligence,
IEEE Transactions on, 26(9):1124–1137, 2004.

8 Yuri Boykov, Olga Veksler, and Ramin Zabih. Fast approximate energy minimization via
graph cuts. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 23(11):1222–
1239, 2001.

9 Gruia Calinescu, Howard Karloff, and Yuval Rabani. Approximation algorithms for the
0-extension problem. SIAM Journal on Computing, 34(2):358–372, 2005.

10 Jittat Fakcharoenphol, Chris Harrelson, Satish Rao, and Kunal Talwar. An improved ap-
proximation algorithm for the 0-extension problem. In Proceedings of the fourteenth annual
ACM-SIAM symposium on Discrete algorithms, pages 257–265. Society for Industrial and
Applied Mathematics, 2003.

11 Pedro Felzenszwalb, William Freeman, Piotr Indyk, Robert Kleinberg, and Ramin Zabih.
Bigdata: F: Dka: Collaborative research: Structured nearest neighbor search in high di-
mensions, 2015. URL: http://cs.brown.edu/~pff/SNN/.

12 Pedro F Felzenszwalb and Daniel P Huttenlocher. Efficient belief propagation for early
vision. International journal of computer vision, 70(1):41–54, 2006.

13 Pedro F Felzenszwalb, Gyula Pap, Eva Tardos, and Ramin Zabih. Globally optimal pixel
labeling algorithms for tree metrics. In Computer Vision and Pattern Recognition (CVPR),
2010 IEEE Conference on, pages 3153–3160. IEEE, 2010.

14 William T Freeman, Thouis R Jones, and Egon C Pasztor. Example-based super-resolution.
Computer Graphics and Applications, IEEE, 22(2):56–65, 2002.

15 Anupam Gupta, Robert Krauthgamer, and James R Lee. Bounded geometries, fractals,
and low-distortion embeddings. In Foundations of Computer Science, 2003. Proceedings.
44th Annual IEEE Symposium on, pages 534–543. IEEE, 2003.

SoCG 2016

http://cs.brown.edu/~pff/SNN/

44:14 Simultaneous Nearest Neighbor Search

16 Piotr Indyk and Rajeev Motwani. Approximate nearest neighbors: towards removing the
curse of dimensionality. In Proceedings of the thirtieth annual ACM symposium on Theory
of computing, pages 604–613. ACM, 1998.

17 Howard Karloff, Subhash Khot, Aranyak Mehta, and Yuval Rabani. On earthmover dis-
tance, metric labeling, and 0-extension. SIAM Journal on Computing, 39(2):371–387, 2009.

18 Alexander V Karzanov. Minimum 0-extensions of graph metrics. European Journal of
Combinatorics, 19(1):71–101, 1998.

19 Jon Kleinberg and Eva Tardos. Approximation algorithms for classification problems with
pairwise relationships: Metric labeling and markov random fields. Journal of the ACM
(JACM), 49(5):616–639, 2002.

20 Tsvi Kopelowitz and Robert Krauthgamer. Faster clustering via preprocessing. arXiv
preprint arXiv:1208.5247, 2012.

21 Robert Krauthgamer and James R Lee. Navigating nets: simple algorithms for prox-
imity search. In Proceedings of the fifteenth annual ACM-SIAM symposium on Discrete
algorithms, pages 798–807. Society for Industrial and Applied Mathematics, 2004.

22 Eyal Kushilevitz, Rafail Ostrovsky, and Yuval Rabani. Efficient search for approximate
nearest neighbor in high dimensional spaces. SIAM Journal on Computing, 30(2):457–474,
2000.

23 James R Lee and Assaf Naor. Metric decomposition, smooth measures, and clustering.
Preprint, 2004.

24 Feifei Li, Bin Yao, and Piyush Kumar. Group enclosing queries. Knowledge and Data
Engineering, IEEE Transactions on, 23(10):1526–1540, 2011.

25 Yang Li, Feifei Li, Ke Yi, Bin Yao, and Min Wang. Flexible aggregate similarity search. In
Proceedings of the 2011 ACM SIGMOD international conference on management of data,
pages 1009–1020. ACM, 2011.

