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Abstract  

This study proposes a new algorithm for damage detection in structures. The algorithm 

employs an energy-based method to capture linear and nonlinear effects of damage on structural 

response. For more accurate detection the proposed algorithm combines multiple damage 

sensitive features through a distance-based method by using Mahalanobis distance. Hypothesis 

testing is employed as the statistical data analysis technique for uncertainty quantification 

associated with damage detection. Both the distance-based and the data analysis methods have 

been chosen to deal with small size data sets. Finally, the efficacy and robustness of the 

algorithm is experimentally validated by testing a steel laboratory prototype and the results show 

that the proposed method can effectively detect and localize the defects. 
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Introduction 

Vibration based structural health monitoring (SHM) is a widely used method for 

monitoring large scale, complex structures. Aging of infrastructures, higher operational demands, 

and variety of environmental effects on structural systems are the main reasons that attract more 

attention to this field in recent years.  

The algorithms for vibration-based SHM are either model-based or data-based. Both 

methods compare the response of the system with a baseline. In model-based approach, the 

baseline is provided using numerical models. Thus, this method is helpful for systems for which 

the model already exists and in cases where it is justifiable to build a sufficiently accurate 

structural model [1-3]. The data-based approach brings more flexibility to the damage detection 

scheme since it only uses the sensor data without having to deal with the complications of 

creating a model. The initial phase in both of these methodologies is feature extraction. In this 

phase certain damage sensitive features, called damage index (DI), are extracted from the 

structure’s response, either empirically obtained or numerically simulated, to measure its 

discrepancies from the response in the intact state. Previous studies show that the features which 

capture nonlinearities in the structural response are generally more sensitive to damage, less 

sensitive to environmental conditions, and hence, more reliable for the purpose of damage 

detection compared to the DIs that capture linear phenomena such as modal properties [4-7]. 

Note that the source of nonlinearities can be material, geometry, or nonlinear dynamics 

phenomenon such as dispersion, mode mixing, and damping. The fractal dimension of the 

attractor of time-series is the basis for defining DIs in [8-11]. Fractal analysis of residual crack 

patterns in reinforced concrete structures [12], state-space reconstruction using the delay-

coordinate method [13,14], considering systems under chaotic excitations [15], sensitivity vector 
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field [16,17], Poincare’ map based methods [18-22], and nonlinear frequency response function 

[23-26] are examples of techniques that use nonlinearities in monitoring structures. The variety 

and efficacy of these methods show that nonlinearities hold a great potential for damage 

detection. 

Generally, extracting nonlinearities requires expensive computational effort. Moreover, 

some necessary conditions for the nonlinear algorithms may not be easily satisfied in practice. 

For instance, the technique in the sensitivity vector field [16] focuses on deviation of nearby 

trajectories corresponding to the intact and damaged system. The method uses the variation 

between those trajectories instead of linearization, and hence retains nonlinearities. However, the 

algorithm is sensitive to the closeness of the trajectories which cannot be always satisfied in 

practice. As another example, the concept of nonlinear frequency response function (NFRF) 

which is discussed in [23-25] and used for crack detection in [26] may not preserve all 

nonlinearities in the signal. The reason is that Fourier-based methods may suffer from leakage of 

energy due to imposition of spurious harmonics on the expansion of a signal. 

 Given that we have reliable and practical DIs, there are two other requirements for 

practicality of the algorithms: 1) taking an appropriate decision-making approach to interpret the 

final results, 2) generalization of the method. A statistical decision making approach, instead of 

classifying the structure solely based on the DI values, is needed for practicality of a damage 

detection algorithm. Some studies have proposed methods for uncertainty quantification in SHM 

[27], but few of them have been experimentally validated. Additionally, the effect of damage 

may not be always reflected in all DIs; therefore, using multiple DIs would increase the 

probability of detection and helps in the generalization of the method. However, appropriate data 

analysis and decision-making procedures should also be adapted. 
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This study proposes a damage detection/localization algorithm with three main objectives: 

1) developing a simple and practical method for capturing nonlinearities, 2) Combining DIs in 

order to increase the accuracy and reliability of the algorithm, 3) adopting a statistical decision-

making approach, especially for dealing with small size data sets. 

