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Abstract

Fluctuation-induced E×B shear flow and energy transfer for plasma interchange turbulence are

examined in a flux-driven system with both closed and open magnetic field lines. The nonlinear

evolution of interchange turbulence shows the presence of two confinement regimes characterized

by low and high E × B flow shear. In the first regime, the large-scale turbulent convection is

dominant and the mean E ×B shear flow is at a relatively low level. By increasing the heat flux

above a certain threshold, the increased turbulent intensity gives rise to the transfer of energy from

fluctuations to mean E ×B flows. As a result, a transition to the second regime occurs, in which

a strong mean E ×B shear flow is generated.

PACS numbers: 52.35.Ra, 52.25.Fi, 52.25.Gj
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I. INTRODUCTION

Turbulent transport and shear flows in the edge region of magnetically confined plasmas

has been of long-standing interest to the plasma turbulence and fusion communities [1–

25]. In particular, the turbulence-driven shear flow near the plasma edge triggered by

increasing heating power is believed to play an important role in the formation of plasma edge

transport barrier and the resulting higher global energy confinement [1–4]. The turbulent

energy transfer has been proposed as a mechanism for the generation of mean shear flows.

Many of the conceptual points concerning turbulent energy transfer have been studied in

both reduced models and in experimental investigations [19–24]. The transfer of energy

between fluctuations and sheared flows has also been demonstrated by fluid simulations for

interchange turbulence with cold ions [10–12]. Recently, the formation of transport barrier

has been simulated with fluid models [17–19], in which the neoclassical terms are added in

the vorticity equation with cold ions. In these simulations [17–19], the mean shear flows are

generated mainly due to the neoclassical terms. In the present hot-ion model [3, 4, 6–8],

we consider the ion diamagnetic term in the vorticity with no additional neoclassical terms

included in the vorticity equation. In the present simulation, the mean E×B shear flows are

generated through the energy transfer induced by enhanced fluctuations. Both the previous

and present fluid simulations show that the generation of mean E ×B shear flow leads to

the transport barrier formation.

In this work, we present self-consistent fluid simulations of the fluctuation-induced E×B

shear flow and energy transfer for interchange turbulence in a flux-driven system with the

geometry and parameters relevant to the edge region of magnetically confined plasmas. Our

flux-driven, nonlinear simulations show that a great increase in the mean E ×B flow and

shear can be induced in a toroidal plasma by increasing the heat flux above a certain thresh-

old. The model geometry comprises both closed and open field line regions, corresponding

to the edge and scrape off layer (SOL) of magnetically confined fusion devices such as toka-

maks. Thus the system provides a simplified setting in which to explore the basic physics of

turbulent transport and shear flows in the edge region of tokamaks and similar devices. We

focus on the interchange instability which is driven by the pressure gradients and magnetic

curvature. For the interchange mode with the parallel wave number k|| ' 0 in the main

plasma, the field-line-averaged two-dimensional (2D) model is used in this work. The closed
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and open field line regions are distinguished by the parallel boundary conditions, and the

last closed flux surface (LCFS) separates the two regions. At the end of open field lines,

the sheath boundary conditions are imposed with the parallel flow v||i = ±cs and parallel

current j|| = ±encs[1− exp(3− eφ/Te)] where cs =
√
Te/mi is the sound speed. This gives

rise to the parallel losses in the open field line region and produces the pressure gradients

near the LCFS, which drive interchange instability in the system. The nonlinear evolution

of interchange turbulence shows the presence of two confinement regimes characterized by

low and high E × B flow shear. In the first regime, the mean E × B shear flow is at a

relatively low level and the large-scale turbulent convection is dominant in the nonlinear

saturated state. By increasing the heat flux above a certain threshold, the increased tur-

bulent intensity produces the nonlinear energy transfer from thermal energy to the E ×B

kinetic energy, and then from turbulent to mean E×B flows. Consequently, a transition to

the second regime occurs, in which a strong mean E×B shear flow is generated just inside

the LCFS. The mean E ×B shear flow reduces turbulent transport and leads to improved

plasma confinement.

