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ABSTRACT

Conventional value-added models (VAMS) compare average test scores across schools after
regression-adjusting for students’ demographic characteristics and previous scores. This paper
tests for VAM bias using a procedure that asks whether VAM estimates accurately predict the
achievement consequences of random assignment to specific schools. Test results from
admissions lotteries in Boston suggest conventional VAM estimates are biased, which motivates
the development of a hierarchical model describing the joint distribution of school value-added,
bias, and lottery compliance. We use this model to assess the substantive importance of bias in
conventional VAM estimates and to construct hybrid value-added estimates that optimally
combine ordinary least squares and lottery-based instrumental variables estimates of VAM
parameters. The hybrid estimation strategy provides a general recipe for combining non-
experimental and quasi-experimental estimates. While still biased, hybrid school value-added
estimates have lower mean squared error than conventional VAM estimates. Simulations
calibrated to the Boston data show that, bias notwithstanding, policy decisions based on
conventional VAMs are likely to generate substantial achievement gains. Hybrid estimates that
incorporate lotteries yield further gains.
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1 Introduction

Public school districts increasingly use value-added models (VAMS) to assess teacher and school effectiveness.
Conventional VAM estimates compare test scores across classrooms or schools after regression-adjusting for
students’ demographic characteristics and earlier scores. Achievement differences remaining after adjustment
are attributed to differences in teacher or school quality. Some districts use estimates of teacher value-added
to guide personnel decisions, while others use VAMs to generate “report cards” that allow parents to compare
schools.! Value-added estimation is a high-stakes statistical exercise: low VAM estimates can lead to school
closures and teacher dismissals, while a growing body of evidence suggests the near-term achievement gains
produced by effective teachers and schools translate into improved outcomes in adulthood (see, e.g., Chetty
et al., 2011 and Chetty et al., 2014b for teachers and Angrist et al., 2016a and Dobbie and Fryer, 2015 for
schools).

Because the stakes are so high, the use of VAM estimates for teacher and school assessment remains
controversial. Critics note that VAM estimates may be misleading if the available control variables are inad-
equate to ensure ceteris paribus comparisons. VAM estimates may also reflect considerable sampling error.
The accuracy of teacher value-added models is the focus of a large and expanding body of research. This
work demonstrates that teacher VAM estimates have predictive value, but has yet to generate a consensus on
the substantive importance of bias or guidelines for “best practice” VAM estimation (see, for example, Kane
and Staiger, 2008; Rothstein, 2010; Koedel and Betts, 2011; Kinsler, 2012; Kane et al., 2013; Chetty et al.,
2014a; Bacher-Hicks et al., 2014; Rothstein, 2015; and Chetty et al., 2016). While the social significance
of school-level VAMs is similar to that of teacher VAMSs, validation of VAMSs for schools has received less
attention.

The proliferation of partially-randomized urban school assignment systems provides a new tool for mea-
suring school value-added. Centralized assignment mechanisms based on the theory of market design, includ-
ing those used in Boston, Chicago, Denver, New Orleans, and New York, use information on parents’ prefer-
ences over schools and schools’ priorities over students to allocate scarce admission offers. These matching
algorithms typically use random sequence numbers to distinguish between students with the same priorities,
thereby creating stratified student assignment lotteries. Similarly, independently-run charter schools often
use admissions lotteries when oversubscribed. Scholars increasingly use these lotteries to identify causal ef-
fects of enrollment in various school sectors, including charter schools, pilot schools, small high schools, and
magnet schools (Cullen et al., 2006; Hastings and Weinstein, 2008; Abdulkadiroglu et al., 2011; Angrist et al.,
2013; Dobbie and Fryer, 2013; Bloom and Unterman, 2014; Deming et al., 2014). Lottery-based estimation
of individual school value-added is less common, however, reflecting the fact that lottery samples for many

schools are small, while other schools are undersubscribed.

1The Education Commission of the States notes that Alabama, Arizona, California, Florida, Indiana, Louisiana, Maine,
Mississippi, New Mexico, North Carolina, Texas, Utah, and Virginia issue letter-grade report cards with grades determined at
least in part by adjusted standardized test scores (http://wuw.ecs.org/html/educationissues/accountability/stacc_intro.
asp).



This paper develops econometric methods that leverage school admissions lotteries for VAM testing and
estimation, accounting for the partial coverage of lottery data. Our first contribution is the formulation
of a new lottery-based test of conventional VAMs. This test builds on recent experimental and quasi-
experimental VAM validation strategies, including the work of Kane and Staiger (2008), Deutsch (2012),
Kane et al. (2013), Chetty et al. (2014a) and Deming (2014). In contrast with earlier studies, which implicitly
look at average-across-schools validity in a test with one degree of freedom, ours is an over-identification test
that looks at each of the orthogonality restrictions generated by a set of lottery instruments. Intuitively,
the test developed here asks whether conventional VAM estimates correctly predict the effect of randomized
admission at every school that has a lottery, as well as the effects of VAM on average. Our test of VAM validity
parallels a classical over-identification test, since the latter can be described either as testing instrument-error
orthogonality or as a comparison of alternative just-identified IV estimates that should be the same under
the null hypothesis.?