For defining the DIs, we propose an energy-based algorithm which captures linear and 

nonlinear effects of damage. Hilbert Huang Transformation (HHT) is adopted as the signal 

processing tool for the algorithm because of its ability for preserving nonlinearities and 

preventing the leakage of energy [28]. We have chosen hypothesis testing as the probabilistic 

decision making approach due to its computational efficiency and ability to deal with small size 

data sets. Finally, the developed algorithm and its efficacy are validated by testing a three-story 

two-bay steel laboratory prototype with several damage scenarios. 

 

Energy transfer between modes of vibration due to damage 

Structural damages such as breathing cracks, loosened bolts in a connection, yielded cross-

section, and corrosion result in geometric and/or material discontinuities in a system. Such 

discontinuities affect the system’s response by either changing the frequency content of existing 

vibrational modes or bringing new degrees of freedom (DOF) and hence, new modes of 

vibration. In either case, the energy content of vibrational modes are changed by exchanging 

energy between existing modes or transferring energy from existing modes into newly generated 

ones. These phenomena are manifested in the energy distributions between vibrational modes of 

the system, such as Power Spectral Density (PSD), as the shift and/or suppression/amplification 

of some peaks. Therefore, the pattern of the energy distribution between vibrational modes of a 
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system can be considered as a signature to be used for capturing the variations in both the linear 

and nonlinear properties of the structure. 

The proposed algorithm in this study has a fundamental assumption that the excitations on 

the structure are consistent. This means that the differences between the input energies or 

spectrums of different excitations cause neither damage occurrence nor any significant change in 

the modal behavior of the structure. This assumption is generally a constraint for vibration-based 

SHM algorithms, especially when the forced response of the system is used as the input.  

 

Normalized Cumulative Marginal Hilbert Spectrum (NCMHS) and 

Normalized Cumulative Power Spectral Density (NCPSD) 

In this section, we discuss how to obtain an appropriate distribution of energy for capturing 

nonlinearities. Some candidates for the energy distribution between vibrational modes are the 

Power Spectral Density (PSD), wavelet spectrum, and Marginal Hilbert Spectrum (MHS). For 

reliability and accuracy of the algorithm, a distribution with the least possible energy leakage of 

any form is needed. This criterion implies that PSD may not be a good candidate since it suffers 

from the leakage of energy due to imposition of spurious harmonics on the expansion of a signal. 

Wavelet is also a linear signal processing technique that suffers from the same problem as PSD 

does [28] although it has no assumption of stationarity.  MHS seems to be more reliable than the 

other two distributions as it preserves the nonlinearities without imposing any spurious modes on 

the expansion of a signal. Moreover, the definition of frequency which is used in HHT is 

conceptually more appropriate for the sake of damage detection. For different definitions of 

frequency and concept of each, the readers are referred to [29]. Also, a comprehensive discussion 
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on the inconsistencies of the concept of frequency in Fourier domain for nonlinear signal 

processing can be found in [28]. 

These energy distributions are non-smooth and mathematically difficult to deal with. 

Note that the sensor data are discrete and continuity or smoothness for such functions may not be 

meaningful. In this paper, a smooth distribution refers to the one with invariant sign of 

derivative. Also, note that smoothening the curves by approximate continuous functions is not an 

appropriate solution because the true physics such as the effects of high frequency modes, which 

are important from SHM point of view, may be totally lost. Instead of smoothening, in this study, 

we propose to use the cumulative energy distribution with the advantage that it monotonically 

increases and that there is no loss of physics or leakage of energy. If the assumption of consistent 

excitations holds, the energy distributions can also be normalized with respect to their total 

energy with no lack of generality. The resultant distribution in this case is called Normalized 

Cumulative Marginal Hilbert Spectrum (NCMHS) if MHS is the original energy distribution. In 

the case of PSD, the resultant curves are called Normalized Cumulative PSD (NCPSD). The 

normalization is not valid if the excitations are inconsistent. 

