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Abstract

The structures and thermodynamic properties of the lateral surface of extended-chain
polyethylene crystals were simulated using consistent quasi-harmonic lattice dynamics
and Monte Carlo methods.

Using quasi-harmonic lattice dynamics, the structures and properties of the (100),
(010), and (110) lateral surfaces of extended-chain polyethylene crystais between 0
K and 300 K were determined by vibrational free energy minimizations. Slight rota-
tions of the outermost chains from their corresponding orientations in the bulk were
observed at the crystal-vacuum interface. These deviations from bulk structure were
confined to the first three molecular layers (approximately 10 A) at the surface. Sur-
face free energy calculations found the (110) surface to be the most stable over the
entire temperature range modeled, with free energies ranging from 95.4 erg/cm? to
103.5 erg/cm?, at temperatures of 0 K and 300 K, respectively. Surface free ener-
gies of the (100) and (010) surfaces were found to be at least 15% higher than the
(110) surface, with the (100) surface slightly more stable than the (010) surface, over
all temperatures considered. Surface free energy increases as the density of chains
at the surface decreases. Intermolecular potential energy accounted for over 80% of
the surface free energy at low temperatures; at higher temperatures, excess entropy
accounted for almost half of the surface free energy. The surface free energy was de-
termined predominantly by deviations in lattice mode frequencies from those of the
bulk. The accuracy of these results is limited by the validity of the harmonic approx-
imation, which is expected to be reasonably valid to temperatures between 1/3 and
2/3 of the melting temperature for modeling the surfaces of polymer crystals.

Investigative Monte Carlo simulations of the thermal motions of rigid chains in
a crystalline slab were conducted to determine structural data to supplement the
lattice dynamics results. Monte Carlo simulations in the NVT ensemble generated
results similar to those found in previous studies, but could only be run by restricting
the motions of chains to a volume centered at a fixed lattice point, an assumption
which is shown here to severely limit the phase space accessible to the system. Such
assumptions were not necessary for NPT simulations, and realistic results were ob-



served at pressures between 5 and 10 atomspheres. For all Monte Carlo simulations,
significant rotational and translational disorder was observed in the outermost crys-
talline layer, with the magnitude of disorder decreasing with depth into the crystal.
Disorder also diminished with decreased temperature. Lattice expansion of roughly
2-3% was observed in the outermost crystal layer.

The computed results, most notably the surface free energies and the comparative
mobility of surface chains, are expected to be valuable in future predictions on the
behavior of polymer crystallization kinetics.
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Title: J.R. Mares Associate Professor
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Chapter 1

Introduction

1.1 Background

It has been well established that linear, flexible chain polymers crystallized from
dilute solution form lamellar crystals. Such crystals, as shown in Figure 1-1, have

two distinct surfaces, known as lateral and fold surfaces. Since the prevalent kinetic
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Figure 1-1: Surfaces observed in polymer crystals grown from dilute solution; only
tight folds with adjacent reentry are shown.

theories of polymer crystallization postulate that crystal growth occurs through the
addition of chain segments to the lateral surface, it is expected that the structure and

properties of the lateral surface will have a strong influence on polymer crystal growth
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behavior.[1-4] The properties of the lateral crystal surface are also of interest in
understanding surface properties of crystals grown under pressure, epitaxially grown
crystals, crystals of rigid polymers, or any other system in which the lateral surface
may be macroscopically observed. However, to this date, few rigorous studies have
been conducted to quantify the structure and properties of the lateral surface in

crystalline polymers.[5-9]

1.2 Review of Previous Work

Of all the properties of the lateral crystal surface, the surface free energy has received
the most attention, and many different values of the lateral surface free energy for
polyethylene crystals have been reported in the literature. Most reported lateral sur-
face free energies for polyethylene fall in the range 10-25 erg/cm?(1, 4], and have been
calculated from the following empirical equation proposed by Thomas and Staveley

for computing surface free energies for atomic crystals [10]:
o = aAH(a,b,)/? (1.1)

where o is the surface free energy, « is a proportionality constant found to range from
0.1-0.3 for atomic crystals, AH is the latent heat of fusion, and a, and b, are lattice
spacing parameters. The empirical relation was derived by determining which surface
free energy would best match theoretical predictions of crystallization kinetics to
exparimentally observed growth rates of atomic crystals.[10] Thus, the accuracy of the
empirical relation is ultimately limited by the accuracy of the original experimental
observations, and, more significantly, by the crystallization theory used in deriving
surface free energies. Furthermore, the nature of polymer crystals (as shown in Figure
1-1) is inherently different from that of atomiic crystals, and it is guestionable whether
the empirical relation can be selectively applied to the lateral surface for polymer
crystals. Hoffman et al. have reported a lateral surface free energy for the polymer

crystal-solvent interface of 14.6 erg/cm? based on both the Thomas and Staveley
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approach (given in Equation 1.1) using n-octadecane as a surrogate for polyethylene,
and on consistencies between observed crystal growth kinetics and the theoretical
predictions of polymer crystal growth.[2] Recent studies on the crystallization kinetics
of semi-rigid polymers have found that lateral surface free energies calculated usinyg the
Thomas and Staveley approach differ significantly from those predicted by polymer
crystallization theory using experimentally observed crystal growth rates [8], but
this inconsistency was attributed to the lack of applicability of secondary nucleation
theory to semi-rigid polymer crystallization.

A commonly referenced surface free energy is 33.1 erg/cm? for the polyehtylene-
vacuum interface, based on a contact angle study of low density polyethylene sam-
ples.[11, 12] However, it is expected that the exposed surface in the cited study
contained significant amounts of amorphous polymer, and the surface free energy
may differ considerably from that of the actual crystalline interface. Such problems
in isolation of the lateral crystal surface from amorphous regions make experimental
observations of lateral surface properties extremely difficult.

The use of computer simulation provides a means to probe the crystal surface with-
out the associated difficulties encountered in experimental observations. Yamamoto
et al. have investigated the nature of n-alkane crystal surfaces using Monte Carlo
simulations of finite, lozenge-shaped lattices, and have observed significant disorder
in the outermost two to three molecular layers of the crystal, with the magnitude of
disorder becoming more pronounced with increased temperature.[5] The results of
the study may be influenced by the shape of the crystal lattice examined, and by the
neglect of thermal expansion over the temperature range 0-200 K. The study also
confined the translational motion of molecules to a small region fixed at the crystalline
lattice point; simulations considering molecular motions of arbitrary magnitude and
direction were not stable.[5] Liang et al. have used molecular dynamics simulations to
reach similar conclusions, but their study did not explicitly account for the hydrogens
in the polyethlyene.[6] Karasawa, Dasgupta, and Goddard (KDG) have modeled the
lateral surface properties of polyetheylene crystals using lattice dynamics simulations,

and have computed 0 K surface free energies of 106.8 erg/cm? and 109.2 erg/cm?,
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for the (100) and (010) surfaces, respectively.[7] However, the KDG work did not
report the structure of chains at the surface or the temperature dependence of the
surface properties, and did not consider the effects of 0 K expansion. Furthermore,
polyethylene crystals grown from dilute solution are known to exhibit primarily (110)

growth fronts, but the properties of this surface were not treated.

1.3 Research Goals

The present study provides the first rigorous calculation of the temperature depen-
dence of the structure and properties of the polyethylene lateral crystal surface, de-
termined from first principles. This study uses a tiered modeling approach to find
the free energy minimumn structures of the (100), (010), and (110) lateral surfaces of
extended-chain polyethylene crystals, up to temperatures of 300 K. Consistent quasi-
harmonic lattice dynamics simulations are used to determine the low temperature
behavior of the surfaces, and a Monte Carlo modeling approach has been developed
to complement the findings of the lattice dynamics simulations, especially at higher
temperatures. The simulation methodology used in this analysis is applicable to the
study of the low temperature behavior of the lateral crystal surface of any polymer,
provided an accurate force field exists for the polymer of interest.

