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Abstract
Although enantioconvergent alkyl-alkyl couplings of racemic electrophiles have been developed,
there have been no reports of the corresponding reactions of racemic nucleophiles. Herein, we
describe Negishi cross-couplings of racemic α-zincated N-Boc-pyrrolidine with unactivated
secondary halides, thus providing a one-pot, catalytic asymmetric method for the synthesis of a
range of 2-alkylpyrrolidines (an important family of target molecules) from N-Boc-pyrrolidine, a
commercially available precursor. Preliminary mechanistic studies indicate that two of the most
straightforward mechanisms for enantioconvergence (a dynamic kinetic resolution of the
organometallic coupling partner and a simple β-hydride elimination/β-migratory insertion
pathway) are unlikely to be operative.

Recently, we have been pursuing the development of an array of metal-catalyzed alkyl-alkyl
cross-coupling processes.1,2,3 As part of this program, we have described several nickel-
catalyzed methods for the enantioconvergent coupling of achiral alkylmetal reagents with
racemic secondary alkyl electrophiles (eq 1).4,5

(1)

The reversed-polarity process, wherein a racemic alkyl nu-cleophile is coupled with an alkyl
electrophile, has remained an unsolved challenge (eq 2). However, Kumada has described a
nickel-catalyzed enantioconvergent coupling of a racemic benzylic Grignard reagent
(PhCHMeMgCl) with an alkenyl halide (bromoethylene) to generate an enantioenriched
allylbenzene.6,7
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(2)

Pyrrolidines that bear an alkyl substituent in the 2 position are important across many areas
of chemistry and biology. For example, they are present as subunits in bioactive natural8 and
non-natural9 products, function as versatile intermediates in the synthesis of other useful
classes of compounds,10 and serve as effective chiral organocatalysts and ligands in
asymmetric catalysis.11 Because of this wide-ranging significance, the development of
efficient methods for the enantioselective synthesis of 2-alkylpyrrolidines has been the target
of substantial effort, and a broad array of approaches have been described, ranging from
chiral-pool strategies to asymmetric synthesis.12,13

The catalytic enantioselective 2-alkylation of pyrrolidine (or a readily available protected
derivative) via deprotonation/electrophile-trapping represents an attractive, direct approach
to the asymmetric synthesis of 2-alkylpyrrolidines (eq 3); to the best of our knowledge, such
a process has not yet been reported. On the other hand, pioneering studies by Beak have
established that deprotonation of N-Boc-pyrrolidine in the presence of a stoichiometric
quantity of (−)-sparteine,14 followed by trapping with any of a wide range of electrophiles
(e.g., n-Bu3SnCl, Me3SiCl, benzophenone, and carbon dioxide), can furnish 2-substituted
pyrrolidines with high enantioselectivity; among unactivated alkyl electrophiles, only
dimethyl sulfate and methyl iodide have been shown to serve as suitable coupling partners.15

O’Brien built upon these key observations and developed a method that employs a
substoichiometric quantity (20 mol%) of a chiral amine, providing 2-functionalized
(although not 2-alkyl) N-Boc-pyrrolidines in up to 88% ee.16

(3)

In view of the potential utility of the transformation outlined in eq 3, we have pursued the
development of the first enantioconvergent alkyl-alkyl cross-coupling wherein a racemic
alkyl nucleophile is employed as a reaction partner. In particular, we have determined that,
in the presence of a chiral nickel catalyst, racemic α-zincated N-Boc-pyrrolidine (prepared
in situ from commercially available N-Boc-pyrrolidine) can be coupled with unactivated
alkyl electrophiles to generate 2-alkylpyrrolidines in good ee (eq 4).17
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(4)

Initially, in view of recent reports by Campos of stoichiometric asymmetric α-lithiation/
transmetalation/palladium-catalyzed Negishi arylation of N-Boc-pyrrolidine,18 we examined
the cross-coupling of enantioenriched α-zincated N-Boc-pyrrolidine (>90% ee)19 with n-
hexyl iodide and cyclohexyl iodide in the presence of an achiral nickel/1,2-diamine catalyst
(eq 5). In both cases, the alkyl-alkyl coupling product formed in low ee (<15% ee).20

Because the organozinc reagent is configurationally stable at room temperature, these
observations suggest that stereochemical scrambling occurs during the nickel-catalyzed
cross-coupling process.

