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Convex Learning of Multiple Tasks and their
Structure

Carlo Ciliberto* f Youssef Mrouehit ~ Tomaso Poggi¢ '

Lorenzo Rosascb 't

Abstract

Reducing the amount of human supervision is a key problensichine learn-
ing and a natural approach is that of exploiting the relati¢structure) among
different tasks. This is the idea at the core of multi-tagketéng. In this context
a fundamental question is how to incorporate the taskststiin the learning
problem. We tackle this question by studying a general caatjmnal framework
that allows to encode a-priori knowledge of the tasks stimgctn the form of a
convex penalty; in this setting a variety of previously pyepd methods can be
recovered as special cases, including linear and nonrlagaroaches. Within this
framework, we show that tasks and their structure can bdesfflg learned con-
sidering a convex optimization problem that can be appredtly means of block
coordinate methods such as alternating minimization and/ficch we prove con-
vergence to the global minimum.

1 Introduction

Current machine learning systems achieve remarkabletseisuseveral challenging
tasks, but are limited by the amount of human supervisionired. Leveraging simi-
larity among different problems is widely acknowledgedécatkey approach to reduce
the need for supervised data. Indeed, this idea is at the basnulti-task learning,
where the joint solution of different problems (tasks) Hees potential to exploit tasks
relatedness (structure) to improve learning accuracys ifléia has motivated a variety
of methods, including frequentist [25, (3, 4] and Bayesiarthoés (see e.g. [1] and
references therein), with connections to structured lagrj®,[34].

The focus of our study is the development of a general regaléon framework to
learn multiple tasks as well as their structure. Followi@§,[15] we consider a set-
ting where tasks are modeled as the components of a vedtare/Aunction and their
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structure corresponds to the choice of suitable functispates. Exploiting the the-
ory of reproducing kernel Hilbert spaces for vector-val@gtctions (RKHSwv)([25],
we consider and analyze a flexible regularization framewaiikhin which a vari-
ety of previously proposed approaches can be recoveredezsakpases, see e.g.
[19,[24,[26] 37| 14, 31]. Our main technical contribution igrafying study of the
minimization problem corresponding to such a regularimaframework. More pre-
cisely, we devise an optimization approach that can effilsijompute a solution and
for which we prove convergence under weak assumptions. @anoach is based on
a barrier method that is combined with block coordinate destechniques [33, 30].
In this sense our analysis generalizes the resulis|in [3vfoch a low-rank assump-
tion was considered; however the extension is not straglerd, since we consider
a much larger class of regularization schemes (any convexifyg. Up to our knowl-
edge, this is the first result in multi-task learning provihg convergence of alternating
minimization schemes for such a general family of problems.

The RKHSvv setting allows to naturally deal both with lingard non-linear models
and the approach we propose provides a general computdtamawork for learning
output kernels as formalized in [14].

The rest of the paper is organized as follows: in[Sec 2 wewebasic ideas of regular-
ization in RKHSwv. In Sed. 213 we discuss the equivalenceftérént approaches to
encode known structures among multiple tasks. InSec. 3 seuislé a general frame-
work for learning multiple tasks and their relations whereapnsider a wide family of
structure-inducing penalties and study an optimizaticatsgy to solve them. This set-
ting allows us, in Se¢l4, to recover several previous metlasdspecial cases. Finally
in Sec[b we evaluate the performance of the optimizatiomoteproposed.

Notation. With ST, C S C S™ C R"*" we denote respectively the space of
positive definite, positive semidefinite (PSD) and symnoetsi n real-valued matrices.
O™ denotes the space of orthonormaln matrices. For any square matrix € R™*"
andp > 1, we denote by|M||, = (31, 0;(M)P)Y/P the p-Schatten norm of\/,
whereo; (M) is thei-th largest singular value dff. For anyM € R™*™, M T denotes
the transpose ol/. For any PSD matrixd € S7, A" denotes the pseudoinverse of
A. We denote byi,, € S7, then x n identity matrix. The notation R4n/) C R™
identifies the range of columns of a matfix € R™*".

2 Background

We study the problem of jointly learning multiple tasks byaebting individual task-
predictors as the components of a vector-valued functiogt. us assume to havé
supervised scalar learning problems (or tasks), each withaming” set of input-
output observationS; = {(x, yit) }1t, with z;; € X input space ang,; € Y output
spac@. Given a loss functiof : R x R — R, that measures the per-task prediction

170 avoid clutter in the notation, we have restricted oumselo the typical situation where all tasks share
same input and output spaces, .= X and): C R.



errors, we want to solve the following joint regularizedrl@ag problem

T ne

L 1

minimize 3 - STLe?, @) + A fI3 (1)
t=1 =1

where? is an Hilbert space of vector-valued functiofs X — Y7 with scalar com-
ponentsf; : X — ). In order to define a suitable space of hypothelesn this
section we briefly recall concepts from the theory of repuidg kernel Hilbert spaces
for vector-valued functions (RKHSvv) and correspondinguarization theory, which
plays a key role in our work. In particular, we focus on a clalsseproducing kernels
(known as separable kernels) that can be designed to enped#is tasks structures
(see [15/ 2] and Sek. 2.3). Interestingly, separable kearel related to ideas such as
defining a metric on the output space or a label encoding iti+addel problems (see

Sec[2.B)

Remark 2.1 (Multi-task and multi-label learning). Multi-label leany is a class of
supervised learning problems in which the goal is to ast®dgput examples with
a label or a set of labels chosen from a discrete set. In gemra to discrete na-
ture of the output space, these problems cannot be solvectlglirhence, a so-called
surrogateproblem is often introduced, which is computationally tedxte and whose
solution allows to recover the solution of the original pieoh [32,[7]28].

Multi-label learning and multi-task learning are stronggtated. Indeed, surrogate
problems typically consist in a set of distinct superviseathing problems (or tasks)
that are solved simultaneously and therefore have a ndtmrallation in the multi-
task setting. For instance, in multi-class classificatimbpems the “One vs All” strat-
egy is often adopted, which consists in solving a set of mplaltbinary classification
problems, one for each class.

2.1 Learning Multiple Tasks with RKHSvv

In the scalar setting, reproducing kernel Hilbert spaces laéready been proved to be
a powerful tool for machine learning applications. Intéregy, the theory of RKHSvv
and corresponding Tikhonov regularization scheme follmsely the derivation in the
scalar case.

Definition 2.2. Let (H, (-,-)) be a Hilbert space of functions from’ to RT. A
symmetric, positive definite, matrix-valued functlon X x X — RT*7 is called a
reproducing kernel fo{ if for all z € X,c € RT and f € H we have thaf'(z, -)c €
‘H and the following reproducing property hold$(z), c)gr = (f,T'(z, -)c) 5.

In analogy to the scalar setting, it can be proved (seé [2&}) the Representer
Theorem holds also for regularization in RKHSvv. In parf@uve have that any
solution of the learning problem introduced in Ed. (1) cami¢ten in the form

T ne
Fl2) = "3 T,z 2)
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with ¢{") € R coefficient vectors.

The choice of kerndl induces a joint representation of the inputs as well as atsirel
among the output components [1]; In the rest of the paper Mldagius on so-called
separable kernels, where these two aspects are factotizegection 8, we will see
how separable kernels provide a natural way to learn thes tstsl4cture as well as the
tasks.

