
MIT Open Access Articles

Deriving divide-and-conquer dynamic programming
algorithms using solver-aided transformations

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Itzhaky, Shachar, Rohit Singh, Armando Solar-Lezama, Kuat Yessenov, Yongquan
Lu, Charles Leiserson, and Rezaul Chowdhury. “Deriving Divide-and-Conquer Dynamic
Programming Algorithms Using Solver-Aided Transformations.” Proceedings of the 2016 ACM
SIGPLAN International Conference on Object-Oriented Programming, Systems, Languages, and
Applications - OOPSLA 2016 (2016).

As Published: http://dx.doi.org/10.1145/2983990.2983993

Publisher: Association for Computing Machinery (ACM)

Persistent URL: http://hdl.handle.net/1721.1/112349

Version: Author's final manuscript: final author's manuscript post peer review, without
publisher's formatting or copy editing

Terms of use: Creative Commons Attribution-Noncommercial-Share Alike

https://libraries.mit.edu/forms/dspace-oa-articles.html
http://hdl.handle.net/1721.1/112349
http://creativecommons.org/licenses/by-nc-sa/4.0/

Deriving Divide-and-Conquer Dynamic Programming
Algorithms using Solver-Aided Transformations

Shachar Itzhaky Rohit Singh
Armando Solar-Lezama

Kuat Yessenov Yongquan Lu Charles
Leiserson
MIT, USA

Rezaul Chowdhury
Stony Brook University, NY, USA

Abstract
We introduce a framework allowing domain experts to ma-
nipulate computational terms in the interest of deriving better,
more efficient implementations. It employs deductive reason-
ing to generate provably correct efficient implementations
from a very high-level specification of an algorithm, and in-
ductive constraint-based synthesis to improve automation.
Semantic information is encoded into program terms through
the use of refinement types.

In this paper, we develop the technique in the context of
a system called Bellmania that uses solver-aided tactics to
derive parallel divide-and-conquer implementations of dy-
namic programming algorithms that have better locality and
are significantly more efficient than traditional loop-based
implementations. Bellmania includes a high-level language
for specifying dynamic programming algorithms and a calcu-
lus that facilitates gradual transformation of these specifica-
tions into efficient implementations. These transformations
formalize the divide-and-conquer technique; a visualization
interface helps users to interactively guide the process, while
an SMT-based back-end verifies each step and takes care of
low-level reasoning required for parallelism.

We have used the system to generate provably correct
implementations of several algorithms, including some im-
portant algorithms from computational biology, and show that
the performance is comparable to that of the best manually
optimized code.

Categories and Subject Descriptors D.1.2 [Programming
Techniques]: Automatic Programming

Algorithm 1 A naïve loop implementation
for i = 1..n do Gi(i+1) := xi . Initialize
for i = (n− 2)..0 do . Compute

for j = (i+ 2)..n do
Gij := min

i<k<j
Gik +Gkj + wikj

Keywords Divide-and-conquer, Dynamic Programming,
Program Synthesis, Theorem Proving, Refinement Types,
SMT

1. Introduction

C
o
n
si
st

en
t *
Complete *

W
ell D

o
cu
m
ented*Easyt

oR

eu
se
* *

Evaluated
*

O
O
P
S
LA
*

Ar
tifact *

A
E
C

Software synthesis aims to close the gap between descriptions
of software components, such as algorithms and systems, and
their implementations as computer programs. Dynamic Pro-
gramming (DP) algorithms offer a prominent example of
how large this gap can be. For instance, consider Algorithm 1,
which correspond to the well known DP algorithm to compute
the optimal parenthesization for a chain of matrix multiplica-
tions.1 The first loop fills the diagonal of an array with some
initial values, and the second loop computes off-diagonal
elements by reading existing elements.

The algorithm computes an n× n region of a DP table G
via a standard row-major order. This algorithm is simple, but a
direct C implementation of it turns out to be about 10× slower
than the best manually optimized implementation (as we will
see in Section 7.2). One reason for this poor performance is
the high rate of cache misses incurred by reading the ranges
Gik and Gkj , for i < k < j, repeatedly on every iteration of
the loops over i and j. Memory reads dominate the running
time of this algorithm, so high speedups can be gained by
localizing memory access.

The state-of-the-art implementation uses a divide and
conquer approach both to improve memory performance
and to increase the asymptotic degree of parallelism [32].
An excerpt of the pseudo-code for such an implementation
is shown in Algorithm 2. In the optimized version, the

1 https://en.wikipedia.org/wiki/Matrix_chain_multiplication

programmer has to determine a number of low-level details,
including the correct order of calls—some of which can
be run in parallel—as well as some rather involved index
arithmetic. When implemented in C++, the full version is,
in fact, more than ten times longer than the naïve one and
considerably more complicated. It is also much more difficult
to verify, since the programmer would have to provide
invariants and contracts for a much larger set of loops and
possibly recursive functions. Parallelism only adds to the
complexity of this task.

In this paper, we present a new system called Bellma-
nia2, which allows an expert to interactively generate parallel
divide-and-conquer implementations of dynamic program-
ming algorithms, which are provably correct relative to a
high-level specification of the code in Algorithm 1. We show
that the resulting implementations are 1.4–46× faster than the
original versions and within 2–60% of a high-performance
hand crafted implementation. Their structure will also make
them cache oblivious [18] and cache adaptive [4], just like
the hand crafted implementations are.

Bellmania is a deductive synthesis system in the tradi-
tion of systems like Kids [27], and more recently Fiat [14].
These systems derive an implementation from a specifica-
tion in a correct-by-construction manner by applying a se-
quence of deductive reasoning steps. Thanks to the correct-by-
construction approach, the potentially complex final artifact
does not have to be independently verified, making the ap-
proach ideal for potentially complex implementations like
the ones we target.

Traditionally, the major shortcoming of deductive syn-
thesis has been the effort required of the user in order to

2 Named so as a tribute to Richard Bellman.

Algorithm 2 An optimized divide-and-conquer version
A[1..n], where: (snippet)
procedure A[s..e]

if e− s < b then
for i = e..s do

for j = max{s, i}..e do
Gij := min

i<k<j
Gik +Gkj + wikj

else
A
[
s..b s+e

2
c
]

A
[
b s+e

2
c+1..e

]
B
[
s..b s+e

2
c , b s+e

2
c+1..e

]
procedure B[s0..e0 , s1..e1]

if e− s < b then . . .
else

B
[
b s0+e0

2
c+1..e0 , s1..b s1+e1

2
c
]

C
[
s0..b s0+e0

2
c , s1..b s1+e1

2
c , b s1+e1

2
c+1..e1

]
...

procedure C[s0..e0 , s1..e1 , s2..e2]...

guide the derivation process towards a correct solution. In
this work, we reduce this effort using three core techniques.
First, we show that a small number of domain specific tactics,
combined with a new notation to jointly describe the spec-
ification and the implementation, can enable the derivation
to be described succinctly at a high-level of abstraction. Sec-
ondly, we show the value of incorporating an SMT solver
into the derivation process; in particular, we can afford to
use tactics that are only correct when some side conditions
hold, where these conditions are potentially complex logical
assertions, without having to burden the user with proving
those premises. Finally, we show that by incorporating solver-
based inductive synthesis, which generalizes from concrete
values and execution traces, into the derivation process, we
can automate away many low-level decisions, allowing for
shorter, simpler derivations. We use the term solver-aided
tactics to refer to this combination of solver-based inductive
synthesis and solver-checked premises within a tactic.

Overall, the paper makes the following contributions.

• A new formalism used to describe a wide class of dynamic
programming algorithms, capable of bridging the gap
between the high-level specification and the divide-and-
conquer implementation of them.
• An interesting application of refinement types for tracking

dependencies between sub-computations, making it pos-
sible to automatically generate parallel implementations
from it.
• The idea of using solver-aided tactics, demonstrating their

applicability and utility in the derivation of divide-and-
conquer dynamic programming implementations.
• A suite of solver-aided tactics for dynamic programming

and an overview of the proofs of their soundness, assum-
ing only the soundness of the underlying SMT solver.
• A description of Bellmania, the first system capable

of generating provably correct implementations of di-
vide-and-conquer dynamic programming. Our evaluation
shows that the code it generates is comparable to manually
tuned implementations written by experts in terms of
performance.

Dynamic Programming is central to many important do-
mains ranging from logistics to computational biology —
e.g., a recent textbook [15] lists 11 applications of DP in
bioinformatics just in its introductory chapter, with many
more in chapters that follow. Increasing performance and reli-
ability of DP implementations can therefore have significant
impact. More generally, we believe that this work serves as
an important test case for a new approach to combining in-
ductive and deductive synthesis which could have an impact
beyond this domain.

2. Overview
Most readers are likely familiar with the Dynamic Program-
ming (DP) technique of Richard Bellman [3] to construct an
optimal solution to a problem by combining together opti-
mal solutions to many overlapping sub-problems. The key
to DP is to exploit the overlap and reuse computed values to
explore exponential-sized solution spaces in polynomial time.
Dynamic programs are usually described through recurrence
relations that specify how to decompose sub-problems, and
is typically implemented using a DP table where each cell
holds the computed solution for one of these sub-problems.
The table can be filled by visiting each cell once in some
predetermined order, but recent research has shown that it is
possible to achieve order-of-magnitude performance improve-
ments over this standard implementation approach by de-
veloping divide-and-conquer implementation strategies that
recursively partition the space of subproblems into smaller
subspaces [4, 8–11, 32].

Before delving into how Bellmania supports the process of
generating such an implementation, it is useful to understand
how a traditional iterative implementation works. For this,
we will use the optimal parenthesization algorithm from the
introduction (Algorithm 1). The problem description is as
follows: given a sequence of factors a0· · · an−1, the goal is
to discover a minimal-cost placement of parentheses in the
product expression assuming that multiplication is associative
but not commutative. The cost of reading ai is given by xi,
and that the cost for multiplying Π(ai..(k−1)) by Π(ak..(j−1))
is given by wikj . The specification of the algorithm is shown
in Figure 1; the values xi andwikj are inputs to the algorithm,
and the output is a table G, where each element Gij is the
lowest cost for parenthesizing ai..(j−1), with G0n being the
overall optimum.

Iterative Algorithm. Using the standard dynamic program-
ming method, anyone who has read [13] would compute this
recurrence with an iterative program by understanding the de-
pendency pattern: to compute the mini<k<j(· · ·) expression
in Figure 1 the algorithm needs to enumerate k and gather
information from all cells below and to the left of Gij . In par-
ticular, each value Gij is computed from other values Gi′j′
with higher row indexes i′ > i and lower column indexes
j′ < j. Therefore, considering G as a two-dimensional array,

G j

i

Gij = xi i+1 = j

min
i<k<j

Gik+Gkj+wikj i+1 < j

base case dependencies empty

Figure 1. Recurrence equation and cell-level dependencies.