 

Damage Indices 

In view of the preceding discussion, we propose the use of normalized cumulative energy 

distribution (NCED) as a reliable signature for a system under consistent excitations. In what 

follows we discuss how to obtain a baseline NCED for the structure’s response at each sensor 

location and then, how to define the DIs for measuring the NCED’s damage-induced 

discrepancies from the baseline.  

 

Page 6 of 39

Structural Control and Health Monitoring

http://mc.manuscriptcentral.com/stc

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

7 

 

DIs from normalized cumulative energy distributions 

Using the NCED, the first DI is defined as 

BL

i

i

A

A∑
=1DI  (1) 

where Ai, as shown in Fig. 1 are the areas between the NCED of the structure being monitored 

and the baseline. ABL is the area under the baseline NCED which is computed by taking the mean 

or median of such distributions from several tests on the intact same structure. Taking median, as 

we do in this paper, is preferable because of its robustness with respect to outliers, especially for 

small sample size.  

Normalization of the energy distribution allows us to compare NCEDs by the similar 

techniques for comparing probability distributions. For instance, Kolmogorov-Smirnov distance 

is one such a method that we use for DI2 in eq. (2). 

),(DI2 BLTn FFD=  (2) 

where Dn is the Kolmogorov-Smirnov statistic and n is the sample size. FT and FBL are the 

NCEDs for the test data and the baseline, respectively.  

Note that DI2 captures a local effect of energy transfer which may be highly sensitive in 

certain cases. Thus, DI3 is proposed as a more general index for capturing the overall changes in 

the pattern of distributions using the concept of orthogonality. 

BLT

BLT

FF

FF

.
DI3

⋅
=  (3) 

The numerator is the inner product of the NCED of new test with the baseline, and the 

denominator is the multiplication of their norms. This index could also be defined for the original 
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energy distributions, but it would be more sensitive to noise. Any other measure of local or 

global discrepancy between the NCED and the baseline can be used as a DI.  

 

DIs from the original energy distributions 

There exist certain indices which are physically interpretable only if they are extracted 

from the original distribution, MHS or PSD. As before, one can normalize the original 

distributions based on the assumption of excitation consistency with no lack of generality. The 

shift of the mean frequency in the response at each sensor location of the test structure from its 

baseline is one such index that can be defined using the original distribution. This DI is 

BL

BLT

f

ff −
=4DI  (4) 

where Tf  and BLf  are the mean frequencies in the spectrum of the test data and the baseline, 

respectively. The denominator makes the DI dimensionless. Alternatively, max(fBL), where f is 

the frequency range of spectrum, can be used in the denominator to keep this index between zero 

and unity. 

Skewness is another property which shows the direction of energy accumulation with 

respect to mean frequency. Kurtosis can also be used as a measure of peakedness of the 

distributions which was used in [30] as the only DI. The sign of the argument of the absolute 

value function in the numerator of DI1 and DI4 can also be used for a rough severity assessment 

[31]. 
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Combining damage indices and uncertainty quantification 

Damage may not always be manifested in every single DI. Also, it may not be realistic to 

make decision about the state of the structure based only on the value of a specific index. Our 

approach for solving this issue is to combine several DIs for a better detection/localization and to 

quantify the confidence associated with detection. Note that in statistical learning theory and 

machine learning some scores may be normalized and calibrated using a set of calibration data, 

and reported instead of true probabilities. This method cannot be pursued here since the problem 

is unsupervised.  

By conducting an experiment on a structure, its behavior at each sensor location can be 

described by an m-dimensional feature vector, with m to be the number of DIs being considered 

simultaneously. By performing several experiments on the intact structure and extracting the DIs 

from the data, a cluster of feature vectors is formed. This cluster, which is called the intact 

cluster, represents the expected deviations from the baseline when the system is intact. Similarly, 

a second cluster can be formed by taking measurements from the structure in an unknown state 

when being monitored. This cluster is called test cluster and shows the actual deviation from the 

baseline. Fig. 2 shows the intact and test clusters in three-dimensional feature space. Assuming 

multivariate normal (MVN) distribution for the points in each cluster due to the repeatability of 

the tests, hypothesis testing is used in this study for comparing the two clusters at each sensor 

location.  