The second section of this report presents the modeling approach and results of
the consistent quasi-harmonic lattice dynamics study, and the third section details
the model and results of the Monte Carlo simulations. The fourth section offers a
discussion of the accuracy of the computed surface free energies and the relevance
of these values to experimentally observable phenomena. The final section gives a
summary of the present work and recommendations for future work in the analysis

of the lateral crystal surface of polymers.
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Chapter 2

Quasi-Harmonic Lattice Dynamics

The structure and properties of a thin crystalline slab of extended-chain polyethylene
molecules were determined using consistent quasi-harmonic lattice dyanmics simula-
tions. The lattice dynamics modeling approach is presented first, and is based largely
on that used in a previous study of bulk crystalline polyethylene [13], adapted to
simulate two dimensional structures. The vibrational free energy minimum structures

and properties are then presented in the results section.

2.1 Modeling Approach

Consistent quasi-harmonic lattice dynamics was used to determine the structures
which minimized the vibrational Gibbs free energy. The simulation cells used to
generate the fine crystalline slab are described first, followed by a detailed summary of
lattice dynamics theory, a discussion of the algorithm used to minimize the vibrational

Gibbs free energy, and the equations used to calculate surface properties.

2.1.1 Generation of Crystalline Slab

The Cartesian coordinates of the atoms in the simulation cell were determined as
follows. One atom in a reference chain at the center of the slab is fixed at the origin

of the coordinate system, and 3N,y — 3 coordinates are then required to place the
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remaining atoms of the reference chain, where N, is the number of atoms per chain
in a unit cell (N, = 6 for polyethylene). As an initial guess, the coordinates of
the atoms in the reference chain are assigned the values previously computed for
the bulk crystal.[13] The other chains in the simulation cell were assumed to be
conformationally equivalent to the reference chain. The Cartesian coordinates of the
atoms in all but the reference chain are determined by four additional chain packing
parameters. Three translational offset parameters determine the placement of the
chain center of mass within the simulation cell, and the chain setting angle determines
the orientation of the plane of the chain backbone with respect to the bc-plane of the
crystal. Since the force field used in this study (KDG force field, see next section)
was parameterized to orthorhombic polyethylene crystals |7}, the simulation cells in
this study were confined to be orthorhombic, requiring three lattice parameters to
characterize the simulation cell dimensions.

The simulation cell used to model the (100) surface is depicted in Figure 2-1. As
shown, the surface simulation cell is much larger than the unit cell observed for bulk
crystalline polyethylene. By considering periodic boundary conditions in the direc-
tion of the chain axis, extended chain crystals are modeled; and periodicity in the
b-axis direction generates an infinite crystalline slab, with (100) surfaces exposed to
vacuum on both sides. The (010) and (110) surfaces were similarly represented with
appropriate changes in the simulation cell and the directions of the periodicity con-
sidered. Slab thicknesses of 50 A were found to be sufficieat to ensure non-interacting
surfaces and attainment of bulk structures at the center of the simulation cell. As
shown in Figure 2-2, simulations of thicker slabs did not change surface properties
significantly. The number of molecular layers considered in the simulation cell for a
given facet was determined by the quotient of the 50 A minimum slab thickness and
the spacing between molecular layers parallel to the crystal surface as determined
from previous simulations of the bulk crystal.[13] A summary of this calculation for

the different facets is shown in Table 2.1.
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Figure 2-1: Representation of the thin molecular slab used to model (100) surfaces:
diagonal lines are projections of chain backbones as viewed down the chain axis;
bold lines denote chains which lie on the (100) surface; the dotted line indicates the
bulk crystal unit cell; the shaded region marks the boundary of the simulation cell;
and periodic boundary conditions are considered in the direction shown (and in the
direction of the chain axis).
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Figure 2-2: (100) Surface free energy, calculated at 0 K, as a function of slab thickness.

19




Crystal Facet Interlayer Spacing (A) Layers in surface simulation cell

(100) 3.78 14
(010) 2.48 21
(110) 4.15 12

Table 2.1: Number of molecular layers considered in simulation cell for different
surfaces modeled.

2.1.2 Lattice Dynamics Theory

Consistent quasi-harmonic lattice dynamics was used to determine the structures

which minimize the vibrational Gibbs free energy, as calculated from:
G(T,P)=U(a) + Ayis(T,a) — PV(a) (2.1)

where G is the vibrational Gibbs free energy, U is the minimum potential (electronic)
energy for a slab of thickness a, A, is the vibrational Helmholtz free energy, P is the
pressure, V is the volume of the simulation cell, and T is the simulation temperature.
The remainder of this section discusses the computation of each term used in Equation

2.1, and the algorithm used to minimize the vibrational Gibbs free energy.

Electronic Energy

Electronic energies were evaluated using a Hessian-biased force field developed by
KDG.[7] Electronic energies computed with the KDG force field consist of inter-
molecular and intramolecular contributions. The long range interactions, electro-
static and van der Waals, make up the intermolecular energies, and shorter range
valence interactions are considered in the intramolecular energies. The KDG force
field parameters were found to best fit quantum mechanical calculations for butane,
experimental vibrational frequencies for butane, and experimental vibrationai fre-
quencies and structural parameters for polyethylene. The force field has been used
to model phonon dispersion curves, specific heats, and thermal expansion parameters

of bulk crystalline polyethylene to a high degree of accuracy.[7, 13] Even though the
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force field was not specifically parameterized to surface properties, it should provide
a good first approximation.

In previous bulk studies, long range interactions were evaluated using Ewald sum-
mations; however, analytical expressions for two dimensional Ewald summations are
not available for interactions of the form 1/r% the functional form of the dispersion
energy in the KDG force field. Because of this, unit cell-based cutoffs were used
to evaluate long range interactions in the surface simulations. Calculations on bulk
crystalline polyethylene show that implementation of a 25 A, unit cell-based cutoff is
sufficient for evaluation of both electrostatic and dispersion energies to better than
0.01 kcal/mol accuracy (less than 0.02% and 0.002% error, respectively). KDG have
suggested that long range interactions must be determined to better than 0.1 kcal /mo]
accuracy to “satisfactorily” predict bulk polyethylene unit cell structure.[14] Thus,
25 A unit cell-based cutoffs were deemed sufficient for the present study. Simulations
of the surface properties were carried out with cutoff distances as large as 35 A, with

no significant difference in results.

Vibrational Free Energy

Vibrational Helmholtz free energies were calculated using consistent quasi-harmonic
lattice dynamics. The application of this computational approach to crystals and
surfaces has been discussed thoroughly in the literature, and the salient features are
presented here.[15-17] The success of this approach rests on the validity of the har-
monic approximation, which assumes that normal mode motions of atoms in the
crystal can be considered purely harmonic. Thus, the harmonic approximation con-
strains the potential energy surface to be parabolic in shape with respect to normal
mode motions. Terms higher than second order in the expansion of the potential
energy are neglected in the harmonic approximation. The quasi-harmonic approx-
imation allows for the lattice parameters, and therefore the shape of the potential
energy surface, to vary with temperature, leading to a first order prediction of the
temperature dependence of structures and properties.

Previous studies on the application of the harmonic approximation to bulk crys-
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tals suggest that this assumption is reasonably accurate up to 2/3 to 3/4 of the
melting temperature.[18, 19] Unlike the atoms embedded in the bulk crystal, atoms
near surfaces have fewer constraints on their motions, and anharmonic motions are
expected to become prevalent at lower temperatures than for the corresponding bulk
crystal. For example, lattice dynamics studies of the surfaces of noble gas crystals
have suggested that anharmonic motions become prevalent at temperatures as low as
one sixth the melting point.[20] In comparison to the noble gas crystals, the onset of
anharmonicities in polymer crystals is expected to occur at higher temperatures due
to the constraints on atomic motions imposed by the covalent bonds in the polymer
chain. With these bounds in mind, reasonable validity of the harmonic approximation
is anticipated in this study to a temperature intermediate between 1/3 and 2/3 of the
melting temperature. As discussed later in this report, Monte Carlo methods do not
rely on such approximations, and thus more accurately model the surface structure
and properties at high temperatures.