2.2 Separable Kernels

Separable (reproducing) kernels are functions of the fofma«’) = k(x,2')A Va, 2’ €
X wherek : X x X — R is a scalar reproducing kernel add € SI is a positive
semi-definite (PSD) matrix. In this case, the representeortm allows to rewrite
problem[(1) in a more compact matrix notation as

rrc1inimize V(Y,KCA) + X tr(ACTKC). (P)
ERnXT

HereY € R™*7T is a matrix withn = Zle n; rows containing the output points;
K € ST is the empirical kernel matrix associatedit@andV’ : R"*7 x R"*T — R,
generalizes the loss ifl(1) and consists in a linear combimaff the entry-wise ap-
plication of £. Notice that this formulation accounts also the situatidrere not all
training outputg/(*) are observed when a given inpute X is provided: in this case
the functionalV’ weights0 the loss values of those entries ¥f(and the associated
entries of K C' A) that are not available in training.

Finally, the second term i) follows by observing that, for alf € # of the form
f(-) = 30, k(xi, ) Aci, the squared norm can be writteng|3, = >°7" k(xi, z;)c] Acj =
tr(ACT KC) whereC € R"*T is the matrix withi-th row corresponding to the co-
efficient vectore; € R” of f. Notice that we have re-ordered the indeto be in
{1,...,n} to ease the notation.

2.3 Incorporating Known Tasks Structure

Separable kernels provide a natural way to incorporatedble structure when the
latter is known a priori. This strategy is quite general amdkied in the following we
comment on how the matrid can be chosen to recover several multi-task methods
previously proposed in contexts such as regularizatiodinggembeddings or output
metric learning, postponing a more detailed discussiohéstipplementary material.
These observations motivate the extension in Bec. 3 of #raiteg problem[P) to a
setting where it is possible to infef from the data.

Regularizers. Tasks relations can be enforced by devising suitable regata [15].
Interestingly, for a large class of such methods it can bevahbat this is equivalent to
the choice of the matrid (or rather its pseudoinverse) |25]. If we consider the segdar
norm of a functionf = Y " | k(w;,-)Ac; € H we have (se¢[15])

T
1£13 = > Al(fss fo) (3)

t,s=1
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whereA; is thet-th column ofA, H,, is the RKHS associated to the scalar kerfnahd
fo =30 k(zi,")Al ¢; € Hy is thet-th component off. The above equation sug-
gests to interprefi’ as the matrix that models the structural relations betwaskstby
directly coupling different predictors. For instance, leyteg AT = I +~(117)/T,
with 1 € R” the vector of allls, we have that the parametecontrols the variance
Sy I F=feli%,, of the tasks with respect to their mefr= & 57/, f;. If we have ac-
cess to some notion of similarity among tasks in the form a&g@l with adjacency ma-
trix W € ST, we can consider the regulariz@'zs:l Wi sl fe—fslla, + 7 I fell5,,
which corresponds tdt = L + I with L the graph Laplacian induced /.

Output Metric. A different approach to model tasks relatedness consisthoos-
ing a suitable metric on the output space to reflect the taskstare [24]. Clearly

a change of metric on the output space with the standard pnoeiuct(y, y/)rr be-
tween two output pointg,y7 € Y7 corresponds to the choice of a different inner
product(y, y/)e = (y,0y/)gr for some positive definite matri® € S%,. Indeed
this can be direct related to the choice of a suitable sefmkadnel. In particular,
for the least squares loss function a direct equivalencgshmttween choosing a met-
ric deformation associated toé € S7, and a separable kernl-,-)Ir or use the
canonical metric (i.e. witl® = I the identity) and kernél(-, -)©. The details of this
equivalence can be found in the supplementary material.

Output Representation. The tasks structure can also be modeled by designing an
ad-hoc embedding for the output space. This approach igplarly useful for multi-
label scenarios, where output embedding can be designaddae complex structures
such as (e.g. trees, strings, graphs, etc.)[[17, 21, 11¢rdstingly in these cases, or
more generally whenever the embedding nlapY” — ), from the original to the
new output space, is linear, then it is possible to show tiatdarning problem with
new code is equivalent tb](1) for a suitable choice of separedrnel withA = LT L.

We refer again to the supplementary material for the deddilsis equivalence.

3 Learning the Tasks and their Structure

Clearly, an interesting setting occurs when knowledge@faisks structure is not avail-
able and therefore it is not possible to design a suitablarabte kernel. In this case a
favorable approach is to infer the tasks relations direfetign the data. To this end we
propose to consider the following extension of probl&p (

minimize  V(Y, KCA) 4+ Mr(ACT KC) + F(A), Q)
CeR"*T, AeST

where the penalty’ : SI — R, is designed to learn specific tasks structures en-
coded in the matrix4d. The above regularization is general enough to encompass a
large number of previously proposed approaches by sim@gifpng a choice of the
scalar kernel and the penalfy. A detailed discussion of these connections is post-
poned to Sectiohl4. In this section, we focus on computattiasects. Throughout,



we restrict ourselves to convex loss functidnsaand convex (and coercive) penalties
F. In this case, the objective function is separately convex i’ and A but not
jointly convex. Hence, block coordinate methods, which @ften used in practice,
e.g. alternating minimization ovér and A, are not guaranteed to converge to a global
minimum. Our study provides a general framework to provatagnpute a solution
to problem[D). First, In Sectiofi 3]1, we prove our main results providingharac-
terization of the solutions of Proble®@} and studying a barrier method to cast their
computation as a convex optimization problem. Second, ti@®3.2, we discuss
how block coordinate methods can be naturally used to solele a problem, analyze
their convergence properties and discuss some general atisgerest.

3.1 Characterization of Minima and A Barrier Method

We begin, in Sectioh 3.7.1, providing a characterizatiothef solutions to Problem
by showing that it has an equivalent formulation in termshef minimization of
a convex objective function, namely ProbldR)( Depending on the behavior of the
objective function on the boundary of the optimization damBroblem[) might not
be solved using standard optimization techniques. Thisiblesissue motivates the
introduction, in Section 3.1l.2, of a barrier method; a fanoif “perturbated” convex
programs is introduced whose solutions are shown to coaverose of Probleni)
(and hence of the origind})).

3.1.1 An Equivalent formulation for

The objective functional ifd) is not convex, therefore in principle it is hard to find a
global minimizer. As it turns out however, it is possible ioccamvent this issue and
efficiently find a global solution tdd). The following result represents a first step in
this direction.

Theorem 3.1. Let K € S and consider the convex set
C={(C,A) e R"" x ST |Ran(C" KC) C Ran(A)}.
Then, for anyF : SJTr — R convex and coercive, problem

minimizeV (Y, KC) + Mr (ATCTKC) + F(A

minimizeV’ (Y, KC) + r( ) + F(4) (R)

has convex objective function and it is equivalenf®). In particular, the two prob-
lems achieve the same minimum value and, given a sol(fign Ar) for (&), the
couple(C’RA}i, Ag) is aminimizer for(Q). Vice-versa, given a solutigi’y, Ag) for

(9), the coupl€Cq Ag, Ag) is a minimizer for(R).

The above result highlights a remarkable connection betviikee problems(@)
(non-convex) andR) (convex). In particular, we have the following Corollawhich
provides us with a useful characterization of the local mimers of problem@).

Corollary 3.2. Let@ : R"*T x ST — R be the objective function of problef@).
Then, every local minimizer fa@p on the open sekR™*7" x SI+ is also a global mini-
mizer.



