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Abstract

Reducing the amount of human supervision is a key problem in machine learn-
ing and a natural approach is that of exploiting the relations (structure) among
different tasks. This is the idea at the core of multi-task learning. In this context
a fundamental question is how to incorporate the tasks structure in the learning
problem. We tackle this question by studying a general computational framework
that allows to encode a-priori knowledge of the tasks structure in the form of a
convex penalty; in this setting a variety of previously proposed methods can be
recovered as special cases, including linear and non-linear approaches. Within this
framework, we show that tasks and their structure can be efficiently learned con-
sidering a convex optimization problem that can be approached by means of block
coordinate methods such as alternating minimization and for which we prove con-
vergence to the global minimum.

1 Introduction

Current machine learning systems achieve remarkable results in several challenging
tasks, but are limited by the amount of human supervision required. Leveraging simi-
larity among different problems is widely acknowledged to be a key approach to reduce
the need for supervised data. Indeed, this idea is at the basis of multi-task learning,
where the joint solution of different problems (tasks) has the potential to exploit tasks
relatedness (structure) to improve learning accuracy. This idea has motivated a variety
of methods, including frequentist [25, 3, 4] and Bayesian methods (see e.g. [1] and
references therein), with connections to structured learning [6, 34].
The focus of our study is the development of a general regularization framework to
learn multiple tasks as well as their structure. Following [25, 15] we consider a set-
ting where tasks are modeled as the components of a vector-valued function and their
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structure corresponds to the choice of suitable functionalspaces. Exploiting the the-
ory of reproducing kernel Hilbert spaces for vector-valuedfunctions (RKHSvv) [25],
we consider and analyze a flexible regularization framework, within which a vari-
ety of previously proposed approaches can be recovered as special cases, see e.g.
[19, 24, 26, 37, 14, 31]. Our main technical contribution is aunifying study of the
minimization problem corresponding to such a regularization framework. More pre-
cisely, we devise an optimization approach that can efficiently compute a solution and
for which we prove convergence under weak assumptions. Our approach is based on
a barrier method that is combined with block coordinate descent techniques [33, 30].
In this sense our analysis generalizes the results in [3] forwhich a low-rank assump-
tion was considered; however the extension is not straightforward, since we consider
a much larger class of regularization schemes (any convex penalty). Up to our knowl-
edge, this is the first result in multi-task learning provingthe convergence of alternating
minimization schemes for such a general family of problems.
The RKHSvv setting allows to naturally deal both with linearand non-linear models
and the approach we propose provides a general computational framework for learning
output kernels as formalized in [14].
The rest of the paper is organized as follows: in Sec 2 we review basic ideas of regular-
ization in RKHSvv. In Sec. 2.3 we discuss the equivalence of different approaches to
encode known structures among multiple tasks. In Sec. 3 we discuss a general frame-
work for learning multiple tasks and their relations where we consider a wide family of
structure-inducing penalties and study an optimization strategy to solve them. This set-
ting allows us, in Sec. 4, to recover several previous methods as special cases. Finally
in Sec. 5 we evaluate the performance of the optimization method proposed.

Notation. With Sn
++ ⊂ Sn

+ ⊂ Sn ⊂ R
n×n we denote respectively the space of

positive definite, positive semidefinite (PSD) and symmetricn×n real-valued matrices.
On denotes the space of orthonormaln×nmatrices. For any square matrixM ∈ R

n×n

andp ≥ 1, we denote by‖M‖p = (
∑n

i=1 σi(M)p)1/p the p-Schatten norm ofM ,
whereσi(M) is thei-th largest singular value ofM . For anyM ∈ R

n×m,M⊤ denotes
the transpose ofM . For any PSD matrixA ∈ Sn

+, A† denotes the pseudoinverse of
A. We denote byIn ∈ Sn

++ then × n identity matrix. The notation Ran(M) ⊆ R
m

identifies the range of columns of a matrixM ∈ R
m×n.

2 Background

We study the problem of jointly learning multiple tasks by modeling individual task-
predictors as the components of a vector-valued function. Let us assume to haveT
supervised scalar learning problems (or tasks), each with a“training” set of input-
output observationsSt = {(xit, yit)}nt

i=1 with xit ∈ X input space andyit ∈ Y output
space1. Given a loss functionL : R × R → R+ that measures the per-task prediction

1To avoid clutter in the notation, we have restricted ourselves to the typical situation where all tasks share
same input and output spaces, i.e.Xt = X andYt ⊆ R.
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errors, we want to solve the following joint regularized learning problem

minimize
f∈H

T∑

t=1

1

nt

nt∑

i=1

L(y(t)i , ft(x
(t)
i )) + λ‖f‖2H (1)

whereH is an Hilbert space of vector-valued functionsf : X → YT with scalar com-
ponentsft : X → Y. In order to define a suitable space of hypothesesH, in this
section we briefly recall concepts from the theory of reproducing kernel Hilbert spaces
for vector-valued functions (RKHSvv) and corresponding regularization theory, which
plays a key role in our work. In particular, we focus on a classof reproducing kernels
(known as separable kernels) that can be designed to encode specific tasks structures
(see [15, 2] and Sec. 2.3). Interestingly, separable kernels are related to ideas such as
defining a metric on the output space or a label encoding in multi-label problems (see
Sec. 2.3)

Remark 2.1 (Multi-task and multi-label learning). Multi-label learning is a class of
supervised learning problems in which the goal is to associate input examples with
a label or a set of labels chosen from a discrete set. In general, due to discrete na-
ture of the output space, these problems cannot be solved directly; hence, a so-called
surrogateproblem is often introduced, which is computationally tractable and whose
solution allows to recover the solution of the original problem [32, 7, 28].
Multi-label learning and multi-task learning are stronglyrelated. Indeed, surrogate
problems typically consist in a set of distinct supervised learning problems (or tasks)
that are solved simultaneously and therefore have a naturalformulation in the multi-
task setting. For instance, in multi-class classification problems the “One vs All” strat-
egy is often adopted, which consists in solving a set of multiple binary classification
problems, one for each class.

2.1 Learning Multiple Tasks with RKHSvv

In the scalar setting, reproducing kernel Hilbert spaces have already been proved to be
a powerful tool for machine learning applications. Interestingly, the theory of RKHSvv
and corresponding Tikhonov regularization scheme follow closely the derivation in the
scalar case.

Definition 2.2. Let (H, 〈·, ·〉H) be a Hilbert space of functions fromX to R
T . A

symmetric, positive definite, matrix-valued functionΓ : X × X → R
T×T is called a

reproducing kernel forH if for all x ∈ X , c ∈ R
T andf ∈ H we have thatΓ(x, ·)c ∈

H and the following reproducing property holds〈f(x), c〉RT = 〈f,Γ(x, ·)c〉H.

In analogy to the scalar setting, it can be proved (see [25]) that the Representer
Theorem holds also for regularization in RKHSvv. In particular we have that any
solution of the learning problem introduced in Eq. (1) can bewritten in the form

f(x) =

T∑

t=1

nt∑

i=1

Γ(x, x
(t)
i )c

(t)
i (2)

3



with c(t)i ∈ R
T coefficient vectors.

The choice of kernelΓ induces a joint representation of the inputs as well as a structure
among the output components [1]; In the rest of the paper we will focus on so-called
separable kernels, where these two aspects are factorized.In Section 3, we will see
how separable kernels provide a natural way to learn the tasks structure as well as the
tasks.

2.2 Separable Kernels

Separable (reproducing)kernels are functions of the formΓ(x, x′) = k(x, x′)A ∀x, x′ ∈
X wherek : X × X → R is a scalar reproducing kernel andA ∈ ST

+ is a positive
semi-definite (PSD) matrix. In this case, the representer theorem allows to rewrite
problem (1) in a more compact matrix notation as

minimize
C∈Rn×T

V (Y,KCA) + λ tr(AC⊤KC). (P)

HereY ∈ R
n×T is a matrix withn =

∑T
t=1 nt rows containing the output points;

K ∈ Sn
+ is the empirical kernel matrix associated tok andV : Rn×T × R

n×T → R+

generalizes the loss in (1) and consists in a linear combination of the entry-wise ap-
plication ofL. Notice that this formulation accounts also the situation where not all
training outputsy(t) are observed when a given inputx ∈ X is provided: in this case
the functionalV weights0 the loss values of those entries ofY (and the associated
entries ofKCA) that are not available in training.
Finally, the second term in (P) follows by observing that, for allf ∈ H of the form
f(·) =∑n

i=1 k(xi, ·)Aci, the squared norm can be written as‖f‖2H =
∑n

i,j k(xi, xj)c
⊤
i Acj =

tr(AC⊤KC) whereC ∈ R
n×T is the matrix withi-th row corresponding to the co-

efficient vectorci ∈ R
T of f . Notice that we have re-ordered the indexi to be in

{1, . . . , n} to ease the notation.