Application of this test to data from Boston reveals moderate but statistically significant bias in conven-
tional VAM estimates. This finding notwithstanding, conventional VAM estimates may nevertheless provide
a useful guide to school quality if the degree of bias is modest. To assess the practical value of VAM esti-
mates, we develop and estimate a hierarchical random coefficients model that describes the joint distribution
of value-added, VAM bias, and lottery compliance across schools. The model is estimated via a simulated
minimum distance (SMD) procedure that matches moments of the distribution of conventional VAM es-
timates, lottery reduced forms, and first stages to those predicted by the random coefficients structure.
Estimates of the model indicate substantial variation in both causal value-added and selection bias across
schools. The estimated joint distribution of these parameters implies that conventional VAM estimates are
highly correlated with school effectiveness.

A second contribution of our study is to use the random coefficients framework and lottery variation
to improve conventional VAM estimates. Our approach builds on previous estimation strategies that trade
reduced bias for increased variance (Morris, 1983; Judge and Mittlehammer, 2004, 2005, 2007). Specifically,
we compute empirical Bayes (EB) hybrid posterior predictions that optimally combine relatively imprecise
but unbiased lottery-based estimates with biased but relatively precise conventional VAM estimates. Impor-
tantly, our approach makes efficient use of the available lottery information without requiring a lottery for
every school. Hybrid estimates for undersubscribed schools are improved by information on the distribution
of bias contributed by schools with oversubscribed lotteries. The hybrid estimation procedure generates
estimates that, while still biased, have lower mean squared error than conventional VAM estimates. Our
framework provides a general recipe for combining non-experimental and quasi-experimental estimators and
may therefore be useful in other settings.?

Finally, we quantify the consequences of bias in conventional VAM estimates and the payoff to hybrid

2The theory behind VAM over-identification testing is sketched in Angrist et al. (2016b).

3These settings include the analysis of teacher, hospital, doctor, firm, and neighborhood effects, as in Chetty et al. (2014a,b),
Finkelstein et al. (2013), Fletcher et al. (2014), Card et al. (2013), and Chetty and Hendren (2015). Chetty and Hendren combine
observational and quasi-experimental estimates of neighborhood effects, a connection discussed in Section 5.



estimation using a Monte Carlo simulation calibrated to our Boston estimates. Simulation results show that
policy decisions based on conventional estimates that control for baseline test scores or measure score growth
are likely to boost achievement. For example, replacing the lowest-ranked Boston school with an average
school is predicted to generate a gain of 0.24 test score standard deviations (o) for affected students, roughly
two-thirds of the benefit obtained when true value-added is used to rank schools (0.37¢). Hybrid estimates are
highly correlated with conventional estimates (the rank correlation is 0.74), and hybrid estimation generates
modest additional gains, reducing mean squared error by 30 percent and increasing the benefits of school
closure policies by about 0.08¢ (33 percent). Conventional school VAMs would therefore appear to provide a
useful guide for policy-makers, while hybrid estimators generate worthwhile improvements in policy targeting.

The next section describes the Boston data used for VAM testing and estimation, and Section 3 describes
the conventional value-added framework as applied to these data. Section 4 derives our VAM validation test
and discusses test implementation and results. Section 5 outlines the random coefficients model and empirical
Bayes approach to hybrid estimation, while Section 6 reports estimates of the model’s hyperparameters and
the resulting posterior predictions of value-added. Section 7 discusses policy simulations. Finally, Section 8

concludes with remarks on how the framework developed here might be used in other settings.

2 Setting and Data

2.1 Boston Public Schools

Boston public school students can choose from a diverse set of enrollment options, including traditional
Boston Public School (BPS) district schools, charter schools, and pilot schools. As in most districts, Boston’s
charter schools are publicly funded but free to operate within the confines of their charters. For the most
part, charter staff are not covered by collective bargaining agreements and other BPS regulations.* Boston’s
pilot school sector arose as a union-supported alternative to charter schools, developed jointly by the BPS
district and the Boston Teachers Union. Pilot schools are part of the district but typically have more control
over their budgets, scheduling, and curriculum than do traditional public schools. On the other hand, pilot
school teachers work under collective bargaining provisions similar to those in force at traditional public
schools.

