
MIT Open Access Articles

Hardware for machine learning: Challenges and opportunities

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Sze, Vivienne, et al. "Hardware for Machine Learning: Challenges and Opportunities."
Custom Integrated Circuits Conference (CICC), 30 April - 3 May, 2017, Austin, TX, IEEE, 2017, pp.
1–8.

As Published: http://dx.doi.org/10.1109/CICC.2017.7993626

Publisher: Institute of Electrical and Electronics Engineers (IEEE)

Persistent URL: http://hdl.handle.net/1721.1/112983

Version: Author's final manuscript: final author's manuscript post peer review, without
publisher's formatting or copy editing

Terms of use: Creative Commons Attribution-Noncommercial-Share Alike

https://libraries.mit.edu/forms/dspace-oa-articles.html
http://hdl.handle.net/1721.1/112983
http://creativecommons.org/licenses/by-nc-sa/4.0/

Hardware for Machine Learning:
Challenges and Opportunities

(Invited Paper)

Vivienne Sze, Yu-Hsin Chen, Joel Emer, Amr Suleiman, Zhengdong Zhang
Massachusetts Institute of Technology

Cambridge, MA 02139

Abstract—Machine learning plays a critical role in extracting
meaningful information out of the zetabytes of sensor data
collected every day. For some applications, the goal is to analyze
and understand the data to identify trends (e.g., surveillance,
portable/wearable electronics); in other applications, the goal is
to take immediate action based the data (e.g., robotics/drones,
self-driving cars, smart Internet of Things). For many of these ap-
plications, local embedded processing near the sensor is preferred
over the cloud due to privacy or latency concerns, or limitations
in the communication bandwidth. However, at the sensor there
are often stringent constraints on energy consumption and cost in
addition to throughput and accuracy requirements. Furthermore,
flexibility is often required such that the processing can be
adapted for different applications or environments (e.g., update
the weights and model in the classifier). In many applications,
machine learning often involves transforming the input data into
a higher dimensional space, which, along with programmable
weights, increases data movement and consequently energy con-
sumption. In this paper, we will discuss how these challenges can
be addressed at various levels of hardware design ranging from
architecture, hardware-friendly algorithms, mixed-signal circuits,
and advanced technologies (including memories and sensors).

I. INTRODUCTION

This is the era of big data. More data has been created in
the past two years than the entire history of the human race [1].
This is primarily driven by the exponential increase in the use
of sensors (10 billion per year in 2013, expected to reach 1
trillion by 2020 [2]) and connected devices (6.4 billion in 2016,
expected to reach 20.8 billion by 2020 [3]). These sensors and
devices generate hundreds of zetabytes (1021 bytes) of data
per year — petabytes (1015 bytes) per second [4].

Machine learning is needed to extract meaningful, and ideally
actionable, information from this data. A significant amount
of computation is required to analyze this data, which often
happens in the cloud. However, given the sheer volume and
rate at which data is being generated, and the high energy
cost of communication and often limited bandwidth, there is
an increasing need to perform the analysis locally near the
sensor rather than sending the raw data to the cloud. Embedding
machine learning at the edge also addresses important concerns
related to privacy, latency and security.

II. APPLICATIONS

Many applications can benefit from embedded machine
learning ranging from multimedia to medical space. We
will provide a few examples of areas that researchers have

Dog (0.7)
Cat (0.1)
Bike (0.02)
Car (0.02)
Plane (0.02)
House (0.04)

Machine	
Learning		
(Inference)	

Fig. 1. Image classification.

investigated; however, this paper will primarily focus on
computer vision, specifically image classification, as a driving
example.

A. Computer Vision

Video is arguably the biggest of the big data. It accounts for
over 70% of today’s Internet traffic [5]. For instance, over 800
million hours of video is collected daily worldwide for video
surveillance [6]. In many applications (e.g., measuring wait
times in stores, traffic patterns), it would be desirable to use
computer vision to extract the meaningful information from
the video right at the image sensor rather than in the cloud to
reduce the communication cost. For other applications such
as autonomous vehicles, drone navigation and robotics, local
processing is desired since the latency and security risk of
relying on the cloud are too high. However, video involves a
large amount of data, which is computationally complex to
process; thus, low cost hardware to analyze video is challenging
yet critical to enabling these applications.

In computer vision, there are many different artificial
intelligence (AI) tasks [7]. In this paper, we focus on image
classification (Fig. 1), where the entire image is provided and
the task is to determine which class of objects is in the image.

B. Speech Recognition

Speech recognition has significantly improved our ability to
interact with electronic devices, such as smartphones. While
currently most of the processing for applications such as Apple
Siri and Amazon Alexa voice services is in the cloud, it
is desirable to perform the recognition on the device itself
to reduce latency and dependence on connectivity, and to
increase privacy. Speech recognition is the first step before
many other AI tasks such as machine translation, natural
language processing, etc. Low power hardware for speech
recognition is explored in [8, 9].

ar
X

iv
:1

61
2.

07
62

5v
4

 [
cs

.C
V

]
 1

 A
ug

 2
01

7

Feature
Extraction

Classification
(wTx)

Handcrafted Features
(e.g. HOG)

Learned Features
(e.g. DNN)

pixels Features (x)

Trained weights (w)
Image

Scores

Scores per class
(select class based

on max or threshold)

Fig. 2. Inference pipeline.

C. Medical

There is a strong clinical need to be able to monitor patients
and to collect long-term data to help either detect/diagnose
various diseases or monitor treatment. For instance, constant
monitoring of ECG or EEG signals would be helpful in
identifying cardiovascular diseases or detecting the onset of a
seizure for epilepsy patients, respectively. In many cases, the
devices are either wearable or implantable, and thus the energy
consumption must be kept to a minimum. Using embedded
machine learning to extract meaningful physiological signal
and process it locally is explored in [10–12].