Corollary[3.2 follows from Theoreim 3.1 and the fact that, lo@ testricted domain
R™T x ST, the mapQ is the combination of the objective functional &) and
the invertible function(C, A) — (C'A, A). Moreover, ifQ is differentiable, i.e.V
and the penalty' are differentiable, this is exactly the definition oftanvexifiable
function, which in particular impliegwexity[12]. The latter property ensures that, in
the differentiable case, all trtationarypoints (rather than only local minimizers) are
global minimizers. This result was originally proved in [Xdr the special case df
the least-squares loss aAd-) = || - ||% the Frobenius norm; Here we have proved its
generalization to all convex loss&sand penaltieg’.

We end this section adding two comments. First, we note thlaile the objective
function in Problem®)) is convex, the corresponding minimization problem mighit n
be a convex program (in the sense that the feasibl€ s&not identified by a set of
linear equalities and non-linear convex inequalitiés.[$@cond, Corollary(312) holds
only on the interior of the minimization domakr*7 x SI and does not characterize
the behavior of the target functional on its boundary. Ith,face can see that both issues
can be tackled defining gerturbedobjective functional having a suitable behavior on
the boundary of the minimization domain. This is the key waiton for the barrier
method we discuss in the next section.

3.1.2 A Barrier Method to Optimize (&)

Here we propose a barrier approach inspired by the wofK ihyf3troducing a pertur-
bation of problem[R) that enforces the objective functions to be equalte on the
boundary ofR"*” x ST. As a consequence, each perturbed problem can be solved as
a convex optimization constrained on a closed cone. Therlattmment is made more
precise in the following result that we prove in the supplatagy material.

Theorem 3.3. Consider the family of optimization problems

minimizeV (Y, KC) 4+ Mr(A™ (CTKC + §Ir)) + F(A)
CeR™*T, (55)
Aest

with Iy € ST the identity matrix. Then, for each > 0 the problem(S?) ad-
mits a minimum. Furthermore, the set of minimizers(f§f) converges to the set of
minimizers for(R) as § tends to zero. More precisely, given any sequehge> 0
such thats,,, — 0 and a sequence of minimize(§,,,, 4,,,) € R"*T x ST for s9),
there exists a sequenc€’;,, A%,) € R™*T x ST of minimizers for(R) such that
|Cm — Ch e + | Am — ALl — 0asm — +o0.

The barriers?tr(A~1) is fairly natural and can be seen as preconditioning of the
problem leading to favorable computations. The proposeddranethod is similar in
spirit to the approach developed i [3] and indeed Thedré&waBd next Corollarly 314
are a generalization over the two main resultsin [3] to amye® penaltyF’ on the cone
of PSD matrices. However, notice that since we are consigeximuch wider family
of penalties (than the trace norm as|in [3]) our results cadirectly derived from
those in[[3]. In the next section we discuss how to computestihation of Problem
(S?) considering a block coordinate approach.



Algorithm 1 CONVEX MULTI-TASK LEARNING

Input: K, Y, e tolerance/ perturbation parametes$, objective functional ofl§°),
V loss, F structure penalty.
Initialize: (C,A) = (Co, Ap),t =0
repeat
Ci41 < SUPERVISEDSTEP (V, K,Y, Cy, Ay)
A1 < UNSUPERVISEISTEP(F, K, 6, Cy11, Ay)
t—t+1
until |S(Ct+1, At+1) — S(Ct,At)| <e€

3.2 Block Coordinate Descent Methods

The characteristic block variable structure of the objecfiinction in problem($?),
suggests that it might be beneficial to use block coordinathaus (BCM) (se€ [8])
to solve it. Here with BCM we identify a large class of methdldat, in our setting,
iterate steps of an optimization @r, with A fixed, followed by an optimization ofl,
for C fixed.

A metablock coordinate algorithm to solvisf) is reported in in Algorithnil. Here
we interpret each optimization step ovéias a supervised step, and each optimization
step overd as a an unsupervised step (in the sense that it involvesghésibut not the
outputs). Indeed, when the structure mattixs fixed, problem[R) boils down to the
standard supervised multi-task learning frameworks whgygori knowledge regard-
ing the tasks structure is available. Instead, when thdicasft matrixC is fixed, the
problem of learningd can be interpreted as an unsupervised setting in which the go
is to actually find the underlying task structurel[23].

Several optimization methods can be used as procedurestior3dPERVISEDSTEP
and WNSUPERVISELSTEP in Algorithm[dl. In particular, a first class of methods is
called Block Coordinate Descent (BCD) and identifies a widssof iterative meth-
ods that perform (typically inexact) minimization of thejettive function one block
of variables at the time. Different strategies to choosetvirection minimize at each
step have been proposed: pre-fixed cyclic order, greedgts¢a@] or randomly, ac-
cording to a predetermined distributidn [29]. For a revidvg@veral BCD algorithms
we refer the reader t6 [30] and references therein.

A second class of methods is called alternating minimira¢éind corresponds to the
situation where at each step in Algoritiun 1 and exact mirétiim is performed. This
latter approach is favorable when a closed form solutiostexor at least one block
of variables (see Section 3.2.1) and has been studied esbria [33] in the abstract
setting where an oracle provides a block-wise minimizenaahéteration. The follow-
ing Corollary describes the convergence properties of BadAdternate minimization
sequences provided by applying Algorithin 1&).

Corollary 3.4. Let the Problen{S?) be defined as in Theordm B.3 then:

(a) Alternating Minimization: Let the two procedures in Algorithih 1 each provide
a block-wise minimizer of the functional with the other lddeeld fixed. Then
every limiting point of a minimization sequence provideddbyorithm(1, is a



global minimizer for(S?).

(b) Block Coordinate Descent: Let the two procedures in Algorithinh 1 each consist
in a single step of a first order optimization method (e.g. j&tted Gradient
Descent, Proximal methods, etc.). Then every limiting fpofra minimizing
sequence provided by Algorittifh 1 is a global minimizer(f&f).

Corollary [3.4) follows by applying previous results on B@Rd Alternate mini-
mization. In particular, for the proof of paf&) we refer to Theorem.1 in [33], while
for part(b) we refer to Theorer in [30].
In the following we discuss the actual implementation offb8tPERVISEDand WN-
SUPERVISEDprocedures in the case whdres chosen to be least-squares loss and the
penaltyF to be a spectral-Schatten norm. This should provide the reader with a prac-
tical example of how the meta-algorithm introduced in tlE@st®n can be specialized
to a specific multi-task learning setting.

Remark 3.5. (Convergence of Block Coordinate Methods) Several wonkmiilti-
task learning have proposed some form of BCM strategy teedbk learning problem.
However, up to our knowledge, so far only the author$in [3jheonsidered the issue
of convergence to a global optimum. Their results where gader a specific choice
of structure penalty in a framework similar to that of problR) (see Sectiohl4) but
do not extend straightforwardly to other settings. Corgl&4 aims to fill this gap,
providing convergence guarantees for block coordinatéhaust for a large class of
multi-task learning problems.

3.2.1 Closed Form solutions for Alternating Minimization: Examples

Here we focus on the alternating minimization case and dssame settings in which
it is possible to obtain a closed form solution for the praged SJPERVISECSTEPand
UNSUPERVISELSTEP.

(SUPERVISEDSTEP) Least Square Loss. When the loss functiol” is chosen to be
least squares (i.6/(Y, Z) = |Y — Z||% for any two matriced’, Z € R"*™) and the
structure matrix4 is fixed, a closed form solution for the coefficient matfixeturned
by the SUPERVISEDSTEP procedure can be easily derived (see for instance [1]):

vee(C) = (It @ K + AMA™' @ I,) " tvec(Y).