Applicants to traditional public and pilot schools rank between three and ten schools as the first step in
a centralized match (students not finishing elementary or middle school who are happy to stay where they
are need not participate in the match). Applicants are then assigned to schools via a student-proposing
deferred acceptance mechanism, as described in Abdulkadiroglu et al. (2006). This mechanism combines
student preferences with a strict priority ranking over students for each school. Priorities are determined
by whether an applicant is already enrolled at the school and therefore guaranteed admission, has a sibling

enrolled at the school, or lives in the school’s walk-zone. Ties within these coarse priority groups are broken

4Boston’s charter sector includes both “Commonwealth” charters, which are authorized by the state and run as independent
school districts, and “in-district” charters, which are authorized and overseen by the Boston School Committee.



by random sequence numbers, which we refer to as lottery numbers. In an evaluation of the pilot sector
exploiting this centralized random assignment scheme, Abdulkadiroglu et al. (2011) find mostly small and
statistically insignificant effects of pilot school attendance relative to the traditional public school sector.
In contrast with the centralized match that assigns seats at traditional and pilot schools, charter applicants
apply to individual charter schools separately in the spring of the year they hope to enter. By Massachusetts
law, oversubscribed charter schools must select students in public admissions lotteries, with the exception
of applicants with siblings already enrolled in the charter, who are guaranteed seats. Charter offers and
centralized assignment offers are made independently; students applying to the charter sector can receive
multiple offers. In practice, some Boston charter schools offer all of their applicants seats, while others fail
to retain usable information on admissions lotteries. Studies based on charter lotteries show that Boston
charter schools boost test scores and increase four-year college attendance (see, for example, Abdulkadiroglu

et al. (2011) and Angrist et al. (2016a)).

2.2 Data and Descriptive Statistics

The data analyzed here consist of a sample of roughly 28,000 sixth-grade students attending 51 Boston
traditional, pilot, and charter schools in the 2006-2007 through 2013-2014 school years. In Boston, sixth
grade marks the first grade of middle school, so most rising sixth graders participate in the centralized match.
For our purposes, baseline test scores come from fifth grade Massachusetts Comprehensive Assessment System
(MCAS) tests in math and English Language Arts (ELA), while outcomes are measured at the end of sixth
grade. Test scores are standardized to have mean zero and unit variance in the population of Boston charter,
pilot, and traditional public schools, separately by subject, grade, and year. Other variables used in the
empirical analysis are school enrollment, race, sex, subsidized lunch eligibility, special education status,
English-language learner status, and suspensions and absences. Appendix A describes the administrative
files and data processing conventions used to construct the working extract.

Our analysis combines data from the centralized traditional and pilot match with lottery data from
individual charter schools. The BPS lottery instruments code offers at applicants’ first choice (highest
ranked) middle schools in the match. In particular, BPS lottery offers indicate applicants whose lottery
numbers are at least as high as the worst number offered a seat at their first-choice school, among those
in the same priority group. Conditional on application year, first-choice school, and an applicant’s priority
at that school (what we call the assignment strata), offers of seats at a first choice are randomly assigned.
Charter lottery instruments indicate offers made on the night of the admissions lottery at each charter school.
These offers are randomly assigned for non-siblings conditional on the target school and application year.?
The schools and students analyzed here are described in Table 1. We exclude schools serving fewer than

25 sixth graders in each year, leaving a total of 25 traditional public schools, 9 pilot schools, and 17 charter

5For a much smaller group of applicants, the centralized BPS mechanism induces random tie-breaking for lower-ranked school
choices. The use of tie-breaking from these choices generates complications beyond the scope of this paper; see Abdulkadiroglu
et al. (2015) for a comprehensive analysis of empirical strategies that exploit centralized assignment.



schools. Of these, 37 schools have sixth grade as a primary entry point and 28 (16 traditional, 7 pilot, and 5
charter) had at least 50 students subject to random sixth grade assignment. Applicants to these 28 schools
constitute our lottery sample. Conventional ordinary least squares (OLS) value-added models are estimated
in a sample of 27,864 Boston sixth graders with complete baseline, demographic, and outcome information;
8,718 of these students are also in the lottery sample.

About 77 percent of Boston sixth graders enroll at schools with usable lotteries, and, as can be seen in
the descriptive statistics reported in Table 2, demographic characteristics for this group are comparable to
those of the full BPS population. Columns 3 and 4 of Table 2 report characteristics of the subset of students
subject to randomized lottery assignment. Lotteried students are slightly more likely to be African American
and to qualify for a subsidized lunch, and somewhat less likely to be white or to have been suspended or
recorded as absent in fifth grade. Table 2 also documents the comparability of students who were and were
not offered seats in a lottery. These results, reported in columns 5-7, compare the baseline characteristics of
lottery winners and losers, controlling for assignment strata. Consistent with conditional random assignment
of offers, estimated differences by offer status are small and not significantly different from zero, both overall

and within school sectors.®

3 Value-added Framework

As in earlier investigations of school value-added, the analysis here builds on a constant-effects causal model.
This reflects a basic premise of the VAM framework: internally valid treatment effects from earlier years and
cohorts are presumed to have predictive value for future cohorts. Student i’s potential test score at school

J, Yij, is therefore written as the sum of two non-interacting components, specifically:

Yij = pu; + as, (1)

where 11; is the mean potential outcome at school j and a; is student i’s “ability,” or latent achievement
potential. This additively-separable model implies that causal effects are the same for all students. The
constant effects framework focuses attention on the possibility of selection bias in VAM estimates rather
than treatment effect heterogeneity (though we explore heterogeneity as well).