2.3 Incorporating Known Tasks Structure

Separable kernels provide a natural way to incorporate the task structure when the
latter is known a priori. This strategy is quite general and indeed in the following we
comment on how the matrixA can be chosen to recover several multi-task methods
previously proposed in contexts such as regularization, coding/embeddings or output
metric learning, postponing a more detailed discussion in the supplementary material.
These observations motivate the extension in Sec. 3 of the learning problem (P) to a
setting where it is possible to inferA from the data.

Regularizers. Tasks relations can be enforced by devising suitable regularizers [15].
Interestingly, for a large class of such methods it can be shown that this is equivalent to
the choice of the matrixA (or rather its pseudoinverse) [25]. If we consider the squared
norm of a functionf =

∑n
i=1 k(xi, ·)Aci ∈ H we have (see [15])

‖f‖2H =

T∑

t,s=1

A†
ts〈ft, fs〉Hk

(3)
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whereAt is thet-th column ofA,Hk is the RKHS associated to the scalar kernelk and
ft =

∑n
i=1 k(xi, ·)A⊤

t ci ∈ Hk is thet-th component off . The above equation sug-
gests to interpretA† as the matrix that models the structural relations between tasks by
directly coupling different predictors. For instance, by settingA† = IT + γ(11⊤)/T ,
with 1 ∈ R

T the vector of all1s, we have that the parameterγ controls the variance∑T
t=1 ‖f̄−ft‖2Hk

of the tasks with respect to their meanf̄ = 1
T

∑T
t=1 ft. If we have ac-

cess to some notion of similarity among tasks in the form of a graph with adjacency ma-
trix W ∈ ST , we can consider the regularizer

∑T
t,s=1Wt,s‖ft−fs‖2Hk

+γ
∑T

t ‖ft‖2Hk

which corresponds toA† = L+ γIT with L the graph Laplacian induced byW .

Output Metric. A different approach to model tasks relatedness consists inchoos-
ing a suitable metric on the output space to reflect the tasks structure [24]. Clearly
a change of metric on the output space with the standard innerproduct〈y, y′〉RT be-
tween two output pointsy, y′ ∈ YT corresponds to the choice of a different inner
product〈y, y′〉Θ = 〈y, θy′〉RT for some positive definite matrixΘ ∈ ST

++. Indeed
this can be direct related to the choice of a suitable separable kernel. In particular,
for the least squares loss function a direct equivalence holds between choosing a met-
ric deformation associated to aΘ ∈ ST

++ and a separable kernelk(·, ·)IT or use the
canonical metric (i.e. withΘ = IT the identity) and kernelk(·, ·)Θ. The details of this
equivalence can be found in the supplementary material.

Output Representation. The tasks structure can also be modeled by designing an
ad-hoc embedding for the output space. This approach is particularly useful for multi-
label scenarios, where output embedding can be designed to encode complex structures
such as (e.g. trees, strings, graphs, etc.) [17, 21, 11]. Interestingly in these cases, or
more generally whenever the embedding mapL : YT → Ỹ , from the original to the
new output space, is linear, then it is possible to show that the learning problem with
new code is equivalent to (1) for a suitable choice of separable kernel withA = L⊤L.
We refer again to the supplementary material for the detailsof this equivalence.

3 Learning the Tasks and their Structure

Clearly, an interesting setting occurs when knowledge of the tasks structure is not avail-
able and therefore it is not possible to design a suitable separable kernel. In this case a
favorable approach is to infer the tasks relations directlyfrom the data. To this end we
propose to consider the following extension of problem (P)

minimize
C∈Rn×T ,A∈ST

+

V (Y,KCA) + λtr(AC⊤KC) + F (A), (Q)

where the penaltyF : ST
+ → R+ is designed to learn specific tasks structures en-

coded in the matrixA. The above regularization is general enough to encompass a
large number of previously proposed approaches by simply specifying a choice of the
scalar kernel and the penaltyF . A detailed discussion of these connections is post-
poned to Section 4. In this section, we focus on computational aspects. Throughout,
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we restrict ourselves to convex loss functionsV and convex (and coercive) penalties
F . In this case, the objective function in (Q) is separately convex inC andA but not
jointly convex. Hence, block coordinate methods, which areoften used in practice,
e.g. alternating minimization overC andA, are not guaranteed to converge to a global
minimum. Our study provides a general framework to provablycompute a solution
to problem (Q). First, In Section 3.1, we prove our main results providinga charac-
terization of the solutions of Problem (Q) and studying a barrier method to cast their
computation as a convex optimization problem. Second, in Section 3.2, we discuss
how block coordinate methods can be naturally used to solve such a problem, analyze
their convergence properties and discuss some general cases of interest.

3.1 Characterization of Minima and A Barrier Method

We begin, in Section 3.1.1, providing a characterization ofthe solutions to Problem
(Q) by showing that it has an equivalent formulation in terms ofthe minimization of
a convex objective function, namely Problem (R). Depending on the behavior of the
objective function on the boundary of the optimization domain, Problem (R) might not
be solved using standard optimization techniques. This possible issue motivates the
introduction, in Section 3.1.2, of a barrier method; a family of “perturbated” convex
programs is introduced whose solutions are shown to converge to those of Problem (R)
(and hence of the original (Q)).

3.1.1 An Equivalent formulation for (Q)

The objective functional in (Q) is not convex, therefore in principle it is hard to find a
global minimizer. As it turns out however, it is possible to circumvent this issue and
efficiently find a global solution to (Q). The following result represents a first step in
this direction.

Theorem 3.1. LetK ∈ Sn
+ and consider the convex set

C =
{
(C,A) ∈ R

n×T × ST
+ | Ran(C⊤KC) ⊆ Ran(A)

}
.

Then, for anyF : ST
+ → R+ convex and coercive, problem

minimize
(C,A) ∈ C

V (Y,KC) + λtr
(
A†C⊤KC

)
+ F (A) (R)

has convex objective function and it is equivalent to(Q). In particular, the two prob-
lems achieve the same minimum value and, given a solution(CR, AR) for (R), the
couple(CRA

†
R, AR) is a minimizer for(Q). Vice-versa, given a solution(CQ, AQ) for

(Q), the couple(CQAQ, AQ) is a minimizer for(R).

The above result highlights a remarkable connection between the problems (Q)
(non-convex) and (R) (convex). In particular, we have the following Corollary,which
provides us with a useful characterization of the local minimizers of problem (Q).

Corollary 3.2. LetQ : Rn×T × ST
+ → R be the objective function of problem(Q).

Then, every local minimizer forQ on the open setRn×T × ST
++ is also a global mini-

mizer.

6



Corollary 3.2 follows from Theorem 3.1 and the fact that, on the restricted domain
R

n×T × ST
++, the mapQ is the combination of the objective functional of (R) and

the invertible function(C,A) 7−→ (CA,A). Moreover, ifQ is differentiable, i.e.V
and the penaltyF are differentiable, this is exactly the definition of aconvexifiable
function, which in particular impliesinvexity[12]. The latter property ensures that, in
the differentiable case, all thestationarypoints (rather than only local minimizers) are
global minimizers. This result was originally proved in [14] for the special case ofV
the least-squares loss andF (·) = ‖ · ‖2F the Frobenius norm; Here we have proved its
generalization to all convex lossesV and penaltiesF .
We end this section adding two comments. First, we note that,while the objective
function in Problem (R) is convex, the corresponding minimization problem might not
be a convex program (in the sense that the feasible setC is not identified by a set of
linear equalities and non-linear convex inequalities [9]). Second, Corollary (3.2) holds
only on the interior of the minimization domainRn×T ×ST

+ and does not characterize
the behavior of the target functional on its boundary. In fact, one can see that both issues
can be tackled defining aperturbedobjective functional having a suitable behavior on
the boundary of the minimization domain. This is the key motivation for the barrier
method we discuss in the next section.