Here, the symbok denotes the Kronecker product, while the notaties( 1) € R™™

for a matrixM € R™*" identifies the concatenation of its columns in a single vecto
In [26] the authors proposed a faster approach to solve tioislgm in closed form
based on Sylvester’'s method.

(UNSUPERVISEDSTEP) p-Schatten penalties. We consider the case in whidh is
chosen to be a spectral penalty of the fofit) = || - ||} with p > 1. Also in this
setting the optimization problem has a closed form solyti@rshown in the following.
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Figure 1: Comparison of the computational performance efalternating minimiza-

tion strategy studied in this paper with respect to the optition methods proposed
for MTCL in [19] and MTFL [3] in the original papers. Experimts are repeated for
different number of tasks and input-space dimensions asites in Sed. 5]1.

Proposition 3.6. Let the penalty of probler@S®) be ' = || - ||z with p > 1. Then,

for anyC' € R"*7 fixed, the optimization probleds?) in the block variabled has a
minimizer of the form

A% = "/(CTEC + 8217\ 4)

Propositiod 3.6 generalizes a similar result originallgysd in in [3] for the spe-
cial casep = 1 and provides an explicit formula for theN$UPERVISECSTEP of Al-
gorithmd. We report the proof in the supplementary material

4 Previous Work: Comparison and Discussion

The framework introduced in problen®)} is quite general and accounts for several
choices of loss function and task-structural priors. $&t8 has been mainly devoted
to derive efficient and generic optimization procedureghis section we focus our
analysis on the modeling aspects, investigating the impladifferent structure penal-
ties on the multi-task learning problem. In particular, wil Wriefly review some
multi-task learning method previously proposed, disaugss$iow they can be formu-
lated as special cases of problé@) ((or, equivalently,[R)).

Spectral Penalties. The penaltyF’ = || - |2 was considered iri [14], together with
a least squares loss function and the non convex prot@is( solved directly by
alternating minimization. However, as pointed out in $écs@ving the non convex
problem (although invex, see the discussion on Corollay drectly could in princi-
ple become problematic when the alternating minimizategquence gets close to the
boundary oR"*7 x ST . Arelated idea is that of consideridg A) = tr(A) (i.e. the
1-Schatten norm). This latter approach can shown to be dguivto the Multi-Task
Feature Learning setting of|[3] (see supplementary md}teria

Cluster Tasks Learning. In[19], the authors studied a multi-task setting wheresask
are assumed to be organized in a fixed numbef unknown disjoint clusters. While

10



the original formulation was conceived for linear settiiig;an be easily extended to
non-linear kernels and cast in our framework. Ee€ {0,1}7" be the binary matrix
whose entryE;; has valuel or 0 depending on whether taskis in clustert or not.
SetM =1 — ETET,andU = £117. In [19] the authors considered a regularization
setting of the form offR)) where the structure matriz is parametrized by the matrix
M in order to reflect the cluster structure of the tasks. Moezigely:

AN M) =epqU +ep(M —U) + ew (I — M)

where the first term characterizes a global penalty on theageef all tasks predictors,
the second term penalizes the between-clusters variandetha third term controls
the tasks variance within each cluster. Clearly, it woulddaal to identify an optimal
matrix A(M) minimizing problem[R). However,M belongs to a discrete non convex
set, therefore authors propose a convex relaxation by i@nistg / to be in a convex
setS. = {M € ST,0 < M < I,tr(M) = r}. Inour notationsF'(A) is therefore
the indicator function over the set of all matricds= A(M) such thatM € S.. The
authors propose a pseudo gradient descent method to selpeablem jointly.

Convex Multi-task Relation Learning.  Starting from a multi-task Gaussian Process
setting, in [37], authors propose a model where the covegiamong the coefficient
vectors of thel” individual tasks is controlled by a matrit € ST in the form of

a prior. The initial maximum likelihood estimation problemrelaxed to a convex
optimization with target functional of the form

|V = KC||% + M\ tr(CTKC) + M\ tr(A71CTKC) (5)

constrained to the set = {4 | A € ST tr(A) = 1). This setting is equivalent to
problem ) (by choosingF" to be the indicator function ofl) with the addition of the
termtr(CTKC).

Non-Convex Penalties. Often times, interesting structural assumptions cannot be
cast in a convex form and indeed several works have propazeadonvex penalties

to recover interpretable relations among multiple tasksr ifstance[[2] requiresl

to be a graph Laplacian, dr [13] imposes a low-rank facttiozeof A in two smaller
matrices. In[[2[7, 22] different sparsity models are proplose

Interestingly, most of these methods can be naturally catte form of problem[Q)

or (B). Unfortunately our analysis of the barrier method doesweaessarily hold also

in these settings and therefore Alternating Minimizati®mét guaranteed to lead to a
stationary point.

5 Experiments

We empirically evaluated the efficacy of the block coordinaptimization strategy
proposed in this paper on both artificial and real datasststh®tic experiments were
performed to assess the computational aspects of the ajpprehile we evaluated the
quality of solutions found by the system on realistic segfin
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50 tr. samples per class

NMSE (+ std)

nl

100 tr. samples per class

NMSE (= std)

nl

150 trlespgr class

NMSE (= std)

nl

200 tr. samples per class

nMSE (+ std)

nl

STL
MTFL
MTRL
OKL

0.2436 £ 0.0268
0.2333 £ 0.0213
0.2314 £ 0.0217
0.2284 =+ 0.0232

0
0.0416
0.0404
0.0630

0.1723 £ 0.0116
0.1658 £ 0.0107
0.1653 £ 0.0112
0.1604 £ 0.0123

0
0.0379
0.0401
0.0641

0.1483 £ 0.0077
0.1428 £ 0.0083
0.1421 £ 0.0081
0.1410 £+ 0.0087

0
0.0281
0.0288
0.0350

0.1312 £ 0.0021
0.1311 £ 0.0055
0.1303 £ 0.0058
0.1301 £ 0.0073

Table 1: Comparison of Multi-task learning methods on the&adataset. The advan-
tage of learning the tasks jointly decreases as more t@@amples became available.

5.1 Computational Times

As discussed in Sel] 4, several methods previously progogeé literature, such as
Multi-task Cluster Learning (MTCL) [19] and Multi-task Fese Learning (MTFLI[3]]),
can be formulated as special cases of prob[@ndar (). It is natural to compare the
proposed alternating minimization strategy with the optation solution originally
proposed for each method. To assess the system’s perfoeméthaespect to varying
dimensions of the feature space and an increasing numbasks,twe chose to per-
form this comparison in an artificial setting.

We considered a linear setting where the input data liB4rand are distributed ac-
cording to a normal distribution with zero mean and identibyariance matrix.T'
linear modelsw; € R? fort = 1,...,T were then generated according to a normal
distribution in order to sampl€ distinct training sets, each comprising3®fexamples

(", 4" such thaty") = (wy,2!") + ¢ with ¢ Gaussian noise with zero mean and
0.1 standard deviation. On these learning problems we comphszdomputational
performance of our alternating minimization strategy dreldriginal optimization al-
gorithms originally proposed for MTCL and MTFL and for whitle code has been
made available by the authors’. In our algorithm we ugdgd= I identity matrix as
initialization for the alternating minimization procedunWe used a least-squares loss
for all experiments.