Provided the atoms in the simulation cell are at their potential energy minimum
positions, diagonalization of the dynamical matrix as a function of wave vector yields
the frequencies of the 3N normal modes (where N is the number of atoms in the sim-
ulation cell). Terms in the dynamical matrix are dependent on the second derivatives
of the potential energy with respect to atomic displacements, and these derivatives
must be determined to a high degree of accuracy. Using this approach, the vibrational
partition function for the system of quantized harmonic oscillators can be calculated

. In(@un) = 353 -2y (1— i
0(Qom) = ) : n expl T ]) (2.2)

where Qg is the quantum mechanical vibrational partition function, the first sum-
mation is over all wave vectors k, the second summation is over the normal modes 17
in the simulation cell, and w;(k) is the vibrational frequency of mode ¢ for wave vector
k. Use of the quantum partition function allows for the correct representation of low
temperature dynamics and zero-point energies. The previous work by KDG used the

classical vibrational partition function, which does not account for such effects.[7]
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In an infinite crystal, an infinite number of wave vectors characterize the motions
of the atoms; however, the wave vectors spanning the first Brillioun zone are unique,
and only a representative set of first Brillioun zone wave vectors is necessary for
adequate evaluation of the vibrational partition function. The Brillioun zones for
these surface studies are two dimensional. Vibrational frequencies were computed
on a 4 x 6 mesh of wave vectors: 6 wave vectors along the reciprocal space axis
corresponding to the chain axis in real space, and 4 wave vectors along the reciprocal
space axis representing the axis lateral to the surface in real space. Calculations using
a 6 x 8 intergration mesh generated very similar resulis.

Many thermodynamic properties can be calculated directly from the partition
function using statistical mechanics.[21] For example, the vibrational Helmholtz free

energy for a simulation ceil can be calculated as:

kT In Qg

Ayib = Eyip — T'Syiv = — N,

(2.3)

where A,; is the vibrational Helmholtz free energy, E,; is the vibrational energy,
S, is the vibrational entropy, T is the temperature, and Ny is the number of wave
vectors considered in the calculation. Other thermodynamic properties, such as the

heat capacity, can also be calculated from basic statistical mechanics relations.[21]

2.1.3 Free Energy Minimization Algorithm

The free energy minimization algorithm is shown schematically in Figure 2-3, and
the strucure comprising the minimum in vibrational Gibbs free energy, as given by
Equation 2.1, was determined as follows. For a given slab thickness a, the structure
of minimum potential (electronic) energy was determined with respect to the follow-
ing degrees of freedom: the 3N, — 3 Cartesian coordinates of the reference chain
atoms, and the translational offset parameters and setting angles of the remaining
chains. Assuming that the presence of the surface only perturbs the lattice spacing
of chains in the direction normal to the surface, lattice periodicities in directions

parallel to the surface were fixed at values characteristic of the bulk, as determined
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Figure 2-3: Flow chart depicting the free energy minimization algorithm used in
consistent quasi-harmonic lattice dynamics modeling. The free energy minimum is
determined after a thorough search over slab thicknesses.
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from a quasi-harmonic analysis of the bulk crystal using the KDG force field.[13] In
order to hold the slab thickness fixed, one degree of freedom specifying the trans-
lational distance between chains at opposite surfaces of the slab was held constant.
Minimizations were performed using analytical derivatives and a quasi-Newton min-
imization algorithm.[22] At the calculated minimum in potential energy, the normal
mode frequencies and corresponding vibrational free energy were determined from
the vibrational partition function for a quantized collection of harmonic oscillators
(see Equations 2.2 and 2.3). The slab thickness was then varied systematically, with
repeated refinement of U and A,;, to minimize G. At atmospheric pressure, the
contribution of the pressure term (PV') is negligible in comparison to the sum of U
and A,;; thus, the pressure was set to zero in all cases. Using this approach, all re-
sults are calculated consistently from the force field alone, without the need of other

experimental data as parameters in the calculations.

2.1.4 Computation of Surface Properties

The following equation was used to compute surface properties:

Psu.rf - Pbulk

P =l

(2.4)

where P is the surface property, Py, is the property of interest calculated for the
surface simulation cell, Py, is the property calculated for a bulk unit cell having
the same number of chains, and A is the surface area exposed. Surface free energies
were calculated by replacing Py,,; and Py, by the Gibbs free energy calculated for
the respective systems. The previous equation was also used to determine the rela-
tive contributions of intermolecular potential energy, intramolecular potential energy,

vibrational energy, and vibrational entropy to the calculated surface free energies.
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2.2 Results

2.2.1 Vibrational Free Energy Minimum Structure

The free energy minimum structures of the surface simulation cells were found to have
a large region in the center of the crystalline slab in which the structures of the chains
were virtually identical to the structures obtained in analyses of the bulk crystal, and
a much smaller region near the lateral surfaces in which the structure of the chains
were observed to deviate slightly from the corresponding bulk structure. The observed
structural deviations may have significant implications on previous studies which have
assumed the structure of surface chains are not perturbed from their bulk values.[3,
9]

The structural feature most sensitive to the presence of a surface was a deviation
in the setting angles in the chains in the outermost layers of the crystalline slab. In
all cases, the outermost chains were found to rotate towards an orientation in which
the plane of the chain backbone approaches an orientation closer to normal to the
plane of the surface. Alternating counterrotations were observed in subsequent layers,
limited to the 2-3 outermost layers, 0-10 A, for all surfaces modeled. As an example,
in Figure 2-4 the deviation in chain setting angles from their bulk values is plotted
against the crystal layer (layer 1 being the surface), for the 0 K simulation of the
(100), (010), and (110) surfaces. Structural deviations in the outermost layers were
observed over the entire temperature range modeled. Studies of the surfaces of n-
alkane crystals have also concluded that deviations in molecular structure are limited
to the outermost two to three molecular layers [6, 5], and this interfacial depth has
also been observed in simulations of the amorphous polymer-vacuum interface.[23]
Although no constraints were placed on layer-to-layer spacing between chains in the
direction normal to the surface, no significant departure from the spacing characteris-
tic of the bulk was observed in any of the simulations, even for planes of chains close
to the surface.

The structures determined from the consistent quasi-harmonic lattice dynamics

calculations characterize only the vibrational free energy minimum structures, and
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Figure 2-4: Results of chain structure for 0 K simulations. Deviations in chain setting
angles from corresponding bulk values as a function of depth from the surface (layer
1 is the surface layer). Filled circles are for the (100) surface, filled diamonds for the

(110) surface, and filled squares for the (010) surface.
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chains, especially those at the surface, exhibit significant motions about these mini-
mized structures. The nature of these motions was quantified using the Monte Carlo
methods, and the results of the Monte Carlo simulations are presented in the next

chapter.

2.2.2 Vibrational Frequency Spectrum

As properties of the surface simulation cell were calculated from the vibrational fre-
quency spectrum using statistical mechanics, deviations in properties between the
surface and bulk crystals should also be manifested in deviations in the vibrational
frequency spectrum. In analyzing the frequency spectra, two classes of normal mode
motions were considered: vibration of the lattice modes (frequencies below 300 cra™!
at the Brillioun zone center) and vibration of the higher frequency modes, to be
collectively referred to as “intramolecular” modes in this paper.