III. MACHINE LEARNING BASICS

Machine learning is a form of artificial intelligence (AI)
that can perform a task without being specifically programmed.
Instead, it learns from previous examples of the given task
during a process called training. After learning, the task is
performed on new data through a process called inference.
Machine learning is particularly useful for applications where
the data is difficult to model analytically.

Training involves learning a set of weights from a dataset.
When the data is labelled, it is referred to as supervised learning,
which is currently the most widely-used approach. Inference
involves performing a given task using the learned weights
(e.g., classify an object in an image)1. In many cases, training
is done in the cloud. Inference can also happen in the cloud;
however, as previously discussed, for certain applications this
is not desirable from the standpoint of communication, latency
and privacy. Instead it is preferred that the inference occur
locally on a device near the sensor. In these cases, the trained
weights are downloaded from the cloud and stored in the device.
Thus, the device needs be programmable in order to support a
reasonable range of tasks.

A typical machine learning pipeline for inference can be
broken down into two steps as shown in Fig. 2: Feature
Extraction and Classification. Approaches such as deep neural
networks (DNN) blur the distinction between these steps.

A. Feature Extraction

Feature extraction is used to transform the raw data into
meaningful inputs for the given task. Traditionally, feature

1Machine learning can be used in a discriminative or generative manner.
This paper focuses on the discriminative use.

extraction was designed through a hand-crafted process by
experts in the field. For instance, for object recognition in
computer vision, it was observed that humans are sensitive
to edges (i.e., gradients) in an image. As a result, many well-
known computer vision algorithms use image gradient-based
features such as Histogram of Oriented Gradients (HOG) [13]
and Scale Invariant Feature Transform (SIFT) [14]. The
challenge in designing these features is to make them robust
to variations in illumination and noise.

B. Classification

The output of feature extraction is represented by a vector,
which is mapped to a score using a classifier. Depending on
the application, the score is either compared to a threshold
to determine if an object is present, or compared to the other
scores to determine the object class.

Techniques often used for classification include linear
methods such as support vector machine (SVM) [15] and
Softmax, and non-linear methods such as kernel-SVM [15]
and Adaboost [16]. In many of these classifiers, the computation
of the score is effectively a dot product of the features (~x)
and the weights (~w) (i.e.,

∑
i wixi). As a result, much of the

hardware research has been focused on reducing the cost of a
multiply and accumulate (MAC).

C. Deep Neural Networks (DNN)

Rather than using hand-crafted features, the features can
be learned directly from the data, similar to the weights in
the classifier, such that the entire system is trained end-to-end.
These learned features are used in a popular form of machine
learning called deep neural networks (DNN), also known as
deep learning [17]. DNN delivers higher accuracy than hand-
crafted features on a variety of tasks [18] by mapping inputs
to a high-dimensional space; however, it comes at the cost of
high computational complexity.

There are many forms of DNN (e.g., convolutional neural
networks, recurrent neural networks, etc.). For computer vision
applications, DNNs are composed of multiple convolutional
(CONV) layers [19] as shown in Fig. 3. With each layer,
a higher-level abstraction of the input data, called a feature
map, is extracted to preserve essential yet unique information.
Modern DNNs are able to achieve superior performance by
employing a very deep hierarchy of layers.

Fig. 4 shows an example of a convolution in DNNs. The
3-D inputs to each CONV layer are 2-D feature maps (W ×H)
with multiple channels (C). For the first layer, the input would
be the 2-D image itself with three channels, typically the red,
green and blue color channels. Multiple 3-D filters (M filters
with dimension R× S ×C) are then convolved with the input
feature maps, and each filter generates a channel in the output
3-D feature map (E × F with M channels). The same set of
M filters is applied to a batch of N input feature maps. Thus
there are N input feature maps and N output feature maps. In
addition, a 1-D bias is added to the filtered result.

The output of the final CONV layer is processed by fully-
connected (FC) layers for classification purposes. In FC layers,

Modern Deep CNN: 5 – 1000 Layers

Classes FC
Layer

CONV
Layer

Low-Level
Features CONV

Layer

High-Level
Features …

1 – 3 Layers

convolu'on	 non-linearity	

×	

normaliza'on	 pooling	

Fig. 3. Deep Neural Networks are composed of several convolutional layers
followed by fully connected layers.

Input fmaps

Filters
Output fmaps

R

S

C

…

H

W

C

…

E

F

M

E

F

M

…
R

S

C

H

W

C

1

N

1

M

1

N

Fig. 4. Computation of a convolution in DNN.

the filter and input feature map are the same size, so that
there is a different weight for each input pixel. The number
of FC layers has been reduced from three to one in most
recent DNNs [20, 21]. In between CONV and FC layers,
additional layers can be optionally added, such as the pooling
and normalization layers [22]. Each of the CONV and FC layers
is also immediately followed by an activation layer, such as
a rectified linear unit (ReLU) [23]. Convolutions account for
over 90% of the run-time and energy consumption in DNNs.

Table I compares modern DNNs, with a popular neural net
from the 1990s, LeNet-5 [24], in terms of number layers (depth),
number of filters weights, and number of operations (i.e.,
MACs). Today’s DNNs are several orders of magnitude larger
in terms of compute and storage. A more detailed discussion
on DNNs can be found in [25].

D. Complexity versus Difficulty of Task

It is important to factor in the difficulty of the task when
comparing different machine learning methods. For instance,
the task of classifying handwritten digits from the MNIST
dataset [28] is much simpler than classifying an object into
one of a 1000 classes as is required for the ImageNet
dataset [18](Fig. 5). It is expected that the size of the classifier
or network (i.e., number of weights) and the number of MACs
will be larger for the more difficult task than the simpler task
and thus require more energy. For instance, LeNet-5[24] is

TABLE I
SUMMARY OF POPULAR DNNS [20, 21, 24, 26, 27]. ACCURACY

MEASURED BASED ON TOP-5 ERROR ON IMAGENET [18].

