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ABSTRACT 
For coastal urban areas, increased flooding events pose one of the clearest climate change 
threats. We demonstrate how a land use-transport (LUT) model can be used to forecast the short 
and longer term impacts of potential 4-foot sea level rise in Greater Boston by 2030. The short-
term scenario represents the immediate transport system response to inundation, which provides 
a measure of resiliency in the case of an extreme event, such as a storm surge. In the short run, 
the results reveal that transit captive users will suffer more. Transit, in general, displays less 
resiliency, at least in part due to the center city’s vulnerability and Boston’s radial-focused transit 
system. Trip distances would modestly decrease, and average travel speeds would go down by 
over 50%. Rail transit ridership would be decimated and overall transit usage would go down by 
66%. The longer term scenario aims to predict how households and firms would prefer to 
relocate in the “new equilibrium” where over ten square miles of land disappear and the transport 
network inundations become permanent. Assuming no supply constraints, new residential growth 
centers would emerge on the peripheries of the inundated zones, primarily in the inner-core 
suburbs. Some regional urban centers and traditional industrial towns would boom.  Firms would 
be hit harder, due to their heavy concentration in the inner-core; firm relocation would largely 
follow households. Transit usage would again be decimated, but walking trips would increase. 
Results, however, should be viewed as cautious speculation. 
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INTRODUCTION 
The world now largely recognizes that the global climate is warming, likely bringing a host of 
consequences which will vary widely by region. Ongoing efforts at emissions mitigation are 
necessary, but adaptation actions are now nearly inevitable. For coastal urban areas, increased 
flooding events pose one of the clearest threats. Rising sea levels coupled with increased 
precipitation and more intense and frequent extreme weather events, such as hurricanes, point to 
the need for planning for flooding and possible long-term needs for major resettlement.  
 Storms like 2012’s Hurricane Sandy dramatically demonstrated the potential short-term 
consequences in terms of massive disruptions to susceptible infrastructures (e.g., New York 
City’s public transit system) and major dislocations to residents and businesses. The immediate 
response has primarily been to “retrench” and “rebuild,” essentially a “robustness” posture: 
strength and sturdiness in the face of uncertainty. The long-term perspective, however, arguably 
requires a more “resilient” posture, a flexible system that can more easily adapt to the high 
degrees of uncertainty associated with long term-changes (e.g., sea level rise) in light of long-
term investment decisions (e.g., infrastructure and housing locations).  

Researchers and policymakers have focused on urban land use as a potential 
transportation energy reduction strategy well before climate change mitigation was a concern 
(e.g., 1). Using simulation tools for understanding the potentials dates to around the same time 
(2). In more recent decades, numerous studies have used increasingly sophisticated land use-
transport (LUT) models to examine the possibilities for mitigating transportation greenhouse gas 
emissions by changing urban growth patterns (e.g., 3). Less work, however, has focused on using 
these tools to better understand the adaptation side. That is, how might, or how should, the LUT 
system respond and adapt to the climate change threat, in the short and longer-terms?  

This paper provides an initial exploration of possible answers to these questions with an 
LUT model developed for Greater Boston, using commercial software. Our purpose is to 
demonstrate how such tools might be used to assess possible tradeoffs and develop better 
resiliency plans. For example, might land use strategies consistent with transportation emissions 
mitigation (e.g., “smart growth”) be inconsistent with adaptation, if the former implies 
densification in at-risk areas? Which transportation infrastructures are most likely to be adversely 
affected and what might be the long-term impacts on location choices? Where might dislocated 
residents and businesses prefer to relocate and how might we start such resiliency planning 
taking these preferences into account? 

In exploring how LUT models might help answer such questions, this research is 
necessarily and entirely speculative. None of us should “believe” predictions 30 or 50 years into 
the future using models estimated on and calibrated for today’s reality. This is especially the case 
when trying to predict impacts of exogenous forces as uncertain as climate change, which imply 
unprecedented long-run losses of transportation and real estate assets, while assuming 
technologies and behavioral preferences remain static. Our models are not “official” models, nor 
do they represent “official” forecasts. Our intention is demonstration. 
 
PRECEDENTS 
An increasing amount of research aims to predict and analyze the effects of inundation events or 
other climate change-related disturbances on transportation (e.g., 4; 5). Most research on sea 
level rise (SLR) and flooding locates and quantifies impacts, using GIS and LIDAR data to 
determine the extent of threatened assets and including detailed information on soil conditions, 
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road grade, drainage, etc. (e.g., 6). Though often focused on impacts to road networks, some also 
focus on transit infrastructure (7).  