To determine the impact of the surface on the vibrational frequency spectra,
phonon dispersion curves were plotted for a surface simulation, and compared to
the curves found for the simulation of a bulk polyethylene simulation cell of the same
dimensions. For the (100) surface simulation cell shown in Figure 2-1, there are
252 normal modes—56 lattice and 196 intramolecular—characterizing the motions of
the atoms. To illustrate the impact of the surface on lattice mode motions, phonon
dispersion curves were plotted for one small class of lattice mode motions, transverse
acoustical (TA, see ref. [7]) modes, and the results are shown in Figure 2-5, as
calculated for the (100) surface simulation cell at 0 K.

As shown in plot (a) of Figure 2-5, the transverse acoustical modes for the bulk

! at the [0 0 3] point, in agreement with

crystal converge to an energy of 268 cm™
previous work by KDG.[7] The dispersion curves for the (100) surface simulation
cell, displayed in plot (b) of Figure 2-5, are almost identical to the bulk, with the
exception of two modes, labelled as surface modes, which have frequencies of 256
cm~! at the [0 0 3] point. The surface modes converge to the bulk crystal modes at

the center of the Brillioun z.ne, and deviate to lower frequencies with distance from

the zone center, qualitatively consistent with previous simulated dispersion curves for
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Figure 2-5: Phonon dispersion curves for the transverse acoustical modes of the (100)
surface calculated at 0 K. The bulk and surface results along the [0 0 1], or chain
axis, branch is shown in plots (a) and (b); and along the [0 1 0] branch in plots (c)
and (d). Lower frequency, large amplitude surface modes are indicated.
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a Lennard Jones crystalline slab.[24, 25] These lower frequency surface modes are
characterized by large amplitude motion in the surface chains, with the amplitude of
motion decaying with depth in the crystal, and a node of zero displacement at the
center of the slab. This observation is consistent with early theoretical predictions of
the Raman spectra in polyethylene.[26]

The [0 1 0] branch of the transverse acoustical waves are shown in parts (c) and
(d) of Figure 2-5 for the bulk and surface simulations, respectively. The waves for
the bulk crystal converge at the [0 } 0] point to either 48.7 cm™' or 45.8 cm™'. The
behavior of this branch of the dispersion curves for bulk polyethylene crystals was
not found in the literature. In the surface simulations, the branches of the dispersion
curves were found to converge at the [0 3 0] point to three frequencies: 47.7 cm™!,
39.7cm™!, and 30.6 cm~!. The highest frequency branch closely matches the behavior
of the dispersion curve for the bulk crystal; the intermediate branch converges at a
frequency slightly lower than that of the lower frequency bulk crystal branch; and
the lowest frequency branch consists of two surface modes with significantly lower
vibrational frequencies over all wave vectors considered. The depressed frequencies in
the vibrational modes account for the surface thermodynamic properties calculated
from the vibrational partition function.

Phonon dispersion curves were plotted for other groups of lattice mode motions,
and for other surfaces and temperatures, and the same general effect was observed:
the dispersion curves for the surface simulation cell closely matched that of the bulk,
with the exception of usually two modes (semi-infinite slabs would have one surface
mode[24]) with depressed frequencies. The deviation in these surface lattice modes
account for a large fraction of the surface properties to be discussed in the next
section. Similar comparisons were made for intramolecular modes, yet very small
deviations were observed between the bulk and surface simulations. Thus, as will be
shown in the next section, the contribution of intramolecular modes to the calculated

properties was expected to be negligible.
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2.2.3 Thermodynamic Properties

Surface properties were calculated using Equation 2.4. The 0 K surface free energies
for the (100), (010), and (110) surfaces were found to be 109.7, 111.8, and 93.4
erg/cm?, respectively. In comparison, the previous KDG work predicted surface free
energies of 106.8 and 109.2 erg/cm? for the (100) and (010) surfaces, respectively.(7]
The difference between these surface free energies is expected to be a result of zero-
point energy effects, which were not addressed in the KDG work. KDG suggested
that inclusion of such effects would most likely lead to a change of approximately 2%
in their computed surface free energies(7], which is consistent with the values reported
here.

The temperature dependence of the surface free energies is shown in Figure 2-

6. As can be seen in the plot, the (110) surface is predicted to be the most stable
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Figure 2-6: Surface free energy as a function of crystal growth face and temperature.
Filled circles are for the (100) surface, filled diamonds for the (110) surface, and filled
squares for the (010) surface.
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over the entire temperature range considered. The (100) and (010) surfaces have
significantly higher surface free energies, and the (100) surface is slightly more stable
than the (010) surface over all temperatures modeled. The surface free energies
predicted in this study are significantly higher than those found by Hoffman et al.;
however, Hoffman’s predictions of lateral surface free energies are characteristic of the
crystal-solvent interface, and Hoffman notes that surface free energies for the crystal-
vacuum interface are expected to be “considerably higher”.[2] As shown in Figure
2-6, lateral surface energies are expected to increase with temperature, in agreement
with the predictions of Hoffman et al.[2] It should be noted that the lateral surface
{ree energy for all faces increases by at least 10% from 0 to 300 K, and, like the
structural deviations noted earlier, this temperature dependence may have significant
implications on previous studies which have assumed the lateral surface free energy
to be independent of temperature.[27]

More detailed information on the thermodynamics of the surfaces can be obtained
by considering the breakdown of the surface free energy into contributions from in-
tramolecular potential energy, intermolecular potential energy, vibrational energy,
and vibrational entropy. For all surfaces and temperatures, the intramolecular en-
ergy contribution to the surface free energy was found to be less than 2%. Since
the intramolecular degrees of freedom in this study were determined by the reference
chain located in the center of the slab, it was expected to find little deviations in
intramolecular energies between the surface and bulk simulations. The temperature
dependence of the other contributions to the surface free energy are displayed for all
crystal facets in Figure 2-7. At lower temperatures, the intermolecular energy con-
tribution dominates the surface free energy, and the entropic contribution is small,
as expected. As the temperature increas~s, the entropy makes a significantly greater
portion of the surface free energy. The contribution from vibrational energy remains
roughly constant with temperature. In comparing the different faces, it is found that
the added stability of the (110) surface is due to lower contributions from vibrational
energy and entropy over the entire temperature range considered. This may be traced

to the higher frequencies of the (110) surface modes (in comparison to the (100) and
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(010) surface modes) at the more densely packed surface.

The source of the excess vibrational free energy can be investigated further by
considering the contributions from the lattice and intramolecular modes to the vibra-
tional Helmholtz free energy. This was done by constructing the quantum partition
function (see Equation 2.2) using only lattice mode frequencies, and using this mod-
ified partition function to evaluate properties. The results of such calculations are

shown in Figure 2-8. Intermolecular potential energies are determined explicitly from

100% ¢ T ® T T ® ]
@ i
g 80%
=g
273
ES  60% o
<8
R
§°§ 40%
Se
o =
e
'™ 20%

0% T T T T T
0 50 100 150 200 250 300

Temperature (K)

Figure 2-8: Contribution of lattice mode motions to the (100) surface vibrational
energy (shown as filled squares) and (100) surface vibrational entropy (shown as
filled circles) as a function of temperature.

the force field, and therefore cannot be separated into contributions from lattice and
intramolecular modes. Over all temperatures considered, the lattice mode motions
accounted for less than half of the surface vibrational energy, and virtually all of the
surface vibrational entropy. This result, in conjunction with that shown in Figure
2-7, suggests that the temperature dependence of the calculated surface free energies
is almost entirely due to the entropic effects associated with the excitation of lattice

mode motions particular to the surface.
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Chapter 3

Monte Carlo Simulations

Monte Carlo simulations can be used to estimate statistical mechanical ensemble aver-
ages through strategic sampling of the system phase space. In the present work, simu-
lations are performed in the isothermal-isobaric, or NPT, ensemble using “Metropo-
lis” sampling, a technique designed to ensure the most populated regions of phase
space are thoroughly sampled.[28] The current approach was inspired by the study
of Yamamoto et al. [5], which is reviewed first. This is followed by a detailed descrip-

tion of the present modeling approach, and discussion of preliminary results.