II. MODEL EQUATIONS

The simulation model is based on the drift-reduced Braginskii equations [6, 7]. The

simplified hot-ion model consists of the ion continuity equation

dn

dt
+ n∇ · vE +∇ · (nvdi) +∇||(nv||i) = Sn , (1)

the ion pressure equation

3

2

dpi
dt

+
5

2
pi∇ · (vE + v||i) = SE , (2)

the vorticity equation ∇ · j = 0 for the total current

∇ · enc
BΩi

d

dt
(−∇⊥φ−

∇⊥pi
en

) +∇ · jd +∇||j|| = 0 , (3)

where d/dt = ∂/∂t + vE · ∇ with vE = (c/B)b × ∇φ, Ωi = eB/mic, j|| = en(v||i − v||e),

and the diamagnetic current jd = envdi = (c/B)b×∇pi. The plasma compressibility terms

∇·vE = Ĉφ and ∇·jd = Ĉpi where Ĉ = (2c/B)b×κ ·∇ denotes the curvature operator due

to the magnetic field gradient and field line curvature κ = b ·∇b. The term ∇⊥pi in Eq. (3)
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represents the contribution of ion diamagnetic drift to the polarization current [3, 4, 6–8],

which is the crucial difference from the cold ion model [9–19]. The source terms Sn and SE

are added in Eqs. (1) and (2) to represent the particle and heat fluxes from the inner core

region. In our model, the only place we need electron temperature is the sheath boundary

conditions applied in the open field line region, where the electron temperature is needed

for calculating the sound speed. For simplicity, the electron temperature is set by the ion

temperature, which is a simplication to the physics in the SOL region of a tokamak. Since

we only use the assumption of equal temperatures for the evaluation of parallel losses, the

basic physics of mean E ×B flow generation inside the LCFS shown in this model should

be robust.

In the simulation, the coordinate z is aligned to the magnetic field with b = ez, the x

is the distance in the radial direction, and the y is perpendicular to both ex and ez. Here

we consider the outer midplane of a tokamak, and thus the y direction is approximately in

the poloidal direction with the strong toroidal magnetic field. The field line curvature is

taken as κ = −ex/R where R is the major radius. We normalize pi/pref → p, eφ/Tref → φ,

n/nref → n, Te/Tref → T with constant reference values, the parallel length to the connection

length L||, the perpendicular lengths x/ρs → x, y/ρs → y, and wave number kyρs → ky with

ρs = cs0/Ωi and cs0 =
√
Tref/mi, the time t/t0 → t and frequency ωt0 → ω with t0 = a/cs0.

Here a denotes the length scale for the time normalization and is taken as the minor radius.

By integrating Eqs. (1)-(3) along the field lines and applying the sheath boundary conditions,

one obtains the normalized 2D model equations for the full density, pressure, and vorticity

[13, 14]
dn

dt
= Ĉp− nĈφ− σn

√
T + Sn +D∇2

⊥n , (4)

dp

dt
= −5

3
pĈφ− 5

3
σp
√
T + SE + κ⊥∇2

⊥p , (5)

dw

dt
= Ĉp+ σn

√
T [1− exp(3− φ/T )] + µ∇2

⊥w , (6)

where p = nT , d/dt = ∂/∂t+ (a/ρs)vE · ∇ and the hot-ion vorticity

w = ∇2
⊥(φ+ p) (7)

is normalized in units of Ωi. The normalized E ×B flow vE = b ×∇φ in units of cs0 has

the radial and poloidal components vx = −∂φ/∂y and vy = ∂φ/∂x. The curvature operator