A dummy variable, D;;, is used to indicate whether student ¢ attended school j in sixth grade. The

observed sixth-grade outcome for student ¢ can therefore be written

6Lottery estimates may be biased by selective sample attrition. As shown in Appendix Table A1, follow-up data are available
for 81 percent of lottery applicants, while sample retention is 2.8 percentage points higher for lottery winners than for losers,
a difference driven by traditional public school lotteries. Table 2 shows that that baseline characteristics are balanced in the
sample with follow-up scores, so the modest differential attrition documented in Table Al seems unlikely to affect the results
reported here.
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The parameter 3; = p; — po measures the causal effect of school j relative to an omitted reference school
with index value 0. In other words, j; is school j’s value-added.

Conventional value-added models use regression methods to mitigate selection bias. Write
a; = X;’y—’_el? (3)

for the regression of a; on a vector of controls, X;, which includes lagged test scores. Note that F [X;e;] =0

by definition of . This decomposition implies that observed outcomes can be written

J
Y; Z,uo-l-ZﬁjDij + Xy + e (4)
j=1
It bears emphasizing that equation (4) is a causal model: ¢; is defined so as to be orthogonal to X;, but need
not be uncorrelated with the school attendance indicators, D;;.
We are interested in how OLS regression estimates compare with the causal parameters in equation (4).

We therefore define population regression coefficients in a model with the same conditioning variables:

J
Y;=ao+ Y _ o;Dij + X[T + ;. (5)
j=1
This is a population projection, so the residuals in this model, v;, are necessarily orthogonal to all right-
hand-side variables, including school attendance dummies.
Regression model (5) has a causal interpretation when the parameters in this equation coincide with those
in the causal model, equation (4). This in turn requires that school choices be unrelated to the unobserved

component of student ability, an assumption that can be expressed as:
Elei|Dij] =0; j=1,..,J. (6)

Restriction (6), sometimes called “selection-on-observables,” means that a; = 3; for each school. In practice,
of course, regression estimates need not have a causal interpretation; rather, they may be biased. This
possibility is represented by writing

aj = P+ bj,

where the bias parameter b; is the difference between the regression and causal parameters for school j.



4 Validating Conventional VAMs

4.1 Test Procedure

The variation in school attendance generated by oversubscribed admission lotteries allows us to assess the
causal interpretation of conventional VAM estimates. A vector of dummy variables, Z; = (Z1,.., Zir),
indicates lottery offers to student i for seats at L oversubscribed schools. Offers at school ¢ are randomly
assigned conditional on a set of lottery-specific stratifying variables, C;y. These variables include an indicator
for applicants to school ¢ and possibly other variables such as application cohort and walk zone status. The
vector C; = (C!},..,C!;)" collects these variables across all lotteries. The models used here also add the OLS

VAM controls (X; in equation (5)) to the vector C; to increase precision.

We assume that lottery offers are (conditionally) mean-independent of student ability. In other words,
Ele;|Ci, Zi] = Xo + CiXe, (7)

for a set of parameters Ao and A.. This implies that admission offers are valid instruments for school
attendance after controlling for lottery assignment strata, an assumption that underlies recent lottery-based
analyses of school effectiveness (Cullen et al., 2006; Abdulkadiroglu et al., 2011; Deming et al., 2014).

With fewer lotteries than schools (that is, when L < J), the restrictions in (7) are insufficient to identify
the parameters of the causal model, equation (4). Even so, these restrictions can be used to test the selection-
on-observables assumption. Equations (6) and (7) imply that L+ J orthogonality conditions are available to
identify J school effects 8;. The resulting L overidentifying restrictions generate an over-identification test
of the sort widely used with instrumental variables (IV) estimators.

To describe the over-identification test statistic, let Z denote the N x L matrix of lottery offers for a
sample of N students, and let C' denote the corresponding matrix of stratifying variables, with associated
projection matrix Po = C(C’C)~'C and annihilator matrix Mo = I — Po. A Lagrange multiplier (LM)
over-identification test statistic, associated with two-stage least squares (2SLS) models estimated assuming

homoskedasticity, can be written:

My

<
>
>

T = , (8)

Q>
[N

where Py = McZ(Z'McZ)™*Z' Mc is the lottery offer projection matrix after partialling out randomization
strata, € is an N x 1 vector of OLS VAM residuals (since OLS and 2SLS coincide when D;; itself is in the
instrument list), and 62 = & Mcé/N is an estimate of the residual variance of ¢; partialling out strata effects.
Under the joint null hypothesis described by selection-on-observables and lottery exclusion (equations (6)
and (7)), the statistic T has an asymptotic x2 distribution.”