1 2

3 4

0
n
2 n

n
2

n

J0 J1

J0

J1

2 depends on 1

2 depends on 4

(3 is empty)

Figure 2. Dividing a two-dimensional array into quadrants;
the dependencies for the case of the running example are
shown on the right.

it can be filled in a single sweep from left to right and from
bottom to top, as done in Algorithm 1.

Divide-and-Conquer Algorithm. To illustrate the main
concepts underlying Bellmania and the key ideas in deriving
divide-and-conquer implementations, we will walk through
the first few steps that an algorithms expert — whom we will
call Richard — would follow using Bellmania to generate a
provably correct divide-and-conquer implementation of the
optimal parenthesization algorithm.

In the Bellmania development model, Richard will start
with the specification from Figure 1, and progressively ma-
nipulate it to get the specification in a form that reflects the
recursive structure of the divide-and-conquer implementa-
tion. At any step in the transformation, Bellmania can gener-
ate code from the partially transformed specification. Code
generated from the initial specification will yield an imple-
mentation like Algorithm 1, whereas generating code from
the fully transformed specification will yield the divide-and-
conquer implementation that we want. In the rest of the text,
we will use the term program to refer to any of the partially
transformed specifications.

Figure 4 provides a visual description of the initial stages
of the transformation process. The figure includes block
diagrams illustrating how the program at a given stage in the
transformation will compute its output table from its input.
For example, the first row corresponds to the program before
any transformations take place, i.e. the initial specification.
At this stage, the program involves a single loop nest that
reads from the entire array and writes to the entire array;
solid arrows in the diagram denote data dependency. The
transformation from one stage to the next, the dashed arrows,
is performed by the application of tactics that represent a
high-level refinement concept.

As a first step in the transformation, Richard would like
to partition the two-dimensional array G into quadrants, as
illustrated in Figure 2. In Bellmania, the partition is accom-
plished by applying the Slice tactic, illustrated graphically at
the top of Figure 4. In order to escape the need to reason about
concrete array indices, Bellmania provides an abstract view
where the partitions are labeled J0, J1. The effect of Slice is
shown in text in Figure 3(a) — the figure trades accuracy

Slice i, j : 〈J0 × J0 | J0 × J1 | J1 × J1〉 (a)

∀i, j ∈ 1 . Gij = min
i<k<j

Gik +Gkj + wikj

∀i, j ∈ 2 . Gij = min
i<k<j

Gik +Gkj + wikj

∀i, j ∈ 4 . Gij = min
i<k<j

Gik +Gkj + wikj

Stratify 1 (b)

∀i, j ∈ 1 . G
1

ij = min
i<k<j

G
1

ik +G
1

kj + wikj

∀i, j ∈ 2 . Gij = min
i<k<j

(G
1
/G)ik + (G

1
/G)kj + wikj

∀i, j ∈ 4 . Gij = min
i<k<j

(G
1
/G)ik + (G

1
/G)kj + wikj

Figure 3. The first two steps in the development, represented
as logical specifications.

for succinctness by omitting the base case of the recurrence
for now. Due to the structure of the problem, namely i< j,
the bottom-left quadrant (3 in Figure 2) is empty. Slicing
therefore produces only three partitions.

The computation of 1 (the top-left quadrant) does not
depend on any of the other computations, so Richard applies
the Stratify tactic, which separates an independent computa-
tion step as a separate loop. This is equivalent to rewriting the
specification as in Figure 3(b): the first computation is given
a special name G 1 , then the following computations read
data either from G

1 (when the indices are in 1) or from G

(otherwise), which is denoted by G 1
/G. The “/ ” operator is

part of the Bellmania language and will be defined formally
in Section 3. Bellmania checks the data dependencies and
verifies that the transformation is sound.

Repeating Stratify results in a three-step computation, as
seen in Figure 4(c), from which Richard can obtain the pro-
gram in Algorithm 3. This already gives some performance
gain, since computations of 1 and 4 can now run in parallel.
Bellmania is capable of sound reasoning about parallelism,
using knowledge encoded via types of sub-terms, showing
that two threads are race-free when they work on different
regions of the table. This is handled automatically by the code
generator.

At this point, Richard notices that G 1 is just a smaller
version of the entire array G; he invokes another tactic
called Synth, which automatically synthesizes a recursive
call A

[
G

1
]

(presented using abstract index ranges as AJ0).
Similarly, G 4 is also a smaller version of G, this time

with indices from J1. Synth figures it out automatically as
well, synthesizing a call A

[
G

4
]
. The remaining part, G 2 ,

is essentially different, so Richard gives it a new name, “B”,
which becomes a new synthesis task.3

3 Richard’s choice of names is consistent with the literature.

0 0′

AJ

> Slice i, j : 〈J0×J0 | J0×J1 | J1×J1〉

(a)
1 2

3 4

1′ 2′

4′

> Stratify 1

(b)
1 2

3 4

1′ 2

4

1′ 2′

4′

> Stratify 4

(c)
1 2

3 4

1′ 2

4

1′ 2

4′
1′ 2′

4′

> Synth 1′ 2′ 4′

(d)
1 2

3 4

1′ 2

4

A
J0

1′ 2

4′

AJ1

1′ 2′

4′

B
J0J1

Figure 4. Overview of tactic semantics in Bellmania.

Applying the same strategy will eventually lead Richard
to further break down and transform the computation of B
into multiple recursive sub-computations, further improving
the locality of the resulting algorithm until a true divide-and-
conquer solution is obtained. Bellmania generates code for all

Algorithm 3 Parenthesis — Sliced and Stratified
procedure A[G]

for i = (n−2)..0 ∩ J0 do . Compute 1
for j = (i+2)..n ∩ J0 do

Gij := min
i<k<j

Gik +Gkj + wikj

for i = (n− 2)..0 ∩ J1 do . Compute 4
for j = (i+2)..n ∩ J1 do

Gij := min
i<k<j

Gik +Gkj + wikj

for i = (n−2)..0 ∩ J0 do . Compute 2
for j = (i+2)..n ∩ J1 do

Gij := min
i<k<j

Gik +Gkj + wikj

procedures encountered throughout the development. In this
case, three recursive procedures are generated. The base case
of the recursion is when the region becomes small enough to
just run the loop version.4

As is well illustrated by the example, this line of reasoning
can get quite complicated for most dynamic programming
algorithms, and producing a correct divide-and-conquer al-
gorithm for a given dynamic programming problem is con-
sidered quite difficult even by the researchers who originally
pioneered the technique. Fortunately, Bellmania is able to
mechanize most of the technical details, allowing Richard
and other algorithm designers to focus on their area of exper-
tise, try different strategies, and eventually produce a certified
implementation of the algorithm.

Overall, it took Richard only 4 steps to construct Algo-
rithm 4, and a total of 30 steps to construct all three phases of
the Parenthesis algorithm, comprising an implementation that
is 46× faster than a parallel implementation of Algorithm 1
using a state-of-the-art parallelizing compiler. The user is
greatly assisted by tactics like Synth, which carries out the
monotonic and error-prone task of choosing the right parame-
ters for each recursive call; also, mistakes are identified early
in the development thanks to automatic verification, saving
hours of debugging later on. The resulting code is much eas-
ier to maintain, because the artifact is not just the optimized
C++ code, but also the Bellmania specification and the script
that encodes the optimization strategy.

Once a divide-and-conquer algorithm is found, generating
an optimal implementation still requires some additional
work, such as finding the right point at which to switch to
an iterative algorithm to leverage SIMD parallelism as well
as low-level tuning and compiler optimization; these steps
are performed by more traditional compiler optimization
techniques as discussed in Section 6.

System Design
The design of the Bellmania system (Figure 5) contains a
generic core — called the Tactic Application Engine (TAE)
— on top of which a library of tactics specific to dynamic
programming is built. While it is possible to extend the
library, it already contains enough tactics to successfully
develop algorithms for a family of problems, so that the user

4 The optimal base case size of the region can be found by auto-tuning (taken
as an input in the current version of the compiler)

Algorithm 4 Parenthesis — Recursive Version
procedure A[G]

if G is very small then run iterative version
else

A
[
G

1
]

. Compute 1

A
[
G

4
]

. Compute 4

B
[
G

1
, G

4
, G

2
]

. Compute 2

Tactic Application Engine

Divide-and-Conquer Tactic Library

Verifier
(SMT)

Compiler
(C++, cilk)

Frontend
UI

Exec.
Code

Figure 5. Overall design of Bellmania.

Slice (find (θ 7→ ?)) (? 〈J0×J0, J0×J1, J1×J1 〉)
Stratify "/" (fixee A) A ψ
Stratify "/" (fixee A) A ψ
A B C 7→ SynthAuto ψ

Figure 6. Bellmania script used to generate Algorithm 4.

of the system only needs to apply existing tactics by issuing
commands through a GUI and watching the program evolve.
The TAE has a back-end that verifies conjectures, and is in
charge of making sure that tactic applications represent valid
rewritings of the program. Finally, the programs created this
way are transferred to a compilation back-end, where some
automatic static analysis is applied and then executable (C++)
code is emitted.

The trusted core is small, comprising of: (a) a type checker
(see Section 3.4), (b) a term substitution procedure (see
Section 4), (c) a formula simplifier (see Section 5.1), (d) the
SMT solver, and (e) the compiler (see Section 6). In its current
version, Bellmania does not emit machine-checkable proofs;
to the extent that SMT solvers can emit such proofs, these
could be adapted to a proof of refinement (in the sense of
[14]). The compiler has to be formally verified separately.
These two tasks require considerable engineering effort and
are left for the future.

An example for the concrete syntax is shown in Figure 6.
A full listing of the scripts for our running examples, as well
as screenshots of the UI, can be found in Appendix C.1.

Interaction Model
The intended use pattern for Bellmania is by repeatedly
issuing commands to apply tactics inside a REPL that keeps

Specification

Program Term

Derived
Definition

Implementation

typecheck compile

apply tactic

Figure 7. Interaction workflow in Bellmania.

showing to the user the resulting program term (Figure 7).
To begin the interaction, the user types in a specification
written in the Bellmania language (as defined in Section 3),
which is typechecked by the system, producing a term.
This term then becomes the focus of the development, and
further transformations apply to it; the user issues apply
tactic commands, one at a time, using a syntax similar to
Figure 6. Tactic applications are also typechecked, as well
as the resulting program, since type information can be
refined by including the context (see Section 3.4). During
the development, sub-computations may be discovered that
require further drilling down (such as “B” in the last example).
These result in derived terms that take the focus until they,
too, have been fully transformed. When the program and all
its sub-computations are fully developed and expressed as a
divide-and-conquer algorithm, the user invokes the compiler
back-end that emits C++ code.