Ĉ = −2(a/R)∂/∂y and perpendicular Laplacian ∇2
⊥ = ∂2/∂x2 + ∂2/∂y2. The divergence of
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ion polarization current has been approximated by the convective derivative of the vorticity

dw/dt in Eq. (6). In the open field line region, the sheath boundary conditions give rise to

the terms multiplied by the parameter σ = a/L||. The diffusion coefficients D, κ⊥, and µ in

units of ρ2s/t0 are chosen to be small so that the convection terms are dominant. The source

profiles, e.g., SE = S0 exp(−x2/x20) are localized in a thin layer of the inner boundary region

where large diffusion coefficients for the pressure and density are used to diffuse the fluxes

out of the source region and also to flatten the gradients and damp the instability in the

source region. The model equations are solved by a finite-difference turbulence code with

the centered difference in space and predictor-corrector scheme for time stepping. Periodic

boundary conditions are assumed in the poloidal y direction, and Dirichlet (fixed value)

boundary conditions are imposed at the radial boundaries for the density, pressure, vorticity,

and potential. We consider the following parameters for the convection a/ρs = 100, parallel

losses σ = 0.05, and magnetic curvature a/R = 0.3 with the radial and poloidal box sizes

Lx = 75ρs and Ly = 200ρs.

Assuming that perturbations δp, δφ ∝ exp(ikyy−iωt) with k|| = 0 and linearizing Eqs. (5)-

(6) in the absence of dissipation and background E ×B shear flows, one obtains the inter-

change mode with the normalized dispersion relation ω2 − (ω + ωd/k
2
y)(ω∗i + 5ωd/3) = 0,

where the curvature frequency ωd = 2kya/R, the ion diamagnetic frequency ω∗i = −kya/Lp

and the pressure gradient scale length Lp = −p0/(dp0/dx). For ω = ωr + iγ in units of cs0/a,

the real frequency ωr = (ω∗i + 5ωd/3)/2 = −ky(a/R)(R/Lp − 10/3)/2 and the growth rate

γ =
a

R

√
2(R/Lp − 10/3)− k2y(R/Lp − 10/3)2/4 . (8)

For pressure gradients steeper than a critical gradient, the interchange mode becomes un-

stable in the bad curvature region and the perturbations propagate in the ion diamagnetic

drift direction. The plasma compressibility term ∇ · vE in Eq. (2) leads to the critical pres-

sure gradient (R/Lp = 10/3) for the marginal stability. The ion diamagnetic term ∇2
⊥δp in

Eq. (7) gives rise to the non-zero real frequency ωr and the stabilizing contribution of the

k2y term in the growth rate, which makes the high ky modes less unstable.

Taking poloidal averages of Eq. (6) in the absence of dissipation and decomposing the

full quantities into the mean and fluctuating parts (e.g., w = w0 + δw), one obtains the

evolution equation for the mean vorticity

∂w0

∂t
= −(a/ρs)

d

dx
〈δwδvx〉 , (9)
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where 〈· · ·〉 =
∫ Ly

0 dy/Ly denotes the poloidal averages and the mean vorticity w0 = 〈w〉.

Thus the formation of negative gradients in the radial vorticity flux 〈δwδvx〉 increases the

mean vorticity w0 = ∇2
⊥(φ0 + p0). Note that ∇2

⊥δp � ∇2
⊥p0 due to the scale separation

of perturbations and background profiles in the nonlinear phase. Thus the vorticity w '

∇2
⊥(φ+ δp) and the mean vorticity w0 ' ∇2

⊥φ0 is dominated by the mean E×B flow shear.

The transfer of thermal energy to the E ×B kinetic energy can be shown from Eqs. (5)

and (6) in the absence of energy source and dissipation [6, 10, 11]. Integrating Eq. (5) over

all space, one obtains the evolution of thermal energy (3/2)
∫

(∂p0/∂t)dx/Lx = −Fp , where

the transfer power

Fp =
∫ dx

Lx

〈
pĈφ

〉
= 2(a/R)

∫ dx

Lx

〈δpδvx〉 (10)

is related to the volume-averaged turbulent energy flux 〈δpδvx〉. Multiplying Eq. (6) by φ

and integrating over all space, one obtains the evolution of the fluid kinetic energy∫ dx

Lx

〈
1

2

∂

∂t
|∇⊥φ|2 +∇⊥φ ·

∂

∂t
∇⊥p

〉
= Fp . (11)

Thus a positive transfer power Fp converts thermal energy to the E ×B kinetic energy.