Transport network vulnerability studies became increasingly common in the mid-1990s, 
after the Kobe earthquake (8). Related methods soon thereafter began being applied to network 
disruptions due to climate change risks. Such disruptions can be modeled in many different 
ways. Lu & Peng (8) provide a detailed review; here we focus on those related specifically to 
climate change-related inundation risks, primarily at the urban level. Suarez et al. (9), examining 
the Boston case, used a regional travel model and measured the impact as the number of trips lost 
due to SLR and the estimated cost of increased travel time and lost trips, under different 
exogenous population and land use patterns. Their target outputs identified the number of trips 
that would not occur due to flooding of the origin or the destination zone or the necessary 
transportation infrastructure. Some of the trips still occurring will take much more time. They 
assumed that commuting trips to a flooded area do not occur, all trips from flooded residential 
areas do not occur, and shopping trips redirect to the nearest other shopping area. They consider 
a network link non-usable if touched by an inundation layer. A direct empirical and 
methodological precedent for our work, Suarez et al (9) only model the road network (i.e., they 
ignore transit), analyze a small network (less than 10% of all links in the region), and treat land 
uses exogenously.  

Chang et al. (10) used a similar method in analyzing network impacts under flooding 
conditions in Portland, Oregon. They used hydrological models, a framework for identifying 
“critical” linkages in the region, and the MPO’s transport model to compute changes in vehicle 
hours traveled (VHT) and vehicle distances traveled (VDT). They found minimum impact on 
these measures, although the flooding extent modeled was constrained to two river watersheds, 
with relatively small regional impacts. Transit impacts were excluded. Lu & Peng (8) examined 
network and zonal vulnerability under two different SLR scenarios in south Miami, utilizing 
accessibility changes estimated from a model of 130 traffic analysis zones (TAZs). They did not 
include transit system impacts nor subsequent changes in land uses. Finally, Cambridge 
Systematics (5) inventoried New Jersey’s transportation assets and identified the vulnerability or 
resiliency of critical assets under climate change scenarios. GIS layers represented areas at risk 
and a four step travel model was used to compute zonal criticality scores based on highway 
assignment and the number of persons and jobs in a given TAZ. The approach was used to 
identify critical road network links (with high traffic and connecting “important” zones).  
 We could find no examples of efforts to examine long-term metropolitan-level 
vulnerabilities to inundation using LUT models. But, such models may provide useful insights. 
In the case of an acute incident, such as a major storm surge, a travel network model can provide 
indications of areas of immediate risk and dynamic traffic assignment can show the degree of 
network resiliency. But such analyses ignore longer term reactions. For example, if flooding 
recurs with increasing regularity, the land market will react, in part due to the habitually 
degraded transport performance. At the long-term extreme, if permanent inundation occurs, 
knocking out transportation infrastructures and large habitable areas in a metropolis, where might 
people and firms want to go? The next section presents the method we use to help begin 
answering some of these questions.  

METHODS AND DATA 
Model Platform  
We developed an integrated LUT model for Boston metropolitan region (MIT-LUT), based on 
Cube Voyager and Cube Land software and Python scripting. The MIT-LUT model has the same 
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spatial extent as the Central Transportation Planning Staff (CTPS)’s transport model, with 986 
TAZs in the transport model and 2727 TAZs in the land model.  

Cube Land is the commercial version of MUSSA, an operational land use model based 
on auction theory (11). It consists of three interdependent models, demand, supply and rent, to 
determine market equilibrium. In the demand model, a consumer decides the bid for each type of 
property in each zone. The bid or willingness to pay, comes from the utility function, which 
depends on the consumer characteristics, real estate attributes and location. Given fixed supply, 
the highest bidder wins. In the supply model, supply agents decide the amount of each type of 
real estate to offer based on profit maximization. Rent connects supply and demand. The auction 
process adjusts rents and bids until all agents are located without incentive to move.  

The MIT-LUT model allocates 12 types of households (defined by age, income, size), 
and 11 types of firms (defined by industry) to 12 kinds of real estate units (e.g., single family, 
large apartment) in each TAZ. We estimated household and firm location choice models using 
the 2010-2011 Massachusetts Travel Survey (2010MTS), InfoGroup data, MAPC/MassGIS 
parcel data, and Census data. The household location choice model has a rich representation of 
zonal attributes, such as accessibilities to jobs and shopping, race, SAT scores, income, crime, 
FAR, and taxes, and household characteristics including size, age, income, student, children etc. 
The firm location choice model includes variables such as distance to highway entries, 
accessibility to population and employment, density, job density by sectors, FAR etc. We 
calibrated the land model for 2010.  

The transport model is a four-step model with a vehicle ownership module added. We 
characterize households into 224 types, based on size, workers, income and vehicle ownership. 
Trip distribution is done in a disaggregated manner by five worker earning groups. The vehicle 
ownership model and mode choice model have the logit choice structure, estimated using 
2010MTS. Five modes are specified: single-occupant vehicle (SOV), auto-passenger (APAX), 
walk-access-transit (WAT), drive-access-transit (DAT), and walk (WALK). Trip purposes include 
Home-based Work (HBW), Home-Base Shopping (HBSH), Home-Based School (HBS), Home-
Based Other (HBO), Non-Home-Based Work (NHBW), and Non-Home-Based Other (NHBO). 
The transport model is estimated and calibrated for year 2010.  