In the following sections, we describe the programming
language and formally define the tactics that were used in
the example above. We then show how to formalize the same
intuition as we had there, using this new instrument.

3. A Unified Language
For the purpose of manipulating programs and reasoning
about them, we first set up a small language that can easily
express our programs (that is, partially transformed specifi-
cations), and can also be translated to executable code in a
straightforward fashion. We choose a functional setting, with
scalar types for array indices (i, j, k : J in the example) and
values stored in the arrays, typically real numbers (Gij : R
in the example). Arrays are encoded as functions, or arrow
types, mapping indices to values (e.g. G : J2 → R). We
want to have a notion of array elements that are uninitialized,
so we assume every scalar type contains the special value ⊥,
corresponding to an undefined value.

Our language should be able to express operations such as
Slice from the previous section. To achieve this, we introduce
predicate abstraction over the index types, by extending the
type system with subtyping and refinement types. An index
type J can be partitioned into subtypes 〈J0 | J1〉 (two or
more), meaning that we define predicates Ĵ0, Ĵ1 : J → B
(where B is the Boolean type) and the refinement types
J0 = {v : J | Ĵ0(v)} and J1 = {v : J | Ĵ1(v)}, which become
subtypes of J . Usually, we can omit the “hat” and use J0 as
a synonym for Ĵ0 when it is clear from the context that it
designates a type. We would then provide types for sub-arrays,
e.g. G 2 : J0 × J1 → R.

To refer to a region of a given array, we define a guard
operator, which is parameterized by subtypes of the indices,
for example G 2 = [G]J0×J1 . To combine computations on
different parts of the array, we use a lifting of the ternary

condition operator (known as ?:) to functions, where the
condition is implied by the operands; e.g. (Figure 2)

G = G
1 /
G

2 /
G

4
= λij.


G

1

ij i, j ∈ J0
G

2

ij i ∈ J0 ∧ j ∈ J1
G

4

ij i, j ∈ J1

Formal set-up The Bellmania language is based on the
polymorphic λ-calculus, that is, simply typed λ-calculus with
universally quantified type variables (also known as System
F). The following subsections contain formal definitions for
language constructs.

We write abstraction terms as (v : T) 7→ e, where
T is the type of the argument v and e is the body, in-
stead of the traditional notation λ(v : T). e, mainly due
to aesthetic reasons but also because we hope this will
look more familiar to intended users. Curried functions
(v1 : T1) 7→ (v2 : T2) 7→ · · · 7→ (vn : Tn) 7→ e are abbre-
viated as (v1 : T1) · · · (vn : Tn) 7→ e. Argument types may be
omitted when they can be inferred from the body.

The semantics differ slightly from that of traditional
functional languages: arrow types T1 → T2 are interpreted
as mappings from values of type T1 to values of type T2.
Algebraically, interpretations of types, [[T1]], [[T2]], are sets,
and interpretations of arrow-typed terms, f : T1 → T2,
are partial functions — [[f]] : [[T1]] ⇀ [[T2]]. This implies
that a term t : T may have an undefined value, [[t]] = ⊥T
(We would shorten it to [[t]] = ⊥ when the type is either
insignificant or understood from the context). For simplicity,
we shall identify ⊥T1→T2 with the empty mapping (v :
T1) 7→ ⊥T2 .

All functions are naturally extended, so that f ⊥ = ⊥.

3.1 Operators
The core language is augmented with the following intrinsic
operators:

• A fixed point operator fix f , with denotational semantics

[[fix f]] = θ s.t. [[f]] θ = θ

we assume that recurrences given in specifications are
well-defined, such that [[f]] has a single fixed point. In
other words, we ignore nonterminating computations
— we assume that the user provides only terminating
recurrences in specifications.
• A guard operator []

�
, which comes in two flavors:

[x]cond =

{
x cond

⊥ ¬cond
[f]P1×P2×···Pn = x 7→ [f x]∧Pi(xi)

where x = x1 · · ·xn. This second form can be used to
refer to quadrants of an array; in this form, it always
produces a term of type �→ R, whereR is the domain
of f .

• A slash operator / :

For scalars x, y : S x/y =

{
x if x 6= ⊥
y if x = ⊥

For f, g : T1 → T2 f/g = (v : T1) 7→ (f v)/(g v)

This operator is typically used to combine computations
done on parts of the array. For example,

ψ 7→
[
f ψ
]
I0

/ [
g ψ
]
I1

combines a result of f in the lower indices of a (one-
dimensional) array with a result of g in the higher indices
(I0 and I1, respectively, are the index subsets). Notice that
this does not limit the areas from which f and g read; they
are free to access the entire domain of ψ.

In our concrete syntax, function application and fix take
precedence over /, and the body of 7→ spans as far as possible
(like λv in λ-calculus).

3.2 Primitives
The standard library contains some common primitives:

• R, a type for real numbers; N for natural numbers; B for
Boolean true/false.
• = : ∀T . T → T → B, always interpreted as equality.
• +,− : ∀T . T → T → T , polymorphic binary operators.
• < : ∀T . T → T → B, a polymorphic order relation.
• cons : ∀T . T → (N→T)→ (N→T), nil : ∀T . N→ T ,

list constructors.
• min,max,Σ : ∀T S. (T → S) → S, reduction (aggre-

gation) operators on ordered/unordered collections. The
collection is represented by a mapping f : T → S, so
that e.g.

[[min f]] = min
{

[[f]] v
∣∣ v ∈ [[T]], [[f]] v 6= ⊥

}
The collections are assumed to be finite.

3.3 Additional Notation
We also adopt some syntactic sugar to make complex terms
more manageable:

• x»f = f x for application from the left.
• 〈t1, · · · , tn〉 = cons t1 (cons · · · (cons tn nil) · · ·) for

fixed-length lists.

3.4 Types and Type Qualifiers
We extend the type system with predicate abstraction in the
form of logically qualified data types (Liquid Types [25]).
These are refinement types that provide a natural encoding
of predicate abstraction by restricting refinements to set of
abstraction predicates, called qualifiers, which are defined

over the base types. Contrary to their general use, the purpose
of these qualiiers in Bellmania is not to check a program for
safety and reject ill-typed programs, but rather to serve as
annotations for tactics, to convey information to the solver
for use in proofs, and later to help the compiler properly emit
memory access and parallelization primitives.

More specifically, typing f : {v : T1 | P (v)} → T2
would mean that f x can only be defined where P (x) is true;
otherwise, f x = ⊥. It does not mean that the compiler has
to prove P (x) at the point where the term f x occurs.

As such, we define a Bellmania program to be well-
typed iff it is well-typed without the annotations (in its raw
form). Qualifiers are processed as a separate pass to properly
annotate sub-terms.

Some qualifiers are built-in, and more can defined by the
user. To keep the syntax simple, we somewhat limit the use
of qualifiers, allowing only the following forms:

• {v : T | P (v)}, abbreviated as T ∩P . When the signature
of P is known (which is usually the case), it is enough to
write the type as P .
• {v : T | P (v)∧Q(v)}, abbreviated as T ∩P ∩Q, or just
P ∩ Q. This extends to any number of conjuncts of the
same form.
• (x : T1) → {v : T2 | R(x, v)} → T3, abbreviated as(

(T1×T2)∩R
)
→ T3. The qualifier argument x must be

the preceding argument; this extends to predicates of any
arity (that is, a k-ary predicate in a qualifier is applied to
the k arguments to the left of it, including the one where
it appears).

The type refinement constructors ∩ and × may be com-
posed to create droplets (tiny bits of liquid), using the abstract
syntax in Figure 8. Note that the language does not include
tuple types; hence all function types are implicitly curried,
even when using ×. Droplets can express conjunctions of
qualifiers, as long as their argument sets are either disjoint or
contained, but not overlapping; for example,

x : {v : T1 | P (v)} → {v : T2 | Q(v) ∧R(x, v)} → T3

can be written as
(
(P ×Q) ∩R

)
→ T3, but

x : T1 → y : {v : T2 | R(x, v)} → {v : T3 | R(y, v)} → T4

cannot be represented as a droplet, except by extending the
vocabulary of qualifiers.

Through the use of droplets, we manage to harness refine-
ment types without being to cumbersome and requiring the
user to write verbose annotations. To this end, we trade off
some expressive power for succinctness.

Example

The specification of the Parenthesis problem (Figure 1) will
be written as

d ::= e1 | ek → d
e1 ::= T for scalar type T
ek+l ::= ek × el
ek ::= ek ∩ P for k-ary predicate symbol P

Figure 8. Syntax of type qualifiers (droplets). k, l are posi-
tive integers that stand for dimension indexes.

x : J → R
w : J3 → R
G = fix (θ : J2

< → R) i j 7→
[
xi
]
i+1=j

/
min k 7→ θik + θkj + wikj

J2
< is used here as an abbreviation for (J×J)∩<. We

also use fxy as a more readable typographic alternative for
f x y, where f is a function and x, y are its arguments.

Note that the range for k in min k 7→ · · · is implicit, given
the type of θ:

θik 6= ⊥ ⇒ i < k and θkj 6= ⊥ ⇒ k < j

Typing Rules
As mentioned earlier, annotations are ignored when type-
checking a term. This gives a simple characterization of type
safety without the need to explictly write any new typing
rules. It also means that for f : T1 → T2, x : T3, we obtain
f x : T2 whenever T1 and T3 have the same shape (the raw
type obtained by removing all qualifiers). This requires some
explanation.

Considering a (partial) function T → S to be a set of
pairs of elements 〈x, y〉 from its domain T and range S,
respectively, it is clear to see that any function of type T1 →
S1, such that [[T1]] ⊆ [[T]], [[S1]] ⊆ [[S]], is also, by definition,
a function of type T → S , since [[T1]]× [[S1]] ⊆ [[T]]× [[S]]. If
we define subtyping as inclusion of the domains, i.e. T1 <: T
whenever [[T1]] ⊆ [[T]], this translates into:

T1 <: T ∧ S1 <: S ⇒ (T1 → S1) <: (T → S)

In this case, the type constructor→ is covariant in both
arguments.5 With this in mind, a function g : (T → S)→ S2
can be called with an argument a : T1 → S1, by regular
subtyping rules, and g a : S2.