A simple decomposition of T reveals an important connection with previously used VAM validity tests.

"The test statistic in (8) is derived assuming homoskedastic errors. An analogous test allowing heteroskedasticity uses a
White (1980) robust covariance matrix to test that coefficients on lottery offers equal zero in a regression of ¢; on Z; and C;.



Let Y; denote the fitted values generated by OLS VAM estimation (computed from regression model (5)),
and let Y and ¥ denote N x 1 vectors collecting individual Y; and 171 The LM statistic can be written

(Y oY) + (6 = DY) Py((Y = ¢Y) + (¢ — 1Y)

T = 5
e

&
¢ —1)° L Y=Y P (Y — oY)
(Y'P;Y)~1 G '

>
>

(9)

mn
Mo

G

Here, the scalar ¢ = (Y'PzY)"'Y'P;Y is the 2SLS estimate from a model that uses lottery offers as
instruments in an equation with Y; on the left and Y;, treated as endogenous, on the right. Equation (9)
shows that the omnibus test statistic 7' combines two terms. The first is a one-degree-of-freedom Wald-type
test statistic for ¢ = 1 (note that the denominator of this term estimates the asymptotic variance of @).
The second is the Sargan (1958) statistic for testing the L — 1 overidentifying restrictions generated by the
availability of L instruments to estimate this single parameter.®

In what follows, the estimate ¢ is called a “forecast coefficient.” This connects 1" with tests of “forecast
bias” implemented in previous VAM validation efforts (Kane and Staiger, 2008; Kane et al., 2013; Deming,
2014; Chetty et al., 2014a). These earlier tests similarly ask whether the coefficient on predicted value-
added equals one in IV procedures relating outcomes to VAM fitted values (though the details sometimes
differ). Forecast bias arises when VAM estimates for a group of schools are off the mark, a failure of average
predictive validity. Importantly, the omnibus test statistic, T, checks more than forecast bias: this statistic
asks whether each over-subscribed lottery generates score gains commensurate with the gains predicted by

OLS VAM.

4.2 Test Results

The conventional VAM setup assessed here includes two value-added specifications. The first, referred to
as the “lagged score” model, includes indicators for sex, race, subsidized lunch eligibility, special education
status, English-language learner status, and counts of baseline absences and suspensions, along with cubic
functions of baseline math and ELA test scores. Specifications of this type are at the heart of the econometric
literature on value-added models (Kane et al., 2008; Rothstein, 2010; Chetty et al., 2014a). The second,
a “gains” specification, uses grade-to-grade score changes as the outcome variable and includes all controls
from the lagged score model except baseline test scores. This model parallels widely used accountability

policies that measure test score growth.® As in Rothstein (2009), we benchmark the extent of cross-school

8 Angrist et al. (2016b) interpret VAM validity tests using the general theory of specification testing developed by Newey
(1985) and Newey and West (1987). In practice, Wald and LM test statistics typically use different variance estimators in the
denominator.

9The gains specification can be motivated as follows: suppose that human capital in grade g, denoted Asg, equals lagged
human capital plus school quality, so that A;q = A;g_1 + ¢ig where q;y = Zj BiDij + mig and n;4 is a random component
independent of school choice. Suppose further that test scores are noisy proxies for human capital, so that Y;, = A;g + v4g
where v is classical measurement error. Finally, suppose that school choice in grade g is determined solely by A;;_1 and
variables unrelated to achievement. Then a lagged score model that controls for Y;, 1 generates biased estimates, but a gains
model with Y;y — Y;4_1 as the outcome variable measures value-added correctly.



ability differences by also estimating an “uncontrolled” model that adjusts only for year effects. Although the
uncontrolled model almost certainly provides a poor measure of school value added, many districts distribute
school report cards based on unadjusted test score levels.'0

Figure 1 summarizes the value-added estimates generated by sixth-grade math scores. We focus on math
scores because value-added for math appears to be more variable across schools than value-added for ELA
(bias tests for ELA, presented in Appendix Table A2, yield similar results). Each bar in Figure 1 reports
an estimated standard deviation of a; across schools, expressed in test score standard deviation units and
adjusted for estimation error.!' Adding controls for demographic variables and previous scores reduces the
standard deviation of a; from 0.5¢ in the uncontrolled model to about 0.20 in the lagged score and gains
models. This shows that observed student characteristics explain a substantial portion of the variation in
school averages. The last three bars in Figure 1 report estimates of within-sector value-added standard
deviations, constructed using residuals from regressions of &; on dummies for schools in the charter and
pilot sectors. Controlling for sector effects reduces variation in «;, reflecting sizable differences in average
conventional value-added across sectors.