The land and transport models are linked by accessibility measures, household and firm 
locations, and other zonal variables derived from number of agents and travel skims, updated 
during each model iteration.  

 
Sea Level Rise Scenario  
SLR data, in GIS format, come from the National Oceanic and Atmospheric Administration 
(NOAA)’s website (https://coast.noaa.gov/slrdata/). NOAA created these layers using a 
"modified bathtub" model, a digital elevation model of the region's land overlaid with data on the 
elevation and extent of water. Local and regional data on water features along US coastlines and 
the connectivity of other hydrological features are considered; areas of non-coastal land adjacent 
to coastal land can be inundated via water flow.  

NOAA provides one- to six-feet SLR layers. We chose to model the four-feet scenario, 
since it marks an inflection point, the point of the greatest change of slope in terms of impacts on 
transportation assets and land uses, such as inundated rail and bus stops, and lost jobs and 
households (12). We used GIS tools to intersect SLR4ft layer with the TAZ shape-file of our 
model area. Four-feet SLR, inundates (in 2010): 279 TAZs, or about 10.3 square miles; 4% of 
population and households; 5% of jobs; four subway stations (Aquarium, Orient Heights and 
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Revere Beach on Blue Line, and Kendall/MIT station on Red Line); 2.2 miles of the Red Line 
and 2.1 miles of Blue Line; the Chelsea Commuter rail station is inundated; 2% bus stops and 
24% of bus routes; and 356 out of 24577 road miles (12) (Figure 1). 
 
Network Inundation Methods 
Dowd (12) details the strategy used for degrading conditions on the link. Inundated links remain 
in the network, but with link attributes such that the travel time is too long for the link to be used. 
The predicted level of water on a link determines if a link is degraded or disabled. A degraded 
link is still usable by vehicles (including buses) and persons, but not by rail vehicles. Disabled 
links are unusable by any vehicle or person ((12) provides details).  
 
Modeling Scenarios  
The Base Scenario is the 2030 baseline forecast. The total households and firms are adapted from 
the households by age and employment projections from Metropolitan Area Planning Council 
(MAPC)’s Stronger Region Scenario.  

The SLR_SHORT scenario represents the immediate transport response to inundation, 
assuming no change in trip destination or mode choice. The OD flow matrix by mode is fixed; 
lost trips are removed if they: 1) have travel times exceeding 180 minutes; or 2) are from/to 
inundated zones. For 1), we generate the travel time skims for the inundated network and apply 
the updated skim to select trips exceeding 180 minutes. For 2), if land in a zone is over 70% 
inundated (considered as “fully inundated”), all trips to/from that zone are ‘lost’; otherwise, the 
share of zone’s trips lost equals the zone’s percentage of inundated area.  

The SLR_LONG scenario models the long-term adaptation of land use and transport at 
four-foot inundation. This scenario contains several key assumptions. First, total households and 
firms remain the same. In other words, there is no inter-regional migration due to inundation. 
Second, we enforce a small upper bound (4 units) for the total supply of real estate units on all 
inundated TAZs (this was necessary for the land use model to converge). For the un-inundated 
TAZs, real estate supply has no upper bounds (no density constraint). In this way, we allow 
households and firms to freely move to anywhere but the inundated zones. Third, in the long run, 
a new real estate market equilibrium is reached.  
 

IMMEDIATE INUNDATION IMPACTS 
We first evaluate the immediate travel results in response to four-feet SLR, akin to the aftermath 
of a major storm surge. We examine two aspects: how many trips are lost because of extremely 
long travel times; then, given the remaining trips, how the road and transit networks perform 
compared to the base.  
 
Lost Trips  
In the 2030 base scenario, Greater Boston has 16.96 million trips, 14.6% of which (about 2.48 
million) are lost due to inundation. As most inundated areas are located in the region’s inner core 
with a high concentration of residents, jobs and educational institutions, we expect greater loss in 
Home-Based Work and Home-Based School trips. Table 1 shows that Home-Based Work and 
Home-Based School lose 19.7% and 21.3% trips, respectively, a greater percentage than for 
other trip purposes. Home-Based Shopping trips are least affected because of their generally 
lower trip length and local distribution pattern.  

Our transport model distinguishes users into Choice and Captive groups based on 
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household car ownership. Choice users’ households have at least one car and have access to all 
modes; Captive user households do not own a car, and have no access to auto-related modes 
(SOV and DAT). We expect Captive users to have a greater share of lost trips due to their limited 
choice and transit’s lower resilience under inundation. The model shows that Captive users lose 
18.6% trips versus 13.7% for Choice users. Across all trip purposes, Captive users suffer a 
greater share of lost trips (Table 1). 