Metrics LeNet AlexNet VGG GoogLeNet ResNet
5 16 (v1) 50

Accuracy n/a 16.4 7.4 6.7 5.3
CONV Layers 2 5 16 21 49

Weights 2.6k 2.3M 14.7M 6.0M 23.5M
MACs 283k 666M 15.3G 1.43G 3.86G

FC Layers 2 3 3 1 1
Weights 58k 58.6M 124M 1M 2M
MACs 58k 58.6M 124M 1M 2M

Total Weights 60k 61M 138M 7M 25.5M
Total MACs 341k 724M 15.5G 1.43G 3.9G

MNIST ImageNet

Fig. 5. MNIST (10 classes, 60k training, 10k testing) [28] vs. ImageNet
(1000 classes, 1.3M training, 100k testing)[18] dataset.

designed for digit classification, while AlexNet[26], VGG-
16[27], GoogLeNet[20], and ResNet[21] are designed for the
1000 class image classification.

IV. CHALLENGES

The key metrics for embedded machine learning are accuracy,
energy consumption, throughput/latency, and cost.

The accuracy of the machine learning algorithm should be
measured on a sufficiently large dataset. There are many widely-
used publicly-available datasets that researcher can use (e.g.,
ImageNet).

Programmability is important since the weights need to
be updated when the environment or application changes.
In the case of DNNs, the processor must also be able to
support different networks with varying number of layers,
filters, channels and filter sizes.

The high dimensionality and need for programmability both
result in an increase in computation and data movement. Higher
dimensionality increases the amount of data generated and
programmability means that the weights also need be read and
stored. This poses a challenge for energy-efficiency since data
movement costs more than computation [29]. In this paper, we
will discuss various methods that reduce data movement to
minimize energy consumption.

The throughput is dictated by the amount of computation,
which also increases with the dimensionality of the data. In
this paper, we will discuss various methods that the data can
be transformed to reduce the number of required operations.

The cost is dictated by the amount of storage required on
the chip. In this paper, we will discuss various methods to
reduce storage costs such that the area of the chip is reduced,
while maintaining low off-chip memory bandwidth.

Temporal Architecture
(SIMD/SIMT)

Spatial Architecture
(Dataflow Processing)

Register File

Memory Hierarchy

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

Control

Memory Hierarchy

ALU ALU ALU ALU

ALU ALU ALU ALU

ALU ALU ALU ALU

ALU ALU ALU ALU

Fig. 6. Highly-parallel compute paradigms.

Finally, training requires a significant amount of labeled data
(particularly for DNNs) as well as computation for multiple
iterations of back-propagation to determine the value of the
weights. There is on-going research on training in the cloud
using CPUs, GPUs, FPGAs and ASICs. However, this is beyond
the scope of this paper.

Currently, state-of-the-art DNNs consume orders of magni-
tude higher energy than other forms of embedded processing
(e.g., video compression). We must exploit opportunities
at multiple levels of hardware design to address all these
challenges and close this energy gap.

V. OPPORTUNITIES IN ARCHITECTURES

The MAC operations in both the feature extraction (CONV
layer in a DNN) and classification (for both DNN and hand-
crafted features) can be easily parallelized. Two common highly-
parallel compute paradigms are shown in Fig. 6 with multiple
arithmetic logic units (ALU).

A. CPU and GPU Platforms

CPUs and GPUs use temporal architectures such as SIMD or
SIMT to perform the MACs in parallel. All the ALUs share the
same control and memory (register file). On these platforms,
all classifications are represented by a matrix multiplication.
The CONV layer in a DNN can also be mapped to a matrix
multiplication using the Toeplitz matrix. There are software
libraries designed for CPUs (e.g., OpenBLAS, Intel MKL,
etc.) and GPUs (e.g., cuBLAS, cuDNN, etc.) that optimize for
matrix multiplications. The matrix multiplication is tiled to the
storage hierarchy of these platforms, which are on the order
of a few megabytes at the higher levels.

The matrix multiplications on these platforms can be further
sped up by applying transforms to the data to reduce the
number of multiplications. Fast Fourier Transform (FFT) [30,
31] is a well known approach that reduces the number of
multiplications from O(N2

oN
2
f) to O(N2

o log2No), where the
output size is No×No and the filter size is Nf ×Nf ; however,
the benefits of FFTs decrease with filter size. Other approaches
include Strassen [32] and Winograd [33], which rearrange the
computation such that the number of multiplications scale from
O(N3) to O(N2.807) and 2.25× for a 3× 3 filter, respectively,

DRAM ALU

Buffer ALU

PE ALU

RF ALU

ALU

Data Movement Energy Cost

200×

6×

2×

1×

1× (Reference)

Off-Chip
DRAM ALU = PE

Processing Engine

Accelerator

Global
Buffer

PE

PE PE

ALU

Fig. 7. Memory hierarchy and data movement energy [34].

at the cost of reduced numerical stability, increased storage
requirements, and specialized processing depending on the size
of the filter.

B. Accelerators

Accelerators provide an opportunity to optimize the data
movement (i.e., dataflow) in order to minimize accesses from
the expensive levels of the memory hierarchy as shown in Fig. 7.
In particular, for DNNs we investigate dataflows that exploit
three forms of data reuse (convolutional, filter and image). We
use a spatial architecture (Fig. 6) with local memory (register
file) at each ALU processing element (PE) on the order of
0.5 – 1.0kB and a shared memory (global buffer) on the order
of 100 – 500kB. The global buffer communicates with the
off-chip memory (e.g., DRAM). Data movement is allowed
between the PEs using an on-chip network (NoC) to reduce
accesses to the global buffer and the off-chip memory. Three
types of data movement include input pixels, filter weights and
partial sums (i.e., the product of pixels and weights) that are
accumulated for the output.

Recent work [35–46] has proposed solutions for DNN
acceleration, but it is difficult to compare their performance
directly due to differences in implementation and design
choices. The following taxonomy (Fig. 8) can be used to
classify these existing DNN dataflows based on their data
handling characteristics [34]:

• Weight stationary (WS): The weights are stored in the
register file at the PE and remains stationary to minimized
the movement cost of the weights (Fig. 8(a)). The inputs
and partial sums must move through the spatial array and
global buffer. Examples are found in [35–40].