3.1 Review of Previous Attempt

The previous Monte Carlo study by Yamamoto et al. considered the thermal motions
of n-alkane molecules in lozenge-shaped crystals, with lateral surfaces of the lozenge
closely resembling the surface of extended-chain polyethylene crystals.[5] The simu-
lations sampled phase space from the canonical, or NVT, ensemble, and considered
the rotation and translation of rigid molecules about their lattice positions over the
temperature range 100-200 K. The study examined the (100) and (110) surfaces of
the finite crystal by using a simulation cell similar to that shown in Figure 3-1. The
study found significant rotational and translational disorder for the molecules near
the lateral crystal surface, with the magnitude of disorder becoming more pronounced

at higher temperatures. In all cases, molecules at the (100) surface exhibited greater
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disorder than those at the (110) surface.

The results of the previous study rely on several key assumptions, some of which
may come at the expense of the physics of the system. For example, translational
motion of molecules was confined to 1 A displacements about bulk crystal lattice sites,
which may be viewed as effectively imposing a harmonic potential on all molecules,
thus restricting the phase space accessible by the system. Further, the system phase
space may have also been limited by neglect of thermal expansion. Finally, the use
of a simulation cell (as shown in Figure 3-1) with edges and corners could lead to

unrealistically high mobility in surface molecules.

3.2 Modeling Approach

The present modeling approach is based largely on the work of Yamamoto et al. [5],
but invokes a different set of assumptions which are believed to represent the physics
of the system more accurately. The approach is shown schematically in Figure 3-2,
and the details of sampling schemes, criteria used to evaluate equilibration times, and

computation of structural properties are discussed in this section.

3.2.1 Simulation Cell

As with the lattice dynamics study, simulation cells were developed to model thin
crystalline slabs of extended-chain polyethylene molecules. As shown in Figure 3-3,
the (100) Monte Carlo surface simulation cell differs from the corresponding lattice
dynamics cell only in the cell dimension lateral to the surface. The broader Monte
Carlo simulation cell was required to achieve uncorrelated motions in surface chains,
as quantified in the results section. The current simulation cell construction does
not suffer from edge- or corner-effects. In all cases, the input simulation cell for a
given temperature was taken from the corresponding lattice dynamics results, thus
explicitly accounting for thermal expansion. In the simulations, “interlayer spacings”
(0z and by in Figure 3-3) are computed as a measure of the expansion or contraction

of the crystal lattice. The coordinates of a given layer were calculated by averaging
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Figure 3-2: Flow chart outlining the Monte Carlo approach: details of the sampling
scheme, the criteria used to determine acceptance of Monte Carlo moves, and the
equilibration times and output distributions are given in the text.
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Figure 3-3: Monte Carlo simulation cell used to model the (100) surface. Diagonal
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the z- and y-coordinates of the center of masses of all chains in that layer. Eventually,

analyses of larger simulation cells should be conducted to confirm that results are not

dependent upon simulation cell size.

3.2.2 Sampling Scheme

Several different sampling schemes were considered in the development of the model.
All schemes attempted chain rotations by perturbation of chain setting angles, and
chain translations by perturbation of the three chain translational offset parameters.
In general, sampling schemes considering small perturbations in chain rotation and
translation generated high acceptance ratios, but also long simulation times due to
inefficient sampling of phase space. However, consideration of significantly larger
perturbations in chain rotation and translation required fewer Monte Carlo steps to
adequately sample phase space, but low acceptance ratios led to prohibitively long
simulations. The sampling scheme found to have most reasonable simulation times
had intermediate acceptance ratios, roughly 50% for simulations at 300 K.

In a given Monte Carlo step, perturbations in the setting angle or translational

offset parameter for a randomly selected chain were attempted according to:
Oinew = Oiold + 0dof (3.1)

where ©; o4 is the selected degree of freedom of chain 7 prior to the attempted move;
O new is the value after the attempted move; and d4,; is the perturbation to the degree
of freedom, a randomly chosen value from a uniform distribution bounded by +A.
The values of A for each degree of freedom are shown in Table 3.1. This sampling
scheme does not artificially confine the motions of chains to be tethered at a lattice
point, thus allowing for a more complete sampling of phase space.

The Monte Carlo simulations were conducted in the NPT ensemble, as the system

volume fluctuates with translation of the surface chains. Attempted moves from state
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Degree of Freedom A

rotation 180°
z-translation 104
y-translation 1.0A
z-translation c/2

Table 3.1: Maximum perturbations considered in each attempted Monte Carlo step;
c is the lattice spacing in the chain axis direction.

m to state n were accepted when the following inequality was satisfied [29]:

_AHnm
—_— 2
exp ( T ) > ran(0, 1) (3.2)
Va
where : AHy, = AE,, + P(V, = V) = kT'In v (3.3)
m

where AH,,, is the difference in a property similar to the enthalpy between states
n and m; AE,,, is the change in potential energy in the step; P is an arbitrarily
chosen system pressure; V;, and V,, are the simulation cell volumes before and after
the attempted move; and ran(0, 1) is a randomly generated number between 0 and 1.
The average positions of the center of mass of surface chains were used to compute
the slab thickness, which in turn was used for calculating simulation cell volume. For
the current sampling scheme, the magnitude of the third term in Equation 3.3 was
several orders smaller than that of the other two terms.

Charges in intermolecular potential energy were evaluated using the KDG force
field, and a 10 A unit cell-based cutoff. Intramolecular potential energies were not
computed, as the chain conformations remained rigid throughout the simulation.
Longer cutoffs were necessary in lattice dynamics simulations as the intermolecular
energy and its first and second derivatives were found to converge at much longer
cutoffs than for AE,,,. Since the lateral dimension of the simulation cell is roughly
equal to the potential energy cutoff distance, every Monte Carlo step actually con-
sidered multiple chain motions, thus modeling a system slightly different from that

of isolated chain movements. To assess the difference between these two scenarios,
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individual potential energy calculations were performed for a randomly selected set
of Monte Carlo moves, and AFE,,, was found to differ less than 0.1% for the two
systems for all moves considerea, thus indicating that the two different approaches
sample virtually identical regions of phase space.

The system pressure strongly influenced the acceptance criteria of attempted
moves, and ultimately the simulation results. At zerc pressure, Equation 3.3 is de-
termined solely by the potential energy effects, reducing Equation 3.2 to the same
acceptance criteria used by Yamamoto et al. for NVT sampling. In this case, the
crystalline slab configuration was found to be unstable, consistent with findings of Ya-
mamoto et al. for simulations considering molecular motions of arbitrary magnitude
and direction.[5] This behavior is attributed to the shallow potential energy barrier
associated with removal of surface chains from the crystal, as displayed in Figure 3-4.

However, at higher pressures, the crystalline slab remains stable over the entire sim-
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Figure 3-4: (100) Simulation cell energy as a function of the displacement of surface
and bulk chains in the z-direction. The potential energy barrier for removing a surface
chain from the crystal is less than 5 kcal/mol.
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ulation, thus giving the simulation pressure physical significance: an external force
required to overcome sublimation. At very high system pressures, the second term in
Equation 3.3 favors the compression of simulation cells to unrealistically dense slabs.
As will be discussed in the results section, a narrow range of pressure, roughly 5-10

atmoshperes, generates stable simulations.

3.2.3 Structure and Property Computations

Simulations were run for between 1.0 x 10¢ and 5.0 x 10¢ Monte Carlo steps, with sam-
ples taken every 500 steps. The equilibration period was determined by evaluating
changes in the average of the potential energy, and by examining autocorrelation func-
tions for slab thickness, interlayer spacings, and chain rotations and z-translations.