The variations in lost trips across modes indicate different levels of resilience (Table 2). 
WAT and DAT have the highest percentages of lost trips, 51.7% and 94.2%, respectively. The 
broken connection on heavy rail, such as the Blue and Red Lines, forces transit users to switch to 
slower transit modes, such as bus, and make more transfers. Bus trips, moreover, are subject to 
roadway inundation impacts. Thus, transit trips are more prone to exceed the 3-hour travel time 
limit. The majority of the DAT destinations are in the inner-core area, thus suffering direct loss of 
trips. In contrast, WALK and SOV have the lowest shares of lost trips (7.8% and 9.9%), 
demonstrating the dense road networks’ relative resiliency to inundation. 
 
Road Network Performance 
Network inundation has spillover effects, measured by the performance of un-inundated parts of 
the road network. After removing lost auto trips, the model assigns the remaining 90% auto trips 
to the road network. Table 3 summarizes traffic assignment results for the un-inundated part of 
the network. Vehicle-miles travelled (VMT) is an outcome of the number and distance of auto 
trips. Losing auto trips decreases VMT; while the deteriorated links cause travel detours, 
potentially increasing trip distances. Our model shows that average auto trip distance increases 
from 11 miles to 12 miles. The net change of VMT is -3%, compared to the -10% loss in auto 
trips. VMT by road link type suggests that local streets and main distributors play a key role in 
carrying detoured auto trips (Table 3).  

Vehicle hours travelled (VHT) depends on the number of auto trips, trip distance and 
congestion. Despite fewer auto trips, travel detours increase auto trip distance, and increase 
congestion on un-inundated links. Average auto trip time increases from 19 minutes to 28 
minutes; average auto speed decreases from 36 miles per hour to 13 miles per hour; and the 24-
hour VHT increases by 173% -- clear signs of aggravated congestion. 

Among the four periods of the day, PM peak experiences the largest increase in VHT 
(364%) relative to its baseline, followed by Mid-day (MD) (77%). Surprisingly, AM VHT 
increases only by 30%, less than MD. Similarly, PM average speed declines the most to 7 mph, 
followed by MD (21 mph). AM speed (27 mph) is even higher than MD. This is mostly because 
more AM VMT is on expressways relative to PM and MD (60% versus 56% and 55%, 
respectively). Since few expressways are inundated, the AM period is less affected by 
inundation. MD and PM VMT, on the other hand, accrues more on minor arterials, main 
distributors and local streets, which have lower speeds to begin with, suffer more inundation 
causing increased detours, and have lower capacity to accommodate more demand without 
increased congestion. This suggests that inundation’s impacts vary across different times of day, 
depending on trip ODs at a given time, and how much the trips use inundated links.   

The static traffic assignment procedure forces a small number of flows onto the inundated 
links. The deteriorated link capacity and free-flow speed make VHT on such links extremely 
high even with low volumes. Such travel can be considered ‘lost’ since realistically it cannot be 
completed. 
 



8 
 

Transit Ridership  
The previous analysis shows that transit (WAT and DAT) loses 0.9 million trips (65%) of 1.4 
million trips. Table 4 shows the ridership change for each transit mode. Rail experiences greater 
declines in ridership than bus or BRT. Bus and BRT ridership decreases by 42% and 65%, while 
Heavy Rail, Light Rail and Commuter Rail ridership declines by 70% to 89%. 

Although total transit mode share is fixed in the short run, within transit mode shares can 
change due to each mode’s changed skims. Basically transit ridership shifts from rail to bus. Bus 
share increases from 30% to 52%, while heavy rail’s share drops from 38% to 26%. The shift 
reflects the relative flexibility and resilience of bus service. Bus service is more ubiquitous and 
has more route coverage (1595 miles) than rail (852 miles). The dense bus system can recover 
ridership from rail, a finding of particular interest for developing strategies for resilient transit 
systems. 
 

LONG-TERM INUNDATION IMPACTS  
Household and Firm Location Change  
Figure 2 maps the changes in households and firms due to inundation at the TAZ level. 
Expectedly, inundated zones and their direct neighbors lose households. But some TAZs far from 
inundated areas also lose residents, partly due to decreased regional transit and/or auto 
accessibility. More interesting is the zones to which households move. New growth centers 
emerge on the peripheries of inundated zones, such as the southern part of Boston, western 
Somerville, Everett, Revere, Malden, and Lynn. Some regional urban centers, such as Lawrence 
in the north and Brockton in the south, experience significant household growth. These locations 
have high densities and a high concentration of low-income populations. The relatively low rents 
might be one of the factors attracting relocated households.  