• Output stationary (OS): The outputs are stored in the
register file at the PE and remains stationary to minimized
the movement cost of the partial sums (Fig. 8(b)). The
inputs and weights must move through the spatial array
and global buffer. Examples are found in [41–43].

• No local reuse (NLR): While small register files are
efficient in terms of energy (pJ/bit), they are inefficient in
terms area (µm2/bit). In order to maximize the storage
capacity, and minimize the off-chip memory bandwidth,
no local storage is allocated to the PE and instead all

(a) Weight Stationary

(b) Output Stationary

(c) No Local Reuse

Fig. 8. Dataflows for DNNs.

PE 1

Row 1 Row 1

PE 2

Row 2 Row 2

PE 3

Row 3 Row 3

Row 1

= *

PE 4

Row 1 Row 2

PE 5

Row 2 Row 3

PE 6

Row 3 Row 4

Row 2

= *

PE 7

Row 1 Row 3

PE 8

Row 2 Row 4

PE 9

Row 3 Row 5

Row 3

= *

* * *

* * *

* * *

Fig. 9. Row Stationary Dataflow [34].

that area is allocated to the global buffer to increase its
capacity (Fig. 8(c)). The trade-off is that there will be
increased traffic on the spatial array and to the global
buffer for all data types. Examples are found in [44–46].

• Row stationary (RS): In order to increase reuse of
all types of data (weights, pixels, partial sums), a row
stationary approach is proposed in [34]. A row of the filter
convolution remains stationary within a PE to exploit
1-D convolutional reuse within the PE. Multiple 1-D
rows are combined in the spatial array to exhaustively
exploit all convolutional reuse (Fig. 9), which reduces
accesses to the global buffer. Multiple 1-D rows from
different channels and filters are mapped to each PE to
reduce partial sum data movement and exploit filter reuse,
respectively. Finally, multiple passes across the spatial
array allow for additional image and filter reuse using the
global buffer. This dataflow is demonstrated in [47].

The dataflows are compared on a spatial array with the
same number of PEs (256), area cost and DNN (AlexNet).
Fig. 10 shows the energy consumption of each approach. The
row stationary approach is 1.4× to 2.5× more energy-efficient

0

0.5

1

1.5

2

Normalized
Energy/MAC

WS OSA OSB OSC NLR RS

psums

weights

pixels

(a) Across types of data

Normalized
Energy/MAC

ALU

RF

NoC

buffer

DRAM

0

0.5

1

1.5

2

WS OSA OSB OSC NLR RS

(b) Across levels of memory hierarchy

Fig. 10. Energy breakdown of dataflows [34].

than the other dataflows for the convolutional layers. This
is due to the fact that the energy of all types of data is
reduced. Furthermore, both the on-chip and off-chip energy is
considered.

VI. OPPORTUNITIES IN JOINT ALGORITHM AND
HARDWARE DESIGN

There is on-going research on modifying the machine
learning algorithms to make them more hardware-friendly while
maintaining accuracy; specifically, the focus is on reducing
computation, data movement and storage requirements.

A. Reduce Precision

The default size for programmable platforms such as
CPUs and GPUs is often 32 or 64 bits with floating-point
representation. While this remains the case for training, during
inference, it is possible to use a fixed-point representation and
substantially reduce the bitwidth for energy and area savings,
and increase in throughput. Retraining is typically required to
maintain accuracy when pushing the weights and features to
lower bitwidth.

In hand-crafted approaches, the bitwidth can be drastically
reduced to below 16-bits without impacting the accuracy. For
instance, in object detection using HOG, each 36-dimension
feature vector only requires 9-bit per dimension, and each
weight of the SVM uses only 4-bits [48]; for object detection
using deformable parts models (DPM) [49], only 11-bits are
required per feature vector and only 5-bits are required per
SVM weight [50].

Similarly for DNN inference, it is common to see accelerators
support 16-bit fixed point [45, 47]. There has been significant

Fig. 11. Sparse weights after basis projection [50].

research on exploring the impact of bitwidth on accuracy [51].
In fact, recently commercial hardware for DNN reportedly
support 8-bit integer operations [52]. As bitwidths can vary by
layer, hardware optimizations have been explored to exploit
the reduced bitwidth for 2.56× energy savings [53] or 2.24×
increase in throughput [54] compared to a 16-bit fixed point
implementation. With more significant changes to the network,
it is possible to reduce bitwidth down to 1-bit for either
weights [55] or both weights and activations [56, 57] at the cost
of reduced accuracy. The impact of 1-bit weights on hardware
is explored in [58].

B. Sparsity

For SVM classification, the weights can be projected onto
a basis such that the resulting weights are sparse for a 2×
reduction in number of multiplications [50] (Fig. 11). For
feature extraction, the input image can be made sparse by pre-
processing for a 24% reduction in power consumption [48].

For DNNs, the number of MACs and weights can be reduced
by removing weights through a process called pruning. This
was first explored in [59] where weights with minimal impact
on the output were removed. In [60], pruning is applied to
modern DNNs by removing small weights. However, removing
weights does not necessarily lead to lower energy. Accordingly,
in [61] weights are removed based on an energy-model to
directly minimize energy consumption. The tool used for energy
modeling can be found at [62].

Specialized hardware has been proposed in [47, 50, 63,
64] to exploit sparse weights for increased speed or reduced
energy consumption. In Eyeriss [47], the processing elements
are designed to skip reads and MACs when the inputs are
zero, resulting in a 45% energy reduction. In [50], by using
specialized hardware to avoid sparse weights, the energy and
storage cost are reduced by 43% and 34%, respectively.

C. Compression

Data movement and storage are important factors in both
energy and cost. Feature extraction can result in sparse data
(e.g., gradient in HOG and ReLU in DNN) and the weights
used in classification can also be made sparse by pruning. As

a result, compression can be applied to exploit data statistics
to reduce data movement and storage cost.