(5)

Given that the use of an achiral catalyst for the cross-coupling of a highly enantioenriched
nucleophile had provided almost racemic product, we decided to examine a
stereochemically converse transformation: the use of a chiral catalyst for the cross-coupling
of a racemic nucleophile to generate enantioenriched product. In view of the paucity of
asymmetric metal-catalyzed alkyl-alkyl couplings of secondary nucleophiles with secondary
electrophiles,21 we chose to employ cyclohexyl iodide as the electrophilic coupling partner.

Upon investigating a range of parameters, we determined that the desired enantioconvergent
coupling of racemic α-zincated N-Boc-pyrrolidine with cyclohexyl iodide can be achieved
by a combination of NiCl2 glyme and chiral 1,2-diamine ligand 122 in high ee and in good
yield at room temperature (93% ee, 86% yield; entry 1 of Table 1). In the absence of either
NiCl2-glyme or ligand 1, essentially no alkyl-alkyl cross-coupling product was observed
(entries 2 and 3); similarly, α-lithiated N-Boc-pyrrolidine was not a suitable coupling
partner (entry 4). Under the same conditions, related C2-symmetric 1,2-diamines furnished
somewhat lower enantioselectivity and yield (entries 5 and 6). Use of less catalyst (entry 7)
or of other nickel sources (entries 8 and 9) led to comparable ee but reduced yield. Our
observation that 2-cyclohexyl-N-Boc-pyrrolidine formed in 90% ee and 74% yield in the
presence of 0.5 equivalents of the diorganozinc reagent provides strong evidence that the
cross-coupling is an enantioconvergent process, not a simple kinetic resolution (entry 10).
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The catalytic asymmetric synthesis of an array of 2-alkylpyrrolidines can be achieved via the
coupling of a single precursor (N-Boc-pyrrolidine) with a variety of readily available,
unactivated alkyl iodides (Table 2).23 Thus, three parent cycloalkyl iodides undergo
enantioconvergent alkyl-alkyl cross-coupling with racemic α-zincated N-Boc-pyrrolidine
with good enantioselectivity (entries 1–3); the process can be conducted on a gram scale
with comparable efficiency (when entry 1 was carried out on a 6.0 mmol scale: 94% ee and
74% yield; 1.12 g of product). Heterocyclic electrophiles couple in high ee (entries 4–6), as
does an acyclic secondary alkyl iodide (entry 7). In contrast, moderate ee is observed for the
asymmetric Negishi reaction of a primary alkyl iodide (entry 8).

This method thus complements other catalytic enantiose-lective approaches to the synthesis
of 2-alkylpyrrolidines, which are typically only effective for the incorporation of a primary
alkyl group.24 Pyrrolidines that bear a secondary alkyl substituent in the 2 position are found
in a wide variety of compounds, including an array of pyrrolizidine (simplest example:
heliotridane), indolizidine (simple example: ta-shiromine; also: grandisine A25), and
crambescidin26 alkaloids.

Not only alkyl iodides, but also alkyl bromides, can be employed as electrophiles in these
nickel-catalyzed enantioconvergent cross-couplings of a racemic nucleophile (Table 3).27

Under the same conditions as for iodides (except for the temperature, in a few cases), alkyl-
alkyl bond formation between α-zincated N-Boc-pyrrolidine and a range of cyclic and
acyclic unactivated secondary alkyl bromides proceeds in good ee, although generally
modest yield (entries 1–4). As in the case of a primary alkyl iodide, a primary bromide
cross-couples with lower enantioselectivity (entry 5).

We next focused our attention on gaining insight into the origin of the stereoconvergence in
these asymmetric Negishi eactions of α-zincated N-Boc-pyrrolidine.28 In Kumadas earlier
study of the enantioselective cross-coupling of racemic PhCHMeMgCl with bromoethylene
to form an allylbenzene, it was postulated that stereoconvergence arose from a dynamic
kinetic resolution of a rapidly racemizing benzylic nucleophile y the cbhiral nickel catalyst.6

In contrast, our nucleophile,α-zincated N-Boc-pyrrolidine, is configurationally stable under
our reaction conditions in the absence of nickel. Thus, enantioenriched organozinc reagent
was prepared from the corresponding stannane through Sn-Li exchange followed by
transmetalation to zinc (Figure 1).29 When this nucleophile was cross-coupled with
bromobenzene under the Campos conditions,18 (R)-2-phenyl-N-Boc-pyrrolidine was
generated in 90% ee and 95% yield, thereby establishing the stereochemical integrity of the
organozinc reagent. When this enantioenriched nucleophile was reacted with cyclohexyl
iodide under our standard conditions using either (R,R) or (S,S) 1,2-diamine ligand 1, the
stereochemistry of the cross-coupling product was dependent primarily on the
stereochemistry of the ligand, rather than of the organozinc nucleophile.