3.1.2 A Barrier Method to Optimize (R)

Here we propose a barrier approach inspired by the work in [3]by introducing a pertur-
bation of problem (R) that enforces the objective functions to be equal to+∞ on the
boundary ofRn×T × ST

+. As a consequence, each perturbed problem can be solved as
a convex optimization constrained on a closed cone. The latter comment is made more
precise in the following result that we prove in the supplementary material.

Theorem 3.3. Consider the family of optimization problems

minimize
C∈R

n×T ,

A∈ST
+

V (Y,KC) + λtr(A−1(C⊤KC + δ2IT )) + F (A)
(Sδ)

with IT ∈ ST
++ the identity matrix. Then, for eachδ > 0 the problem(Sδ) ad-

mits a minimum. Furthermore, the set of minimizers for(Sδ) converges to the set of
minimizers for(R) as δ tends to zero. More precisely, given any sequenceδm > 0
such thatδm → 0 and a sequence of minimizers(Cm, Am) ∈ R

n×T × ST
+ for (Sδ),

there exists a sequence(C∗
m, A

∗
m) ∈ R

n×T × ST
+ of minimizers for(R) such that

‖Cm − C∗
m‖F + ‖Am −A∗

m‖F → 0 asm→ +∞.

The barrierδ2tr(A−1) is fairly natural and can be seen as preconditioning of the
problem leading to favorable computations. The proposed barrier method is similar in
spirit to the approach developed in [3] and indeed Theorem 3.3 and next Corollary 3.4
are a generalization over the two main results in [3] to any convex penaltyF on the cone
of PSD matrices. However, notice that since we are considering a much wider family
of penalties (than the trace norm as in [3]) our results cannot directly derived from
those in [3]. In the next section we discuss how to compute thesolution of Problem
(Sδ) considering a block coordinate approach.
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Algorithm 1 CONVEX MULTI -TASK LEARNING

Input: K,Y, ǫ tolerance,δ perturbation parameter,S objective functional of (Sδ),
V loss,F structure penalty.
Initialize: (C,A) = (C0, A0), t = 0
repeat

Ct+1 ← SUPERVISEDSTEP (V,K, Y, Ct, At)
At+1 ← UNSUPERVISEDSTEP(F,K, δ, Ct+1, At)
t← t+ 1

until |S(Ct+1, At+1)− S(Ct, At)| < ǫ

3.2 Block Coordinate Descent Methods

The characteristic block variable structure of the objective function in problem (Sδ),
suggests that it might be beneficial to use block coordinate methods (BCM) (see [8])
to solve it. Here with BCM we identify a large class of methodsthat, in our setting,
iterate steps of an optimization onC, with A fixed, followed by an optimization ofA,
for C fixed.
A metablock coordinate algorithm to solve (Sδ) is reported in in Algorithm 1. Here
we interpret each optimization step overC as a supervised step, and each optimization
step overA as a an unsupervised step (in the sense that it involves the inputs but not the
outputs). Indeed, when the structure matrixA is fixed, problem (R) boils down to the
standard supervised multi-task learning frameworks wherea priori knowledge regard-
ing the tasks structure is available. Instead, when the coefficient matrixC is fixed, the
problem of learningA can be interpreted as an unsupervised setting in which the goal
is to actually find the underlying task structure [23].
Several optimization methods can be used as procedures for both SUPERVISEDSTEP

and UNSUPERVISEDSTEP in Algorithm 1. In particular, a first class of methods is
called Block Coordinate Descent (BCD) and identifies a wide class of iterative meth-
ods that perform (typically inexact) minimization of the objective function one block
of variables at the time. Different strategies to choose which direction minimize at each
step have been proposed: pre-fixed cyclic order, greedy search [30] or randomly, ac-
cording to a predetermined distribution [29]. For a review of several BCD algorithms
we refer the reader to [30] and references therein.
A second class of methods is called alternating minimization and corresponds to the
situation where at each step in Algorithm 1 and exact minimization is performed. This
latter approach is favorable when a closed form solution exists for at least one block
of variables (see Section 3.2.1) and has been studied extensively in [33] in the abstract
setting where an oracle provides a block-wise minimizer at each iteration. The follow-
ing Corollary describes the convergence properties of BCD and Alternate minimization
sequences provided by applying Algorithm 1 to (Sδ).

Corollary 3.4. Let the Problem(Sδ) be defined as in Theorem 3.3 then:

(a) Alternating Minimization: Let the two procedures in Algorithm 1 each provide
a block-wise minimizer of the functional with the other block held fixed. Then
every limiting point of a minimization sequence provided byAlgorithm 1, is a

8



global minimizer for(Sδ).

(b) Block Coordinate Descent: Let the two procedures in Algorithm 1 each consist
in a single step of a first order optimization method (e.g. Projected Gradient
Descent, Proximal methods, etc.). Then every limiting point of a minimizing
sequence provided by Algorithm 1 is a global minimizer for(Sδ).

Corollary (3.4) follows by applying previous results on BCDand Alternate mini-
mization. In particular, for the proof of part(a) we refer to Theorem4.1 in [33], while
for part(b) we refer to Theorem2 in [30].
In the following we discuss the actual implementation of both SUPERVISEDand UN-
SUPERVISEDprocedures in the case whereV is chosen to be least-squares loss and the
penaltyF to be a spectralp-Schatten norm. This should provide the reader with a prac-
tical example of how the meta-algorithm introduced in this section can be specialized
to a specific multi-task learning setting.

Remark 3.5. (Convergence of Block Coordinate Methods) Several works in multi-
task learning have proposed some form of BCM strategy to solve the learning problem.
However, up to our knowledge, so far only the authors in [3] have considered the issue
of convergence to a global optimum. Their results where proved for a specific choice
of structure penalty in a framework similar to that of problem (R) (see Section 4) but
do not extend straightforwardly to other settings. Corollary 3.4 aims to fill this gap,
providing convergence guarantees for block coordinate methods for a large class of
multi-task learning problems.

3.2.1 Closed Form solutions for Alternating Minimization: Examples

Here we focus on the alternating minimization case and discuss some settings in which
it is possible to obtain a closed form solution for the procedures SUPERVISEDSTEPand
UNSUPERVISEDSTEP.

(SUPERVISEDSTEP) Least Square Loss. When the loss functionV is chosen to be
least squares (i.e.V (Y, Z) = ‖Y − Z‖2F for any two matricesY, Z ∈ R

n×m) and the
structure matrixA is fixed, a closed form solution for the coefficient matrixC returned
by the SUPERVISEDSTEP procedure can be easily derived (see for instance [1]):

vec(C) = (IT ⊗K + λA−1 ⊗ In)−1vec(Y ).

Here, the symbol⊗ denotes the Kronecker product, while the notationvec(M) ∈ R
nm

for a matrixM ∈ R
n×m identifies the concatenation of its columns in a single vector.

In [26] the authors proposed a faster approach to solve this problem in closed form
based on Sylvester’s method.

(UNSUPERVISEDSTEP) p-Schatten penalties. We consider the case in whichF is
chosen to be a spectral penalty of the formF (·) = ‖ · ‖pp with p ≥ 1. Also in this
setting the optimization problem has a closed form solution, as shown in the following.

9
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Figure 1: Comparison of the computational performance of the alternating minimiza-
tion strategy studied in this paper with respect to the optimization methods proposed
for MTCL in [19] and MTFL [3] in the original papers. Experiments are repeated for
different number of tasks and input-space dimensions as described in Sec. 5.1.

Proposition 3.6. Let the penalty of problem(Sδ) beF = ‖ · ‖pp with p ≥ 1. Then,
for anyC ∈ R

n×T fixed, the optimization problem(Sδ) in the block variableA has a
minimizer of the form

Aδ
C = p+1

√
(C⊤KC + δ2IT )/λ. (4)

Proposition 3.6 generalizes a similar result originally proved in in [3] for the spe-
cial casep = 1 and provides an explicit formula for the UNSUPERVISEDSTEP of Al-
gorithm 1. We report the proof in the supplementary material.