Various forms of lightweight compression have been ex-
plored to reduce data movement. Lossless compression can be
used to reduce the transfer of data on and off chip [11, 53, 64].
Simple run-length coding of the activations in [65] provides
up to 1.9× bandwidth reduction, which is within 5-10% of the
theoretical entropy limit. Lossy compression such as vector
quantization can also be used on feature vectors [50] and
weights [8, 12, 66] such that they can be stored on-chip at low
cost. Generally, the cost of the compression/decompression is
on the order of a few thousand kgates with minimal energy
overhead. In the lossy compression case, it is also important
to evaluate the impact on performance accuracy.

VII. OPPORTUNITIES IN MIXED-SIGNAL CIRCUITS

Most of the data movement is in between the memory
and processing element (PE), and also the sensor and PE.
In this section, we discuss how this is addressed using mixed-
signal circuit design. However, circuit non-idealities should
also be factored into the algorithm design; these circuits can
benefit from the reduced precision algorithms discussed in
Section VI. In addition, since the training often occurs in the
digital domain, the ADC and DAC conversion overhead should
also be accounted for when evaluating the system.

While spatial architectures bring the memory closer to the
computation (i.e., into the PE), there have also been efforts to
integrate the computation into the memory itself. For instance,
in [67] the classification is embedded in the SRAM. Specifically,
the word line (WL) is driven by a 5-bit feature vector using
a DAC, while the bit-cells store the binary weights ±1. The
bit-cell current is effectively a product of the value of the
feature vector and the value of the weight stored in the bit-cell;
the currents from the column are added together to discharge
the bitline (BL or BLB). A comparator is then used to compare
the resulting dot product to a threshold, specifically sign
thresholding of the differential bitlines. Due to the variations
in the bitcell, this is considered a weak classifier, and boosting
is needed to combine the weak classifiers to form a strong
classifier [68]. This approach gives 12× energy savings over
reading the 1-bit weights from the SRAM.

Recent work has also explored the use of mixed-signal
circuits to reduce the computation cost of the MAC. It was
shown in [69] that performing the MAC using switched
capacitors can be more energy-efficient than digital circuits
despite ADC and DAC conversion overhead. Accordingly,
the matrix multiplication can be integrated into the ADC as
demonstrated in [70], where the most significant bits of the
multiplications for Adaboost classification are performed using
switched capacitors in an 8-bit successive approximation format.
This is extended in [71] to not only perform multiplications,
but also the accumulation in the analog domain. It is assumed
that 3-bits and 6-bits are sufficient to represent the weights
and input vectors, respectively. This enables the computation
to move closer to the sensor and reduces the number of ADC
conversions by 21×.

To further reduce the data movement from the sensor, [72]
proposed performing the entire convolution layer (including
convolution, max pooling and quantization) in the analog
domain at the sensor. Similarly, in [73], the entire HOG
feature is computed in the analog domain to reduce the sensor
bandwidth by 96.5%.

VIII. OPPORTUNITIES IN ADVANCED TECHNOLOGIES

In the previous section, we discussed how data movement
can be reduced by moving the processing near the memory or
the sensor using mixed-signal circuits. In this section, we will
discuss how this can be achieved with advanced technologies.

The use of advanced memory technologies such as embedded
DRAM (eDRAM) and Hyper Memory Cube (HMC) are
explored in [46] and [74], respectively, to reduce the energy
access cost of the weights in DNN. There has also been a lot
of work that investigates integrating the multiplication directly
into advanced non-volatile memories by using them as resistive
elements. Specifically, the multiplications are performed where
the conductance is the weight, the voltage is the input, and
the current is the output (note: this is the ultimate form of
weight stationary, as the weights are always held in place);
the addition is done by summing the current using Kirchhoff’s
current law. In [75], memristors are used to compute a 16-bit
dot product operation with 8 memristors each storing 2-bits;
a 1-bit×2-bit multiplication is performed at each memristor,
where a 16-bit input requires 16 cycles to complete. In [76],
ReRAM is used to compute the product of a 3-bit input and
4-bit weight. Similar to the mixed-signal circuits, the precision
is limited, and the ADC and DAC conversion overhead must
be considered in the overall cost, especially when the weights
are trained in the digital domain. The conversion overhead can
be avoided by training directly in the analog domain as shown
for the fabricated memristor array in [77].

Finally, it may be feasible to embed the computation into
the sensor itself. This is useful for image processing where
the bandwidth to read the data from the sensor accounts for
a significant portion of the system energy consumption. For
instance, an Angle Sensitive Pixels sensor can be used to com-
pute the gradient of the input, which along with compression,
reduces the sensor bandwidth by 10× [78]. A sensor that
outputs gradients can also reduce the computation and energy
consumption of subsequent processing engine [48, 79].

IX. HAND-CRAFTED VERSUS LEARNED FEATURES

Hand-crafted approaches give higher energy efficiency at
the cost of reduced accuracy as compared with learned
features such as DNNs. For hand-crafted features, the amount
of computation is less, and reduced bit-width is supported.
Furthermore, less data movement is required since the weights
are not required for the features. The classification weights for
both approaches must however remain programmable. Fig. 12
compares the energy consumption of HOG feature extraction
versus the convolution layers in AlexNet and VGG-16 based
measured results from fabricated 65nm chips [50] and [47],
respectively. Note that HOG feature extraction consumes around

0.1	

1	

10	

100	

1000	

10000	

0	 20	 40	 60	 80	

Accuracy	(Average	Precision)	

Energy/	
Pixel	(nJ)	

VGG162	

AlexNet2	

HOG1	

Measured	in	65nm*	
1.   [Suleiman,	VLSI	2016]	
2.   [Chen,	ISSCC	2016]		
	
*	Only	feature	extrac6on.	Does	
not	include	data,	augmenta6on,	
ensemble	and	classifica6on	
energy,	etc.	