Autocorrelation functions were calculated using the following equation [29):

Cau(r) = (A(T) A(0)) = Z A () A(ro + 1) (3.4)
where C44(7) is the autocorrlation function for property A; A (7) is the property A
evaluated after 7 Monte Carlo steps; and 7y,,; is the total number of steps considered
in the averaging period. The structural parameters substituted for A in Equation 3.4

are listed in Table 3.2. The system was considered equilibrated—all memory of the

Degree of Freedom A (see Eqn. 3.4)

chain rotation |cos (6)|
z-tranclation |cos (Zm)|
interlayer spacing oz, by

Table 3.2: Structural properties used to evaluate autocorrelation functions; 8 is the
chain setting angle; Z is the z-translational offset parameter; and dx and 4y are
interlayer spacings between adjacent (100) and (010) molecular layers, respectively.

input configuration lost—when the autocorrelation functions reached their limiting
values. Further discussion of equilibration is presented with the simulation results.

After the system had equilibrated, output distributions were compiled for the
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following structural parameters: z-translational offset parameter and setting angle for
each chain, slab thickness, and interlayer spacings. Ensemble averages and standard
deviations in the structural parameters were determined. Correlation parameters were
computed to determine whether simulation cell size may have introduced correlated

motions, and were calculated as [29]:

(6.A5B)

7 (Ao (B) (3:5)

Cas =

where C 45 is a measure of correlation between structural parameters A and B, and

the other terms in Equatior 3.5 are given by [29]:

SA=A- (A) (3.6)

ens

0* (A) = (A%)ens — (A)p, (3.7)

The instantaneous fluctuation in property A is given by Equation 3.6, and the stan-
dard deviation of the fluctuations is given by Equation 3.7. Rotational correlation was
assessed by replacing .A with the cosine of the setting angle; z-translational correlation
using the z-translational offset parameter; and transverse correlation by considering
(r?). These equations were used to determine the correlation between various pairs
of chains in the crystalline slab. In all cases, correlation parameters are bounded by

0 and 1, with values near 1 indicating significant correlation.[29]

3.3 Results

Investigative Monte Carlo simulations were completed for the (100) surface at tem-
peratures of 100, 200, and 300 K, following the modeling approach presented above.
The remainder of this sectior summarizes findings regarding the effect of pressure
on the simulations, followed by the acceptance ratios, equilibration behavior, and

structural properties computed for simulations of the (100) surface.
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3.3.1 Effect of Pressure

As shown in Equations 3.2 and 3.3, the magnitude of the simulation pressure affects
the acceptance criteria for a given Monte Carlo step, and thus determines the system
phase space accessible in the simulation. The impact of the system pressure on the
results for (100) simulations at 300 K are summarized in Figure 3-5. As shown,

for pressures below 1.0 atmospheres (0.1 GPa), the crystalline slab configuration was

Slab Thickness Autocorrlation
Parameter (see Equation 3.4)
(swonsduy)
ssauydIq], qe[S

12.5 GPa
— GPa

0.6

T T T
0 50,000 100,000 150,000

Monte Carlo step

Figure 3-5: Equilibrated slab thickness and autocorrelation function for slab thickness
(see Equation 3.4) for (100) surface simulations at 300 K as a function of pressure.
Dashed lines mark the slab thicknesses +5% those found from the lattice dynam-
ica study. Simulations with slab thicknesses equilibrating between these bounds are
considered to be the most realistic.

unstable, with surface chains moving away from the crystal without limit. Stable slabs
were observed at pressures greater than 1.0 atmosphere, but the converged structures
for higher pressures exhibited unrealistically high lattice compression.

To defire bounds of simulation pressures which give realistic results, it was as-
sumed that lattice expansion or contraction for the crystalline slabs would not exceed
+5% the vibrational free energy minimum structures determined in the lattice dy-

namics study. For simulations of the (100) surface at 300 K, pressures between 5-10
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atmospheres (0.5-1.0 GPa) were found to fit this criteria, as shown in Figure 3-5. Un-
less otherwise noted, all results in the remainder of this paper are based on simulations

conducted using a pressure of 5 atmospheres.

3.3.2 Acceptance Ratios

The sampling scheme was derived such that roughly 50% acceptance was observed
for (100) surface simulations at 300 K. According to Equation 3.3, lower temper-
atures decrease acceptance rates by virtue of both the decreased Boltzmann factor
(kT) and the increased values of potential energy changes (AE,,) resulting from
the more compressed lattice. A summary of the acceptance ratios, broken down by
bulk and surface chains, degree of freedom, and temperature, is shown in Table 3.3.

As expected, acceptance ratios were highest for the 300 K simulations and were also

Degree of Freedom Chains 100 K 200 K 300 K
Surface 13% 27% 40%

Rotation Bulk 6% 14% 27%
Overall 7% 16%  29%

Surface 42% 55% 65%
z-translation Bulk 34% 48% 58%
Overall 35% 49% 59%

Surface 51% 64% 75%
y-translation Bulk 37% 53% 65%
Overall 39% 55% 66%

Surface 52% 6% 80%
2-translation Bulk 34% 5% 71%
Overall 37% 61% 73%

Surface 40% 54% 64%
All combined Bulk 2% 43%  55%
Overall 29% 45% 57%

Table 3.3: Acceptance ratios observed in simulation of the (100) surface at 5.0 atmo-
spheres pressure broken down by degree of freedom and temperature. Surface chains
are those in the outermost crystalline layer, all other chains are consideied “bulk”.

significantly higher for perturbations in surface chains. As a result of the sampling

scheme employed, acceptance was also highest for z-translation of chains, and lowest
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for chain rotations. However, this last trend is an outcome of the sampling scheme

used and does not necessarily reflect the physics of the system.

3.3.3 Equilibration

The equilibration period was determined by monitoring the simulation cell potential
energy and autocorrelation functions for several structural parameters. As shown in

Figure 3-6 for the 300 K analysis of the (100) surface, the instantaneous potential

Energy (kcal/mol)

.30 -

Simulation Cell Potential

-35

I ! I I ]
0 100,000 200,000 300,000 400,000 500,000
Monte Carlo Step

Figure 3-6: Simulation cell potential energy for the (100) surface analysis at 300 K
as a function of Monte Carlo step.

energy of the simulation cell begins to oscillate about a steady equilibrium value
within the first 200,000 Monte Carlo steps. Similar energy equilibration durations
were observed for the 100 K and 200 K simulations.

The autocorrelation functions of the structural parameters listed in Table 3.2
reached limiting values well within 200,000 Monte Carlo steps as well. As shown in
Figure 3-5, the crystal slab thickness reached stable values within the first 100,000

Monte Carlo steps for simulations at 5 atmospheres pressure, and the interlayer spac-

47



ing was found to have similar convergence behavior. Autocorrelation functions for the
z-translation and rotation of chains are shown in Figure 3-7 and 3-8, respectively, for

100 K simulations at 5 atmospheres pressure. As shown, the z-translation of chains
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Figure 3-7: Autocorrelation functions for z-translation of chains from (100) surface
simulations at 100 K and 5 atmospheres pressure. Plots are shown for seven chains
located at different distances from the surface.

equilibrated well within the first 10,000 Monte Carlo steps, and chain rotations within
roughly the first 60,000 Monte Carlo steps. Equilibration durations for the 200 K and
300 X are expected to be shorter by virtue of the higher acceptance ratios. Based on
these findings, a conservative estimate of a 300,000 Monte Carlo step equilibration

duration was assumed for all simulations.