Next we review the energy transfer between the turbulent and mean E × B flows for

the cold ion case. Multiplying Eq. (9) by φ0 and integrating over all space, one obtains the

evolution of mean E ×B flow energy [11]

1

2

∂U

∂t
= (a/ρs)

∫ dx

Lx

(−dφ0

dx
)
d

dx
〈δvxδvy〉 = Fv , (12)

where U =
∫
|∇⊥φ0|2dx/Lx indicates the volume-averaged kinetic energy of mean E × B

flow, the Reynolds stress 〈δvxδvy〉 represents the correlation of E ×B velocity fluctuations,

and Fv denotes the volume-averaged Reynolds power, which is essentially a product of mean

potential gradient and the Reynolds force d 〈δvxδvy〉 /dx. Subtraction of Eq. (9) from Eq. (6)

yields the equation for the fluctuating vorticity δw. Multiplying the resulting equation by

δφ and integrating over all space, one obtains the evolution of turbulent E ×B flow energy

[11]
1

2

∂K

∂t
= Fp − Fv , (13)

where K =
∫
〈|∇⊥δφ|2〉 dx/Lx indicates the volume-averaged turbulentE×B kinetic energy.

Thus a positive transfer power Fp acts as the energy source for turbulent E ×B flows, and

a positive Reynolds power Fv indicates the energy transfer from turbulent to mean E ×B

flows and acts as the energy sink for the fluctuation.
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FIG. 1. Typical structures of the full pressure p, full potential φ, fluctuating potential δφ, and

the poloidal E × B flow vy in the first (top) and second (bottom) regimes. The location of the

LCFS is at x = 40 as indicated by the vertical black line.
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FIG. 2. Typical evolution of fluctuation amplitude (standard deviation) of (a) pressure
√
〈δp2〉,

(b) potential
√
〈δφ2〉, (c) radial E ×B velocity

√
〈δv2x〉. The vertical line indicates the time with

increased heating.

III. SIMULATION RESULTS

The simulations are started with small-amplitude perturbations and the interchange in-

stability is then triggered by initially steep pressure gradients. In the linear phase, the

perturbations grow exponentially and develop small-scale eddies with kyLp ∼ 1 in the pres-

sure gradient region. In the simulation, the long wavelength ideal modes with kyLp � 1
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FIG. 3. Typical evolution of the volume-averaged (a) transfer power Fp and Fv, (b) turbulent and

mean E ×B flow energy K and U . Black vertical line indicates the time with increased heating.

Red and blue time windows indicate just before and during the transition.

are stable because of the radial localization of the pressure gradient, and shorter wavelength

modes with kyLp � 1 are stabilized by a combination of ion diamagnetic effects shown in

Eq. (8) and the E ×B flow shear [3]. The radial mixing of plasma by the E ×B eddies

flattens the background pressure gradients so that long wavelength modes begin to grow in

the early nonlinear phase. The wave number spectra of the pressure and potential become

broad and the spectral peak is down-shifted to the lower ky (long wavelengths) modes in

the nonlinear phase. The relaxation of pressure gradients to the critical gradient ultimately

leads to the nonlinear saturation of unstable modes.