Measured	in	on	VOC	2007	Dataset	
1.   DPM	v5	[Girshick,	2012]	
2.   Fast	R-CNN	[Girshick,	CVPR	2015]		

Exponen6al	

Linear	

Fig. 12. Energy vs. accuracy comparison of hand-crafted and learned features.

the same energy as video compression (under 1nJ/pixel [80]
for real-time high definition video), which servers as a good
benchmark of what is acceptable for energy consumption near
the sensor; however, DNNs currently consume several orders
of magnitude more. A more detailed comparison can be found
in [81]. We hope that the many design opportunities that we
have highlighted in this paper will help close this gap.

X. SUMMARY

Machine learning is an important area of research with
many promising applications and opportunities for innovation
at various levels of hardware design. During the design process,
it is important to balance the accuracy, energy, throughput and
cost requirements.

Since data movement dominates energy consumption, the
primary focus of recent research has been to reduce the data
movement while maintaining accuracy, throughput and cost.
This means selecting architectures with favorable memory
hierarchies like a spatial array, and developing dataflows that
increase data reuse at the low-cost levels of the memory
hierarchy. With joint design of algorithm and hardware, reduced
bitwidth precision, increased sparsity and compression are used
to minimize the data movement requirements. With mixed-
signal circuit design and advanced technologies, computation
is moved closer to the source by embedding computation near
or within the sensor and the memories.

One should also consider the interactions between these
different levels. For instance, reducing the bitwidth through
hardware-friendly algorithm design enables reduced precision
processing with mixed-signal circuits and non-volatile memory.
Reducing the cost of memory access with advanced technolo-
gies could result in more energy-efficient dataflows.

ACKNOWLEDGMENT

Funding provided by DARPA YFA, MIT CICS, TSMC
University Shuttle, and gifts from Texas Instruments and Intel.

REFERENCES

[1] B. Marr, “Big Data: 20 Mind-Boggling Facts Everyone Must
Read,” Forbes.com, October 2015.

[2] “For a Trillion Sensor Road Map,” TSensorSummit, October
2013.

[3] “Gartner Says 6.4 Billion Connected ”Things” Will Be in Use
in 2016, Up 30 Percent From 2015,” Gartner.com, November
2015.

[4] “Cisco Global Cloud Index: Forecast and Methodology, 2015 -
2020,” Cisco, June 2016.

[5] “Complete Visual Networking Index (VNI) Forecast,” Cisco,
June 2016.

[6] J. Woodhouse, “Big, big, big data: higher and higher resolution
video surveillance,” technology.ihs.com, January 2016.

[7] R. Szeliski, Computer vision: algorithms and applications.
Springer Science & Business Media, 2010.

[8] M. Price, J. Glass, and A. P. Chandrakasan, “A 6 mW, 5,000-
Word Real-Time Speech Recognizer Using WFST Models,”
IEEE J. Solid-State Circuits, vol. 50, no. 1, pp. 102–112, 2015.

[9] R. Yazdani, A. Segura, J.-M. Arnau, and A. Gonzalez, “An
ultra low-power hardware accelerator for automatic speech
recognition,” in MICRO, 2016.

[10] N. Verma, A. Shoeb, J. V. Guttag, and A. P. Chandrakasan,
“A micro-power EEG acquisition SoC with integrated seizure
detection processor for continuous patient monitoring,” in Sym.
on VLSI, 2009.

[11] T.-C. Chen, T.-H. Lee, Y.-H. Chen, T.-C. Ma, T.-D. Chuang, C.-J.
Chou, C.-H. Yang, T.-H. Lin, and L.-G. Chen, “1.4µW/channel
16-channel EEG/ECoG processor for smart brain sensor SoC,”
in Sym. on VLSI, 2010.

[12] K. H. Lee and N. Verma, “A low-power processor with
configurable embedded machine-learning accelerators for high-
order and adaptive analysis of medical-sensor signals,” IEEE J.
Solid-State Circuits, vol. 48, no. 7, pp. 1625–1637, 2013.

[13] N. Dalal and B. Triggs, “Histograms of oriented gradients for
human detection,” in CVPR, 2005.

[14] D. G. Lowe, “Object recognition from local scale-invariant
features,” in ICCV, 1999.

[15] N. Cristianini and J. Shawe-Taylor, An introduction to support
vector machines and other kernel-based learning methods.
Cambridge university press, 2000.

[16] R. E. Schapire and Y. Freund, Boosting: Foundations and
algorithms. MIT press, 2012.

[17] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature,
vol. 521, no. 7553, pp. 436–444, May 2015.

[18] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma,
Z. Huang, A. Karpathy, A. Khosla, M. Bernstein, A. C. Berg,
and L. Fei-Fei, “ImageNet Large Scale Visual Recognition
Challenge,” International Journal of Computer Vision (IJCV),
vol. 115, no. 3, pp. 211–252, 2015.

[19] Y. LeCun, K. Kavukcuoglu, and C. Farabet, “Convolutional
networks and applications in vision,” in ISCAS, 2010.

[20] C. Szegedy and et al., “Going Deeper With Convolutions,” in
CVPR, 2015.

[21] K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual Learning
for Image Recognition,” in CVPR, 2016.

[22] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating
deep network training by reducing internal covariate shift,” in
ICML, 2015.

[23] V. Nair and G. E. Hinton, “Rectified Linear Units Improve
Restricted Boltzmann Machines,” in ICML, 2010.

[24] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based
learning applied to document recognition,” Proc. IEEE, vol. 86,
no. 11, pp. 2278–2324, Nov 1998.

[25] Emer, Joel and Sze, Vivienne and Chen, Yu-Hsin, “Tutorial
on Hardware Architectures for Deep Neural Networks,” http:
//eyeriss.mit.edu/tutorial.html, 2016.

[26] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet
Classification with Deep Convolutional Neural Networks,” in
NIPS, 2012.