When the argument’s type is not a subtype of the expected
type, but has the same shape, it is coerced to the required type
by restricting values to the desired proper subset.

For h : T → S [[h a]] = [[h]]
(
[[a]] :: T

)
Where :: is defined as follows:

5 This is different from classical view, and holds in this case because we
chose to interpret functions as mappings (see beginning of this section).

• For scalar (non-arrow) type T ,

x :: T =

{
x if x ∈ [[T]]

⊥ if x 6∈ [[T]]

• f :: T → S = x 7→
(
f (x :: T)

)
:: S

We extend our abstract syntax with an explicit cast opera-
tor t :: T following this semantics. Notice that this is not the
same as t : T , which is a type judgement.

Type Inference
Base types are inferred normally as in a classical Hindley-
Milner type system [23]. The operators (Section 3.1) behave
like polymorphic constants with the following types:

fix : ∀T . (T → T)→ T / : ∀T . T → T → T

(:: T) : shape[T]→ shape[T]

As for []
�

, for all typing purposes the first variant is a no-
op, and the second variant is just syntactic sugar for :: �→ _ ,
where _ is a fresh type variable.

Any type variables occurring in type expressions are
resolved at that stage through unification. In particular, it
means that type variables are always assigned raw types.

Qualifiers are also inferred by propagating them up and
down the syntax tree. Since the program already typechecks
once the base types are in place, the problem is no longer one
of finding valid annotations, but rather of tightening them
as much as possible without introducing semantics-changing
coercions. For example, the term (f :: I → (I∩P)) imay be
assigned the type I , but it can also be assigned I ∩P without
changing its semantics.

Qualifiers are propagated by defining a type intersection
operator u that takes two droplets of the same shape T1, T2
and returns a droplet with a conjunction of all the qualifiers
occuring in either T1 or T2. The operator is defined in terms
of the corresponding liquid types:

• If T1 = {v : T | ϕ1} and T2 = {v : T | ϕ2},

T1 u T2 = {v : T | ϕ1 ∧ ϕ2}

• If T1 = x :S1 → S2, T2 = x :S3 → S4 (normalized so
that T1 and T2 use the same names for arguments),

T1 u T2 = x : (S1 u S3)→ (S2 u S4)

We then define the type refinement steps for terms. They
are listed in Figure 9. These rules are applied continuously
until a fixed point is reached. The resulting types are eventu-
ally converted back to droplet form (expressed via ∩ and ×);
qualifiers that cannot be expressed in droplets are discarded.

The top three rules apply to ordinary constructs of typed
λ-calculus: the first rule propagates qualifiers from the en-
vironment to leaf expressions that use a declared variable;

C
or

e
la

ng
ua

ge
e = v Γ, v : T1 ` e : T0

Γ, v : T1 ` e : T0 u T1

e = e1 e2 Γ ` e : T , e1 : T1 → S1, e2 : T2
Γ ` e : T u S1, e2 : T1 u T2,

e1 : (T1 → S1) u (T2 → T)

e = (v : T) 7→ e1 Γ ` e : T0 → S0 Γ, v : T u T0 ` e1 : T1
Γ ` e : (T0 → S0) u (T → T1)

Γ, v : T u T0 ` e1 : T1 u S0

E
xt

en
si

on
s

e = fix e1 Γ ` e : T , e1 : T1 → T2
Γ ` e : T u T2

e = e1/e2 Γ ` e : T , e1 : T1, e2 : T2
Γ ` e1 : T1 u T , e2 : T2 u T

e = [e1]
cond

Γ ` e : T , e1 : T1
Γ ` e : T u T1, e1 : T u T1

e = e1 :: T Γ ` e : T0, e1 : T1
Γ ` e : T u T0 u T1, e1 : T u T0 u T1

Figure 9. Type refinement rules, for inferring qualifiers in sub-expressions.

the next two rules propagate information across application
and refinement terms. For an application f i, both the type
of i and the domain of f can be refined via the other, e.g.
if f : I0 → R and i : I , then i can be refined to I0; sym-
metrically, if f : I → R and i : I0, then f can be refined
to I0 → R. Similarly, the range of f and the type of f i can
refine each other. The rule for abstraction terms is analogous,
except that information about the type of the argument v is
passed through the environment.

The bottom rules pertain to language extensions defined
previously in this section. For /, qualifiers can safely seep
down to sub-expressions (but not back up), e.g. if x/y : I0, it
is safe to assert x : I0, y : I0 without changing the semantics
of the expression. For casts, x and x :: T are tied to have the
same refinements, and those of T are appended. A condition
[x]

�
ties the sub-term type in the same way, but without

adding any qualifiers. The rule for fix is the only one that
requires some thought: the type of fix f cannot be forced
down on f ; but since, by definition, fix f = f (fix f) must
hold, then any restrictions imposed by the range of f can be
asserted for fix f .

Note that two syntactically identical terms in different sub-
trees may be assigned different types by this method. This
is a desirable property, as (some) context information gets
encoded in the type that way.

The interested reader can find an example of how type
inference is applied in Appendix C.2.

4. Tactics
We now define the method with which our framework trans-
forms program terms, by means of tactics. A tactic is a
scheme of equalities that can be used for rewriting. When
applied to a program term, any occurrence of the left-hand

side is replaced by the right-hand side.6 A valid application
of a tactic is an instance of the scheme that is well-typed
and logically valid (that is, the two sides have the same in-
terpretation in any structure that interprets the free variables
occurring in the equality).

The application of tactics yields a sequence of program
terms, each of which is checked to be equivalent to the previ-
ous one. We refer to this sequence by the name development.

We associate with each tactic some proof obligations,
listed after the word Obligations in the following paragraphs.
When applying a tactic instance, these obligations are also
instantiated and given to an automated prover. If verified
successfully, they entail the validity of the instance. In some
cases, the obligations are strictly stronger than the validity of
the rewrite, which means the TAE is not complete and may
fail to apply a valid transformation. It is important to note
that the user does not have to specify, or in fact be aware of,
any proof obligations; they are defined as part of the tactic
library.

The following are the major tactics provided by our
framework. More tactic definitions are given in Appendix B.

Slice f =
[
f
]
X1

/ [
f
]
X2

/
· · ·
/ [

f
]
Xr

This tactic partitions a mapping into sub-regions. Each Xi

may be a cross product (×) according to the arity of f . For
example, X1 = J0 × J0, X2 = J0 × J1, X3 = J1 × J1.

Obligations: just the equality above.
Informally, the recombination expression is equal to f

when X1..r “cover” all the defined points of f (also known
as the support of f).

6 This is also a standard convention in Coq [1], for example.

Stratify fix(f »g) = (fix f) »
(
ψ 7→ fix(ψ̂ »g)

)
where ψ̂ abbreviates θ 7→ ψ, with fresh variable θ.

This tactic is used to break a long (recursive) computation
into steps. ψ is bound the result of the first computation (f),
and then used as the input for the second step (g). Typically,
we apply Stratify to a computation that has previously been
Sliced (although that does not have to be the case); to
understand the efficacy of Stratify, we present a minimal
example.

Suppose the program fix θ 7→
(
[t]I0

/
[t]I1

)
, where t =

i 7→ θi−1 + 1. We would like to obtain a program that
computes the lower half I0 first, then the upper half I1; that
is,
(

fix θ 7→ [t]I0
/

[ψ]I1
)

»
(
ψ 7→ fix θ 7→ [ψ]I0

/
[t]I1

)
.

»

fix θ 7→ [t]I0
/

[ψ]I1 ψ 7→ fix θ 7→ [ψ]I0
/

[t]I1

This can be obtained by choosing f = θ 7→ [t]I0
/

[ψ]I1
and g = f θ 7→ [f θ]I0

/
[t]I1 .

Notice how f θ is used as a placeholder for the sub-
computation f in g. On the one hand, f »g = θ 7→[
[t]I0

/
[ψ]I1

]
I0

/
[t]I1 , which, modulo some simplification,

is equivalent to the original term θ 7→ [t]I0
/

[t]I1 . On the
other hand, when instantiating Stratify, f θ becomes ψ̂ θ,
which is equivalent to ψ, giving the term for the second
phase.
ψ may be fresh, or it may reuse a variable already occur-

ring in g, rebinding those occurrences. This precisely encodes
our intuition of computing the first fixed point in situ, then
the second one based on the result of the first.

Obligations: Let h = f »g and g′ = ψ 7→ ψ̂ »g. Let θ, ζ be
fresh variables; then,

f (g′ ζ θ) = f ζ g′ (f θ) θ = h θ (4.1)

Synth fix
(
h1
/
· · ·
/
hr
)

= f1 :: T1
/
· · ·
/
fr :: Tr

This tactic is used to generate recursive calls to sub-
programs. For i = 1..r, fi is one of the following: fixhi,
hi ψ, or t ψ, where ψ is some variable and t is a term
corresponding to a previously defined subroutine (A, B, C in
the example). Bellmania chooses these values automatically
(see Section 4.1), but the user may override it.

Obligations: Let h = h1/ · · · /hr, and let T → T be the
shape of h. For each fi, depending on the form of fi:

• If fi ∼= fix f (for some f) —
h :: (T → Y) = h :: (Y → Y) = f :: (Y → T) for

some Y which is a subtype of T and a supertype of Ti.
• If fi does not contain any “fix” terms —
h (h θ) :: Ti = fi :: Ti for a fresh variable θ.

∼= denotes syntactic congruence up to β-reduction.

Theorem 4.1. Let s = s′ be an instance of one of the tactics
introduced in this section. let ai = bi, i = 1..k, be the proof
obligations. If [[ai]] = [[bi]] for all interpretations of the free
variables of ai and bi, then [[s]] = [[s′]] for all interpretations
of the free variables of s and s′.

Proof is given in Appendix A.

Example

The naïve implementation of Algorithm 1 can be written as

Ψ = i j 7→ [xi]i+1=j

A
J

= ψ 7→ fix(θ : J2
<→R) (i : J) (j : J) 7→

min 〈 ψij ,
min (k : J) 7→ θik + θkj + wikj 〉

(4.2)

As mentioned in Section 2, the first step Richard does is
to apply Slice to the program, thus introducing a partitioning
into quadrants.