Figurd1 reports the comparison of computational timestefiahting minimization and
the original methods to converge to the same minima (of is@dy the functional of
MTCL and MTFL). We considered two settings: one where the lbeinof tasks was
fixed toT" = 100 andd increased frond to 150 and a second one whémwas fixed to
100 andT varied bewteers and150. To account for statistical stability we repeated
the experiments for each couglg, d) and different choices of hyperparameters while
generating a new random datasets at each time. We can malabsgovations from
these results: 1) in the setting whéras kept fixed we observe a linear increase in the
computational times for both original MTCL and MTFL methodaghile alternating
minimization is almost constant with respect to the inpatcgpdimension. 2) Whedh

is fixed and the number of tasks increases, all optimizati@ategies require more time
to converge. This shows that in general alternating miration is a viable option to
solve these problems and in particular, wién<< min(d, n) — which is often the
case in non-linear settings —this method is particularigient.
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Accuracy (%) per # tr. samples per class
50 100 150
STL 72.23 +0.04 76.61 +0.02 79.23 +0.01
MTFL 73.23 +.08 77.24 +.05 80.11 +.03
MTRL 73.13 +0.08 77.53 +0.04 80.21 +0.05
OKL 72.25 +0.03 77.06 +0.01 80.03 +0.01

Table 2: Classification results on thé-scene dataset. Four multi-task methods and
the single-task baseline are compared.

5.2 Real dataset

We assessed the benefit of adopting multi-task learningoagpes on two real dataset.
In particular we considered the following algorithms: Sendask Learning (STL)
as a baseline, Multi-task Feature Learning (MTHL) [3], Nttdisk Relation Learning
(MTRL) [37], Output Kernel Learning (OKL) [14]. We used ldagjuares loss for all
experiments.

Sarcos. Sarcod is a regression dataset designed to evaluate machinerigasat
lutions for inverse dynamics problems in robotics. It cstssin a collection oR1-
dimensional inputs, i.e. the joint positions, velocitiesl@acceleration of a robotic arm
with 7 degrees of freedom ari@loutputs (the tasks), which report the corresponding
torques measured at each joint.

For each task, we randomly samplgg 100, 150 and200 training examples while we
kept a test set df000 examples in common for all tasks. We used a linear kernel and
performed5-fold crossvalidation to find the best regularization pagten according

to the normalized mean squared error (nMSE) of predicteglizs. We averaged the
results oveil 0 repetitions of these experiments. The results, reportadlite[1, show
clearly that to adopt a multi-task approach in this settgfgvorable; however, in order
to quantify more clearly such improvement, we report in €blalso thenormalized
improvement{nl) over single-task learning (STL). For each multi-task roetivTL,

the normalized improvement nl(MTL) is computed as the ayera

Z NMSE; (STL) — nMSE; (MTL)

I(MTL) =
niMTL) = /NMSE;(STL) - nMSE (MTL)

Meap =
over all then.,, = 10 experiments of the normalized differences between the nMSE
achieved by respectively the STL approach and the givenitask method MTL.

15-Scenes. 15-Scendsis a dataset designed for scene recognition, consistingin a
class classification problem. We represented images u$i@g-bding [3%] and trained
the system on a training set comprisitg 100 and150 examples per class. The test set
consisted irv500 images evenly divided with respect to thescenes. Tabld 2 reports

2urlhttp://www.gaussianprocess.org/gpml/data/
Shttp://www-cvr.ai.uiuc.edu/poncgrp/data/
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the mean classification accuracy Zihrepetitions of the experiments. It can be noticed
that while all multi-task approach seem to achieve appraighy similar performance,
these are consistently outperforming the STL baseline.

6 Conclusions

We have studied a general multi-task learning frameworkreviiee tasks structure
can be modeled compactly in a matrix. For a wide family of nigdiae problem of
jointly learning the tasks and their relations can be cast @snvex program, general-
izing previous results for special cases/[3, 14]. Such amipation can be naturally
approached by block coordinate minimization, which can d@nsas alternating be-
tween supervised and unsupervised learning steps optigiigspectively the tasks or
their structure. We evaluated our method real data, confgriie benefit of multi-task
learning when tasks share similar properties.

From an optimization perspective, future work will focus stadying the theoretical
properties of block coordinate methods, in particular rdopg convergence rates. In-
deed, the empirical evidence we report suggests that sistii@egies can be remark-
ably efficient in the multi-task setting. From a modelinggperctive, future work will
focus on studying wider families of matrix-valued kernelgercoming the limitations
of separable ones. Indeed, this would allow to account a@lsstfuctures in the inter-
action space between the input and output domains jointiyclwis not the case for
separable models.
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Appendix

Imposing Known Structure on the Tasks

Coding and Embedding

A common approach to encode knowledge of the tasks relationsists in mapping
the output spac®” in a new) C R’ and then solvé independent standard learning
problems (e.g. RLS, SVM, Boosting, ett. [17]) or a single @i a joint loss (e.g.
Ranking [21]) using the mapped outputs as training obsevatThe goal is to im-
plicitly exploit the structure of the new space to enforcewn (or desired) relations
among tasks.

The most popular setting for thesenbeddingor coding methods is multi-class
classification since in several realistic learning proldentasses can be organized in
informative structures such as hierarchies or trees. datigly, due to the symbolic
nature of the classes representation as canonical baks, mionlinear embeddings are
not particularly meaningful in classification contextsdéed the literature on coding
methods for multi-task learning has been mainly concernigiu tve design of linear
operatorsL : YT — Y [17]. In the following we show that a tight connection exists
between coding methods and our multi-task learning setting

For a fixed linear operatat € R**7, we can solve the “coded” problem using
the notation offP) and a kernel of the forrft = k1, with I, the/ x £ identity matrix
(“independent tasks” kernel)

minimize V (Y, KC) + A tr(CT KC) ©6)
CeRnxt

From the Representer theorem we know that the solutidnl afi{Bhave the form
flx) = Y0 k(z,2:)¢ = > k(z,2;)Le;, for somee; € RT andé; = Le; €
L(RT). Therefore, we can constraifll (6) on matricgs= CL with C € R"*T,
implying that the best solution fdrl(6) belongs to the setusfdtionsf = Lo g € Hyy,
with g € Hir,-

For those loss functions that depend only on the inner product between the vec-
tors of prediction and the ground truth (e.g. logistic ordgen21,.36], see below),
the “coded” Problem[{6) o® with kernelkI, is equivalent tofP) on ) with kernel
kLT L. More precisely, if the multi-output loss can be written battZ (7, f(x)) =
L((g, f(z))5) forall g € Y andz € X, we have

(@, f(@))y = (Ly, Lg(x))5 = (y, L Lg(x))y (7

wherey € ) is such thatLy = j and LT denotes the adjoint operator &f(in this
case just the transpose matrix sincés a linear operator between vector spaces over
the real field). Therefore, the two terms in the functional@fbecome

V(VY,KC)=V(YL",KCL")=V(Y,KCL'L)
where the last equality makes use of the property in[éq. (id), a
tr(CTKC) =tr(LCTKCL") = tr(L" LCTKC)
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proving the aforementioned equivalence between Probl@nand [P) by choosing
A=LTL.

Semantic Label Sharing In [17] the authors proposed a strategy to solve a large
multi-class visual learning problem that exploited the aatit information provided

by the WordNet[[16] to enforce specific relations among tasksparticular, by de-
signing a “semantic” distance between classes using thelMéirgraph, the authors
were able to generate a similarity matiix € Sf encoding the most relevant class
relations. They used this matrix to map the original outigués the canonical basis of
RT) into a new basis where euclidean distances between ouigasavould reflect the
semantic ones induced by the WordNet priming. Then theyieghpl semi-supervised
One-Vs-All approach on the new output space.