[27] K. Simonyan and A. Zisserman, “Very Deep Convolutional
Networks for Large-Scale Image Recognition,” in ICLR, 2015.

[28] C. J. B. Yann LeCun, Corinna Cortes, “THE MNIST DATABASE
of handwritten digits,” http://yann.lecun.com/exdb/mnist/.

[29] M. Horowitz, “Computing’s energy problem (and what we can
do about it),” in ISSCC, 2014.

[30] M. Mathieu, M. Henaff, and Y. LeCun, “Fast training of
convolutional networks through FFTs,” in ICLR, 2014.

[31] C. Dubout and F. Fleuret, “Exact acceleration of linear object
detectors,” in ECCV, 2012.

[32] J. Cong and B. Xiao, “Minimizing computation in convolutional
neural networks,” in ICANN, 2014.

[33] A. Lavin and S. Gray, “Fast algorithms for convolutional neural
networks,” in CVPR, 2016.

[34] Y.-H. Chen, J. Emer, and V. Sze, “Eyeriss: A Spatial Archi-
tecture for Energy-Efficient Dataflow for Convolutional Neural
Networks,” in ISCA, 2016.

[35] M. Sankaradas, V. Jakkula, S. Cadambi, S. Chakradhar, I. Dur-
danovic, E. Cosatto, and H. P. Graf, “A Massively Parallel
Coprocessor for Convolutional Neural Networks,” in ASAP,
2009.

[36] V. Sriram, D. Cox, K. H. Tsoi, and W. Luk, “Towards an
embedded biologically-inspired machine vision processor,” in
FPT, 2010.

[37] S. Chakradhar, M. Sankaradas, V. Jakkula, and S. Cadambi, “A
Dynamically Configurable Coprocessor for Convolutional Neural
Networks,” in ISCA, 2010.

[38] V. Gokhale, J. Jin, A. Dundar, B. Martini, and E. Culurciello,
“A 240 G-ops/s Mobile Coprocessor for Deep Neural Networks,”
in CVPRW, 2014.

[39] S. Park, K. Bong, D. Shin, J. Lee, S. Choi, and H.-J. Yoo, “A
1.93TOPS/W scalable deep learning/inference processor with
tetra-parallel MIMD architecture for big-data applications,” in
ISSCC, 2015.

[40] L. Cavigelli, D. Gschwend, C. Mayer, S. Willi, B. Muheim, and
L. Benini, “Origami: A Convolutional Network Accelerator,” in
GLVLSI, 2015.

[41] S. Gupta, A. Agrawal, K. Gopalakrishnan, and P. Narayanan,
“Deep Learning with Limited Numerical Precision,” in ICML,
2015.

[42] Z. Du and et al., “ShiDianNao: Shifting Vision Processing Closer
to the Sensor,” in ISCA, 2015.

[43] M. Peemen, A. A. A. Setio, B. Mesman, and H. Corporaal,
“Memory-centric accelerator design for Convolutional Neural
Networks,” in ICCD, 2013.

[44] C. Zhang, P. Li, G. Sun, Y. Guan, B. Xiao, and J. Cong, “Opti-
mizing FPGA-based Accelerator Design for Deep Convolutional
Neural Networks,” in FPGA, 2015.

[45] T. Chen, Z. Du, N. Sun, J. Wang, C. Wu, Y. Chen, and O. Temam,
“DianNao: A Small-footprint High-throughput Accelerator for
Ubiquitous Machine-learning,” in ASPLOS, 2014.

[46] Y. Chen and et al., “DaDianNao: A Machine-Learning Super-
computer,” in MICRO, 2014.

[47] Y.-H. Chen and et al., “Eyeriss: An Energy-Efficient Reconfig-
urable Accelerator for Deep Convolutional Neural Networks,”
in ISSCC, 2016.

[48] A. Suleiman and V. Sze, “Energy-efficient HOG-based object
detection at 1080HD 60 fps with multi-scale support,” in SiPS,
2014.

[49] P. F. Felzenszwalb, R. B. Girshick, D. McAllester, and D. Ra-
manan, “Object detection with discriminatively trained part-based
models,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 32, no. 9,
pp. 1627–1645, 2010.

[50] A. Suleiman, Z. Zhang, and V. Sze, “A 58.6 mW real-time
programmable object detector with multi-scale multi-object
support using deformable parts model on 1920× 1080 video at
30fps,” in Sym. on VLSI, 2016.

[51] P. Gysel, M. Motamedi, and S. Ghiasi, “Hardware-oriented
Approximation of Convolutional Neural Networks,” in ICLR,

http://eyeriss.mit.edu/tutorial.html
http://eyeriss.mit.edu/tutorial.html
http://yann.lecun.com/exdb/mnist/

2016.
[52] S. Higginbotham, “Google Takes Unconventional Route with

Homegrown Machine Learning Chips,” Next Platform, May
2016.

[53] B. Moons and M. Verhelst, “A 0.3–2.6 TOPS/W precision-
scalable processor for real-time large-scale ConvNets,” in Sym.
on VLSI, 2016.

[54] P. Judd, J. Albericio, and A. Moshovos, “Stripes: Bit-serial deep
neural network computing,” IEEE Computer Architecture Letters,
2016.

[55] M. Courbariaux, Y. Bengio, and J.-P. David, “Binaryconnect:
Training deep neural networks with binary weights during
propagations,” in NIPS, 2015.

[56] M. Courbariaux and Y. Bengio, “Binarynet: Training deep neural
networks with weights and activations constrained to+ 1 or-1,”
arXiv preprint arXiv:1602.02830, 2016.

[57] M. Rastegari, V. Ordonez, J. Redmon, and A. Farhadi, “XNOR-
Net: ImageNet Classification Using Binary Convolutional Neural
Networks,” in ECCV, 2016.

[58] R. Andri and et al., “YodaNN: An Ultra-Low Power Convolu-
tional Neural Network Accelerator Based on Binary Weights,”
in ISVLSI, 2016.