Panel A of Table 3 summarizes test results for sixth grade math VAMs. The first row shows the forecast
coefficient, . The estimator used here is a version of the optimal IV procedure for heteroskedastic models
described by White (1982). The second row reports first stage F-statistics measuring the strength of the
relationship between lottery offers and predicted value-added. With a weak first stage, forecast coefficient
estimates may be biased towards the corresponding OLS estimand, that is, the coefficient from a regression
of test scores on VAM fitted values. In simple models this regression coefficient must equal one, so a weak
first stage makes a test of Hy : ¢ = 1 less likely to reject.'? First-stage F-statistics for the sixth grade lagged
score and gains models are close to 30, suggesting finite-sample bias is not an issue in the full lottery sample.
First-stage strength is more marginal, however, when charter lotteries are omitted.

Table 3 reports p-values for three VAM validity tests. The first is for forecast bias, that is, the null
hypothesis that the forecast coefficient equals one. The second tests the associated set of overidentifying
restrictions, which require that just-identified IV estimates of the forecast coeflficient be the same for each
lottery instrument, though not necessarily equal to one. The third omnibus test combines these restrictions.

On average, VAM fitted values predict the score gains generated by random assignment remarkably well.
This can be seen in columns 1 and 2 of Panel A in Table 3, which show that the lagged score and gains
specifications generate forecast coefficients equal to 0.86 and 0.95; the former is only marginally statistically

different from one (p = 0.07), while the second has p = 0.55. At the same time, the over-identification and

10California’s School Accountability Report Cards list school proficiency levels (see http://www.sarconline.org). Mas-
sachusetts’ school and district profiles provide information on proficiency levels and test score growth (see http://profiles.
doe.mass.edu).

1 The estimated standard deviations plotted in the figure are given by 64 = (% Zj[(&]- — fia)? — SE(&J-)Z])I/{ where [io
is mean value-added and SE(&;) is the standard error of &;.

12When estimated in the same sample with no additional controls, OLS regressions on OLS fitted values necessarily produce
a coefficient of one. In practice, the specification used here to test VAM differs from the model producing fitted values in that
it also controls for lottery strata and excludes non-lotteried students.

10



omnibus tests reject for both models.!?

The source of these rejections can be seen in Figure 2, which plots reduced form estimates of the effects
of lottery offers on test scores against corresponding first-stage effects of lottery offers on conventional VAM
fitted values for sixth grade math scores. Each panel also shows a line through the origin with slope equal
to the forecast coefficient reported in Table 3 (plotted as a solid line) along with a dashed 45-degree line. In
other words, Figure 2 gives a visual instrumental variables representation of the forecast coefficient: VAM
models that satisfy equation (6) should generate points along the 45-degree line, with deviations due solely
to sampling error. Though the lines of best fit have slopes close to one, points for many lotteries are farther
from the diagonal than sampling variance alone would lead us to expect. Earlier validation strategies focus
on forecast coefficients, ignoring overidentifying restrictions. Figure 2 shows that such strategies may fail
to detect substantial deviations between conventional VAM predictions and reduced form lottery effects for
some lotteries.

Figure 2 also suggests that a good portion of conventional VAM estimates’ predictive power for Boston
schools comes from charter school lotteries, which contribute large first stage and reduced form effects. The
relationship between OLS value-added and lottery estimates is weaker in the traditional public and pilot
school sectors. This is confirmed in columns 3 and 4 of Table 3, which report results of VAM bias tests
for sets of instruments that exclude charter lotteries. At 0.55 and 0.68, estimated forecast coefficients from
traditional public and pilot lotteries are further from one than the coefficients computing using all lotteries.
Although removal of charter lotteries reduces precision, omnibus tests continue to reject at the 1-percent
level. '

Finally, Panel B of Table 3 reports test results combining data from sixth through eighth grade. As in
Abdulkadiroglu et al. (2011) and Dobbie and Fryer (2013), school effects on seventh and eighth grade scores
are modeled as linear in the number of years spent in each school. Given constant linear school enrollment
effects, regressions of later-grade outcomes on baseline controls and years of enrollment in each school recover
causal school effects in the absence of sorting on unobserved ability. The omnibus VAM validity test in this
case regresses residuals from the multi-grade (stacked) model on sixth grade lottery offers while the forecast
coefficient is generated by using lottery offers to instrument OLS VAM fitted values from the multi-grade
model. The omnibus tests show clear rejections in the multi-grade set-up as well as for sixth grade only, in

spite of the fact that the first-stage F'-statistics are noticeably lower.

13As a point of comparison, Angrist et al. (2016b) report tests of VAM validity in the Charlotte-Mecklenberg lottery data
analyzed by Deming (2014). There as well the forecast coefficient is close to one, while the omnibus test generates a p-value of
0.02.