Output Metric

In multi-output settings, another approach to implicitlpdel the tasks relations con-
sists in changing the metric on the output sp&Je In particular, we can define a
matrix© € ST and denote the induced inner product®h as(y,y')e = (y, Oy')rr

for all y,y’ € RT. For loss functionsC such as those mentioned in SEt. 6 (e.g.
hinge, logistic, etc.) that depend only on the inner prochetiveen observations
and predictions, we have that for a fix€dthe new loss is defined & (y, f(x)) =
Ly, f(x))e) = L({y,Of(x))rr) and induces a learning problem of the form

inimize V(Y, KCO) 4+ \ tr(0CTKC
minimize V(Y )+ Atr( ) (8)
which is clearly equivalent to solvind®) choosing the kerngt©. Notice that the
second term in eq[]8) derives from the observation th:;}t withnew metric, the
norm in the RKHSvv becomef |17, = (f, [k, = o s k(@i ), es)o =
tr(6CT KC) as required.

metric learning In [24] the authors proposed a metric learning framework limciv
both the new metricd (or ©) and the task predictors were estimated simultaneously.
Adopting almost the same notation of Probld@) they used the least squares loss
and imposed a penalty(A) = —log(det(A)) on the metric/structure matrix. A fur-
ther penalty was also imposed oh in order to enforce specific sparsity patterns.
The only difference with our framework is that in_[24] the laoits do not impose the
regularization termr(AC T KC). Notice however that such term allows us to apply
Theoreni:311 and thus obtain the equivalence betWé@mid [R). This is extremely
useful from the optimization perspective since, for insgrfor the least squares loss
and log-determinant penalty mentioned above, ProbfE)rig actually convex jointly,
which is not the case for the framework in [24].
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Learning the tasks and their structure

Equivalence with the convex problem
We will make use of the following observation

Lemma6.1. Considerk € ST andC € R"*”. ThenRanC" KC) = RanC" VK) =
RanC"K).

Proof. The second equivalence follows directly from the obseovathatC ™ K =
(CTVEK)VK andC"VK = CTK(VK). Regarding the first equivalence, recall
that for anyM € RT*" RT = Ran(M) & Ker(M), with Ker(M) denoting the null
space of\/. Therefore we can alternatively prove that Keéf KC) = Ker(C'T VK).
Notice that clearly KeiC" v K) C Ker(CT KC). Now, letx € Ker(C'T KC) so that
0=2"CTKCz=2z"(VKC)"(vVKC)z. This implies that: is a singular vector of
(vKC) with singular value equal to zero and therefore Ker(C'" vK). O

Proof. (Theoreri 3]11)

We need to prove that is a convex set and that(ATC'T KC) is jointly convex
onC. Regarding the first part, notice that fdre S7 andC € R"*7 the constraint
RanCT KC) C Ran(A) can be equivalently rewritten as K€t KC) O Ker(A).
Therefore, using Lemn{a_ 6.1, we can check convexitg dfy showing that for any
arbitrary couplg A1, C4), (A2, C2) € C and anyd € [0, 1] we have KefdA; + (1 —
0)A2) C Ker(0C] K + (1 — §)Cy K). Let us consider an arbitrany € Ker(6A; +
(1 -0)As). We have

0=a" (A1 + (1 —0)Ax)z =0z Ayx + (1 — 0)x " Ay,

Since both4; andA, are PSD, the terms’ A;z are necessarily non-negative for both
i = 1,2. Hence, from the equation above we haved,;x = 0, which is equivalent
tox € Ker(A;) NKer(4;) C Ker(C] K) N Ker(C, K). This means that is in the
nullspace of bottC;' K and Cy K and therefore also in the nullspace of any linear
combination of the two. In particular € Ker(§C K + (1 — 6)Cy K).

The proof for the convexity ofr(ATCT KC) has been already pointed out else-
where (see for instanckgl[5]). For completeness, we providgirapler derivation of
this result which makes use of a Schur's complement arguarahsimple algebraic
properties in line with[[14] to show that the epigraph of thadtion is convex. Con-
siderA € ST andC € R"*T. From simple properties of the trace we have the
equivalencer(ATCT KC) = vec(vVKC) T (AT ® Ir)vec(vKC), wherew identifies
the Kronecker product and hyc(-) we denote the vectorization operator mapping a
matrix M € R™*™ to the concatenation of all its columnmsc(M) € R™. Since
RanA) D RanC"T KC) = Ran(Cv/K) we can apply the generalized Schur’s com-
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plement to write the epigraph gi( A, C) = tr(ATCT KC) as
epi f ={(t,A,C) |t > tr(ATCTKC) =
vec(CVE) T (AT @ Ir)vec(CVE), (A,C) € c} -

_ {(t,A,O) ‘ ( veic?\]’%>T vec(C;\/E) > 0,

(A,C) € C}

where we writeX > Y for any two symmetric matrice¥ Y € S™ if and only if
X —Y < ST Notice that the block components of the matrix in the equeéibove
are all linear with respect td, C andt and therefore the convexity epi f follows
by directly observing that for any coup(e, A1, C1), (t2, A2, C2) € epi f, the PSD
constraint holds for any convex combination of the two.

We finally prove that the mapping between minimizers state@tieorem[(3]1).
First notice that for anyC, 4) € R™*7 x ST we haveQ(C, A) = R(CA, A), with
(CA, A) € domR since clearly Rapd) D Ran(AC T KC A). Thereforenf {Q(C,A) | C €
R™T A e ST} > inf {R(C, A) | (C, A) € C}. Analogously, given a poir{C, A) €
C we have thatR(C, A) = R(CATA, A) since RaiC" K) C RanA) and thus
V(y, KCAAT) = V(y, KC). ThereforeR(C, A) = R(CATA, A) = Q(CAT, A),
implying thatinf {R(C, A) | (C,A) € C} > inf {Q(C,A)| C € R™*T A e ST}
and concluding the proof. O

A Barrier Method to Optimize (R)

Proof. (Theoreri 313)o prove the existence of finite minimizers we need to show tha
there exists a minimizing sequence &rsuch that it converges to a pointdam,S? =
R™*T x ST .. To see this, consider a generic minimizing sequence, iseqaence
{(Cy, An) }nen C domsS? such thatS®(C,,, A,,) — info,aS°(C, A). Notice that we
can separat€’, in C,, = én, +C:- with @n € Ran(K) the range of the Gram matrix
K andC} e Ker(K) its nullspace and that therefof® (C,,, A,) = S%(Cy, Ap).
This implies that the sequen@@n, A,,) is bounded, since, if it was not, we would have
the coercive penalty’ or thetr(A;l(,A“JK@n) to go to infinity asn grows. But this
is not possible sinc&?(C,, A,) — infcaS%(C,A) < +oo. Therefore(C,, A,,)
admits a converging subsequence. Suppose without lossnefaiy that(C,,, A,,)
converges to a pointC*, 4*) € domS° = R™*T x ST. We want to show that
(C*, A*) is actually in thedomS° = R™*T x ST i.e. thatA* is positive definite.
But this is obvious sincé > 0 and therefore if thed,, were to converge to a point in
ST\ST ., we would have thai? tr(A;!) — +oo and therefores (C,,, A,) — +00
asn — +ooc. Finally, by the continuity of5%, we haveS?(C,,, A,,) — S%(C*, A*),
therefore proving thatC*, A*) € argming 4 S°(C, A).