Eventually, a steady state of the first regime is reached, in which the radial convective

transport and parallel losses are in balance. As shown in Fig. 1, the large-scale turbulent

E ×B eddies are developed in the nonlinear saturated state and the potential structures

are dominated by the fluctuating potential δφ. The radially broad eddies near the LCFS

produce intermittent, convective transport of plasma from closed to open field line regions,

where the parallel losses give rise to the dissipation. Figure 2 shows the large-amplitude

fluctuations of pressure, potential, and radial E ×B velocity: δp/p0 ∼ 0.1, δφ/φ0 ∼ 1/3,

δvx/cs0 ∼ 0.1. As seen in Fig. 3, the amplitudes of turbulent and mean E × B flows are

changed in time under the influence of the transfer power Fp and Reynolds power Fv. Note

that the transfer power Fp is positive and much larger than the Reynolds power Fv which

fluctuates around zero. As a result, the mean flow energy is at a low level and the E ×B
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FIG. 4. Typical time-averaged profile of radial turbulent fluxes of particle 〈δnδvx〉 and energy

〈δpδvx〉 in the first and second regimes, and just before transition.

kinetic energy is dominated by the turbulent flows. The positive energy and particle fluxes

in Fig. 4 indicate the radially outward convective transport, and the turbulent fluxes are

almost constant inside the LCFS for a long time average and decreases outside the LCFS due

to the parallel losses. The time-averaged vorticity flux and Reynolds stress in Fig. 5 are flat

and small. The profile gradients of pressure, density and potential are flat with small mean

E ×B shear flow, as seen in Figs. 6 and 7. The system is near the marginal stability with

the pressure profile gradients set by the critical gradient. Note that the boundary layers

such as the source region have been excluded from the results presented and the profiles

have been averaged over time and the poloidal y direction.

Starting from the steady state of the first regime, we next only increase the heat flux

that drives the system by raising the heating power SE and the pressure value at the inner

boundary, while keeping the other parameters the same. As seen in Fig. 2, the large-

amplitude pressure fluctuation is induced with the increased heat flux, which produces large-

amplitude fluctuations of potential and E ×B velocity due to the coupling of ∇2
⊥δφ and

∇2
⊥δp in Eq. (7). As a result, the large-amplitude oscillations of transfer power Fp and Fv

are also induced, which give rise to the large-amplitude oscillations of turbulent and mean

E ×B flow energy, as seen in Fig. 3. In particular, the turbulent E ×B kinetic energy K

increases with the positive transfer power Fp, which converts thermal energy to turbulent

flows. Following the rise of fluctuations, the mean E×B flow energy U grows as the positive

Reynolds power Fv increases. After some time period of oscillations, the large-amplitude
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flow vy0 in the first and second regimes.

positive Reynolds power (Fv > 0) is eventually induced when the heat flux that drives the

system is above a certain threshold. During the time period of transition (blue time window

t = 140−143 in Fig. 3), the time-averaged positive Reynolds power becomes larger than the

transfer power (i.e., Fv > Fp), which suggests a definite transfer of energy from turbulent

to mean E ×B flows. As a result, the mean E ×B flow energy increases to a much higher

level, and the turbulent E ×B flow energy decreases significantly. After the transition, the

fluctuation levels of pressure and potential are reduced so that the amplitudes of transfer

power Fp and Fv also decrease.
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In the simulation, the changes in heating power over the time range of interest are as

follows: SE = 0.02 in the first regime, SE = 0.2 at the transition, and SE = 0.1 in the second

regime. Note that the value of heating power in the second regime is much higher than that

in the first regime, while the fluctuations in the second regime are lower than those in the

first regime due to the generation of mean E × B shear flow during the transition. The

heating power is reduced after the transition (from SE = 0.2 to 0.1) so that the growth of

mean E ×B flow saturates and a steady state is reached in the second regime.

Next we examine the changes in the spatial structures with increased heating. For the

short time period just before transition (red time window t = 138 − 140 in Fig. 3), the

fluctuation amplitudes increase to a high level as shown in Fig. 2. The stronger turbulence

intensity increases the turbulent energy fluxes across the LCFS, as shown in Fig. 4. Since the

pressure gradients near the LCFS drive the turbulence in the system, the turbulent fluxes

tend to peak at the LCFS where the turbulence is strongest.