Slice

f = θ i j 7→ · · ·
X1 = _× J0 × J0 X2 = _× J0 × J1

X3 = _× J1 × J1
(each “_” is a fresh type variable)

A
J

= ψ 7→ fix
1 2

4
(4.3)

1 = θ (i : J0) (j : J0) 7→
min 〈 ψij ,min (k : J) 7→ θik + θkj + wikj 〉

2 = θ (i : J0) (j : J1) 7→
min 〈 ψij ,min (k : J) 7→ θik + θkj + wikj 〉

4 = θ (i : J1) (j : J1) 7→
min 〈 ψij ,min (k : J) 7→ θik + θkj + wikj 〉

With repeated applications of Slice, a program may grow
to become quite large; to make large program terms easy to
read and refer to, we provide boxed numerals 1 , 2 , etc. as
labels for sub-terms, using them as abbreviations for these
terms where they occur in the containing expression.

In addition, to allude to the reader’s intuition, expressions

of the form a/b/c/d will be written as a b

c d
when the slices

represent quadrants. The types of the quadrants should be
clear from the context; here, their types are

1 : _×J0×J0→R, 2 : _×J0×J1→R, 4 : _×J1×J1→R

The type of θ in (4.3) is still J2
< → R. In order to avoid

too much clutter caused by type terms, the Bellmania UI uses

a heuristic and only displays some of them. By hovering, the
user can inspect types that are not shown.

The result is a functional representation of Figure 3(a);
with the added term ψij it allows A to accept an input array
as an argument and minimize values that are already stored
in it; not quite crucial for this particular instance where the
input is just Ψ, but very useful in cases where it is necessary
to split a minimization operation into several sub-ranges, to
achieve the desired memory locality.

Stratify 1

f =
1 ψ̂

ψ̂ ψ̂
(recall that ψ̂ = θ 7→ ψ)

g = z 7→ z 2

4
ψ = ψ

A
J

= ψ 7→

fix
1 ψ̂

ψ̂ ψ̂

 » ψ 7→ fix
ψ̂ 2

4

1 2 4 as in (4.3)

(4.4)

The reason for this particular choice of f and g is as
explained in Section 4. Richard does not have to worry too
much about them, because they are encoded in the tactic
application engine, so that Bellmania knows how to build
them automatically based on the term being stratified (1 in
this case).

Notice that an existing variable ψ is reused, rebinding
any occurrences within 2 , 4 . This effect is desirable, as
it limits the context of the expression: the inner ψ shadows
the outer ψ, meaning 2 , 4 do not need to access the data
that was input to 1 , only its output; therefore 1 can be
computed in-place. The proof obligations for Stratify make
sure this transition is valid.

At this point Richard can either do another Stratify or a
Synth. The order is insignificant, but to be consistent with
Figure 4, let us assume he chooses the former.

Stratify 1

f =
1 ψ̂

ψ̂ ψ̂
(recall that ψ̂ = θ 7→ ψ)

g = z 7→ z 2

4
ψ = ψ

A
J

= ψ 7→

fix
1 ψ̂

ψ̂ ψ̂

 » ψ 7→

fix
ψ̂ 2

ψ̂ ψ̂

 »

ψ 7→ fix
ψ̂ ψ̂

4

1 2 4 as in (4.3)

(4.5)

Synth 1

h1 = 1 h2,3,4 = ψ̂

f1 = A
J0
ψ f2,3,4 = ψ

Y = J2
0 → R

Synth 4

h1,2 = ψ̂ h3 = 4

f1,2 = ψ f3 = A
J1
ψ

Y = J2
1 → R

A
J

= ψ 7→
A

J0
ψ ψ

ψ ψ
» ψ 7→

fix
ψ̂ 2

ψ̂ ψ̂

 »

ψ 7→
ψ ψ

A
J1
ψ

2 as in (4.3)

(4.6)

For 2 , the situation is slightly more complicated because
no instance of the routine A matches the specification and
there are no other routines to choose from. Richard defines a
new routine BJ0J1 by carving the respective subexpression
from the developed program AJ . Notice that B has two
parameters, because it depends not only on the index range,
but also on the particular partitioning. Next, Richard will
carry on developing B in a similar manner.

4.1 Synthesis-powered Synth Tactic
As mentioned in Sections 1 and 2, the user is assisted by
automatic inference while applying tactics. In particular, the
Synth tactic requires the user to specify a subroutine to call
and parameters to call it with. In addition, the subtype Y
is required to complete the correctness proof. To automate
this task, Bellmania employs Counterexample-guided Induc-
tive Synthesis (CEGIS), a software synthesis technique im-
plemented in the tool SKETCH [29]. The proof obligations,
along with the possible space of parameter assignments taken
from the set of sub-types defined during Slice, are translated
to SKETCH. Since SKETCH uses bounded domains, the result
is then verified using full SMT.

In addition to considering explicitly defined sub-types, the
synthesizer also tries small variations of them to cover corner
cases. When index arithmetic is used, the range for a sub-call
may have to be extended by a row or column on one or more
sides. For each index sub-type T ⊆ J , Bellmania also tries
T ∪ (T ± 1) for filling in values of parameters:

T + 1 = {i+ 1 | i ∈ T } T − 1 = {i− 1 | i ∈ T }

While the number of combinations is not huge, it is usually
hard for the user to figure out which exact call should be made.
Since Synth is used extensively throughout the development,
This kind of automation greatly improves overall usability.

SKETCH times for the running example range 15–45
seconds. For comparison, covering the same search space
for a typical invocation via exhaustive search in C++ took
about 1 1

2 hours.

5. Automating Proofs
This section describes the encoding of proof obligations in
(many-sorted) first-order logic, and the ways in which type
information is used in discharging them.

Each base type is associated with a sort. The qualifiers are
naturally encoded as predicate symbols with appropriate sorts.
In the following paragraphs, we use a type and its associated
sort interchangeably, and the meaning should be clear from
the context.

Each free variable and each node in the formula syntax tree
are assigned two symbols: a function symbol representing
the values, and a predicate symbol representing the support,
that is, the set of tuples for which there is a mapping. For
example, a variable f : J → R will be assigned a function
f1 : J → R and a predicate |f | : J → B. The superscript
indictes the function’s arity, and the vertical bars indicate the
support.

For refinement-typed symbols, the first-order symbols
are still defined in terms of the shape, and an assumption
concerning the support is emitted. For example, for g :
(J ∩ P) → R, the symbols g1 : J → R, |g| : J → B
are defined, with the assumption ∀α : J. |g|(α)⇒ P (α).

Assumptions are similarly created for nodes of the syntax
tree of the formula to be verified. We define the enclosure
of a node to be the ordered set of all the variables bound by
ancestor abstraction nodes (v 7→ . . .). Since the interpretation
of the node depends on the values of these variables, it
is “skolemized”, i.e., its type is prefixed by the types of
enclosing variables. For example, if e : T , then inside a
term (v : S) 7→ · · · e · · · it would be treated as type S → T .

Typically, the goal is an equality between functions f = g.
This naturally translates to first-order logic as

∀α.
(
|f |(α)⇔ |g|(α)

)
∧
(
|f |(α)⇒ fk(α) = gk(α)

)
First-class functions. When a function is being used as
an argument in an application term, we take its arrow type
T → S and create a faux sort FT→S , an “apply” operator
@ : FT→S → T → S, and the extensionality axiom —

∀αα′.
(
∀β. @(α, β) = @(α′, β)

)
⇒ α = α′ (5.1)

Then for each such function symbol fk : T → S used as
argument, we create its reflection f0 : FT→S defined by

∀α. @(f0, α) = fk(α) (5.2)

5.1 Simplification
When f ,g of the goal f = g, are abstraction terms, the
above can be simplified by introducing k fresh variables,
x = x1 · · ·xk, and writing the goal as f x = g x. The types
of x are inferred from the types of f and g (which should
have the same shape). We can then apply β-reduction as a
simplification step. This dramatically reduces the number

of quantifiers in the first-order theory representing the goal,
making SMT solving feasible.

Moreover, if the goal has the form f t1 = f t2 (e.g.
Stratify, Section 4) it may be worth trying to prove that
t1 :: T = t2 :: T , where f : T → S. This trivially entails
the goal and is (usually) much easier to prove.

Another useful technique is common subexpression elim-
ination, which is quite standard in compiler optimizations.
Tactic applications tend to create copies of terms, so merging
identical subexpressions into a single symbol can drastically
reduce the size of the SMT encoding.

6. Code Generation
We built a compiler for programs in Bellmania language
that generates efficient C++ code parallelized with Intel
Cilk constructs. The compiler uses type information from
the development to improve the quality of generated code.
From the types of sub-terms corresponding to array indices,
the compiler extracts information about what region of the
array is read by each computation, and from the types of
λ-bound index variable it constructs loops that write to the
appropriate regions. The compiler utilizes the SMT solver to
infer dependency constraints as in [20], and figures out the
direction of each loop (ascending or descending). In addition,
inter-quadrant dependencies can be used to determine which
computations can be run in parallel (at the granularity of
function calls) based on a fork-join model; two calls are
considered non-conflicting if each write region is disjoint
from the others’ read and write regions. Type information is
heavily utilized here: occurrences of array variables signify
reads, so their types denote (an over-approximation of) the
region being “read from”, whereas return types denote the
region being “written to”. Disjointness can be decided using
propositional logic through the predicate abstraction induced
by type qualifiers.

The compiler also employs more traditional optimization
techniques to further simplify the code and improve its run-
ning time: (1) lifts conditionals to loop bounds via simple
interval analysis, (2) eliminates redundant iterations and com-
parisons that can be resolved at compile time, (3) identifies
loops that read non-contiguous memory blocks and applies
copy optimization [22] automatically to better utilize caches.
Examples of generated code are included in the Bellmania
repository [2], and (4) follows a simple heuristic that inserts
loop vectorization directives.

7. Empirical Evaluation
We implemented our technique and used it to generate ca-
che-oblivious divide-and-conquer implementations of three
algorithms that were used as benchmarks in [32], and a few
others.

Parenthesis problem. Our running example; Compute an
optimal placement of parentheses in a long chain of multipli-
cation, e.g. of matrices, where the inputs are cost functions

wx : ((I × I) ∩<)→ J → R
wy : ((J × J) ∩<)→ I → R
G = fix θ i j 7→

[
0
]
i=j=0

/ [
wy0j0

]
i=0

/ [
wx0i0

]
j=0

/
min 〈 θ(i−1)(j−1) + cij ,

min p 7→ θpj + wxpij ,

min q 7→ θiq + wyqji 〉

Figure 10. Specifications for the Gap problem.

xi for accessing the i-th element and wikj for multiplying
elements [i, k) by elements [k, j).