4 Previous Work: Comparison and Discussion

The framework introduced in problem (Q) is quite general and accounts for several
choices of loss function and task-structural priors. Section 3 has been mainly devoted
to derive efficient and generic optimization procedures; inthis section we focus our
analysis on the modeling aspects, investigating the impactof different structure penal-
ties on the multi-task learning problem. In particular, we will briefly review some
multi-task learning method previously proposed, discussing how they can be formu-
lated as special cases of problem (Q) (or, equivalently, (R)).

Spectral Penalties. The penaltyF = ‖ · ‖2F was considered in [14], together with
a least squares loss function and the non convex problem (Q) is solved directly by
alternating minimization. However, as pointed out in Sec. 3, solving the non convex
problem (although invex, see the discussion on Corollary 3.2) directly could in princi-
ple become problematic when the alternating minimization sequence gets close to the
boundary ofRn×T ×ST

++. A related idea is that of consideringF (A) = tr(A) (i.e. the
1-Schatten norm). This latter approach can shown to be equivalent to the Multi-Task
Feature Learning setting of [3] (see supplementary material).

Cluster Tasks Learning. In [19], the authors studied a multi-task setting where tasks
are assumed to be organized in a fixed numberr of unknown disjoint clusters. While
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the original formulation was conceived for linear setting,it can be easily extended to
non-linear kernels and cast in our framework. LetE ∈ {0, 1}T×r be the binary matrix
whose entryEst has value1 or 0 depending on whether tasks is in clustert or not.
SetM = I − E†E⊤, andU = 1

T 11
⊤. In [19] the authors considered a regularization

setting of the form of (R) where the structure matrixA is parametrized by the matrix
M in order to reflect the cluster structure of the tasks. More precisely:

A−1(M) = ǫMU + ǫB(M − U) + ǫW (I −M)

where the first term characterizes a global penalty on the average of all tasks predictors,
the second term penalizes the between-clusters variance, and the third term controls
the tasks variance within each cluster. Clearly, it would beideal to identify an optimal
matrixA(M) minimizing problem (R). However,M belongs to a discrete non convex
set, therefore authors propose a convex relaxation by constrainingM to be in a convex
setSc = {M ∈ ST

+, 0 � M � I, tr(M) = r}. In our notationsF (A) is therefore
the indicator function over the set of all matricesA = A(M) such thatM ∈ Sc. The
authors propose a pseudo gradient descent method to solve the problem jointly.

Convex Multi-task Relation Learning. Starting from a multi-task Gaussian Process
setting, in [37], authors propose a model where the covariance among the coefficient
vectors of theT individual tasks is controlled by a matrixA ∈ ST

++ in the form of
a prior. The initial maximum likelihood estimation problemis relaxed to a convex
optimization with target functional of the form

‖Y −KC‖2F + λ1 tr(C
⊤KC) + λ2 tr(A

−1C⊤KC) (5)

constrained to the setA = {A | A ∈ ST
++, tr(A) = 1). This setting is equivalent to

problem (R) (by choosingF to be the indicator function ofA) with the addition of the
termtr(C⊤KC).

Non-Convex Penalties. Often times, interesting structural assumptions cannot be
cast in a convex form and indeed several works have proposed non-convex penalties
to recover interpretable relations among multiple tasks. For instance [2] requiresA
to be a graph Laplacian, or [13] imposes a low-rank factorization ofA in two smaller
matrices. In [27, 22] different sparsity models are proposed.
Interestingly, most of these methods can be naturally cast in the form of problem (Q)
or (R). Unfortunately our analysis of the barrier method does notnecessarily hold also
in these settings and therefore Alternating Minimization is not guaranteed to lead to a
stationary point.

5 Experiments

We empirically evaluated the efficacy of the block coordinate optimization strategy
proposed in this paper on both artificial and real datasets. Synthetic experiments were
performed to assess the computational aspects of the approach, while we evaluated the
quality of solutions found by the system on realistic settings.

11



50 tr. samples per class 100 tr. samples per class 150 tr. samples per class 200 tr. samples per class

nMSE (± std) nI nMSE (± std) nI nMSE (± std) nI nMSE (± std) nI

STL 0.2436 ± 0.0268 0 0.1723 ± 0.0116 0 0.1483 ± 0.0077 0 0.1312 ± 0.0021 0

MTFL 0.2333 ± 0.0213 0.0416 0.1658 ± 0.0107 0.0379 0.1428 ± 0.0083 0.0281 0.1311 ± 0.0055 0.0003

MTRL 0.2314 ± 0.0217 0.0404 0.1653 ± 0.0112 0.0401 0.1421 ± 0.0081 0.0288 0.1303 ± 0.0058 0.0071

OKL 0.2284 ± 0.0232 0.0630 0.1604 ± 0.0123 0.0641 0.1410± 0.0087 0.0350 0.1301 ± 0.0073 0.0087

Table 1: Comparison of Multi-task learning methods on the Sarcos dataset. The advan-
tage of learning the tasks jointly decreases as more training examples became available.

5.1 Computational Times

As discussed in Sec. 4, several methods previously proposedin the literature, such as
Multi-task Cluster Learning (MTCL) [19] and Multi-task Feature Learning (MTFL [3]]),
can be formulated as special cases of problem (Q) or (R). It is natural to compare the
proposed alternating minimization strategy with the optimization solution originally
proposed for each method. To assess the system’s performance with respect to varying
dimensions of the feature space and an increasing number of tasks, we chose to per-
form this comparison in an artificial setting.
We considered a linear setting where the input data lie inR

d and are distributed ac-
cording to a normal distribution with zero mean and identitycovariance matrix.T
linear modelswt ∈ R

d for t = 1, . . . , T were then generated according to a normal
distribution in order to sampleT distinct training sets, each comprising of30 examples
(x

(t)
i , y

(t)
i ) such thaty(t)i = 〈wt, x

(t)
i 〉 + ǫ with ǫ Gaussian noise with zero mean and

0.1 standard deviation. On these learning problems we comparedthe computational
performance of our alternating minimization strategy and the original optimization al-
gorithms originally proposed for MTCL and MTFL and for whichthe code has been
made available by the authors’. In our algorithm we usedA0 = I identity matrix as
initialization for the alternating minimization procedure. We used a least-squares loss
for all experiments.
Figure 1 reports the comparison of computational times of alternating minimization and
the original methods to converge to the same minima (of respectively the functional of
MTCL and MTFL). We considered two settings: one where the number of tasks was
fixed toT = 100 andd increased from5 to 150 and a second one wherd was fixed to
100 andT varied bewteen5 and150. To account for statistical stability we repeated
the experiments for each couple(T, d) and different choices of hyperparameters while
generating a new random datasets at each time. We can make twoobservations from
these results: 1) in the setting whereT is kept fixed we observe a linear increase in the
computational times for both original MTCL and MTFL methods, while alternating
minimization is almost constant with respect to the input space dimension. 2) Whend
is fixed and the number of tasks increases, all optimization strategies require more time
to converge. This shows that in general alternating minimization is a viable option to
solve these problems and in particular, whenT << min(d, n) – which is often the
case in non-linear settings –this method is particularly efficient.
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Accuracy (%) per # tr. samples per class

50 100 150

STL 72.23 ±0.04 76.61 ±0.02 79.23 ±0.01

MTFL 73.23 ±.08 77.24 ±.05 80.11 ±.03

MTRL 73.13 ±0.08 77.53 ±0.04 80.21 ±0.05

OKL 72.25 ±0.03 77.06 ±0.01 80.03 ±0.01

Table 2: Classification results on the15-scene dataset. Four multi-task methods and
the single-task baseline are compared.

5.2 Real dataset

We assessed the benefit of adopting multi-task learning approaches on two real dataset.
In particular we considered the following algorithms: Single Task Learning (STL)
as a baseline, Multi-task Feature Learning (MTFL) [3], Multi-task Relation Learning
(MTRL) [37], Output Kernel Learning (OKL) [14]. We used least squares loss for all
experiments.