26 David R Martin, Charless C Fowlkes, and Jitendra Malik. Learning to detect natural image
boundaries using local brightness, color, and texture cues. Pattern Analysis and Machine
Intelligence, IEEE Transactions on, 26(5):530–549, 2004.

27 Man Lung Yiu, Nikos Mamoulis, and Dimitris Papadias. Aggregate nearest neighbor queries
in road networks. Knowledge and Data Engineering, IEEE Transactions on, 17(6):820–833,
2005.

A 2r + 1 approximation

Motivated by the importance of the r-sparse graphs in applications, in this section we focus
on them and present another algorithm (besides INN) which solves the SNN problem for
these graphs. We note that unlike INN, the algorithm presented in this section is not just a
pruning step, but it solves the whole SNN problem.

For a graph G = (Q,E) of pseudoarboricity r, let the mapping function be f : E → Q,
such that for every e = (qi, qj), f(e) = qi or f(e) = qj , and that for each qi ∈ Q, |C(qi)| ≤ r,
where C(qi) is defined as {e|f(e) = qi}.

Once we have the mapping function f , we can run Algorithm 3 to get an approximate
solution. Although the naive implementation of this algorithm needs O(rkn) running time,
by using the aggregate nearest neighbor algorithm, it can be done much more efficiently. We
have the following lemma on the performance of this algorithm.

I Lemma 15. If G has pseudoarboricity r, the solution of Algorithm 3 gives 2r + 1 approx-
imation to the optimal solution.

P. Indyk, R. Kleinberg, S. Mahabadi, and Y. Yuan 44:15

Algorithm 3 Algorithm for graph with pseudoarboricity r

Input Query points q1, · · · , qk, the input graph G = (Q,E) with pseudoarboricity r
Output An Assignment p1, · · · , pk ∈ P
1: for i = 1 to k do
2: Assign pi ← minp∈P dist(qi, p) +

∑
j:(qi,qj)∈C(qj)

dist(p,qj)
r+1

3: end for

Proof. Denote the optimal solution as P ∗ = {p∗1, · · · , p∗k}. We know the optimal cost is

Cost(Q,G,P ∗) =
∑
i

dist(qi, p∗i) +
∑

(qi,qj)∈E

dist(p∗i , p∗j)

=
∑
i

dist(p∗i , qi) +
∑

j:(qi,qj)∈C(qj)

dist(p∗i , p∗j)

Let Sol be the solution reported by Algorithm 3. Then we have

Cost(Sol) =
∑
i

dist(qi, pi) +
∑

j:(qi,qj)∈C(qj)

dist(pi, pj)

≤

∑
i

dist(qi, pi) +
∑

j:(qi,qj)∈C(qj)

dist(pi, qj) +
∑

j:(qi,qj)∈C(qj)

dist(qj , pj)

(by triangle inequality)

≤
∑
i

dist(qi, pi) +
∑

j:(qi,qj)∈C(qj)

dist(pi, qj)

 + r
∑
j

dist(qj , pj)

(by definition of pseudoarboricity)

= (r + 1)
∑
i

dist(qi, pi) +
∑

(qi,qj)∈C(qj)

dist(pi, qj)

≤ (r + 1)
∑
i

dist(qi, p∗i) +
∑

j:(qi,qj)∈C(qj)

dist(p∗i , qj)
r + 1

(by the optimality of pi in the algorithm)

≤ (r + 1)
∑
i

dist(qi, p∗i) +
∑

j:(qi,qj)∈C(qj)

dist(p∗i , p∗j) + dist(p∗j , qj)
r + 1

(by triangle inequality)

≤ (r + 1)Cost(Q,G,P ∗) +
∑
i

∑
j:(qi,qj)∈C(qj)

dist(p∗j , qj)

≤ (r + 1)Cost(Q,G,P ∗) + r
∑
j

dist(p∗j , qj)

(by definition of pseudoarboricity)
= (2r + 1) Cost(Q,G,P ∗) J

SoCG 2016

	Introduction
	Our results
	Our techniques

	Definitions and Preliminaries
	0-Extension Problem

	Independent Nearest Neighbors Algorithm
	Bounding the pruning gap using 0-extension
	Sparse Graphs

	Experiments
	De-noising with patches

	2r+1 approximation