Generally, the size of data set may be small in structural health monitoring, especially for 

large scale structures or at the beginning of instrumentation. Hypothesis testing is used as the 

data analysis technique in this study because of its capability of making inference on small size 

data sets with lower cost and error compared to other big data classification methods [32]. Note 
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that in practice, the collinearity and correlation between different DIs significantly affect the 

robustness of the algorithm [33]. For more information on how to optimally shrink the dimension 

of feature space the readers are referred to [34]. 

Performing hypothesis testing in the m-dimensional feature space can be considered for 

comparing two general clusters of feature vectors. However, inaccurate results may be obtained 

from such a test when the features are all positive or fall in certain quadrants only. In this case 

the m-dimensional test computes unrealistically high p-values, which are the probability of 

accepting a null hypothesis that represents the intact state of the system. To clarify this, assume 

nI and nT are the number of points of the intact and test clusters, respectively. They are, in fact, 

the number of experiments performed on each of the respective structures. The mean value of 

each cluster is denoted, respectively, by Im  and Tm . Then, the null hypothesis for comparing 

the clusters’ mean values is 

TIH mm =:0  (5) 

The test statistics is defined as the difference between the mean values as in eq. (6)  

IT mmm −=∆  (6) 

Then, the null distribution would be a zero mean MVN distribution stated in eq. (7) 

( ) 







+∆

T

T

I

I

nn
NH

ΣΣ
Om   ,  ~| 0  (7) 

where IΣ  and TΣ  are the covariance matrices of the intact and test clusters, respectively. For 

simplicity, the covariance of the null distribution is denoted by Σ . The set of points denoted by x 

in the hyper-space that satisfy eq. (8) form a hyper-ellipsoid of the mentioned density function 

which passes from Tm . 
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21: β=−
xΣx

TE  (8) 

where the superscript 
T
 is the transpose. β  is the Mahalanobis distance between the mean values 

of the clusters conditioning on the null hypothesis:  

mΣm ∆∆= −12 Tβ  (9) 

The p-value is calculated by computing the hyper-volume outside of the hyper-ellipsoid E 

defined in eq. (8). This is shown as the shaded zone in Fig. 3 for 2D case. As it was stated before, 

the DIs are always positive by definition; thus, the m-dimensional hypothesis testing gives a 

much higher p-value since it calculates spurious probabilities due to consideration of the whole 

space. With general covariance matrix, calculating the probability only at the first quadrant may 

not be tractable. Neither mapping the null distribution to a spherical MVN nor using the 

whitening transformation [32] change the complexity of the problem; because, either the axis of 

the space do not remain orthogonal or the feature vectors may not stay in the first quadrant.   

Instead of performing the m-dimensional test, we use Mahalanobis distance [32,33] to map 

the m-dimensional feature space into a one-dimensional distance space and then, perform one-

dimensionl hypothesis testing. Due to the consideration of the covariance matrix, Mahalanobis 

distance is more robust compared to other distances for comparing clusters. Fig. 4 illustrates an 

example in which Euclidian distance fails to capture the discrepancy of the two clusters when 

DI1 is insensitive to the damage. In this plot, E1 is the ellipse corresponding to the farthest point 

of the intact cluster to its mean value and d1 is the Euclidian distance between these two points. 

E2 is the ellipse corresponding to the Mahalanobis distance between the mean values of two 

clusters conditioning on the null hypothesis, and d2 is the Euclidian distance between them. It 
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follows from Fig. 4 that the Euclidian distances, d1 and d2, cannot capture the difference between 

the two clusters; whereas, such a difference is clearly reflected in the Mahalanobis distance. 

In the following four steps we describe the algorithm for detecting and localizing the 

damage by taking the data sets from each sensor and analyzing them.  

Step1: Calculate ( )
iI

2β , the squared Mahalanobis distance of the ith point of the intact cluster 

from the rest of the points of the same cluster using eq. (10)   

 ( ) ( )( ) ( ) ( )( )i

IiI

i

I

Ti

IiIiI

−−−− −−= mxΣmx
12β  (10) 

 where ( )
iIx  is the ith point in the m-dimensional space belonging to the intact cluster and 

{ }Ini ...1= . 
i

I

−
m   and 

i

I

−
Σ  are the mean and covariance estimates of the intact cluster 

without the ith point.  