14The first stage F-statistics for the specifications without charter lotteries are 11.2 and 9.3, suggesting weak instruments
might be a problem in this model. It is encouraging, therefore, that limited information maximum likelihood (LIML) forecast
coefficient estimates are virtually the same as the estimates reported in Table 3. A related concern is whether the heteroskedastic-
robust standard errors and test statistics used in Table 3 are misleading due to common school-year shocks (as suggested by
Kane and Staiger (2002) for teachers). Reassuringly, cluster-robust test results are also similar to those in Table 3.
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4.3 Heterogeneity vs. Bias

The omnibus test results reported in Table 3 suggest conventional VAM estimates fail to predict the effects of
lottery offers perfectly. This is consistent with bias in OLS VAMs. In a world of heterogeneous causal effects,
however, these rejections need not reflect selection bias. Rather, they might signal divergence between the
local average treatment effects (LATESs) identified by lottery instruments and possibly more representative
effects captured by OLS, at least for some lotteries (Imbens and Angrist, 1994; Angrist et al., 1996). Moreover,
with unrestricted potential outcomes, even internally valid OLS VAM estimates (that is, those satisfying
selection-on-observables) capture weighted average causal effects that need not match average effects for the
entire sample of students attending particular schools (Angrist, 1998).

Three analyses shed light on the distinction between heterogeneity and bias. The first is a set of bias tests
using OLS VAM specifications that allow school effects to differ across covariate-defined subsamples (e.g.
special education students or those with low levels of baseline achievement). This approach accounts for
variation in school effects across covariate cells that may be weighted differently by IV and OLS. The second
analysis tests for bias in OLS VAMSs estimated in the lottery sample. This asks whether differences between
IV and OLS are caused by differences between students subject to lottery assignment and the general student
population. The final analysis estimates OLS VAM separately for applicants who respond to lottery offers
(“compliers”) and for other groups, within the sample of lottery applicants.

Estimates by subgroup, reported in Panel A of Table 4, consistently generate rejections in omnibus
tests of VAM validity. Column 2 reports test results allowing VAM estimates to differ by year, thereby
accommodating “drift” in school effects over time (Chetty et al. (2014a) document such drift in teacher
value-added); columns 3-5 show results for subgroups defined by subsidized lunch eligibility, special educa-
tion status, and baseline test score terciles; and column 6 reports results from models that allow value-added
to differ across cells constructed by fully interacting race, sex, subsidized lunch eligibility, special educa-
tion, English-language learner status, and baseline score tercile. The forecast coefficients and omnibus test
statistics generated by each of these subgroup schemes are similar to those for the full sample. As can be
seen in panel B of Table 4, test results for models that use only the quasi-experimental sample for OLS
VAM estimation are also similar to the full sample results. This suggests that rejection of the omnibus test
is not driven by differences in OLS VAM between students subject to random assignment and the general
population.'®

Lottery-based IV estimates identify average causal effects for compliers, that is, lottery applicants whose
attendance choices shift in response to random offers, rather than the full population of students that enroll

in a particular school. To investigate the link between lottery compliance and treatment effects, we predict

15Tn a subset of the data used here, Walters (2014) documents a link between the propensity to apply to Boston charter
schools and the causal effect of charter school attendance. This finding is not at odds with our constant effects assumption
because Walters studies the effects of charter schools relative to a heterogeneous mix of traditional public schools, while we
allow a distinct effect for every traditional public school. The effect heterogeneity uncovered by Walters may reflect variation
in the quality of fallback public school options across charter applicants. Consistent with this possibility, Walters’ Figure 2
demonstrates that the relationship between charter application choices and causal effects is driven primarily by heterogeneity
in outcomes at fallback traditional public schools.
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value-added at the target school for every lottery applicant based on covariate-specific OLS estimates from the
model in column 6 of Table 4 (estimated in the lottery sample). Maintaining the hypothesis of OLS VAM
validity, we allow for the possibility that heterogeneous effects are reflected in a set of covariate-specific
estimates. These predictions are then used to compare an imputed average value-added for compliers to
imputed average value-added for “never takers” (those who decline lottery offers) and “always takers” (those
who enroll in the target school even when denied an offer) in each lottery. Averages for the three lottery
compliance groups are estimated using methods described in Abadie (2003) (see Appendix B.1).

Figure 3 shows that imputed OLS value-added estimates for compliers, always takers, and never takers
are similar. Formal tests for equality fail to reject the hypotheses that predicted effects for compliers equal
predicted effects for always takers (p = 0.72) or never takers (p = 0.39). This suggests that lottery compliance
is not a major source of treatment effect heterogeneity linked to observable characteristics, though we cannot

rule out unobserved differences between compliers and other groups.

5 The Distribution of School Effectiveness

The test results in Table 3 suggest conventional VAM estimates are biased. At the same time, OLS VAM
estimates tend to predict lottery impacts on average, with estimated forecast coefficients close to one. OLS
estimates would therefore seem to be useful even if imperfect. This section develops a hybrid estimation
strategy that combines lottery and OLS estimates in an effort to quantify the bias in conventional VAMs

and produce more accurate value-added estimates.