Comparing areas of household growth with the subway system location (Figure 2, left) 
does not show much correlation. New growth tends to locate in areas with good access to major 
highways (Figure 2, middle). These location observations support the model result that heavy rail 
ridership declines more in the long run than in the short run (as discussed later).  

Table 5 summarizes household location changes by the Massachusetts Community Types, 
a classification system developed by the Metropolitan Area Planning Council (MAPC) (Figure 
3). The Inner Core-Metro Core area experiences the largest decrease in households, since it 
contains the majority of the four-foot inundation area. This area has a net decrease of 98,609 
households, 21% of its baseline value. Regional Urban Centers see the biggest growth in 
households, 65,407; some of these are not close to the inundated areas. Developing Suburbs have 
the second largest growth in households, 16,293.  

The loss of firms mainly occurs in inundated areas. The Inner Core-Metro Core loses 
44% of its firms, while in Inner Core-Streetcar Suburbs, Regional Urban Centers, Maturing 
Suburbs and Developing Suburbs the number of firms increases by 20% (Table 5). Firms favor 
locations with good highway access (Figure 2, right). 
 
Long-term Transport Impact  
Changes in transport supply and agent relocation work together to influence long-term travel 
outcomes. Vehicle ownership, modeled with sensitivity to land use and accessibility (14), 
increases, with the share of 0-vehicle households decreasing from 12% to 10% and households 
with 1 to 3+ vehicles modestly increasing. Two factors play a role: worsened transit service, 
especially rail, decreasing transit accessibility; and, location choices favoring auto-accessible 
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places and encouraging car ownership. 
Mode share is affected by trip distribution patterns and travel skims for each mode. For 

all trip purposes, SOV trips increase slightly, by 2%, while auto-passenger trips decrease by 1% 
(Table 6). For Home-based work trips, SOV share increases from 73% to 78%; for other trip 
purposes, SOV share stays almost the same. WAT and DAT trips decrease by 56% and 97%, 
respectively. Their mode shares decline for all trip purposes. WALK trips increase by 20%, 
increasing across all trip purposes. The substantial drop in transit share shows that transit is least 
resilient to network breakdown. The limited expansion in SOV share is probably due to 
worsened road congestion. The increased WALK trips compensate for lost transit trips. Average 
trip distances may decline, given a fixed travel time budget and higher travel impedances for 
auto and transit. The increasingly important role of WALK suggests that SLR may push people 
back to this traditional slow and flexible travel mode.  

Long-term VMT declines by 4% compared to the base scenario (Table 3), somewhat 
counter-intuitive since total SOV trips increase by 2%. This implies that average auto trip 
distances become shorter. The model generates such results because in the trip distribution step, 
we fix the observed travel time distribution. Given an inundated network with higher overall 
travel times, trip distances must be shorter to make predicted travel time distributions match the 
observed. This may be a realistic assumption if people’s travel time budget remains fixed in the 
long run.   

Short-run congestion largely diminishes in the long run, though it remains worse than the 
baseline. The long-term average auto travel speed (28 mph) is double the short-term (13 mph), 
yet still slower than the baseline (36 mph). Long-term VHT increases by 23%, a combined result 
of slightly increased auto trips, and worsened congestion. For each period of the day, road 
congestion nearly returns to baseline levels except for the PM peak (22 mph vs. 35 mph).  

In the long-term SLR scenario, a small fraction of trips is still assigned to the inundated 
network, generating extremely high VHT. This is due to the nature of static assignment, which 
forces all trips within an hour window to load on the network, without limiting the Volume-
Capacity Ratio. Nevertheless, very few links reveal this issue. Such links may serve a critical 
role in maintaining the network’s connectivity and serving key flows.  

Transit ridership decreases more in the long run (-71%) than the short run (-66%). The 
most drastic ridership loss occurs in rail line services (-84% to -95%) relative to Bus’ 33% loss. 
Among transit services, Bus has the largest share of ridership in the long term (70%), compared 
to 30% in the Base Scenario.   
 
CONCLUSIONS  
We demonstrate the speculative use of an LUT model to forecast the short and longer term 
impacts of potential 4-foot SLR in Greater Boston. The short-term scenario represents the 
immediate transport system response to inundation, providing a measure of transport system 
resiliency in the case of an extreme event, such as a storm surge. The results show how transit 
captive users unsurprisingly will suffer more. Transit, in general, displays less resiliency, at least 
in part due to the center city’s vulnerability and Boston’s radial-focused transit system. Trip 
distances would modestly decrease, and average travel speeds would go down by over 50%. Rail 
transit ridership would be decimated and overall transit usage would go down by 66%.  