[59] Y. LeCun, J. S. Denker, and S. A. Solla, “Optimal Brain Damage,”
in NIPS, 1990.

[60] S. Han, J. Pool, J. Tran, and W. Dally, “Learning both Weights
and Connections for Efficient Neural Network,” in NIPS, 2015.

[61] T.-J. Yang and et al., “Designing Energy-Efficient Convolutional
Neural Networks using Energy-Aware Pruning,” CVPR, 2017.

[62] “DNN Energy Estimation,” http://eyeriss.mit.edu/energy.html.
[63] J. Albericio, P. Judd, T. Hetherington, T. Aamodt, N. E. Jerger,

and A. Moshovos, “Cnvlutin: ineffectual-neuron-free deep neural
network computing,” in ISCA, 2016.

[64] S. Han, X. Liu, H. Mao, J. Pu, A. Pedram, M. A. Horowitz,
and W. J. Dally, “EIE: efficient inference engine on compressed
deep neural network,” in ISCA, 2016.

[65] Y.-H. Chen, T. Krishna, J. Emer, and V. Sze, “Eyeriss: An Energy-
Efficient Reconfigurable Accelerator for Deep Convolutional
Neural Networks,” IEEE J. Solid-State Circuits, vol. 51, no. 1,
2017.

[66] S. Han, H. Mao, and W. J. Dally, “Deep Compression: Compress-
ing Deep Neural Network with Pruning, Trained Quantization
and Huffman Coding,” in ICLR, 2016.

[67] J. Zhang, Z. Wang, and N. Verma, “A machine-learning classifier
implemented in a standard 6T SRAM array,” in Sym. on VLSI,
2016.

[68] Z. Wang, R. Schapire, and N. Verma, “Error-adaptive classifier
boosting (EACB): Exploiting data-driven training for highly
fault-tolerant hardware,” in ICASSP, 2014.

[69] B. Murmann, D. Bankman, E. Chai, D. Miyashita, and L. Yang,
“Mixed-signal circuits for embedded machine-learning applica-
tions,” in Asilomar, 2015.

[70] J. Zhang, Z. Wang, and N. Verma, “A matrix-multiplying ADC
implementing a machine-learning classifier directly with data
conversion,” in ISSCC, 2015.

[71] E. H. Lee and S. S. Wong, “A 2.5 GHz 7.7 TOPS/W switched-
capacitor matrix multiplier with co-designed local memory in
40nm,” in ISSCC, 2016.

[72] R. LiKamWa, Y. Hou, J. Gao, M. Polansky, and L. Zhong, “Red-
Eye: analog ConvNet image sensor architecture for continuous
mobile vision,” in ISCA, 2016.

[73] J. Choi, S. Park, J. Cho, and E. Yoon, “A 3.4-µW object-adaptive
CMOS image sensor with embedded feature extraction algorithm
for motion-triggered object-of-interest imaging,” IEEE J. Solid-
State Circuits, vol. 49, no. 1, pp. 289–300, 2014.

[74] D. Kim, J. Kung, S. Chai, S. Yalamanchili, and S. Mukhopad-
hyay, “Neurocube: A programmable digital neuromorphic archi-
tecture with high-density 3D memory,” in ISCA, 2016.

[75] A. Shafiee, A. Nag, N. Muralimanohar, R. Balasubramonian, J. P.
Strachan, M. Hu, R. S. Williams, and V. Srikumar, “ISAAC: A
Convolutional Neural Network Accelerator with In-Situ Analog
Arithmetic in Crossbars,” in ISCA, 2016.

[76] P. Chi, S. Li, Z. Qi, P. Gu, C. Xu, T. Zhang, J. Zhao, Y. Liu,
Y. Wang, and Y. Xie, “PRIME: A Novel Processing-In-Memory
Architecture for Neural Network Computation in ReRAM-based
Main Memory,” in ISCA, 2016.

[77] M. Prezioso, F. Merrikh-Bayat, B. Hoskins, G. Adam, K. K.
Likharev, and D. B. Strukov, “Training and operation of an inte-
grated neuromorphic network based on metal-oxide memristors,”
Nature, vol. 521, no. 7550, pp. 61–64, 2015.

[78] A. Wang, S. Sivaramakrishnan, and A. Molnar, “A 180nm CMOS
image sensor with on-chip optoelectronic image compression,”
in CICC, 2012.

[79] H. Chen, S. Jayasuriya, J. Yang, J. Stephen, S. Sivaramakrishnan,
A. Veeraraghavan, and A. Molnar, “ASP Vision: Optically
Computing the First Layer of Convolutional Neural Networks
using Angle Sensitive Pixels,” in CVPR, 2016.

[80] T.-J. Lin, C.-A. Chien, P.-Y. Chang, C.-W. Chen, P.-H. Wang,
T.-Y. Shyu, C.-Y. Chou, S.-C. Luo, J.-I. Guo, T.-F. Chen et al.,
“A 0.48 V 0.57 nJ/pixel video-recording SoC in 65nm CMOS,”
in ISSCC, 2013.

[81] A. Suleiman, Y.-H. Chen, J. Emer, and V. Sze, “Towards Closing
the Energy Gap Between HOG and CNN Features for Embedded
Vision,” in ISCAS, 2017.

http://eyeriss.mit.edu/energy.html

	I Introduction
	II Applications
	II-A Computer Vision
	II-B Speech Recognition
	II-C Medical

	III Machine Learning Basics
	III-A Feature Extraction
	III-B Classification
	III-C Deep Neural Networks (DNN)
	III-D Complexity versus Difficulty of Task

	IV Challenges
	V Opportunities in Architectures
	V-A CPU and GPU Platforms
	V-B Accelerators

	VI Opportunities in Joint Algorithm and Hardware Design
	VI-A Reduce Precision
	VI-B Sparsity
	VI-C Compression

	VII Opportunities in Mixed-Signal Circuits
	VIII Opportunities in Advanced Technologies
	IX Hand-crafted versus Learned Features
	X Summary