During the time period of transition, the radial vorticity flux in Fig. 5(a) becomes more

negative with increased amplitude and forms the negative gradients inside the LCFS. As

shown in Eq. (9), this produces the increased positive mean vorticity w0 ' ∇2
⊥φ0. On the

other hand, the plasma potential in the open field line region decreases with the electron

temperature φ0 ' 3T0 due to the sheath boundary conditions. Thus the potential profile

drops just inside the LCFS, producing stronger mean potential gradients. During the tran-

sition, the Reynolds stress in Fig. 5(b) also increases and forms the negative gradient inside
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FIG. 8. Typical wave number spectrum of the fluctuating potential |δφ(ky)| in the first and second

regimes.

the LCFS. This implies the increased Reynolds force and more negative vorticity flux, since

the E × B vorticity flux 〈δvx∇2
⊥δφ〉 = d 〈δvxδvy〉 /dx. Combined with the positive mean

potential gradients inside the LCFS, this leads to the increased positive Reynolds power as

shown in Eq. (12).

After the transition, the potential structures are dominated by the mean potential φ0.

As seen in Figs. 1 and 6, the potential well structure generates a strong mean E ×B shear

flow vy0 = dφ0/dx in the poloidal direction, which corresponds to a negative well structure

of mean radial electric field Er just inside the LCFS. The mean E ×B shear flow reduces

the amplitude and radial correlation lengths of turbulent eddies so that the wave number

spectral peak of the fluctuating potential in Fig. 8 is up-shifted to higher ky modes with

lower amplitude. This causes the reduction of radial turbulent transport across the radial

domain, as seen in Fig. 4. Consequently, the pressure and density profiles in Fig. 7 form steep

gradients just inside the LCFS, which indicates improved energy and particle confinement.

Note that the steepening of mean pressure gradient occurs in a small region where the mean

potential gradient is largest. As shown in Fig. 5, the amplitudes of Reynolds stress and

vorticity flux are reduced due to the lower level of fluctuations in the second regime.

To examine how the turbulent and mean ion diamagnetic flows compete with the E×B

flows, we compare the amplitude of poloidal E ×B flow vEy = ∂φ/∂x and ion diamagnetic

flow vdiy = ∂p/∂x normalized in units of cs0. Figure 9 shows that the E×B flows are much
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vdiy. The vertical line indicates the time with increased heating.

larger than the ion diamagnetic flows in the first regime and during the transition. Thus

the growth of mean E×B flow during the transition is due to the nonlinear energy transfer

induced by enhanced fluctuations.

Finally, we consider a hot-ion model with constant density, in which only the pressure

and vorticity equations (5)-(7) are evolved. The simulations show that a similar transition

from the low to high confinement regimes is reproduced by increasing the heat flux above

a certain threshold. Consistent with Ref. [3], we find that the ion diamagnetic term ∇2
⊥δp

in the vorticity is required to produce a transition. Without the ion diamagnetic term (i.e.,

the cold ion model), the simulations show that the Reynolds power always fluctuates around

zero and thus the mean E ×B flow stays at a low level without a transition.

IV. CONCLUSION

In summary, the fluctuation-induced E ×B shear flow and energy transfer in the inter-

change turbulence have been explored in a flux-driven system with both closed and open

field line regions. The transfer of energy between fluctuations and sheared flows in two

confinement regimes is presented, with implications for the evolution of the Reynolds stress,

radial fluxes of energy and vorticity, and ultimately the plasma profiles of pressure, density,

and potential. By increasing the heat flux above a certain threshold, the increased turbulent
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intensity gives rise to the nonlinear transfer of energy from fluctuations to mean E×B flows.

As a result, a transition to the second regime occurs, in which a strong mean E ×B shear

flow is generated just inside the LCFS. The mean E ×B shear flow reduces the radial tur-

bulent transport, which results in the steepening of pressure gradients and improved energy

confinement.
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