Sarcos. Sarcos2 is a regression dataset designed to evaluate machine learning so-
lutions for inverse dynamics problems in robotics. It consists in a collection of21-
dimensional inputs, i.e. the joint positions, velocities and acceleration of a robotic arm
with 7 degrees of freedom and7 outputs (the tasks), which report the corresponding
torques measured at each joint.
For each task, we randomly sampled50, 100, 150 and200 training examples while we
kept a test set of5000 examples in common for all tasks. We used a linear kernel and
performed5-fold crossvalidation to find the best regularization parameter according
to the normalized mean squared error (nMSE) of predicted torques. We averaged the
results over10 repetitions of these experiments. The results, reported inTable 1, show
clearly that to adopt a multi-task approach in this setting is favorable; however, in order
to quantify more clearly such improvement, we report in Table 1 also thenormalized
improvement(nI) over single-task learning (STL). For each multi-task method MTL,
the normalized improvement nI(MTL) is computed as the average

nI(MTL) =
1

nexp

nexp∑

i=1

nMSEi(STL)− nMSEi(MTL)√
nMSEi(STL) · nMSEi(MTL)

over all thenexp = 10 experiments of the normalized differences between the nMSE
achieved by respectively the STL approach and the given multi-task method MTL.

15-Scenes. 15-Scenes3 is a dataset designed for scene recognition, consisting in a15-
class classification problem. We represented images using LLC coding [35] and trained
the system on a training set comprising50, 100 and150 examples per class. The test set
consisted in7500 images evenly divided with respect to the15 scenes. Table 2 reports

2urlhttp://www.gaussianprocess.org/gpml/data/
3http://www-cvr.ai.uiuc.edu/poncegrp/data/
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the mean classification accuracy on20 repetitions of the experiments. It can be noticed
that while all multi-task approach seem to achieve approximately similar performance,
these are consistently outperforming the STL baseline.

6 Conclusions

We have studied a general multi-task learning framework where the tasks structure
can be modeled compactly in a matrix. For a wide family of models, the problem of
jointly learning the tasks and their relations can be cast asa convex program, general-
izing previous results for special cases [3, 14]. Such an optimization can be naturally
approached by block coordinate minimization, which can be seen as alternating be-
tween supervised and unsupervised learning steps optimizing respectively the tasks or
their structure. We evaluated our method real data, confirming the benefit of multi-task
learning when tasks share similar properties.
From an optimization perspective, future work will focus onstudying the theoretical
properties of block coordinate methods, in particular regarding convergence rates. In-
deed, the empirical evidence we report suggests that similar strategies can be remark-
ably efficient in the multi-task setting. From a modeling perspective, future work will
focus on studying wider families of matrix-valued kernels,overcoming the limitations
of separable ones. Indeed, this would allow to account also for structures in the inter-
action space between the input and output domains jointly, which is not the case for
separable models.
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Appendix

Imposing Known Structure on the Tasks

Coding and Embedding

A common approach to encode knowledge of the tasks relationsconsists in mapping
the output spaceYT in a newỸ ⊆ R

ℓ and then solveℓ independent standard learning
problems (e.g. RLS, SVM, Boosting, etc. [17]) or a single onewith a joint loss (e.g.
Ranking [21]) using the mapped outputs as training observation. The goal is to im-
plicitly exploit the structure of the new space to enforce known (or desired) relations
among tasks.

The most popular setting for theseembedding(or coding) methods is multi-class
classification since in several realistic learning problems, classes can be organized in
informative structures such as hierarchies or trees. Interestingly, due to the symbolic
nature of the classes representation as canonical basis ofR

T , nonlinear embeddings are
not particularly meaningful in classification contexts. Indeed the literature on coding
methods for multi-task learning has been mainly concerned with the design of linear
operatorsL : YT → Ỹ [17]. In the following we show that a tight connection exists
between coding methods and our multi-task learning setting.

For a fixed linear operatorL ∈ R
ℓ×T , we can solve the “coded” problem using

the notation of (P) and a kernel of the formΓ = kIℓ with Iℓ theℓ × ℓ identity matrix
(“independent tasks” kernel)

minimize
C̃∈Rn×ℓ

V (Ỹ ,KC̃) + λ tr(C̃⊤KC̃) (6)

From the Representer theorem we know that the solution of (6)will have the form
f(x) =

∑n
i=1 k(x, xi)c̃i =

∑n
i=1 k(x, xi)Lci, for someci ∈ R

T and c̃i = Lci ∈
L(RT ). Therefore, we can constrain (6) on matricesC̃ = CL with C ∈ R

n×T ,
implying that the best solution for (6) belongs to the set of functionsf = L ◦ g ∈ HkIℓ

with g ∈ HkIT .
For those loss functionsL that depend only on the inner product between the vec-

tors of prediction and the ground truth (e.g. logistic or hinge [21, 36], see below),
the “coded” Problem (6) oñY with kernelkIℓ is equivalent to (P) onY with kernel
kL⊤L. More precisely, if the multi-output loss can be written so thatL(ỹ, f(x)) =

L(〈ỹ, f(x)〉
Ỹ
) for all ỹ ∈ Ỹ andx ∈ X , we have

〈ỹ, f(x)〉
Ỹ
= 〈Ly, Lg(x)〉

Ỹ
= 〈y, L⊤Lg(x)〉Y (7)

wherey ∈ Y is such thatLy = ỹ andL⊤ denotes the adjoint operator ofL (in this
case just the transpose matrix sinceL is a linear operator between vector spaces over
the real field). Therefore, the two terms in the functional of(6) become

V (Ỹ ,KC̃) = V (Y L⊤,KCL⊤) = V (Y,KCL⊤L)

where the last equality makes use of the property in eq. (7), and

tr(C̃⊤KC̃) = tr(LC⊤KCL⊤) = tr(L⊤LC⊤KC)
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proving the aforementioned equivalence between Problems (6) and (P) by choosing
A = L⊤L.

Semantic Label Sharing In [17] the authors proposed a strategy to solve a large
multi-class visual learning problem that exploited the semantic information provided
by the WordNet [16] to enforce specific relations among tasks. In particular, by de-
signing a “semantic” distance between classes using the WordNet graph, the authors
were able to generate a similarity matrixL ∈ ST

+ encoding the most relevant class
relations. They used this matrix to map the original outputs(i.e. the canonical basis of
R

T ) into a new basis where euclidean distances between output codes would reflect the
semantic ones induced by the WordNet priming. Then they applied a semi-supervised
One-Vs-All approach on the new output space.

Output Metric

In multi-output settings, another approach to implicitly model the tasks relations con-
sists in changing the metric on the output spaceR

T . In particular, we can define a
matrixΘ ∈ ST

+ and denote the induced inner product onR
T as〈y, y′〉Θ = 〈y,Θy′〉RT

for all y, y′ ∈ R
T . For loss functionsL such as those mentioned in Sec. 6 (e.g.

hinge, logistic, etc.) that depend only on the inner productbetween observations
and predictions, we have that for a fixedΘ the new loss is defined asLΘ(y, f(x)) =
L(〈y, f(x)〉Θ) = L(〈y,Θf(x)〉RT ) and induces a learning problem of the form

minimize
C∈Rn×T

V (Ỹ ,KCΘ) + λ tr(ΘC⊤KC) (8)

which is clearly equivalent to solving (P) choosing the kernelkΘ. Notice that the
second term in eq. (8) derives from the observation that withthe new metric, the
norm in the RKHSvv becomes‖f‖2kIT = 〈f, f〉kIT =

∑n
i,j

∑T
t,s k(xi, xj)〈ct, cs〉Θ =

tr(ΘC⊤KC) as required.

metric learning In [24] the authors proposed a metric learning framework in which
both the new metricA (or Θ) and the task predictors were estimated simultaneously.
Adopting almost the same notation of Problem (Q), they used the least squares loss
and imposed a penaltyF (A) = −log(det(A)) on the metric/structure matrix. A fur-
ther penalty was also imposed onA, in order to enforce specific sparsity patterns.
The only difference with our framework is that in [24] the authors do not impose the
regularization termtr(AC⊤KC). Notice however that such term allows us to apply
Theorem 3.1 and thus obtain the equivalence between (Q) and (R). This is extremely
useful from the optimization perspective since, for instance, for the least squares loss
and log-determinant penalty mentioned above, Problem (R) is actually convex jointly,
which is not the case for the framework in [24].
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Learning the tasks and their structure

Equivalence with the convex problem

We will make use of the following observation

Lemma 6.1. ConsiderK ∈ ST
+ andC ∈ R

n×T . ThenRan(C⊤KC) = Ran(C⊤
√
K) =

Ran(C⊤K).