The long-term scenario aims to predict how households and firms would prefer to 
relocate in the “new equilibrium” where over ten square miles of land disappear and the transport 
network inundations become permanent. Assuming no supply constraints, new residential growth 
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centers would emerge on the peripheries of the inundated zones, primarily in the inner-core 
suburbs. Some regional urban centers, traditional industrial towns like Lowell and Lawrence, 
would boom. Firms would be hit harder in terms of relocation, due to their existing heavy 
concentration in the inner-core; firm relocation would largely follow households. Transit usage 
would again be decimated, but if there is a silver lining in the long-term forecast, walking would 
mostly make up for the transit loss, likely due to new sub-center formation and lack of 
investment in alternatives. This “doomsday” climate change scenario suggests human-powered 
travel, the quintessential low carbon mode, would rise again.  

Naturally, these results need to be viewed with a heavy dose of skepticism and are not 
generalizable to other contexts. Our purpose was to demonstrate the possibilities of the tools, not 
produce forecasts for decision-making now. A range of shortcomings can be identified; we end 
with mentioning a few and implications for additional research. First, the models do not account 
for the highly likely uncertainty in behavior. The models assume people’s preferences (for 
mobility, for housing, etc.) will remain the same, an unlikely assumption with or without SLR. In 
the long run scenario, we apply the same supply restriction to all inundated TAZs, regardless of 
the size of the inundated area; this will generate more relocation of households and firms. A more 
realistic approach would be to relate the constraints to the fraction of inundated area. We also 
assume no changes in firm or household population size, income levels or economic structures. 
On the transport modeling side, we used static traffic assignment, which can allow very high 
congestion on certain links, tending to overload the network; dynamic traffic assignment would 
generate more realistic and stable assignment results. The models ignore freight travel, which 
impacts system performance and firm location choices. In our application, we use mobility-
focused performance metrics, while accessibility-based measures (e.g., 8; 12) may be more 
meaningful. 
 Finally, the scenarios, especially the long-term one, should not be mistaken for being 
“realistic.” As the threat of SLR increases, infrastructures would most likely slowly adapt as 
would people, firms and the economy. The models used here could be used to help guide that 
adaptation, identifying which links or nodes should be reinforced, for example, and where new 
infrastructures may be necessary. The approach, refined, could in theory be used to identify areas 
most suitable for location, by different types of households and firms and to develop incentives 
to achieve a societally desirable, resilient LUT plan.  
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TABLE 1 Lost Trips by Purpose and by Choice and Captive Transit Users 

 
All riders   Choice   Captive  

 
Base totals  Lost trips   % lost  Base totals  Lost trips   % lost  

Base 
totals 

 Lost 
trips   % lost  

HBW 
     

3,001,273  -589,905 -19.7% 
     

2,846,812  -555,026 -19.5% 
      

154,462  -34,879 -22.6% 

HBSH 
     

1,777,807  -193,527 -10.9% 
     

1,595,127  -159,553 -10.0% 
      

182,680  -33,974 -18.6% 

HBO 
     

6,260,606  -835,059 -13.3% 
     

5,848,881  -761,275 -13.0% 
      

411,725  -73,783 -17.9% 

NHBW 
     

1,566,115  -204,866 -13.1% 
     

1,499,609  -191,934 -12.8% 
         

66,506  -12,932 -19.4% 

NHBO 
     

3,000,342  -371,271 -12.4% 
     

2,783,589  -334,633 -12.0% 
      

216,754  -36,638 -16.9% 

HBSC 
     

1,351,271  -287,616 -21.3% --- --- --- --- --- --- 

Total 
   

16,957,415  -2,482,244 -14.6% 
   

14,574,018  -2,002,422 -13.7% 
   

1,032,126  
-

192,205 -18.6% 
Note: HBW: home-based work; HBSH: home-based shopping; HBO: home-based other; NHBW: non-home-based 
work; NHBO: non-home-based other; HBSC: home-based school. 
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TABLE 2 Lost Trips by Mode and by Trip Purpose 