3.3.4 Distributions of Structural Properties

Following system equilibration, samples from the simulation were taken every 500
Monte Carlo steps to compile output distributions of structural parameters. The dis-
tributions for the z-translation of chains as a function of temperature and depth into

crystal are shown in Figure 3-9, with the standard deviations of the distributions given
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Figure 3-8: Autocorrelation functions for chain rotations from (100) surface simula-
tions at 100 K and 5 atmospheres pressure. Plots are shown for seven chains located
at different distances from the surface.

in Table 3.4. Significant z-translational disorder exists for all chains in the crystal,
even at temperatures of 100 K. At 300 K, the chains have little barrier to motions
in the c-axis direction, and the distribution of 2-translational offset parameters is
nearly uniform throughout the crystal. The magnitude of disorder is partly the result
of the simulation cell dimension in the direction of the chain axis, and simulation
cells with more than two repeat units per chain are expected to predict more ordered
systems for z-translation. It should be noted that surface chains exhibit marginally
larger disorder than corresponding chains in the bulk, consistent with interpretations
which can be made from the [0 0 1] phonon dispersion curves (see Figure 2-5, plots
(a) and (b)) from the lattice dynamics study. The small perturbations in the [0 0 1]
branch of the phonon dispersion curve by the presence of the surface suggests that
the z-translation of surface chains is not significantly different than that observed in
the bulk crystal.

The distribution of chain setting angles observed for the 100 K, 200 K, and 300

K, simulations at 5 atmospheres pressure are shown in Figures 3-10, 3-11, and 3-
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Figure 3-9: Normalized distributions of the 2-translational offset parameter as a func-
tion of temperature and distance from the (100) surface; the vertical axes on all of
the plots have the same bounds.
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Molecular Layer 100 K 200 K 300 K
1 (Surface) 0.358 0.385 0.394

2 0.346 0.365 0.383
3 0.327 0.365 0.387
4 0.324 0.364 0.377
5 0.324 0.370 0.374
6 0.325 0.370 0.376
7 (Bulk) 0.324 0.365 0.379

Table 3.4: Standard deviations of the distributions of z-translational offset parame-
ters, as a function of temperature and distance from the (100) surface.

12, respectively. The results at 100 K and 200 K both indicate a crystal with a
four-site distribution of chain setting angles, while at 300 K rotational disorder exists
throughout the crystalline slab. At 100 K and 200 K, the distributions of bulk chain
setting angles centered at 45° and 135° are quite broad, and surface chains readily
sample from all setting angles. Significant discrepancies are observed between the
results of the present study, and those of the study by Yamamoto et al.[5] In the
previous study, virtually no rotational disorder was observed throughout the crystal at
100 K, and bulk setting angle distributions were extremely narrow, even at 200 K.[5]
The enhanced rotational freedom found in the present work is believed to result from
chain rotations being strongly coupled to the translational motions of neighboring
chains. As the previous study imposed unrealistic constraints on chain translation, the
chain rotations observed were also artificially restricted. Thus, limiting translational
motion by constraining chains to lattice points restricts the rotational phase space that
can be sampled in a simulation, a conclusion expected to apply to most simulaticns
of condensed phases of rod-like molecales.

Ryckaert and Klein have conducted several molecular dynamics studies of the high
temperature behavior of n-alkane crystals, and have found four-site distributions of
chain setting angles for systems at temperatures greater than 325 K, with two-site
distributions at lower temperatures.[30-32] The four-site distributions predicted for
100 K and 200 K crystals in the present work are not necessarily inconsistent, with the

results of Ryckaert and Klein, as efficient Monte Carlo simulations can sample regions
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Figure 3-10: Distributions of chain setting angles observed in 100 K simulation at 5
atmospheres pressure, as a function of depth into crystal.
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Figure 3-11: Distributions of chain setting angles observed in 200 K simulation at 5
atmoshperes pressure, as a function of depth into crystal.
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Figure 3-12: Distributions of chain setting angles observed in 300 K simulation at 5
atmospheres pressure, as a function of depth into crystal.
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of phase space that may be separated by high energy barriers, whereas the phase space
sampled in molecular dynamics is restricted by short simulation times and potential
energy barriers.[29] However, the featureless chain setting angle distribution predicted
in the 300 K simulations at 5 atmospheres pressure (see Figure 3-12) is inconsistent
with the findings of Ryckaert and Klein [30], and the discrepancy cannot be explained
by the different simulation techniques, but is resolved in the next paragraph upon
consideration of interlayer spacings.

The distribution of interlayer spacings was monitored as a measure of the trans-

lational motion of the crystalline chains, and is summar’ :d in Table 3.5. In all

Layers 100 K 200 K 300 K
1-2  3.74 (0.174) 3.90 (0.270) 4.03 (0.355)
2-3  3.67 (0.157) 3.81 (0.250) 3.93 (0.335)
3-4 3.66 (0.149) 3.81 (0.243) 3.93 (0.305)
4-5 3.67 (0.156) 3.81 (0.243) 3.93 (0.327)
5-6  3.66 (0.159) 3.83 (0.251) 3.95 (0.290)
6-7  3.68 (0.159) 3.83 (0.243) 3.95 (0.335)

Table 3.5: Equilibrium average interlayer spacings normal to the (100) surface, in A,
and standard deviations (in parentheses) by crystal layer and temperature. Layer 1
is a surface layer, and layer 7 is embedded in the bulk crystal.

cases, lattice expansion of between 2-3% was observed in the outermost crystalline
layer. The enhanced rotations of surface chains discussed earlier is expected to be
coupled to surface expansion effects. It should be noted that the magnitude of the
surface expansion predicted in this model is likely determined by the simulation pres-
sure. Lattice dynamics simulations of the bulk polyethylene crystal have found lattice
spacings of 3.68 A, 3.73 A, and 3.78 A, for the bulk crystal at 100 K, 200 K, and
300 K, respectively. Thus, a simulation pressure of 5 atmospheres reproduces bulk
crystal lattice spacings at 100 K, but leads to an overall lattice expansion of nearly
5% for the 300 K simulations. To attain better consistency with bulk lattice spac-
ings, 300 K simulations were repeated using various simulation pressures, and average

equilibrium interlayer spacings in the interior of the crystal of 3.78 A were observed
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for simulation pressures of 7.5 atmospheres. The chain setting angle distribution

for tnese simulations is shown in Figure 3-13. In contrast to the results depicted in
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Figure 3-13: Distributions of chain setting angles observed in 300 K simulation at 7.5
atmospheres pressure, as a function of depth into crystal.

Figure 3-12, a four-site chain setting angle distribution was observed for the 300 K
simulations when simulation pressures were chosen such that bulk lattice spacings
achieved those predicted by the lattice dynamics results. These simulated results are
consistent with those of Ryckaert and Klein [30], and further prove that the choice of

simulation parameters and sampling schemes is critical in the prediction of realistic
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results.

3.23.5 Correlation Parameters

Correlation parameters were calculated to assess the degree of correlated rotations,
transverse motions, and z-translational motions among different pairs of chains in the
simulations using Equation 3.5. Selected results for the analysis of the z-translation

of chains are shown in Table 3.6. The tabulated correlation parameters suggest that

Temperature Surface Chains Bulk Chains

100 K 0.0029 0.022
200 K 0.0084 0.0087
300 K 0.0074 0.011

Table 3.6: 2-Translation correlation parameters, C 45, calculated for two neighboring
chains in the center of the crystalline slab, and for two adjacent chains on the (100)
crystal surface; thus, A and B refer to the z-translational offset parameters for the
two chains of interest.

z-translational motions in chains are virtually uncorrelated from the motion in a
neighboring chains. Similar results are observed in the correlation parameters of the

other degrees of freedom.
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Chapter 4

Discussion

Surfaces of the extended-chain crystalline slabs considered in the present study are
ideal representations of actual lateral surfaces observed in polymer crystals, as most
crystals of flexible chain polymers grown from dilute solution form lamellar structures
(an ideal schematic is shown in Figure 1-1). It is important to consider how structures
and properties predicted for the extended-chain crystals might apply to such chain-
folded systems.