Proof. The second equivalence follows directly from the observation thatC⊤K =
(C⊤
√
K)
√
K andC⊤

√
K = C⊤K(

√
K)†. Regarding the first equivalence, recall

that for anyM ∈ R
T×n, RT = Ran(M) ⊕ Ker(M), with Ker(M) denoting the null

space ofM . Therefore we can alternatively prove that Ker(C⊤KC) = Ker(C⊤
√
K).

Notice that clearly Ker(C⊤
√
K) ⊆ Ker(C⊤KC). Now, letx ∈ Ker(C⊤KC) so that

0 = x⊤C⊤KCx = x⊤(
√
KC)⊤(

√
KC)x. This implies thatx is a singular vector of

(
√
KC) with singular value equal to zero and thereforex ∈ Ker(C⊤

√
K).

Proof. (Theorem 3.1)
We need to prove thatC is a convex set and thattr(A†C⊤KC) is jointly convex

on C. Regarding the first part, notice that forA ∈ ST
+ andC ∈ R

n×T the constraint
Ran(C⊤KC) ⊆ Ran(A) can be equivalently rewritten as Ker(C⊤KC) ⊇ Ker(A).
Therefore, using Lemma 6.1, we can check convexity ofC by showing that for any
arbitrary couple(A1, C1), (A2, C2) ∈ C and anyθ ∈ [0, 1] we have Ker(θA1 + (1 −
θ)A2) ⊆ Ker(θC⊤

1 K + (1 − θ)C⊤
2 K). Let us consider an arbitraryx ∈ Ker(θA1 +

(1− θ)A2). We have

0 = x⊤(θA1 + (1− θ)A2)x = θx⊤A1x+ (1− θ)x⊤A2x.

Since bothA1 andA2 are PSD, the termsx⊤Aix are necessarily non-negative for both
i = 1, 2. Hence, from the equation above we havex⊤Aix = 0, which is equivalent
to x ∈ Ker(A1) ∩ Ker(A2) ⊆ Ker(C⊤

1 K) ∩ Ker(C⊤
2 K). This means thatx is in the

nullspace of bothC⊤
1 K andC⊤

2 K and therefore also in the nullspace of any linear
combination of the two. In particularx ∈ Ker(θC⊤

1 K + (1− θ)C⊤
2 K).

The proof for the convexity oftr(A†C⊤KC) has been already pointed out else-
where (see for instance [5]). For completeness, we provide an simpler derivation of
this result which makes use of a Schur’s complement argumentand simple algebraic
properties in line with [14] to show that the epigraph of the function is convex. Con-
siderA ∈ ST

+ andC ∈ R
n×T . From simple properties of the trace we have the

equivalencetr(A†C⊤KC) = vec(
√
KC)⊤(A† ⊗ IT )vec(

√
KC), where⊗ identifies

the Kronecker product and byvec(·) we denote the vectorization operator mapping a
matrixM ∈ R

n×m to the concatenation of all its columnsvec(M) ∈ R
nm. Since

Ran(A) ⊇ Ran(C⊤KC) = Ran(C
√
K) we can apply the generalized Schur’s com-
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plement to write the epigraph off(A,C) = tr(A†C⊤KC) as

epi f =
{
(t, A, C)

∣∣ t ≥ tr(A†C⊤KC) =

vec(C
√
K)⊤(A† ⊗ IT )vec(C

√
K), (A,C) ∈ C

}
=

=

{
(t, A, C)

∣∣∣∣
(

A⊗ IT vec(C
√
K)

vec(C
√
K)⊤ t

)
� 0,

(A,C) ∈ C}

where we writeX � Y for any two symmetric matricesX,Y ∈ Sm if and only if
X − Y ∈ Sm

+ . Notice that the block components of the matrix in the equation above
are all linear with respect toA,C andt and therefore the convexity ofepi f follows
by directly observing that for any couple(t1, A1, C1), (t2, A2, C2) ∈ epi f , the PSD
constraint holds for any convex combination of the two.

We finally prove that the mapping between minimizers stated in Theorem (3.1).
First notice that for any(C,A) ∈ R

n×T × ST
+ we haveQ(C,A) = R(CA,A), with

(CA,A) ∈ domR since clearly Ran(A) ⊇ Ran(AC⊤KCA). Thereforeinf {Q(C,A) |C ∈
R

n×T , A ∈ ST
+} ≥ inf {R(C,A) | (C,A) ∈ C}. Analogously, given a point(C,A) ∈

C we have thatR(C,A) = R(CA†A,A) since Ran(C⊤K) ⊆ Ran(A) and thus
V (y,KCAA†) = V (y,KC). ThereforeR(C,A) = R(CA†A,A) = Q(CA†, A),
implying thatinf {R(C,A) | (C,A) ∈ C} ≥ inf {Q(C,A) | C ∈ R

n×T , A ∈ ST
+}

and concluding the proof.

A Barrier Method to Optimize (R)

Proof. (Theorem 3.3)To prove the existence of finite minimizers we need to show that
there exists a minimizing sequence forSδ such that it converges to a point indomSδ =
R

n×T × ST
++. To see this, consider a generic minimizing sequence, i.e. asequence

{(Cn, An)}n∈N ⊂ domSδ such thatSδ(Cn, An)→ infC,AS
δ(C,A). Notice that we

can separateCn in Cn = Ĉn,+C
⊥
n with Ĉn ∈ Ran(K) the range of the Gram matrix

K andC⊥
n ∈ Ker(K) its nullspace and that thereforeSδ(Ĉn, An) = Sδ(Cn, An).

This implies that the sequence(Ĉn, An) is bounded, since, if it was not, we would have
the coercive penaltyF or thetr(A−1

n Ĉ⊤
n KĈn) to go to infinity asn grows. But this

is not possible sinceSδ(Ĉn, An) → infC,AS
δ(C,A) < +∞. Therefore(Ĉn, An)

admits a converging subsequence. Suppose without loss of generality that(Cn, An)

converges to a point(C∗, A∗) ∈ domSδ = R
n×T × ST

+. We want to show that
(C∗, A∗) is actually in thedomSδ = R

n×T × ST
++, i.e. thatA∗ is positive definite.

But this is obvious sinceδ > 0 and therefore if theAn were to converge to a point in
ST
+\ST

++, we would have thatδ2 tr(A−1
n ) → +∞ and thereforeSδ(Ĉn, An) → +∞

asn → +∞. Finally, by the continuity ofSδ, we haveSδ(Ĉn, An) → Sδ(C∗, A∗),
therefore proving that(C∗, A∗) ∈ argminC,A S

δ(C,A).
The second part of the proof requires the following preliminary steps:

1. minC,AR(C,A) = infA,CS
0(C,A) and they have same infimizers.

2. g(δ) = infA,CS
δ(C,A) is continuous (in fact convex) with minimum in 0.
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We prove the first point in Lemma 6.2, while the second observation follows from
the fact that the functiong is the point-wise infimum of a jointly convex function over
a convex set. This requires to show thatδ2tr(A−1) is jointly convex which follows the
same reasoning as for the convexity oftr(A−1C⊤KC) in Theorem (3.1).

Let us consider two sequencesδn > 0 and{(Cn, An)}n∈N ⊂ domSδ = R
n×T ×

ST
++ satisfying the hypothesis of the Theorem, i.e.Sδn(Cn, An) = minC,AS

δn(C,A).
We will first prove the result forCn in the range of the Gram matrixK. Notice that
under this requirement, the(Cn, An) are bounded, since, analogously as for the proof
above, if they were not we would have the coercive penaltyF or thetr(A−1

n C⊤
n KCn)

to go to infinity asn grows. But this is not possible sinceSδn(Cn, An)→ g(0) < +∞.
Therefore, by points 1. and 2.,g(0) = minC,AR(C,A) and the limit points of
(Cn, An) are minimizers forR. This finally implies that there exists a sequence
{(C∗

n, A
∗
n)}n∈N ⊆ argminC,AR(C,A) such that‖Cn − C∗

n‖F + ‖An −A∗
n‖F tends

to zero asn goes to infinity. To see this, suppose by contradiction that it is not true
and that there exists a subsequence{(Cnk

, Ank
)}k∈N and anM > 0 such that‖Cnk

−
C∗‖F +‖Ank

−A∗‖F > M for all k > 0 and for all(C∗, A∗) ∈ argminC,AR(C,A).
Now, since(Cnk

, Ank
) is a subsequence of(Cn, An), we have that:(i) (Cnk

, Ank
)

is bounded (hence admits a converging subsequence) and(ii) every converging subse-
quence tends to a minimizer ofR. This clearly contradicts the hypothesis.