Gap problem. A generalized minimal edit distance problem.
Given two input strings x = x1 · · ·xm and y = y1 · · · yn,
compute the cost of transforming x into y by any combination
of the following steps: (i) Replacing xi with yj , at cost cij , (ii)
Deleting xp+1 · · ·xq, at cost wxpq, (iii) Inserting yp+1 · · · yq
in x, at cost wypq. The corresponding recurrence is shown in
Figure 10.

Protein Accordion Folding problem. A protein can be
viewed as a string P1..n over an alphabet of amino acids. The
protein folds itself in a way that minimizes potential energy.
Some of the acids are hydrophobic; minimization of the total
hydrophobic area exposed to water is a major driving force
of the folding process. One possible model is packing P in a
two-dimensional square lattice in a way that maximizes the
number of pairs of hydrophobic elements, where the shape
of the fold is an accordion, alternating between going down
and going up.

We also exercised our system on a number of textbook
problems: the Longest Common Subsequence (LCS) prob-
lem, the Knapsack problem, and the Bitonic Traveling Sales-
man problem.

7.1 Implementation Details
The tactic application engine is implemented in Scala. We
implemented a prototype IDE using HTML5 and AngularJS,
which communicates with the engine by sending and receiv-
ing program terms serialized as JSON. Our system supports
using either Z3 or CVC4 as the back-end SMT solver for
discharging proof obligations required for soundness proofs.
Synthesis of recursive calls is done by translating the pro-
gram to SKETCH, which solves a correct assignment to type
parameters. To argue for the feasibility of our system, we
include SMT solver running time for the verification of the
three most used tactics (figures are for CVC4), as well as
time required for SKETCH synthesis, in Table 1. We consider
an average delay of ~10 seconds to be reasonable, even for
an interactive environment such as Bellmania.

Tactics are implemented as small Scala classes. It is
possible for the more advanced user to extend the library
by writing such classes. To give an idea, on top of the
generic TAE the Stratify tactic was coded in 12 lines of

Verification Synthesis
Slice Stratify Synth Sketch

Paren 0.9 8.7 0.9 24.5
Gap 0.6 6.8 1.4 11.6
Protein 0.9 3.8 0.7 9.5
LCS 0.9 1.9 0.5 3.2
Knapsack 0.3 1.9 0.4 5.3
Bitonic 0.9 7.2 0.6 10.1

Table 1. Average proof search time for proof obligations and
average synthesis time for Synth parameters (seconds).

Speedup w.r.t parallel LOOPDP on 16 cores
CPU (16 workers), B=64

N CO_Opt COZ AUTO
Parenthesis 16384 9.8x 11.4x 11.1x
Gap 16384 6.6x 8.4x 8.5x
Protein 16384 5.1x 5.5x 3.1x
LCS 45000 − − 3.9x
Bitonic 45000 − − 3.8x

Table 2. Performance of different C++ implementations

Scala, including the functionality that breaks a function h
into two functions f and g.

The compiler back-end is implemented as another com-
ponent in Scala, processing ASTs and generating C++ code
containing Intel Cilk constructs for parallelization. It em-
ploys a thin intermediate representation layer at which the
optimizations of Section 6 are applied.

7.2 Experimental Results
Table 2 shows performance improvement for our auto-
generated implementation (AUTO) on the state-of-the-art
optimized parallel loop implementation (LOOPDP) that was
used by [32]. It also compares AUTO with manually opti-
mized recursive implementations CO_Opt and COZ for the
three problems from [32]7. Our compiler automatically does
copy optimization as done in CO_Opt and COZ. COZ also
incorporates a low-level optimization of using Z-order layout
of the array, which is out of scope for this paper. N is the
problem size and B is the base case size for using loops
instead of recursion. It can be seen from the table that our
implementation performs close to the manually optimized
code. Figure 11 depicts the performance of these implemen-
tations on one sample instance as a function of problem size,
and shows the scalability of the generated code.

7.2.1 Estimation of User Effort
Because Bellmania is an interactive system, we try to give a
measure as to how much effort a typical user has to invest to
complete a development for the DP algorithms that comprise

7 Speedups in the table are lower than in [32]; this should be attributed to
improvement done to the baseline LOOPDP.

0 5,000 10,000 15,000

2−3

20

23

26

29 LOOPDP

Ti
m

e
(s

)

CO_Opt

AUTO

COZ

Problem size

Figure 11. Performance comparison for parallelized imple-
mentations for Gap problem on 16-core Intel Xeon 2.4GHz
CPU

Conceptual Bellmania
phases # steps # tactics

Paren 3 22 30
Gap 3 27 53
Protein 4 28 47
LCS 1 5 5
Knapsack 2 16 49
Bitonic 3 16 32

Table 3. Sizes of synthesis scripts compared to conceptual
problem size (see Section 7.2.1).

our test suite. To get an idea of how domain experts think
about the problem, we consult [12], where descriptions are
conveniently provided in the form of data-flow diagrams for
each step of computation. An example for such a diagram,
corresponding to our Algorithm 4, is shown in Figure 12; in
this case, we count it as 4 steps.

Figure 12.
An example
diagram (from [12])

We compare the sizes of these dia-
grams, which we label “# steps”, with
the number of tactic applications re-
quired to derive the respective imple-
mentation in Bellmania. The results of
the comparison are given in Table 3,
where “# phases” indicates how many
recursive subroutines are included in
the algorithm description (and in the
respective development) and the two
other columns give the sizes of the de-
scription vs. that of the development.
The development size is within 2× of
the diagrams’ size in most cases, peak-
ing at 3×.

Diagrams and complete Bellmania
transcript for the running example are
included in Appendix C.1.

Admittedly, the measured volume
ratio provides a crude proxy for usabil-

ity. A controlled user study should be
run to provide true evidence, but that goes beyond the scope
of this paper. Still, the results are reassuring since through
the course of developing the tool we were able to reduce the
number of reasoning steps from hundreds to a few dozens,
and also make them high-level. We were also able to detect
mistakes in existing (hand written) formulations of divide-
and-conquer algorithms, that eluded discovery by experts.
The additional examples in the appendix should furnish suffi-
cient intuition to conceive a qualitative opinion on the efficacy
of the approach and the prototype.

8. Further Improvements
Overall usability can be greatly enhanced with some syntactic
sugar for program terms and tactic application commands.
The current syntax is part of a proof-of-concept UI. User
experience can also be enriched with direct manipulation
gestures, such as pointing to a sub-term in the program rather
than using boxed literals to refer to them, and “carving”
sub-computations from the current term by selecting and
dragging.

The tactic library can be extended with a number of impor-
tant optimization for this domain. Dimensionality reduction
is a technique that allows to lower an n-dimensional DP prob-
lem to n− 1 dimensions by computing layer by layer. This
has an acute difference from merely buffering the most recent
layer; without going too much into details, we point out that
intermediate layers computed this way may differ from the
corresponding projection of the n-dimensional table, while
the final layer is identical. This tactic can enable a whole
sub-class of high dimension DP problems.

Some low-level tactics can boost performance as well: the
Protein benchmark runs faster using the hand-coded version
due to a subtle case splitting around the innermost loop, that
reduces an expression of the form min(k, 2j − i + 1) to
just 2j − i + 1, allowing in turn to factor an addend out of
the loop (k is the innermost loop variable). Doing the same
optimization by hand on the code produced by Bellmania
leads to the same speedup, but this boost cannot be claimed
until it is automated.

Z-ordering of the array is also a general technique and can
be automated as part of the compiler back-end. However, this
and other optimizations (such as vectorization and copy opti-
mization mentioned in Section 6) are delicate and sometimes
even degrade performance, so they better be auto-tuned rather
than applied heuristically.

9. Related Work
Classical work by Smith et al. [26] presents rule-based trans-
formation, stringing it tightly with program verification. This
lay the foundation for semi-automatic programming [5, 6, 27].
Later, these concepts have been applied to divide-and-conquer
in a disciplined way in [7, 31]; these address divide-and-
conquer in the classical sense of [13] (Chapter 4), focusing

on parallelism. In Bellmania, more focus is put on re-ordering
of array reads and writes, following and mechanizing tech-
niques related to DP from [8, 9]. In fact, traditional paral-
lelism is taking “for granted” for our aggregation operators,
since they are associative and methods such as [17] apply
rather trivially, and translated into the tactics Slice, Assoc, and
Distrib. On top of these algebraic transformations, Bellmania
allows clever re-orderings, especially through Stratify and
Let. (Some of the these tactics appear in the appendix.) More
recently, a similar approach was introduced into Leon [21],
leveraging deductive tools as a way to boost CEGIS, thereby
covering more programs. Bellmania takes a dual approach,
where automated techniques based on SMT are leveraged to
support and improve deductive synthesis.

Inductive synthesis has been the focus of renewed in-
terest thanks to the discovery of techniques that leverage
SAT/SMT solvers to symbolically represent and search very
large spaces of possible programs [19, 28, 33], and the use of
counterexample-guided inductive synthesis (CEGIS), which
allows one to leverage inductive techniques to find programs
that satisfy more general specifications. Our work is also in-
spired by the StreamBit project [30], which introduced the
idea of transformation rules with missing details that can be
inferred by a symbolic search procedure.

Fiat [14] is another recent system that admits stepwise
transformation of specifications into programs via a refine-
ment calculus. While Bellmania offloads proofs to SMT and
SKETCH, Fiat uses decision procedures in Coq, reling heavily
on deductive reasoning and uses Ltac scripts for automation.
The intended users of Fiat is regular software developers who
invoke pre-packaged scripts, whereas Bellmania targets do-
main experts who exercise more control over the generated
code.

Broadly speaking, the Bellmania system could have been
implemented as a library on top of a framework such as Coq
or Why3 [16] using binding to SMT solvers provided by
these frameworks. The decision not to do so was merely a
design choice, to facilitate easier integration with our UI and
with SKETCH.

Autogen [12] is a most recent advance that employs dy-
namic analysis to discover a program’s access pattern and
learn a decomposition that can be used to generate a divide-
and-conquer implementation. The two methods are comple-
mentary, since Autogen does not provide correctness guar-
antees: it works for a class of problems that obey a “small
world assumption”, meaning that all possible behaviors are
demonstrated by traces of bounded, known size. Crucially, in
Autogen it is the user’s responsibility to determine whether
the input problem falls within this category; if it does not,
Autogen will not fail but instead generate an incorrect imple-
mentation. This is a fundamental difference stemming from
Autogen’s use of dynamic traces vs. purely deductive reason-
ing in Bellmania. Still, the user might be able to use insights

from Autogen to develop verified code in Bellmania, where
size bounds are not required.