The second part of the proof requires the following prelianjnsteps:

1. minc aR(C, A) = infa,cS°(C, A) and they have same infimizers.

2. g(0) = infa,cS°(C, A) is continuous (in fact convex) with minimum in 0.
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We prove the first point in Lemnia 8.2, while the second obsEmdollows from
the fact that the function is the point-wise infimum of a jointly convex function over
a convex set. This requires to show thétr(A~1) is jointly convex which follows the
same reasoning as for the convexityofA—'C T KC) in Theorem[(311).

Let us consider two sequencgs > 0 and{(C,,, A,)}nen C domS® = R™*T x
ST, satisfying the hypothesis of the Theorem, 582 (C,,, A,,) = minc,45° (C, A).
We will first prove the result fo”,, in the range of the Gram matrik’. Notice that
under this requirement, tHe&”,,, A,,) are bounded, since, analogously as for the proof
above, if they were not we would have the coercive penaltyr thetr(A; 1C KC,,)
to go to infinity as: grows. But this is not possible sinéé~ (C,,, A,,) — ¢(0) < +oc.
Therefore, by points 1. and 2¢(0) = minc,aR(C, A) and the limit points of
(Cn, A,,) are minimizers forR. This finally implies that there exists a sequence
{(Ck, A en C argminge aR(C, A) such that|C,, — C||r + || A — AL || F tends
to zero asn goes to infinity. To see this, suppose by contradiction that not true
and that there exists a subsequefigg,, , A,, ) }reny @and anM > 0 such that|C,,, —
C*|p+|An, — A*||p > M forall k > 0 and forall(C*, A*) € argming 4 R(C, A).
Now, since(C,, , Ay, ) is a subsequence ¢, A,,), we have that:(i) (C, , An,.)
is bounded (hence admits a converging subsequencé)}grelery converging subse-
guence tends to a minimizer & This clearly contradicts the hypothesis.

Now, consider the general case in whi€ly is not in the range of<: notice that
similarly as before(”,, can be separated ifi,, = C,, + C;- with C,, € Ran(K) the
range ofK andC;- € Ker(K) its nullspace. Clearlys®" (C,, A,) = S%(Cy, An) —
¢(0) and therefore, from the discussion above we have a seqéageA’ )} en C
argming 4 R(C, A) such that|C,, — Ci||r + [|An — ALllr — 0asn — +oo. We
can now observe that the sequeliCé, A% ) = ((/A”;i + Ci-, Ar) satisfies the statement
of the Theorem: indee(t) the (C}, AY) are minimizers forR since R(C}, A%) =
R(Cx, Ax) and(id) ||Cy, — Ck |l p = ||Cn — C2 || — 0 for n — +o0. O

Lemma 6.2. mina cR(C, A) = infa,cS°(C, A) and they have same infimizers:

Proof. This fact follows from the observation that for @ll> 0, domS° = domS°

is equal to the interior oflom R and that all minimizers foRR belong todomR. To
show this second statement we will prove that for any seqéf€,,, A,,) }nen C
domR and converging to some poit€’, A) € R"*? x ST \ domR, we have that
R(Cp,A,) — 400 asn goes to infinity. For simplicity of notation let us denote
B = CTKC and analogoush3,, = C KC,. Since from hypothesis RaA) 2
RanCT KC) we have that Kerd) ¢ Ker(B), or, in other words, there exists an
eigenvectow for A such that € Ker(A) and||Bv||2 > 0.

Since the sequencé, converges tol, we can identify a sequence of eigenvectors
vy, for A, such thatv,, — v and their associated eigenvalig — 0 asn goes to
infinity. Notice that we can assume without loss of generdhiat \,, > 0 for all n
since\,, = 0 would imply v,, € Ker(A,,) C Ker(B,,) but we have from hypothesis
that|| B,v,||2 — || Bo|| > 0. Therefore we have

tr(ALBn) > /\gleann = )\;IHannH% — 400

asn goes to infinity. O
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Spectral Regularization

Propositio 3.5 follows directly from the following result

Proposition 6.3. Let A, M € S} with Ran(4) D Ran(M), rank(M) = r. LetM =

UXU " be an eigendecomposition df with U € O™ andX S a diagonal matrix
with eigenvalues in decreasing order. Then, there existaixnA, = UTU T € St

withI" € S7 diagonal withl'; ; = 0 Vi < r, such that

tr(AIM) = tr(A™M) and [|Adl, < Al Vp2>1 9)
with the equality holding if and only ift, = A.

Proof. To keep the notation uncluttered we prove the resultfor AT. Consider an
eigendecomposition® = SAST with S € O™ andA € S diagonal with eigenvalues
in decreasing order. Let us defife= UTS € O™. Then

T n

tr(OM) =tr(RARTE) =Y "0, Y R\ = Z oiYi
j=1 i=1

i=1

whereo; and); are respectively théth eigenvalues o/ and® and we have defined
Y = 2?21 R;;A; fori < r andy; = 0 otherwise. Hence, if we consider a diagonal
matrixI" € S such thaf';; = v; and se®®’ = UTU T we obtain the left equivalence
of eq. [9), namelyr(©M) = tr(©’M). Now, consider the-Schatten norm o®’

r 1/p r 1/p
1©") ], = ( %) S ) e
; Vi ; (Z?:l R?j)‘j)

Notice thatR;; = U, - S; corresponds to the projection of tixh eigenvector of\/ on
the j-th eigenvector oB. Since Raf®) = Ran(A) O Ran(M), for any eigenvector
s € R™ in the nullspace 00 (i.e. with associated eigenvalue= 0), we have that
U'-s=0foralli <r. HenceVi<r,1=R] R, = Z};l R} = Zle R,
wherek = rank(A). Therefore, since th&?;s add up tol and the scalar function
(1/z)P is convexinz € R4+, we have

k
1
2
i ZF = ||®T||§

j=1 i=1 j=1"1
where we have made use of the fact that forja#t 1,...,n we have} " | R;; =
R] - R; = 1. Therefore|[(©)T], < ||©7],. By taking A’ = (©’)" we have the
desired result. O
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Applied to the minimization in problenfd) with C € R"*7 fixed andp-Schatten
penalty, Proposition 6.3 states that a minimider € ST has the same system of eigen-
values ag” " K C and their spectrum have same sparsity pattern (i.e(Rak C) =
Rarn(A)). This observation leads directly to the closed formuland f A, stated in
Propositio 3.B.

Proof. (Propositior 3J6)Consider the eigendecompositioh KC = M = UXU "

with U € OT andX € ST diagonal with the eigenvalues arranged in descending.order
We apply Proposition 613 and obtain the minimizer= UTU " forT" € ST diagonal
with same sparsity pattern &s We can rewrite the target function as

T

=1 It

wherer = rank(M). Therefore, the optimization problem consists in minimgi
the target function above with respect to the. This is an unconstrained convex
optimization of a differentiable coercive function bouddegelow and therefore it is
sufficient to set the gradient to zero and solve with respetitd~,. It is clear that for
eacht = 1...r, the minimizer is of the form; = */0;/), leading to the desired
solution. O

Linear Multi-task Learning

Several works in multi-task learning have focused on limaadels where the multi-
output predictorf : R¢ — R7” is parameterized by a matri¥’ € R4*” whose
columnsw; € R? are associated to the individual task-predictii®) = (w;, z)ga
for anyx € R?. In this tasks structure can be imposed considering seitataitrix
penaltyQ : R*T — R and regularization schemes of form

min. VY, XW)+ QW) (10)
WeRde

whereX € R™*4 is the matrix whose rows correspond to the (transposed) jygints
in the training sets, ordered accordingly to the ordarth We can recognize two main
classes of penalty functions. A first class correspond tdott that impose structured
sparsity on the input features across the multiple tasksin&iance considering the
penaltyQ2(-) = || - ||2,1 [8], which encourages whole rows 8f to be simultaneously
sparse, see also [20,138]. A second class corresponds toadpegularization methods
defined by penaltie§) acting on the singular values . Examples in this class
include methods that impose low-rank assumptions [3] ontdlsks, or search after
tasks-cluster structures [19]. Ideas related to a combimatf the above methods can
also be considered [110].