One of the possible mechanisms for enantioconvergence in the nickel-catalyzed asymmetric
Negishi reactions described herein is a series of β-hydride eliminations/β-migratory
insertions of an organonickel intermediate, without dissociation of the olefin from nickel
(Figure 2). We have in fact observed such an isomerization process in an enantioselective
Negishi cross-coupling of a racemic electrophile with an achiral cyclopentylzinc reagent.21

To assess the viability of the pathway outlined in Figure 2, we investigated the Negishi
reaction of a deuteriumlabeled N-Boc-pyrrolidine (eq 6). Essentially no (<5%) deuterium
incorporation is observed α to nitrogen in the cross-coupling product, which indicates that
the β-hydride elimination/β-migratory insertion pathway for stereomutation that is depicted
in Figure 2 is not the mechanism by which stereoconvergence is achieved.30
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(6)

In summary, we have developed the first enantioconvergent alkyl-alkyl cross-couplings of a
racemic nucleophile, specifically, the asymmetric Negishi reaction of α-zincated N-Boc-
pyrrolidine with unactivated secondary iodides and bromides, providing a one-pot route to
an array of 2-alkylpyrrolidines from a single, readily available precursor (N-Boc-
pyrrolidine). Because the highest enantioselectivity is obtained for the incorporation of
secondary alkyl substituents, this method complements existing catalytic asymmetric
approaches to the synthesis of 2-alkylpyrrolidines, which are generally most effective for
primary alkyl groups. The pathway for stereoconvergence for the present method does not
involve a dynamic kinetic resolution of the organometallic coupling partner, in contrast to a
previous report of an enantioconvergent alkyl–alkenyl cross-coupling. Furthermore, a
deuteriumlabeling study rules out stereomutation via a simple β-hydride elimination/β-
migratory insertion pathway that we had observed in another nickel-catalyzed alkyl-alkyl
coupling. Additional investigations are underway to continue to elucidate the mechanism of
this unusual enantioconvergent cross-coupling, as well as to expand the range of racemic
nucleophiles that can be employed in such alkyl-alkyl coupling processes.
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Figure 1.
The stereochemistry of the alkyl-alkyl cross-coupling product is controlled predominantly
by the stereo chemistry of the chiral nickel catalyst, not of the nucleophile, in a Negishi
reaction of α-zincated N-Boc-pyrrolidine.
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Figure 2.
A hypothetical pathway for stereomutation of an α-metalated N-Boc-pyrrolidine: β-hydride
elimination and β-migratory insertion without olefin dissociation.
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Table 1

Enantioconvergent Cross-Coupling of a Racemic Nucleophile: Effect of Reaction Parametersa

entry variation from the “standard” conditions ee (%) yield (%)b

1 none 93 86

2 no NiCl2·glyme – <2

3 no 1 – 2

4 no ZnI2 – <2

5 2, instead of 1 82 80

6 3, instead of 1 75 76

7 10% NiCl2·glyme, 12% 1 92 53

8 Ni(cod)2, instead of NiCl2·glyme 93 61

9 NiBr2·glyme, instead of NiCl2·glyme 92 38

10 0.5, instead of 0.75, ZnR2 (R = N-Boc-pyrrolidinyl) 90 74

a
All data are the average of two experiments.

b
Yield determined by GC analysis versus a calibrated internal standard.
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Table 3

Enantioconvergent Negishi Reactions of Racemic α-ZincatedNBoc-pyrrolidine with Unactiva-ted Alkyl
Bromides (reaction conditions: eq 4)a

entry electrophile ee(%) yield (%)b

1c 92 41

2 88 80

3c 88 44

4c 90 51

5 58 61

a
All data are the average of two experiments.

b
Yield of purified product.

c
Reaction temperature: 35 °C.
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