Pu et al. [24] have shown that recurrences for DP can be
generated automatically from a non-recursive specification
of the optimization problem. This is orthogonal; in Bellma-
nia, the recurrence is the input, and the output is an efficient
divide-and-conquer implementation. Obviously, the recur-
rence produced by [24] can be used as input to Bellmania,
providing an even higher-level end-to-end reasoning.

10. Conclusion
The examples in this paper show that a few well-placed tactics
can cover a wide range of program transformations. The
introduction of solver-aided tactics allowed us to make the
library of tactics smaller, by enabling the design of higher-
level, more generic tactics. Their small number gives the
hope that end-users with some mathematical background will
be able to use the system without the steep learning curve
that is usually associated with proof assistants. This can be a
valuable tool for algorithms research.

Moreover, limiting the number of tactics shrinks the space
in which to search for programs, so that an additional level
automation may be achieved via AI or ML methods. As more
developments are done by humans and collected in a database,
those algorithms would become more adept in predicting the
next step of the construction.

In a broader outlook, the technique for formalizing trans-
formation tactics is not particularly attached to divide-and-
conquer algorithms and their implementations. In this work,
we constructed a generic tactic application engine, on top
of which the tactics required for our domain were easy to
implement. This gives rise to the hope that, in the future, the
same approach can be applied to other domains, in the interest
of encoding domain knowledge, providing better DSLs that
offer users the power to write high-level programs without
sacrificing performance.

Acknowledgments
This work is supported by NSF Grants CCF-1139056, CCF-
1439084 and CNS-1553510. We thank Shoaib Kamil and
Adobe research for their feedback and support.

References
[1] The Coq proof assistant, reference manual. https://coq.

inria.fr/refman.

[2] Bellmania repository on github. https://github.com/
corwin-of-amber/bellmaniac/.

[3] R. E. Bellman. Dynamic Programming. Dover Publications,
Incorporated, 2003.

[4] M. A. Bender, R. Ebrahimi, J. T. Fineman, G. Ghasemiesfeh,
R. Johnson, and S. McCauley. Cache-adaptive algorithms.
In Proceedings of the Twenty-Fifth Annual ACM-SIAM Sym-
posium on Discrete Algorithms, SODA ’14, pages 958–971,
2014.

[5] L. Blaine and A. Goldberg. DTRE — a semi-automatic trans-
formation system. In Constructing Programs from Specifica-
tions, pages 165–204. Elsevier, 1991.

[6] M. Butler and T. Långbacka. Program derivation using the
refinement calculator. In Theorem Proving in Higher Order
Logics, volume 1125 of Lecture Notes in Computer Science,
pages 93–108. Springer Verlag, 1996.

[7] W.-N. Chin, J. Darlington, and Y. Guo. Parallelizing condi-
tional recurrences. In Proceedings of the Second International
Euro-Par Conference on Parallel Processing - Volume I, Euro-
Par ’96, pages 579–586, 1996.

[8] R. Chowdhury and V. Ramachandran. Cache-oblivious dy-
namic programming. In Proceedings of the ACM-SIAM Sym-
posium on Discrete Algorithms, pages 591–600, 2006.

[9] R. Chowdhury and V. Ramachandran. Cache-efficient dynamic
programming algorithms for multicores. In Proceedings
of the ACM Symposium on Parallelism in Algorithms and
Architectures, pages 207–216, 2008.

[10] R. Chowdhury and V. Ramachandran. The cache-oblivious
Gaussian elimination paradigm: theoretical framework, paral-
lelization and experimental evaluation. Theory of Computing
Systems, 47(4):878–919, 2010.

[11] R. Chowdhury, H.-S. Le, and V. Ramachandran. Cache-
oblivious dynamic programming for bioinformatics.
IEEE/ACM Transactions on Computational Biology and
Bioinformatics, 7(3):495–510, 2010.

[12] R. Chowdhury, P. Ganapathi, J. J. Tithi, C. Bachmeier, B. C.
Kuszmaul, C. E. Leiserson, A. Solar-Lezama, and Y. Tang.
Autogen: Automatic discovery of cache-oblivious parallel re-
cursive algorithms for solving dynamic programs. In Proceed-
ings of the 21st ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming, PPoPP ’16, page 10, 2016.

[13] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein.
Introduction to Algorithms. The MIT Press, third edition, 2009.

[14] B. Delaware, C. Pit-Claudel, J. Gross, and A. Chlipala. Fiat:
Deductive synthesis of abstract data types in a proof assistant.
In Proceedings of the 42nd Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL
2015, Mumbai, India, January 15-17, 2015, pages 689–700,
2015.

[15] R. Durbin, S. R. Eddy, A. Krogh, and G. J. Mitchison. Biologi-
cal Sequence Analysis: Probabilistic Models of Proteins and
Nucleic Acids. Cambridge University Press, 1998.

[16] J.-C. Filliâtre and A. Paskevich. Why3 - where programs meet
provers. In ESOP, Lecture Notes in Computer Science, pages
125–128. Springer, 2013.

[17] A. L. Fisher and A. M. Ghuloum. Parallelizing complex
scans and reductions. In Proceedings of the ACM SIGPLAN
1994 Conference on Programming Language Design and
Implementation, PLDI ’94, pages 135–146, 1994. ISBN 0-
89791-662-X.

[18] M. Frigo, C. E. Leiserson, H. Prokop, and S. Ramachandran.
Cache-oblivious algorithms. In Proceedings of the 40th Annual
Symposium on Foundations of Computer Science, FOCS ’99,
pages 285–, 1999.

[19] S. Gulwani, S. Jha, A. Tiwari, and R. Venkatesan. Synthesis
of loop-free programs. In Proceedings of the 32nd ACM
SIGPLAN Conference on Programming Language Design and
Implementation, PLDI 2011, San Jose, CA, USA, June 4-8,
2011, pages 62–73, 2011.

[20] R. M. Karp, R. E. Miller, and S. Winograd. The organization
of computations for uniform recurrence equations. J. ACM, 14
(3):563–590, July 1967.

[21] E. Kneuss, V. Kuncak, I. Kuraj, and P. Suter. Synthesis modulo
recursive functions. In OOPSLA, 2013.

[22] M. D. Lam, E. E. Rothberg, and M. E. Wolf. The cache perfor-
mance and optimizations of blocked algorithms. In Proceed-
ings of the Fourth International Conference on Architectural
Support for Programming Languages and Operating Systems,
ASPLOS IV, pages 63–74, 1991.

[23] R. Milner. A theory of type polymorphism in programming.
Journal of Computer and System Sciences, 17:348–375, 1978.

[24] Y. Pu, R. Bodík, and S. Srivastava. Synthesis of first-order
dynamic programming algorithms. In Proceedings of the 26th
Annual ACM SIGPLAN Conference on Object-Oriented Pro-
gramming, Systems, Languages, and Applications, OOPSLA
2011, part of SPLASH 2011, Portland, OR, USA, October
22–27, 2011, pages 83–98, 2011.

[25] P. M. Rondon, M. Kawaguci, and R. Jhala. Liquid types.
In Proceedings of the 29th ACM SIGPLAN Conference on
Programming Language Design and Implementation, PLDI
’08, pages 159–169, 2008.

[26] D. R. Smith. Top-down synthesis of divide-and-conquer
algorithms. Artificial Intelligence, 27(1):43–96, 1985.

[27] D. R. Smith. KIDS: A semiautomatic program development
system. IEEE Trans. Software Eng., 16(9):1024–1043, 1990.

[28] A. Solar-Lezama. The sketching approach to program synthe-
sis. In Programming Languages and Systems, 7th Asian Sym-
posium, APLAS 2009, Seoul, Korea, December 14-16, 2009.
Proceedings, pages 4–13, 2009.

[29] A. Solar-Lezama. Program sketching. STTT, 15(5-6):475–495,
2013.

[30] A. Solar-Lezama, R. Rabbah, R. Bodík, and K. Ebcioğlu. Pro-
gramming by sketching for bit-streaming programs. In Pro-
ceedings of the 2005 ACM SIGPLAN Conference on Program-
ming Language Design and Implementation, PLDI ’05, pages
281–294, 2005.

[31] Y. M. Teo, W.-N. Chin, and S. H. Tan. Deriving efficient
parallel programs for complex recurrences. In Proceedings
of the Second International Symposium on Parallel Symbolic
Computation, PASCO ’97, pages 101–110, 1997.

[32] J. J. Tithi, P. Ganapathi, A. Talati, S. Agarwal, and R. Chowd-
hury. High-performance energy-efficient recursive dynamic
programming using matrix-multiplication-like flexible kernels.
In Proceedings of the IEEE International Parallel & Dis-
tributed Processing Symposium, 2015.

[33] E. Torlak and R. Bodik. Growing solver-aided languages
with rosette. In Proceedings of the 2013 ACM International
Symposium on New Ideas, New Paradigms, and Reflections
on Programming & Software, Onward! 2013, pages 135–152,
2013.

A. Proof of Soundness
Theorem A.1. Let s = s′ be an instance of one of the tactics
introduced in this section. let ai = bi, i = 1..k, be the proof
obligations. If [[ai]] = [[bi]] for all interpretations of the free
variables of ai and bi, then [[s]] = [[s′]] for all interpretations
of the free variables of s and s′.

Proof. For the tactics with Obligations: tactic, the theorem
is trivial.

> For Stratify, let f , g be partial functions such that

∀θ, ζ. f (g ζ θ) = f ζ ∧ g (f θ) θ = h θ

Assume that ζ = fix f and θ = fix(g ζ). That is, f ζ = ζ
and g ζ θ = θ. Then —

h θ = g (f θ) θ = g (f (g ζ θ)) θ = g (f ζ) θ = θ

So θ = fixh. We get fixh = fix
(
g (fix f)

)
; equivalently,

fixh = (fix f) »
(
ψ 7→ fix(g ψ)

)
Now instantiate h, f , and g, with f »g, f , and g′ from

(4.1), and we obtain the equality in the tactic.

> For Synth, (i) assume fi = fix g and

h :: T → Y = h :: Y → Y = g :: Y → T

Intuitively, Y “cuts out” a region of an array θ :: T given
as input to h and g. This area is self-contained, in the sense
that only elements in Y are needed to compute elements in
Y , as indicated by the refined type Y → Y .

Notice that from the premise follows g :: Y → T = g ::
Y → Y . We use the following corollary:

Corollary. Let f : T → T ; if either f :: T → Y =
f :: Y → Y or f :: Y → T = f :: Y → Y , then
(fix f) :: Y = fix(f :: Y → Y).