With regards to the structure of chains at the lateral surface, the presence of
chain folds is expected to perturb the free energy minimum structures over a short
“interfacial thickness”, 4. Results from the present work and from simulations of
the amorphous polymer-vacuum interface [23] indicate that interfacial thicknesses
between condensed polymer phases and vacuum are on the order of 10 A. Extending
this finding to the crystal fold surface, isolated polymer crystals in vacuum may be
represented schematically as shown in Figure 4-1. In this diagram, chain segments
embedded in the bulk crystal (Region 3) are expeceted to assume the bulk structures
as calculated by previous work and confirmed by experiment [13, 24], and structures
in the interfacial region of the lateral surface (Region 2) should exhibit the structures
of surface chains predicted in this study. Only lateral surface chains in the interfacial
region near the chain fold surface (the shaded region on the diagram) are expected to
have structures different from those predicted in the present work. Since polyethylene

crystals grown under atmospheric pressure exhibit lamellar thicknesses on the order
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Figure 4-1: Schematic of an isolated lamellar crystal, with only tight adjacent folds
shown. The structure and properties of crystalline segments in Region 1 and 2 are
perturbed from bulk values by the presence of the fold surface and the lateral surface,
respectively; chain segments in Region 3 assume bulk crystal values; and the structure
of chain segments in the shaded regions are expected to be perturbed by both the
lateral and fold surfaces. Interfacial thickness, 4, and d, (both not to scale with the
sketched lamellar thickness, are shown.
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of 200-300 A [33], and interfacial thicknesses of 10 A are assumed, the structure of at
least 90% of the exposed lateral surface chains in a lamellar crystal are expected to
be nearly equal those computed for the extended-chain crystal in the present work.
With regards to surface properties, the impact of the fold surface on lateral sur-
face properties can be assessed by considering the effects chain folds may have on the
normal mode vibrational frequencies, particularly for lattice modes. Such analyses
have been done previously by comparing the experimental vibrational frequency spec-
tra of lamellar polyethylene crystals to extended-chain n-alkane crystals, which are
known to exhibit great structural similarity to polyethylene crystals, except without
chain folding.[34] The study showed a deviation in as much as 10% in the trans-
verse acoustic vibrational mode frequencies between the two different crystals, with
the other lattice modes and the intramolecular modes exhibiting significantly smaller
deviations.[34] These results are expected to be applicable to both Regions 2 and
3, but vibrational modes in Region 1 likely show significant departures from those
calculated for the bulk crystal. Such studies suggest that the impact of chain folds on
bulk vibrational frequencies, and therefore properties, may indeed be marginal, and
that the properties of the lateral surface calculated in the present study should serve

as a good estimate for the properties observed in lamellar crystals.
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Chapter 5

Conclusion

5.1 Summary of Findings

The structure and properties of the (100), (010), and (110) lateral crystal surfaces of
extended-chain polyethylene crystals were determined from first principles at temper-
atures of 0-300 K using both consistent quasi-harmonic lattice dynamics and Monte
Carlo simulation methods.

The main assumptions in the lattice dynamics study were the use of an empirically
derived force field to quantify the interactions of the atoms in surface simulations
and the modeling of the thermal motions of the system as quasi-harmonic. These
approximations are expected to be less accurate above about 200 K. Nevertheless,
the results suggest a very consistent picture for the structure and relative stability of
the low index faces of the lateral crystallographic surfaces over the entire temperature
range considered. 1n particular, only modest rotations of chains are found near the
surface, which is confined to the 2-3 outermost layers. There is no indication of lattice
expansion in the vicinity of the surface. The (110) surface is found to be at least 15%
more stable than either the (100) or (010) surfaces, primarily due to lower vibrational
energy and vibrational entropy, both associated with the denser packing of chains at
the surface. The temperature dependence of the surface properties results primarily
from low-frequency, large-amplitude lattice mode motions.

Preliminary results from Monte Carlo simulations complement the findings of the
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lattice dynamics study. Simulations of the (100) surface at 5 atmospheres pressure
show significant rotational disorder of surface chains at 100 K and 200 X, with the
magnitude of disorder rapidly decreasing with depth into the crystal. Complete ro-
tational disorder is observed throughout the crystal at 300 K and 5 atmospheres
pressure, but unrealistically high lattice spacings were also observed in the center
of the slab. Four-centered chain rotational distributions were observed at 300 K for
simulations at 7.5 atmospkeres pressure, along with lattice spacings more represen-
tative of the bulk crystal. At 5 atmospheres pressure, bulk lattice spacings for the
100 K simulation were found to be nearly identical to those determined using lattice
dynamics, with the exception of 2-3% expansion observed in the interlayer spacing at
the surface. Comparison of the results to previous studies has shown that the rota-
tional and translational motions of chains are intimately coupled, and that sampling
schemes which restrict either degree of freedom may severely limit the phase space

sampled in the system.

5.2 Recommendations for Future Work

Continued studies of the polymer c.ystal-vacuum interface can provide valuable in-
formation on the structure and properties of the lateral crystal surface. The current
lattice dynamics results can be validated by investigative Monte Carlo or molecular
dynamics studies, used to gauge the validity of the harmonic approximaion at surfaces
of polymer crystals. For example, trajectories of atomic motions, and distributions
of atomic motions, can be readily calculated in lattice dynamics simulations, and
these can be compared to corresponding distributions compiled from a Monte Carlo
study. In any case, a more comprehensive Monte Carlo study may also be helpful in
comparing the surface disorder between the different surface habits.

Further, in both the lattice dynamics and Monte Carlo simulations, intramolecular
degrees of freedom of the surface chains were not considered. Relaxing this assump-
tion allows for the investigation of surface chain conformations other than those of

the minimized bulk crystal, and may lead to interesting conclusions regarding sur-
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face conformational disorder. Extending this approach, one may eventually conduct
“crystallization studies”, similar to those of Patel and Farmer [3], by examining the
potential and free energy barriers associated with attaching a distant chain to the
lateral crystal surface, and moving adsorbed chains into crystalline registry.

With some modifications to the current approach, the eifects of solvent on the
lateral crystal surface structure and properties could be evaluated, and such infor-
mation would prove valuable for more direct applications to polymer crystallization
theory. This can be best achieved by incoporating Monte Carlo or molecular dynam-
ics simulation techniques to consider crystal-solvent interfaces. Previous studies have
employed a mean field to characterize solvent effects on crystal surface properties [35];
but other work has suggested that crystal surface structure is largely determined by
local molecular interactions [36], thus implying that mean field techniques may fail
to consider important local structure effects. As such, a fully atomistic medel of the
crystal-soivent interface is recommended to best capture the surface structure and
properties. Such a model would be computationally intensive, but could yield lateral
surface properties computed from first principles for any polymur crystal-solvent pair,
provided acrcurate force fields exist to quantify the intermolecular interactions.

Credibility in the present study can also be established through experimental val-
idation of the simulated structures and properties. It is recommended that surface
properties be measured directly, as opposed to using crystallization theories or em-
pirical relations in conjunction with experimental data. Surface structure may be
experimentally observed using atomic force microscopy, and surface free energies may
be derived using contact angle experiments. In either case, samples must be prepared
such that the lateral crystal surface is significantly isolated from amorphous regions,
which may be accomplished by using epitaxially grown crystals, or crystal grown
under high pressure.

With thorough data available characterizing the lateral crystal surface, and even-
tually the folded crystal surface, much of the uncertainty surrounding the current
polymer crystallization theories may b2 resolved, and it is in this area where the

present research holds great promise. For many years, predictions based on the cur-

63



rently accepted polymer crystallization theories are often predicated on the lack of
data quantifying key parameters, such as lateral and fold surface free energies, and
equilibrium melting temperatures. With thorough data becoming available on these
parameters from studies such as this, it is hoped that more accurate predictions
within the framework of current polymer crystallization theories can be made, or

that more accurate theories may eventually be derived to better accommodate the

data becoming available.
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