Step2: Calculate ( )
jT

2β , the squared Mahalanobis distance of each point of the cluster for the test 

structure from the whole intact cluster. The mentioned distance is computed as 

 ( ) ( )( ) ( ) ( )( )IjTI

T

IjTjT mxΣmx −−=
−12β  (11) 

 where ( )
jTx  is the jth feature vector, { }Tnj ...1= , in the m-dimensional space belonging to 

the cluster for the test structure. Im  and IΣ  are, respectively, the mean and covariance of 

the full intact cluster. 

Step3: Perform a one-sided, one-dimensional hypothesis testing on ( ) ( ){ }
InIII

2

1

22 ,, ββ K=β  and 

( ) ( ){ }
TnTTT

2

1

22 ,, ββ K=β . If both clusters are normally distributed, both Iβ  and Tβ  follow 

the Chi-squared distribution with m degrees of freedom. Another alternative to that, is to 

perform a one-sided, one-dimensional hypothesis testing using ( ) ( ){ }
InIII ββ ,,

1
K=β  
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and ( ) ( ){ }
TnTTT ββ ,,

1
K=β  with the assumption of normality for both Iβ  and Tβ if the 

sample size is reasonably large for this assumption [32].  The null hypothesis here is that 

the mean values of the Iβ  and Tβ are equal.  

Step 4: Once the null hypothesis is rejected at any sensor location, which implies that the 

structure is damaged, the defect can be localized by a localization index, denoted by βR  

in eq. 12.  Med(.) in this equation stands for the median of the argument.  The damage is 

likely to be at or adjacent to the sensor locations with larger βR .  

 
)Med(

)Med()Med(

2

22

I

IT
R

β

ββ −
=β  (12) 

It is noteworthy that the detection results using the p-values may not be used for 

localization, especially for small and low damping structures. The reason is that neither the 

normal nor the chi-squared distributions are heavy tail densities; therefore, if the centroids of the 

intact and test clusters are more than two standard deviations away in normal distribution, the 

null hypothesis is rejected with very small p-values. This may happen for several sensor 

locations, especially if the damage is severe or the structure is small. However, there is no such 

limitation for the Mahalanobis distance and hence, the ratio  βR  can always be used for damage 

localization. 

The procedure for the proposed algorithm is schematically shown in Fig. 5. Several 

parameters such as cost of inspection, importance of the structure, and secondary effects of 

damage on the environment should be considered for determining the significance level of the 

test denoted by α  in that figure. Note that the method can be used for any structure since the 

algorithm requires only the sensor data with no information about the properties or the geometry 
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of the system. Another important aspect of the algorithm is its capability of performing 

automatically after predefining the significance level. 

It is emphasized that the mean value is not robust with respect to outliers. Also, the effects 

of outliers on the results become more significant as the size of data set becomes smaller. To 

avoid this problem, one can use median for defining the null hypothesis instead of the mean. In 

this case, the hypothesis testing is not parametric and eq. (7) is no longer valid. Instead, a non-

parametric hypothesis testing such as Mood’s median test can be performed to compute the p-

values. Performing such a test affects only the third step of the proposed algorithm. More 

specifically, the null hypothesis states that the medians of Iβ  and Tβ  are equal. Then the Moon’s 

test is performed by counting the number of samples smaller/larger than the medians followed by 

a chi-squared test.  Kruskall-Wallis test [33] is another non-parametric method for comparing the 

two clusters by using the rank of observations in each vector  Iβ  and Tβ to perform the test. The 

rank in this test is defined as the position of sample points after sorting them with respect to their 

magnitude. The rank is robust with respect to outliers and hence, they are not significantly 

influential in this method. Note that there is no assumption of normality in Moon’s and Kruskall-

Wallis tests, thus, they can be used when Iβ  and Tβ have arbitrary distributions [33]. 