Most Linear multi-task learning problems of the folm](10}w@ spectral penalty,
can be formulated in terms of problef®] for a suitable choice of. Indeed it can be

4Again V would weight with zeros the loss associated to entries fachvexamples are not available
during training
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shown that for several spectral norms, such as the p-sohattens, the penalt§ can
be written as

QW) = inf trace WA TW ) 4+ Fo(A) YW e R™*T
AesT,

Here we report the example of the nuclear ndrn|.., that has already been observed
in similar form in [3,[18] and that can be easily derived frono®[3.6 for the case
p=1.

1

[Wls == inf trace( WA W) + trace(A).

2AeSI+
Indeed, from Prop.[(3l6) we have that the solution to the mization problem is
A, = \/(WtopW) and therefore, the minimum of such functional will be exactl

trace(VWWT) = [|[W||..

Impose Tasks Relationships by enforcing structure on
the feature space

Relations among tasks can be also modeled by enforcingdshtatetures on the input
space. For instance inl[3], the authors generalized a featlection framework to the
multi-task setting by formulating the linear problem

minimize  V (Y, XUM) + | M|
UeOd,MeRIxT

2,1 (11)

whereX € R"*4 is the matrix whose-th row corresponds to the input vectagre R?
and the(2, 1)-norm||M||2,1 = Zzzl | M* |2 is introduced to enforce sparsity among
the rowsA/* of M. This penalty generalizes feature selection to the matticicase
by directly manipulating the covariance on the input spat@wever, since input and
output distributions are connected by the training dats, itasonable to expect this
process to indirectly affect also the covariance on the Wugpace. Indeed, in this
Section we present an interesting result connecting ragi-problems that impose
structure on the input covariance and problems that insd@ado control the output
covariance (i.e. in the form dfH)).

To show this connection, we need to discuss in more detaithik in [3]. Al-
though [I1) is not convex, the authors prove that there £®stequivalent convex
formulation of the form

minimize V(Y,XW) + v tr(W' DIW). (12)
WeRr**T Desq,
Ran(D)DRanW),tr(D)<1

The authors then proceed to generalize this framework tadhnénear case using the
advantages of the RKHS notation. In this setting, the oabidea of identifying a

low dimensional set of directions in the feature space taées naturally to the prob-
lem of finding a small set of orthogonal directions in the Iditbspace. To this end,
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the authors perform a preprocessing step whose goal isntifidan orthonormal ba-
sis of functionsyy, ... v, € Hy, for set spanned by the(z;, -) and define a matrix
K e R™*! such thatK;; = 1;(z;). A possible way to do this is by considering a
eigenvalue decompositidnsU T of K and takingk = UX'/2 (taking out fromx1/2
the columns equal to zero). It is easy to show that the standarning problem in
RKHS settings can be cast equivalently in this new notatitowever, this framework
has the further advantage that it can be generalized tonékeccount the eventuality
of a transformation in the feature space, leading to thenside of problem[(12) for
the non linear case

minimize V(Y,KB) +~tr(B"D'B) (13)

BeR**T Dest,
Ran(D)DRanB),tr(D)<1

As can be noticed, the structure of probldml(13) is very simib the one of prob-
lem (B) and indeed, as stated in Corolléryl6.5 the two are equivathen trace reg-
ularization is imposed o). However, as shown in Theordm 6.4, a more general
equivalence holds.

Theorem 6.4. LetA > 0,p > 1, R™*7T, {z;, 4,17, € R? x R a set of input-output
pairs withy € R™"*7 the matrix whose-th row corresponds tg;. Letwyy,... ¢ €
Hy. be an orthonormal basis forpan{k(z;, -}, and K € R™** with K,; = 1, (z;).
Then B
minimize  S(B,D) = V(Y,KB) +tr(B*D'B) + X | D||, (7

BeR**T Dest,

Ran(D)DRan(B)
is a convex optimization problem equivalent(@) with penalty functionf'(A) =
|Allp. In particular the two problems achieve the same minimum gngkn a mini-
mizer for one problem it is possible to obtain a solution foe bther and vice-versa.

The crucial aspect of the proof of TheorEml6.4 (which we plmlew) consists in
identifying the two mappings that allow to obtain a minimifer problem [K)) from a
solution of [7)) and vice-versa.

As a corollary of Theorenm (6.4) we get the exact equivaleadke problem proposed
in [3].

Corollary 6.5. Problem(@13) is equivalent tof7) for p = 1. In particular the two
problems achieve the same minimumXoe 42/4. As a consequence of Theoren 6.4
this implies also tha{@I3)is also equivalent tdR) whenF(:) = || - ||, = tr(-).

This result follows from the direct comparison of the mirmeris for the prob-
lems [[) (from Propositio 316) and (13) (from][3]). Notice, thattedugh equiva-
lent as convex optimizations, it is in general more convetrtie solve problems in the
form (R) rather than[T) since in most caseB << /.

Proof. Theorerh 614.
From the discussion i [3] we can rewrite probléR))(in the equivalent formula-
tion
minimize T(B,A) = V(Y,KB) +tr(A'BTB) + X || 4], @)
BeR**T AesT,
Ran(A)DRan(B ")
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Therefore, to prove Theorem 6.4 it is sufficient to show thrabfem [7) and 1) are
equivalent. Assume without loss of generality< ¢. Consider an arbitrary matri €

% UT where0 € RE-T)xT
identifies a matrix of all zerod/ € O, U € OT and¥. € ST a diagonal matrix with
eigenvalues in descending order. From Propositoh 6.3, wairothat the minimizers
of the two functionsS(B, -) andT'(B, -) are unique and can be written respectively in
the forms

R“*T and a singular value decompositih= 1/

DB=V<FOD g)vTesi and Ap =UT.U' € ST

wherel'p, T4 € SI have same sparsity pattern Esand the zero matrices in the
formulation of D are of appropriate dimension. We can therefore write themmim
value achieved b (B, ) asS(B, Dp) = V(Y, KB) + tr(F})EQ) + A|T'p||, and the
minimum achieved by’(B,-) asT'(B, Ag) = V (Y, K B) + tr(',52) + AT a]l,. In
the light of these equations, it can be easily cheked thaeb'mgAng) =UI'pUT €
ST we have

S(B,Dp) =T (B, AP)) > T(B, Ap)

where the inequality follows from the fact thdts is a minimizer forT'(B, -). Anal-
ogously, we can design a materBA) € S{ such thatl'(B, Ag) = S(B, DfBA)) >
S(B, Dp). Since the minimizerglz and D g are unique, it follows thafp = T'4. In
the perspective of this result, we have that for any minim{zz., D..) € R**7T x Sfr
for (T, the couple(B*,Agj*)) € R*T x ST is a minimizer for [f) and further-
more, the two functions achieve the same minimum value. @hwgesult holds in the
opposite direction. O
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