Now, consider the general case in whichCn is not in the range ofK: notice that
similarly as before,Cn can be separated inCn = Ĉn + C⊥

n with Ĉn ∈ Ran(K) the
range ofK andC⊥

n ∈ Ker(K) its nullspace. Clearly,Sδn(Ĉn, An) = Sδn(Cn, An)→
g(0) and therefore, from the discussion above we have a sequence{(Ĉ∗

n, A
∗
n)}n∈N ⊆

argminC,AR(C,A) such that‖Ĉn − Ĉ∗
n‖F + ‖An − A∗

n‖F → 0 asn → +∞. We

can now observe that the sequence(C∗
n, A

∗
n) = (Ĉ∗

n +C⊥
n , A

∗
n) satisfies the statement

of the Theorem: indeed(i) the (C∗
n, A

∗
n) are minimizers forR sinceR(C∗

n, A
∗
n) =

R(Ĉ∗
n, A

∗
n) and(ii) ‖Cn − C∗

n‖F = ‖Ĉn − Ĉ∗
n‖F → 0 for n→ +∞.

Lemma 6.2. minA,CR(C,A) = infA,CS
0(C,A) and they have same infimizers:

Proof. This fact follows from the observation that for allδ > 0, domSδ = domS0

is equal to the interior ofdomR and that all minimizers forR belong todomR. To
show this second statement we will prove that for any sequence {(Cn, An)}n∈N ⊂
domR and converging to some point(C̄, Ā) ∈ Rn×T × ST

+ \ domR, we have that
R(Cn, An) → +∞ asn goes to infinity. For simplicity of notation let us denote
B̄ = C̄⊤KC̄ and analogouslyBn = C⊤

n KCn. Since from hypothesis Ran(Ā) 6⊇
Ran(C̄⊤KC̄) we have that Ker(Ā) 6⊆ Ker(B̄), or, in other words, there exists an
eigenvector̄v for Ā such thatv ∈ Ker(A) and‖B̄v̄‖2 > 0.

Since the sequenceAn converges tōA, we can identify a sequence of eigenvectors
vn for An such thatvn → v̄ and their associated eigenvalueλn → 0 asn goes to
infinity. Notice that we can assume without loss of generality thatλn > 0 for all n
sinceλn = 0 would imply vn ∈ Ker(An) ⊆ Ker(Bn) but we have from hypothesis
that‖Bnvn‖2 → ‖B̄v̄‖ > 0. Therefore we have

tr(A†
nBn) ≥ λ−1

n v⊤nBnvn = λ−1
n ‖Bnvn‖22 → +∞

asn goes to infinity.
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Spectral Regularization

Proposition 3.6 follows directly from the following result

Proposition 6.3. LetA,M ∈ Sn
+ with Ran(A) ⊇ Ran(M), rank(M) = r. LetM =

UΣU⊤ be an eigendecomposition ofM with U ∈ On andΣ ∈ Sn
+ a diagonal matrix

with eigenvalues in decreasing order. Then, there exists a matrix A∗ = UΓU⊤ ∈ Sn
+

with Γ ∈ Sn
+ diagonal withΓi,i = 0 ∀i < r, such that

tr(A†
∗M) = tr(A†M) and ‖A∗‖p ≤ ‖A‖p ∀p ≥ 1 (9)

with the equality holding if and only ifA∗ = A.

Proof. To keep the notation uncluttered we prove the result forΘ = A†. Consider an
eigendecompositionnΘ = SΛS⊤ with S ∈ On andΛ ∈ Sn

+ diagonal with eigenvalues
in decreasing order. Let us defineR = U⊤S ∈ On. Then

tr(ΘM) = tr(RΛR⊤Σ) =
r∑

i=1

σi

n∑

j=1

R2
ijλj =

r∑

i=1

σiγi

whereσi andλi are respectively thei-th eigenvalues ofM andΘ and we have defined
γi =

∑n
j=1Rijλj for i ≤ r andγi = 0 otherwise. Hence, if we consider a diagonal

matrixΓ ∈ Sn
+ such thatΓii = γi and setΘ′ = UΓU⊤ we obtain the left equivalence

of eq. (9), namelytr(ΘM) = tr(Θ′M). Now, consider thep-Schatten norm ofΘ′

‖(Θ′)†‖p =

(
r∑

i=1

1

γpi

)1/p

=




r∑

i=1

1(∑n
j=1 R

2
ijλj

)p




1/p

.

Notice thatRij = U⊤
i ·Sj corresponds to the projection of thei-th eigenvector ofM on

thej-th eigenvector ofΘ. Since Ran(Θ) = Ran(A) ⊇ Ran(M), for any eigenvector
s ∈ R

n in the nullspace ofΘ (i.e. with associated eigenvalueλ = 0), we have that
U⊤
i · s = 0 for all i ≤ r. Hence,∀i ≤ r, 1 = R⊤

i · Ri =
∑n

j=1 R
2
ij =

∑k
j=1 R

2
ij ,

wherek = rank(A). Therefore, since theR2
ijs add up to1 and the scalar function

(1/x)p is convex inx ∈ R++, we have

r∑

i=1

1(∑n
j=1 R

2
ijλj

)p ≤
r∑

i=1

k∑

j=1

R2
ij

1

λpj
≤

≤
k∑

j=1

1

λpj

n∑

i=1

R2
ij =

k∑

j=1

1

λpj
= ‖Θ†‖pp

where we have made use of the fact that for allj = 1, . . . , n we have
∑n

i=1Rij =
R⊤

j · Rj = 1. Therefore,‖(Θ′)†‖p ≤ ‖Θ†‖p. By takingA′ = (Θ′)† we have the
desired result.
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Applied to the minimization in problem (R) with C ∈ R
n×T fixed andp-Schatten

penalty, Proposition 6.3 states that a minimizerAC ∈ ST
+ has the same system of eigen-

values asC⊤KC and their spectrum have same sparsity pattern (i.e. Ran(C⊤KC) =
Ran(A)). This observation leads directly to the closed formula to find aA∗ stated in
Proposition 3.6.

Proof. (Proposition 3.6)Consider the eigendecompositionC⊤KC = M = UΣU⊤

with U ∈ OT andΣ ∈ ST
+ diagonal with the eigenvalues arranged in descending order.

We apply Proposition 6.3 and obtain the minimizerA∗ = UΓU⊤ for Γ ∈ ST
+ diagonal

with same sparsity pattern asΣ. We can rewrite the target function as

r∑

t=1

σt
γt

+ λ γt.

wherer = rank(M). Therefore, the optimization problem consists in minimizing
the target function above with respect to theγts. This is an unconstrained convex
optimization of a differentiable coercive function bounded below and therefore it is
sufficient to set the gradient to zero and solve with respect to theγt. It is clear that for
eacht = 1 . . . r, the minimizer is of the formγt = p+1

√
σt/λ, leading to the desired

solution.

Linear Multi-task Learning

Several works in multi-task learning have focused on linearmodels where the multi-
output predictorf : R

d → R
T is parameterized by a matrixW ∈ R

d×T whose
columnswt ∈ R

d are associated to the individual task-predictorsft(x) = 〈wt, x〉Rd

for any x ∈ R
d. In this tasks structure can be imposed considering suitable matrix

penaltyΩ : Rd×T → R and regularization schemes of form

min.
W∈Rd×T

V (Y,XW ) + Ω(W ) (10)

whereX ∈ R
n×d is the matrix whose rows correspond to the (transposed) input points

in the training sets, ordered accordingly to the order inY 4. We can recognize two main
classes of penalty functions. A first class correspond to methods that impose structured
sparsity on the input features across the multiple tasks, for instance considering the
penaltyΩ(·) = ‖ · ‖2,1 [3], which encourages whole rows ofW to be simultaneously
sparse, see also [20, 38]. A second class corresponds to spectral regularization methods
defined by penaltiesΩ acting on the singular values ofW . Examples in this class
include methods that impose low-rank assumptions [3] on thetasks, or search after
tasks-cluster structures [19]. Ideas related to a combination of the above methods can
also be considered [10].