As it was mentioned before, the collinearity of the features may result in inaccurate 

damage localization. To solve this problem, the Mahalanobis distances can be computed after 

selecting the most informative subset of the features. Soft-thresholding by considering the first 

two principal components of the features is employed for dimension reduction in this study.  

In some cases, the sensitivity of each DI to the damage may be used for 

selecting/excluding some features prior to the dimension reduction. To assess the sensitivity of 
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the ith DI at each sensor location first we form the vector Iiy  by r times sampling with 

replacement from the ith column of Ix . Similarly, the vector Tiy  is formed by sampling from the 

ith column of Tx . The sensitivity of the ith DI to the damage can be assessed by considering the 

statistical moments of the vector iDIE −  which is defined as 

IiTiiDIE yy −=−  (13) 

  

Experimental setup 

The efficacy of the proposed algorithm have been experimentally validated by testing a 

three-story two-bay laboratory steel structure which is shown in Fig. 6. The modal properties of 

the structure are computed using frequency domain decomposition [35] and illustrated in Table 

1. The first five mode shapes are also shown in Fig. 7. It should be mentioned that the second 

mode was a minor peak of the singular values of the PSD matrix. The modal analysis shows that 

the stiffness of the structure in x direction is significantly larger than y direction. The reason for 

that is the geometry of the elements.  

The structure is instrumented with 18 triaxial piezoelectric accelerometers. The bolts in all 

connections are completely tightened for the intact structure. By removing or loosening some of 

the bolts, several damage scenarios can be produced. The scenarios which are used in this paper 

are summarized in Table 2. For introducing the minor damage, two bolts on one side of a 

connection are removed while the other two bolts are kept firmly tight. For the major damages 

all four bolts are tightened using half of the torque needed for a completely fixed connection. 

Therefore; the connection is not clamped, but no instability occurs. The structure is tested 10 

times for the intact and each of the damage scenarios. The excitation is free vibration for the first 
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two scenarios and White Gaussian noise for the third one. For the third scenario, the structure is 

excited by a shaker mounted at node #18 which is shown by an arrow in Fig. 6. Both excitations 

are in y direction and the sampling rate of data acquisition is 6 kHz; however, we use frequencies 

up to 500 Hz for computing the energy distributions to simulate a more practical case.  

 

Results 

In this part, first the efficacy of the algorithm to detect and localize damages is 

experimentally validated followed by checking of a required condition for robustness of the 

algorithm. 

 

Damage detection and localization 

Scenarios under free vibration 

Fig. 8 and Fig. 9 show the MHS and NCMHS respectively for nodes #17 and #14, which 

are adjacent, before and after the occurrence of damage at node #17. The response deviates from 

the baseline at both nodes after the occurrence of damage; however, as expected, the deviations 

are larger at node #17 where the damage is located. 

The damage detection results for the first two scenarios are shown in Fig. 10. The y-axis of 

these plots is 1-(p-value), which is the probability of rejecting the null hypothesis. The null 

hypothesis is rejected at a sensor location if the corresponding p-value is less than α , or 

equivalently, if ( ) )1(value-1 α−>− p . The two horizontal lines in the figure correspond to two 

significance levels: for the red line 05.0=α  and for the green line 10.0=α . In the first scenario 

with minor damage, the null hypothesis is rejected only at the nodes which are adjacent to the 

damage as shown in Fig. 10(a). Thus, the damage is detected and localized by considering only 
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the p-values. For the major damage scenario, Fig. 10(b), almost every sensor location is affected 

due to the severity of the damage, small size of the laboratory prototype, and its low damping. 

Therefore, the information provided by the p-values is only appropriate for detecting the damage.  

As it is shown in Fig. 10(b), the damage may not be localized precisely by considering 

only the p-values. In such cases, the localization index, βR , is used for damage localization. The 

localization results for the first two damage scenarios are shown in Fig. 11. In this figure βR  is 

plotted on y-axis in logarithmic scale versus the node numbers on x-axis. As shown in this plot, 

the localization index is at least one order of magnitude larger at the damage location or proximal 

nodes than those at other locations. For the minor damage, Fig. 11(a), although node #17 and its 

adjacent nodes #8, #14, and #16 are separated from the other sensor locations, the localization 

index is not the highest at the actual damaged location. The reason for that could be the low 

severity of the damage, small size of the structure, and its low damping. In the major damage 

scenario, the localization index has the highest value at node #17 and decreases as we go further 

from the damaged location. 