Proof follows later in this appendix.

From the corollary, and for the given h and g, we learn
that (fixh) :: Y = fix(h :: Y → Y), and also (fix g) :: Y =
fix(g :: Y → Y). Since h :: Y → Y = g :: Y → Y , we get
(fixh) :: Y = (fix g) :: Y; now, Y is a supertype of Ti, so
(θ :: Y) :: Ti = θ :: Ti:

(fixh) :: Ti = ((fixh) :: Y) :: Ti = ((fix g) :: Y) :: Ti =

= (fix g) :: Ti = fi :: Ti

(ii) Assume h (h θ) :: Ti = fi :: Ti holds for any θ : T ,
then in particlar, for θ = fix h, we get h (h fixh) :: Ti =
fi :: Ti. Since h (h fixh) = fixh, we obtain the conjecture
(fixh) :: Ti = fi :: Ti.

Our reliance on the termination of fix expressions may
seem conspicuous, since some of these expressions are gen-
erated automatically by the system. However, a closer look

reveals that whenever such a computation is introduced, the
set of the recursive calls it makes is a subset of those made by
the existing one. Therefore, if the original recurrence termi-
nates, so does the new one. In any case, all the recurrences in
our development have a trivial termination argument (the in-
dexes i,j change monotonically between calls), so practically,
this should never become a problem.

We now prove the corollary from the proof of Synth.

Corollary. Let f : T → T ; if either f :: T → Y =
f :: Y → Y or f :: Y → T = f :: Y → Y , then
(fix f) :: Y = fix(f :: Y → Y).
Proof.

For the first case, assume θ = fix f ,

θ :: Y = (θ »f) :: Y = θ » (f :: T → Y) =

= θ » (f :: Y → Y) = (θ :: Y) » (f :: Y → Y)

This means that θ :: Y = fix(f :: Y → Y), as desired.
For the second case, from domain theory we know that
fix f = fk⊥ for some k ≥ 1. We prove by induction that
fk⊥ = (f :: Y → Y)k⊥.

For k = 1,

f ⊥ = f (⊥ :: Y) = (f :: Y → T)⊥ = (f :: Y → Y)⊥

Assume fk⊥ = (f :: Y → Y)k⊥, then definitely
fk⊥ = fk⊥ :: Y . Therefore,

fk+1⊥ = (fk⊥) »f = (fk⊥ :: Y) »f =

= (fk⊥) » (f :: Y → T) =

= ((f :: Y → Y)k⊥) » (f :: Y → Y) =

= (f :: Y → Y)k+1⊥

From this we learn that fix f = fix(f :: Y → Y) =
(fix f) :: Y .

B. More Tactics
For most of the tactics below, the proof obligation is exactly
the equality that that expresses the rewrite. We signify this
with the notation Obligations: ?.

Shrink

f = f :: T

Used to specify tighter qualifiers for the type of a sub-term.

Obligations: ?.
For arrow-typed terms, this essentially requires to prove

that f is only defined for arguments in the domain of T , and
that the values are in the range of T . This can be seen as a
special case of Slice with r = 1, with the additional feature
of specifying the range as well.

Associativity

reduce
〈

reduce〈x1〉, · · · , reduce〈xr〉
〉

= reduce〈x1, · · · , xr〉

where reduce is a built-in aggregation (min, max, Σ), and xi
are lists of terms (of the same type). If any of xi is of length
one, reduce〈xi〉 can be replaced by xi.

Obligations: none.

Distributivity

Let e be an expression with a hole, e[�] = (· · ·� · · ·).

e[t1/ · · · /tr] = e[t1]/ · · · /e[tr]
e[t1/ · · · /tr] = reduce〈e[t1], · · · , e[tr]〉

reduce e[t1/ · · · /tr] = reduce〈reduce e[t1], · · · , reduce e[tr]〉

This tactic provides several alternatives for different uses
of aggregations. Clearly,

/
does not distribute over any

expression; we give just a few examples where this tactic
is applicable.

• (x/y) + 1 = (x+ 1) / (y + 1)

• x/0 = max〈x, 0〉 (for x : N)
• min

(
[f]J0

/
[f]J1

)
= min 〈min[f]J0 , min[f]J1〉

Obligations: ?.

Elimination

e[t] = e[⊥]

Used to eliminate a sub-term that is either always undefined
or has no effect in the context in which it occurs.

Obligations: ?.

Let Insertion

Let e be an expression with a hole, e[�] = (· · ·x1 7→
· · ·xk 7→ · · ·� · · ·), where x1..k 7→ are abstraction terms
enclosing �. The bodies may contain arbitrary terms in
addition to these abstractions.

e[t] = (x 7→ t) » z 7→ e[z x]

e[reduce〈a, b〉] = (x 7→ reduce〈a〉)
» z 7→ e[reduce〈z x, b〉]

where x = x1..k, and z is a fresh variable. This tactic also
has a special version that involves reduce. The items in
〈a, b〉 may be interleaved, since min,max,Σ all happen to
be commutative.8

Obligations: tactic, if z occurs free in e; otherwise none.

Let Insertion [reduce]

e[reduce〈a, b〉] = (x 7→ reduce〈a〉)
» z 7→ e[reduce〈z x, b〉]

where x = x1..k, and z a fresh variable.

Obligations: ?, if z occurs free in e; otherwise none.

Padding

t =
(
t / f1/ · · · /fr

)
:: T

where T is the type of t. This tactic is commonly used with
Let insertion, to make the type of a sub-computation match
the type of the entire term.

Obligations: ?.

Pull Out

For e[�] as defined previously:

z = x 7→ t

where z is a fresh variable.
Similar to Let Insertion, but does not change the original

term; instead, it is used to single out and name a particular ex-
pression t, preserving the context in which it occurs in e[t]. It
is not a tactic per se, as it does not actually effect any transfor-
mation on e[t]; instead, it is designed to increase readability
of the development and simplify successive human-computer
interaction.

8 If non-commutative functions get added in the future, then this will
change into 〈a, b, c〉 non-interleaving, with the right hand side being (x 7→
reduce〈b〉) » z 7→ e[reduce〈a, z x, c〉].

Slice (find (θ 7→ ?)) (? 〈J0×J0, J0×J1, J1×J1 〉)
Stratify "/" (fixee A) A ψ
Stratify "/" (fixee A) A ψ
A B C 7→ SynthAuto ψ

Figure 13. Development of subroutine A of the Parenthesis
problem as conceptually described in [12] (top) and using
Bellmania (bottom).

C. Examples
Many aspects of Bellmania are best illustrated via examples.
While the main sections include many such examples, some
more elaborated ones may prove useful and interesting.

C.1 Development of Parenthesis (with diagrams)
The running example from Sections 1 and 2 has a total of
three subroutines, which we label A, B, and C. As promised,
we include original design diagrams by the technique’s au-
thors taken from [12]. The blocks (triangles) in the diagrams
represent intermediate steps of the computation. Below each
diagram, we show a transcript of what the user has to type in
when using Bellmania to carry out the same development.

Boxed letters in the scripts are used to refer to sub-terms
of the current program (in Section 4 we used boxed digits,
but in the actual UI we use letters because there are more of
them). Reading the scripts in a non-interactive setting might
be hard since the reader cannot observe the program; they
are listed here just to give an idea of the size and structure.
Bellmania repository [2] contains some screen-shots of an
interactive session.

Slice f (? 〈K0×K2, K0×K3, K1×K2, K1×K3 〉)
D 7→ Stratify "/" (fixee .) . ψ
C 7→ Stratify "/" (fixee .) . ψ
E 7→ Stratify "/" (fixee .) . ψ

〈Slice (find (k 7→ ?)) 〈K0, K1, K2, K3 〉,
Slice (find (k 7→ ?)) 〈K1, K2, K3 〉,
Slice (find (k 7→ ?)) 〈K0, K1, K2 〉 〉

Distrib min
Assoc min

〈Stratify min (fixee A) 〈 G, J 〉 ψ,
Stratify min (fixee B) 〈M, O 〉 ψ,
Stratify min (fixee C) 〈 R, T 〉 ψ 〉
Stratify min (fixee A) 〈 I , K 〉 ψ

I S Z G M P W D 7→ SynthAuto ψ

Figure 14. Same, for subroutine B of Parenthesis.

Slice (find (i 7→ ?)) 〈L0×L4,L0×L5,L1×L4,L1×L5 〉
Let "/" (slasher A) A ψ
Let "/" (slasher A) A ψ
Let "/" (slasher A) A ψ
Slice (findAll (k 7→ ?)) 〈L2, L3〉

Distrib min
Assoc min

〈Let min (slasher A) 〈E , G 〉 ψ,
Let min (slasher B) 〈H , J 〉 ψ,
Let min (slasher C) 〈K , M 〉 ψ,
Let min (slasher D) 〈N , P 〉 ψ 〉

A B C D E F G H 7→ SynthAuto ψ

Figure 15. Same, for subroutine C of Parenthesis

C.2 Qualified Type Inference
We provide an example of how qualifiers are inferred in
program terms.

Example

Assume that:

• I , T are types

• Î0 : I → B is a unary qualifier
• 0 : T is a constant
• S a type variable,

Consider the term (f : I0 → S) i 7→ f i i / 0. The first
step of Hindley-Milner inference will induce the following
type shapes through unification:

(f : I → S) i 7→ f i i
/

0

I → I → T I I → I → T I I T

I → T

T

T

(I → I → T) → I → T

0 0 1 21

Superscript numerals denote different occurrences of the
same variable. In this case, the type variable S has been
assigned I → T .

The process would have stopped here if it weren’t for the
qualifier I0 used in the type for f . At this point we can use
type refinements to get more accurate types for f and i in the
body of the function term.

f : I0 → I → T, i : I ` f
1

: I → I → T

f : I0 → I → T, i : I ` f 1 : I0 → I → T

Notice that (I → I → T)u (I0 → I → T) = I0 → I →
T . Truthfully, in this case this is quite a trivial result.

Let Γ = {f : I0 → I → T, i : I}.

Γ ` (f
1
i

1
) : I → T, f

1
: I0 → I → T, i

1
: I

Γ ` (f
1
i

1
) : I → T, f

1
: I0 → I → T, i

1
: I0

The types of f
1

and f
1
i

1
have not changed, but the type

of i
1

was lowered to I0.

After applying the typing rules similarly to all the sub-
terms, we get the inferred types as shown:

(f : I0 → S) i 7→ f i i
/

0

I0 → I → T I I0 → I → T I0 I T

I0 → T

T

T

(I0 → I → T) → I → T