Most Linear multi-task learning problems of the form (10) withΩ spectral penalty,
can be formulated in terms of problem (R) for a suitable choice ofF . Indeed it can be

4Again V would weight with zeros the loss associated to entries for which examples are not available
during training
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shown that for several spectral norms, such as the p-schatten norms, the penaltyΩ can
be written as

Ω(W ) = inf
A∈ST

++

trace(WA−1W⊤) + FΩ(A) ∀W ∈ R
n×T

Here we report the example of the nuclear norm‖ · ‖∗, that has already been observed
in similar form in [3, 18] and that can be easily derived from Prop. 3.6 for the case
p = 1.

‖W‖∗ =
1

2
inf

A∈ST
++

trace(WA−1W⊤) + trace(A).

Indeed, from Prop. (3.6) we have that the solution to the minimization problem is
A∗ =

√
(W topW ) and therefore, the minimum of such functional will be exactly

trace(
√
WW⊤) = ‖W‖∗.

Impose Tasks Relationships by enforcing structure on
the feature space

Relations among tasks can be also modeled by enforcing shared structures on the input
space. For instance in [3], the authors generalized a feature selection framework to the
multi-task setting by formulating the linear problem

minimize
U∈Od,M∈Rd×T

V (Y,XUM) + γ‖M‖2,1 (11)

whereX ∈ R
n×d is the matrix whosei-th row corresponds to the input vectorxi ∈ R

d

and the(2, 1)-norm‖M‖2,1 =
∑d

k=1 ‖Mk‖2 is introduced to enforce sparsity among
the rowsMk of M . This penalty generalizes feature selection to the multi-task case
by directly manipulating the covariance on the input space.However, since input and
output distributions are connected by the training data, itis reasonable to expect this
process to indirectly affect also the covariance on the output space. Indeed, in this
Section we present an interesting result connecting multi-task problems that impose
structure on the input covariance and problems that insteadaim to control the output
covariance (i.e. in the form of (R)).
To show this connection, we need to discuss in more detail thework in [3]. Al-
though (11) is not convex, the authors prove that there exists an equivalent convex
formulation of the form

minimize
W∈R

d×T ,D∈Sd
+,

Ran(D)⊇Ran(W ),tr(D)≤1

V (Y,XW ) + γ tr(W⊤D†W ). (12)

The authors then proceed to generalize this framework to thenonlinear case using the
advantages of the RKHS notation. In this setting, the original idea of identifying a
low dimensional set of directions in the feature space translates naturally to the prob-
lem of finding a small set of orthogonal directions in the Hilbert space. To this end,
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the authors perform a preprocessing step whose goal is to identify an orthonormal ba-
sis of functionsψ1, . . . ψℓ ∈ Hk for set spanned by thek(xi, ·) and define a matrix
K̃ ∈ R

n×ℓ such thatK̃ij = ψj(xi). A possible way to do this is by considering a
eigenvalue decompositionUΣU⊤ ofK and takingK̃ = UΣ1/2 (taking out fromΣ1/2

the columns equal to zero). It is easy to show that the standard learning problem in
RKHS settings can be cast equivalently in this new notation.However, this framework
has the further advantage that it can be generalized to take into account the eventuality
of a transformation in the feature space, leading to the extension of problem (12) for
the non linear case

minimize
B∈R

ℓ×T ,D∈Sℓ
+,

Ran(D)⊇Ran(B),tr(D)≤1

V (Y, K̃B) + γ tr(B⊤D†B) (13)

As can be noticed, the structure of problem (13) is very similar to the one of prob-
lem (R) and indeed, as stated in Corollary 6.5 the two are equivalent when trace reg-
ularization is imposed on (R). However, as shown in Theorem 6.4, a more general
equivalence holds.

Theorem 6.4. Letλ > 0, p ≥ 1, Rn×T , {xi, yi}ni=1 ⊂ R
d × R

T a set of input-output
pairs withy ∈ R

n×T the matrix whosei-th row corresponds toyi. Letψ1, . . . , ψℓ ∈
Hk be an orthonormal basis forspan{k(xi, ·}ni=1 andK̃ ∈ R

n×ℓ with K̃ij = ψj(xi).
Then

minimize
B∈R

ℓ×T ,D∈Sℓ
+,

Ran(D)⊇Ran(B)

S(B,D) = V (Y, K̃B) + tr(B∗D†B) + λ ‖D‖p (T )

is a convex optimization problem equivalent to(R) with penalty functionF (A) =
‖A‖p. In particular the two problems achieve the same minimum and, given a mini-
mizer for one problem it is possible to obtain a solution for the other and vice-versa.

The crucial aspect of the proof of Theorem 6.4 (which we provebelow) consists in
identifying the two mappings that allow to obtain a minimizer for problem (R) from a
solution of (T ) and vice-versa.
As a corollary of Theorem (6.4) we get the exact equivalence to the problem proposed
in [3].

Corollary 6.5. Problem(13) is equivalent to(T ) for p = 1. In particular the two
problems achieve the same minimum forλ = γ2/4. As a consequence of Theorem 6.4
this implies also that(13) is also equivalent to(R) whenF (·) = ‖ · ‖1 = tr(·).

This result follows from the direct comparison of the minimizers for the prob-
lems (T ) (from Proposition 3.6) and (13) (from [3]). Notice, that although equiva-
lent as convex optimizations, it is in general more convenient to solve problems in the
form (R) rather than (T ) since in most casesT << ℓ.

Proof. Theorem 6.4.
From the discussion in [3] we can rewrite problem (R) in the equivalent formula-

tion
minimize

B∈R
ℓ×T ,A∈ST

+ ,

Ran(A)⊇Ran(B⊤)

T (B,A) = V (Y, K̃B) + tr(A†B⊤B) + λ ‖A‖p (U)

25



Therefore, to prove Theorem 6.4 it is sufficient to show that problem (T ) and (U) are
equivalent. Assume without loss of generalityT ≤ ℓ. Consider an arbitrary matrixB ∈
R

ℓ×T and a singular value decompositionB = V

(
Σ
0

)
U⊤ where0 ∈ R

(ℓ−T )×T

identifies a matrix of all zeros,V ∈ Oℓ, U ∈ OT andΣ ∈ ST
+ a diagonal matrix with

eigenvalues in descending order. From Propositon 6.3, we obtain that the minimizers
of the two functionsS(B, ·) andT (B, ·) are unique and can be written respectively in
the forms

DB = V

(
ΓD 0
0 0

)
V ⊤ ∈ Sℓ

+ and AB = UΓAU
⊤ ∈ ST

+

whereΓD,ΓA ∈ ST
+ have same sparsity pattern asΣ and the zero matrices in the

formulation ofDB are of appropriate dimension. We can therefore write the minimum
value achieved byS(B, ·) asS(B,DB) = V (Y, K̃B)+ tr(Γ†

DΣ2) +λ‖ΓD‖p and the
minimum achieved byT (B, ·) asT (B,AB) = V (Y, K̃B) + tr(Γ†

AΣ
2) + λ‖ΓA‖p. In

the light of these equations, it can be easily cheked that by settingA(D)
B = UΓDU

⊤ ∈
ST
+ we have

S(B,DB) = T (B,A
(D)
B ) ≥ T (B,AB)

where the inequality follows from the fact thatAB is a minimizer forT (B, ·). Anal-

ogously, we can design a matrixD(A)
B ∈ Sℓ

+ such thatT (B,AB) = S(B,D
(A)
B ) ≥

S(B,DB). Since the minimizersAB andDB are unique, it follows thatΓD = ΓA. In
the perspective of this result, we have that for any minimizer (B∗, D∗) ∈ R

ℓ×T × Sℓ
+

for (T ), the couple(B∗, A
(D∗)
B∗

) ∈ R
ℓ×T × ST

+ is a minimizer for (U) and further-
more, the two functions achieve the same minimum value. The same result holds in the
opposite direction.
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