Both Fig. 10 and Fig. 11 also compare the results when PSD and MHS are used as the 

input to the algorithm. It is observed that the damage cannot be localized precisely if PSD is used 

as the energy distribution. The authors believe that the artificially high p-values and the 

inaccurate localization in the case of using PSD are mainly due to the energy leakage in Fourier 

transformation. 

Note that, as shown in Fig. 12, for major and minor damage scenarios the individual 

indices DI1 and DI2 have the highest sensitivity and DI4 has the lowest sensitivity to the damage. 

Also, both the standard deviation and the median of DIE is higher at the location of damage and 
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its adjacent nodes, especially for the major damage. Note that this result cannot be generalized 

and the sensitivity of the features depends on the structural properties, type, and severity of 

damage. 

 

The scenario with major damage at node #1 and white noise excitation 

In this scenario both the intact and damaged structures are excited under white Gaussian 

noise in order to analyze the robustness of the algorithm with respect to a higher level 

uncertainty in excitation consistency. The shaker, which is mounted to the structure at node #18 

(Fig. 6(a)), can simulate excitations with frequency band between 5 Hz to 350 Hz. Therefore, all 

other components with frequencies out of this range impose uncertainties on the excitation 

consistency.  

The detection and localization results for this scenario are shown in Fig. 13. The results 

with MHS precisely localize the damage. The value of the localization index at node #18 is in the 

same order of magnitude as in nodes #3 and #10 which are adjacent to the damage. This can be 

due to mounting the shaker at node #18. The relatively flat trend of βR  when PSD is used for 

this scenario, where the broad band excitation results in imposing more spurious harmonics on 

the Fourier expansion, implies the significance of the energy leakage. The sensitivity assessment 

of the DIs in this scenario is similar to the previous cases and hence, the corresponding results 

are excluded for brevity.  

 

Robustness of the algorithm 

A necessary, but not sufficient, condition for robustness of the algorithm is that it should 

not detect any damage after repairing the structure. To address this issue, we repaired the 
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structure and tested it five times with similar excitations as before. Fig. 14 shows the damage 

detection results of the repaired structure. Note that we perform one-sided hypothesis testing; 

thus, the p-value of 0.5 corresponds to a perfect match between the mean values of the clusters. 

As observed, the algorithm with MHS gives us almost perfect results. The results, however, are 

more scattered when PSD is employed and the algorithm rejects the null hypothesis at node #9 in 

this graph.  

The algorithm seems to be robust when MHS is used; however, the authors do not 

disregard the use of PSD because Fourier analysis is computationally more efficient than HHT. 

Combining some other well-developed algorithms for feature selection can be a solution to 

compensate for the shortcomings of PSD. This aspect is outside the scope of this paper. 

 

Discussion on size effect and noise filtration   

Size effects, as may be related to the size of the element, the system, and the damage, is an 

important consideration which may influence the accuracy of the detection results as well as the 

robustness of an algorithm. For instance, even the mass of a sensor may significantly change the 

modal properties of a small beam element; while, such a change in mass may be negligible for a 

full scale beam element. Therefore, the size effect should be taken into consideration, especially 

for qualitative assessments such as severity of damage.  

A final point is about filtering out the noise from the signal. Note that the band-pass filters 

which use Fourier transformation impose spurious harmonics on the signal and hence, cause 

energy leakage. To solve this problem, an intermittent frequency can be imposed before the 

sifting procedure of EMD [36-38]. By doing that, the riding waves with frequencies above the 

intermittent frequency are first extracted without causing any leakage. Then, the remaining signal 
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is sifted through EMD procedure. The intermittent frequency, similar to α , can be set in the 

initialization step of the algorithm. 

 

Conclusion 

In this study a new damage detection algorithm is proposed. Salient aspects of this 

algorithm are employing an energy-based method for extracting linear and nonlinear effects of 

damage, and combining several DIs for increasing the probability of detecting damage. 