Mode 
 

All  
Purposes HBW HBSH HBO NHBW NHBO HBSC 

SOV Base 
          

8,196,419  
       

2,194,269  
                

883,702  
            

2,810,049  
            

937,497  
     

1,370,902   ---- 

 
Lost -810,705 -250,459 -75,100 -264,627 -88,296 -132,223  ---- 

 
% lost -9.9% -11.4% -8.5% -9.4% -9.4% -9.6%  ---- 

APAX Base 
          

2,293,178  
           

138,885  
                

254,933  
                

985,592  
              

38,790  
         

502,065  
        

372,912  

 
Lost -228,230 -17,708 -21,854 -92,356 -3,645 -45,432 -47,233 

 
% lost -10.0% -12.8% -8.6% -9.4% -9.4% -9.0% -12.7% 

WAT Base 
          

1,001,919  
           

246,992  
                  

91,098  
                

355,428  
              

71,922  
         

119,606  
        

116,873  

 
Lost -518,441 -143,669 -42,606 -168,505 -35,208 -61,325 -67,127 

 
% lost -51.7% -58.2% -46.8% -47.4% -49.0% -51.3% -57.4% 

DAT Base 
              

432,391  
           

140,725  
                  

14,761  
                

179,844  
              

40,533  
           

56,528   ---- 

 
Lost -407,152 -134,458 -13,122 -168,103 -38,029 -53,440  ---- 

 
% lost -94.2% -95.5% -88.9% -93.5% -93.8% -94.5%  ---- 

WALK Base 
          

4,632,950  
           

280,402  
                

533,313  
            

1,929,693  
            

477,373  
         

951,241  
        

460,928  

 
Lost -362,149 -43,610 -40,845 -141,467 -39,687 -78,850 -17,688 

 
% lost -7.8% -15.6% -7.7% -7.3% -8.3% -8.3% -3.8% 
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TABLE 3 Summary of VMT, VHT and Average Speed of Un-Inundated Road Links 
for Base Scenario and Sea Level Rise Scenarios 

 
VMT VHT Average Speed 

24Hour Base 
SLR_ 
short 

SLR_ 
long Base 

SLR_ 
short 

SLR_ 
long Base 

SLR_ 
short 

SLR_ 
long 

Expressways 52,146,971  -12% -8% 977,197  15% 36% 53.4 41.0 36.3 
Main 
Arterials 

      
4,900,952  -23% -24% 

        
137,316  26% -15% 35.7 21.8 32.0 

Minor 
Arterials 

    
17,098,101  -6% -7% 

        
633,380  49% 1% 27.0 17.1 24.9 

Main 
Distributors 

    
12,654,408  35% 16% 

        
518,087  338% 32% 24.4 7.5 21.4 

Minor 
Distributors 

      
1,655,413  -9% -7% 

          
72,222  29% 25% 22.9 16.1 17.1 

Local streets 4,552,634  27% 12% 231,230  939% 35% 19.7 2.4 16.3 
Total 93,008,479  -3% -4% 2,569,432  173% 23% 36.2 12.9 28.1 

          AM (hourly)         
 Expressways 3,883,548  -12% -6% 73,952  -4% 1% 52.5 48.1 48.9  

Main 
Arterials 

          
357,911  -31% -27% 

            
9,867  -13% -22% 36.3 28.9 

          
33.6  

Minor 
Arterials 

      
1,131,163  -9% -3% 

          
42,046  1% 0% 26.9 24.3 

          
26.1  

Main 
Distributors 

          
783,261  35% 25% 

          
32,293  105% 30% 24.3 16.0 

          
23.2  

Minor 
Distributors 

          
115,897  -11% -6% 

            
5,191  16% -4% 22.3 17.2 

          
21.9  

Local streets 259,739  40% 25% 13,213  175% 36% 19.7 10.0 18.1  
Total 6,531,519  -5% -2% 176,562  30% 7% 37.0 26.9 33.9  

          Mid-Day (hourly)        
 Expressways 2,836,437  -9% -10% 49,870  7% -7% 56.9 48.7 55.5  

Main 
Arterials 

          
274,209  -25% -26% 

            
7,391  -20% -23% 37.1 34.7 

          
35.9  

Minor 
Arterials 

          
975,975  -5% -9% 

          
35,459  17% -8% 27.5 22.3 

          
27.2  

Main 
Distributors 

          
734,671  29% 11% 

          
29,786  145% 13% 24.7 13.0 

          
24.0  

Minor 
Distributors 

            
93,368  -10% -10% 

            
3,971  15% -8% 23.5 18.4 

          
23.1  

Local streets 275,172  21% 9% 13,894  404% 10% 19.8 4.8 19.5  
Total 5,189,832  -2% -7% 140,371  77% -2% 37.0 20.5 35.3  
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TABLE 3 (continued)         
         

 VMT   VHT  Average Speed 

PM (hourly) Base 
SLR_ 
short 

SLR_ 
long Base 

SLR_ 
short 

SLR_ 
long Base 

SLR_ 
short 

SLR_ 
long 

Expressways 5,158,785  -14% -7% 103,947  39% 91% 49.6 30.7 24.2 
Main 
Arterials 

          
480,774  -22% -22% 

          
14,421  82% -5% 33.3 14.2 27.5 

Minor 
Arterials 

      
1,699,531  -5% -7% 

          
64,831  113% 11% 26.2 11.7 22.1 

Main 
Distributors 

      
1,290,045  43% 17% 

          
53,512  693% 52% 24.1 4.4 18.5 

Minor 
Distributors 

          
162,680  -10% -5% 

            
7,385  58% 70% 22.0 12.6 12.3 

Local streets 459,305  29% 9% 23,582  
2012

% 61% 19.5 1.2 13.2 
Total 9,251,120  -2% -3% 267,678  364% 55% 34.6 7.3 21.5 

          Rest of Day (hourly)         
Expressways 1,418,985  -8% -10% 23,743  -8% -11% 59.8 59.4 60.2 
Main 
Arterials 

          
135,187  -16% -22% 

            
3,482  -15% -20% 38.8 38.2 38.1 

Minor 
Arterials 

          
497,320  -5% -9% 

          
17,693  -1% -9% 28.1 27.0 28.1 

Main 
Distributors 

          
367,554  23% 11% 

          
14,725  30% 12% 25.0 23.6 24.9 

Minor 
Distributors 

            
47,112  -7% -8% 

            
1,899  -1% -8% 24.8 23.3 24.6 

Local streets 138,835  16% 8% 6,948  62% 8% 20.0 14.3 19.9 
Total 2,604,993  -2% -6% 68,490  9% -4% 38.0 34.0 37.0 
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TABLE 4 Transit Ridership by Transit Mode of Base and SLR Scenarios 

 
Transit Trips 

Percentage 
change in trips Transit Mode Share 

Transit Mode Base 
SLR_ 

SHORT 
SLR_ 
LONG 

SLR_ 
SHORT 

SLR_ 
LONG Base 

SLR_ 
SHORT 

SLR_ 
LONG 

Bus 785,391 458,077 530,352 -41.7% -32.5% 30% 52% 70% 
BRT          

Silver line 52,901 18,774 2,722 -64.5% -94.9% 2% 2% 0% 
Heavy Rail 989,239 225,584 138,144 -77.2% -86.0% 38% 26% 18% 

Red line 453,706 67,236 84,672 -85.2% -81.3% 17% 8% 11% 
Orange line 428,833 149,495 53,172 -65.1% -87.6% 16% 17% 7% 

Blue line 106,700 8,853 300 -91.7% -99.7% 4% 1% 0% 
Light Rail         

Green line 478,954 141,962 77,225 -70.4% -83.9% 18% 16% 10% 
Commuter 
Rail 305,129 33,288 17,333 -89.1% -94.3% 12% 4% 2% 

Total 2,611,615 877,685 765,777 -66.4% -70.7% 100% 100% 100% 
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TABLE 5 Changes in Household Location and Firm Location by Community Types  
  Number of Households Number of Firms 
  Base SLR Diff % Diff Base SLR Diff % Diff 

Inner Core-Metro Core 
    

468,060  
         

369,451  -98,609 -21.1% 
      

10,281  
        

5,790  -4,491 -43.7% 
Inner Core-Streetcar 
Suburbs 

    
207,586  

         
215,824  8,238 4.0% 

        
2,555  

        
3,073  518 20.3% 

Regional Urban Centers 
    

477,767  
         

543,174  65,407 13.7% 
        

6,806  
        

8,167  1,361 20.0% 

Maturing Suburbs 
    

473,149  
         

481,821  8,672 1.8% 
        

7,457  
        

8,971  1,514 20.3% 

Developing Suburbs 
    

408,010  
         

424,303  16,293 4.0% 
        

5,278  
        

6,377  1,098 20.8% 
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TABLE 6 Trips by Mode and Mode Shares by Trip Purpose: Base vs. SLR Long-term Scenario 
 Total Trips by Mode Mode Shares by Trip Purpose 
    HBW HBSHOP HBO NHBW NHBO 

 Base 
SLR_LON

G 
 diff 
in %  Base SLR Base SLR Base SLR Base SLR Base SLR 

SOV 
     

8,196,417  
           

8,362,324  2.0% 73% 78% 50% 49% 45% 45% 60% 60% 46% 45% 

APAX 
     

1,920,264  
           

1,900,066  -1.1% 5% 4% 14% 14% 16% 16% 2% 2% 17% 16% 

WAT 
         

885,044  
               

387,253  -56.2% 8% 4% 5% 2% 6% 2% 5% 2% 4% 2% 

DAT 
         

432,389  
                 

11,564  -97.3% 5% 0% 1% 0% 3% 0% 3% 0% 2% 0% 

WALK 
     

4,172,020  
           

4,994,889  19.7% 9% 13% 30% 35% 31% 37% 30% 36% 32% 37% 

Total 
   

15,606,134  
         

15,656,096  
 

100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 
Note: SOV: single-occupant vehicle; APAX: auto passenger; WAT: walk-access transit; DAT: drive-access transit; WALK: walk 
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FIGURE 1 Four-foot sea level rise inundation area.  
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FIGURE 2 Predicted changes in locating agent by TAZ at four-foot inundation rise (left, households with major transit network 
shown; middle, households with highways shown; right, firms with highways shown). 
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FIGURE 3 Community type of the model area. 
Source: (13) 
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