Moreover, it quantifies the uncertainties associated with detection when the size of data set is 

small. The raw signals of structural response are the only input to the algorithm and no 

information on geometry, configuration, and material of the structure is needed.  

Experiments on the laboratory model structure show that damage-induced nonlinearities in 

the structural response can be effectively captured by the energy-based method. Using the 

proposed features, the algorithm provides a measure of uncertainty associated with damage 

detection. Comparisons between the results of the algorithm using MHS vs. PSD show the 

importance of nonlinearities for both detection/localization and robustness of such algorithms.  

HHT is more efficient in extracting nonlinearities compared to Fourier analysis; however, 

the HHT is computationally intensive. Here is a tradeoff between accuracy and efficiency with 

potential for future research. The statistical data analysis used in this paper was a simplified 

model. The future work, would involve introducing a rigorous statistical data analysis approach 

to deal with such problems in a general form. Also, development for relaxing the constraint on 

consistency of excitations to apply this algorithm to the structures under arbitrary excitations 

represents a future challenge.  
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Table 1. Modal properties of the structure 

Mode no. #1 #2 #3 #4 #5 

Frequency (Hz) 3.4 8.2 8.6 10.6 18.4 
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Table 2. Damage scenarios for experimental validation of the method 

Scenario Description Excitation 

1 Minor damage at node #17 Free vibration 

2 Major damage at node #17 Free vibration 

3 Major damage at node #1 White Gaussian noise at node #18 
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Fig. 1 The areas between the baseline and actual NCED of structural response at a sensor 

location 
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Fig. 2 Intact and test clusters for a sensor location before and after damage 
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Fig. 3 The ellipse passing through mT formed by the covariance of the intact cluster. The solid 

ellipse is the Mahalanobis distance between the mean values of the clusters conditioning on null 

hypothesis. The volume under the distribution in the shaded zone is the probability of accepting 

the null hypothesis in a hypothesis testing with two DIs 
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Fig. 4 Comparison of Euclidian and Mahalanobis distances when some of the DIs are insensitive 

to the damage 

 

Page 29 of 39

Structural Control and Health Monitoring

http://mc.manuscriptcentral.com/stc

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5 Schematic representation of the proposed algorithm 
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 (a) (b) 

Fig. 6 The experimental setup for testing the proposed algorithm; a) the three-story two-bay 

structure; b) a sensor next to a connection 
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 (a) (b) (c) (d)   (e) 

Fig. 7 The first five modes of the laboratory structure from (a) to (e), respectively 
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Fig. 8 MHS and NCMHS of the response at node #17 before and after the occurrence of damage 

at node #17. The baseline energy distribution is drawn by a thick blue line. Each of the thin lines 

corresponds to the energy distribution of an individual test on the structure 
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Fig. 9 MHS and NCMHS of the response at node #14 before and after damage occurrence at 

node #17. The baseline energy distribution is drawn by a thick blue line. Each of the thin lines 

corresponds to the energy distribution of an individual test on the structure. Note that node #14 is 

adjacent to the location of damage 
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 (a) (b) 

Fig. 10 The probability of rejecting the null hypothesis associated with the intact state of each 

sensor location; a) minor damage at node #17, b) major damage at node #17 
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 (a) (b) 

Fig. 11 Damage localization using βR  and comparison between the algorithm’s results when 

NCPSD is employed for feature extraction instead of NCMHS: a) minor damage at node # 17; b) 

major damage at node # 17. In both scenarios the location of damage is more distinguishable 

when NCMHS is used 
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 (a) (b) 

Fig. 12 Sensitivity of each DI to the damage for: (a) the first damage scenario; (b) the 

second damage scenario 
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 (a) (b) 

Fig. 13 Damage detection/localization and comparing the results when using MHS vs. PSD as 

the energy distribution for the third scenario with a major damage at node #1 and white Gaussian 

noise excitation: a) the probabilities of rejecting the null hypothesis at each sensor location; b) 

βR  ratios at each sensor location 
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Fig. 14 Damage detection results for the repaired structure when using MHS vs. PSD 
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