5.1 A Random Coefficients Lottery Model

The hybrid estimation strategy uses a random coefficients model to describe the joint distribution of value-
added, bias, and lottery compliance across schools. The model is built on a set of OLS, lottery reduced form,
and first stage estimates. The OLS estimates come from equation (5), while the lottery reduced form and
first stage equations are:

Y; = 10+ Cite + Zjp + s, (10)
D;; = ¢o; + C£¢Cj + Zz{ﬂ'j + 0y J=1,...,J.

Assumption (7) implies that the reduced form effect of admission in lottery ¢ is given by

J
pe=> mi;B;,
=1

where py and 7, are the elements of p and 7; corresponding to Z;,. This expression shows that the lottery
at school ¢ identifies a linear combination of value-added parameters, with coefficients ;¢ equal to the shares

of students shifted into or out of each school by the fth lottery offer.
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OLS, reduced form, and first stage estimates are modeled as noisy measures of school-specific parameters,
which are in turn modeled as draws from a distribution of random coefficients in the population of schools.

Specifically, we have:

@j Zﬁj—Fbj—Fejo-‘,
pe= ngﬂj +ef, (11)
J

Tej = T + egj;

where e, e} and e7; are mean-zero estimation errors that vanish as within-school and within-lottery samples
tend to infinity. Subject to the usual asymptotic approximations, these errors can be modeled as normally
distributed with a known covariance structure. Table 1 shows that the OLS and lottery estimation samples
used here typically include hundreds of students per school, so the use of asymptotic results seems justified.

The second level of the model treats the school-specific parameters 3;, b;, and {7 }KL:1 as draws from a
joint distribution of causal effects, bias, and lottery compliance patterns. The effect of admission at school

£ on the probability of attending this school is parameterized as

exp (0¢)

T T exp(8)

(12)
where the parameter §; can be viewed as the mean utility in a binary logit model predicting compliance with

a random offer of a seat at school ¢. Likewise, the effect of an offer to attend school £ # j on attendance at

school j is modeled as
exp (&5 + vij)

Tp; = —Tge X .
! 14> 0 exp (& + ver)

(13)

In this expression, the quantity ;4 vy; is the mean utility for school j in a multinomial logit model predicting
alternative school choices among students that comply with offers in lottery ¢. The parameter &; allows for
the possibility that some schools are systematically more or less likely to serve as fallback options for lottery
losers, while vy; is a random utility shock specific to school j in the lottery at school £. The parametrization
in (12) and (13) ensures that lottery offers increase the probability of enrollment at the target school and
reduce enrollment probabilities at other schools, and that effects on all probabilities are between zero and
one in absolute value.

Each school is characterized by a vector of four parameters: a value-added coefficient, 3;; a selection bias
term, b;; an offer compliance utility, J;; and a mean fallback utility, {;. These are modeled as draws from
a prior distribution in a hierarchical Bayesian framework. A key assumption in this framework is that the
distribution of VAM bias is the same for schools with and without oversubscribed lotteries. This assumption
allows the model to “borrow” information from schools with lotteries and to generate posterior distributions

for non-lottery schools that account for bias in conventional VAM estimates. Importantly, however, we allow
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for the possibility that average value-added may differ between schools with and without lotteries. Section
6.2 investigates the empirical relationship between oversubscription and bias.
Let @; denote an indicator for whether quasi-experimental lottery data are available for school j. School-

specific parameters are modeled as draws from the following conditional multivariate normal distribution:

(Bj>b5,05,85)|Q5 ~ N ((Bo + BqQj,bo; b0, &0), 2) - (14)

The parameter S¢g captures the possibility that average value-added differs for schools with lotteries. The
matrix ¥ describes the variances and covariances of value-added, bias, and first stage utility parameters,
and is assumed to be the same for lottery and non-lottery schools. Finally, lottery and school-specific utility

shocks are also modeled as conditionally normal:
V£j|Qj ~ N (07 012/) . (15)

The vector 8 = (B, Bq, bo, 0, o, B, 02) collects the hyperparameters governing the prior distribution
of school-specific parameters. Our empirical Bayes (EB) framework first estimates these hyperparameters
and then uses the estimated prior distribution to compute posterior value-added predictions for individual
schools. Some of the specifications considered below extend the setup outlined here to allow the prior mean

vector (B, bo, 0o, o) to vary across school sectors (traditional, charter, and pilot).

5.2 Simulated Minimum Distance Estimation

We estimate hyperparameters by simulated minimum distance (SMD), a variant of the method of simulated
moments (McFadden, 1989). SMD focuses on moments that are determined by the parameters of interest,
choosing hyperparameters to minimize deviations between sample moments and the corresponding model-
based predictions. Our SMD implementation uses means, variances, and covariances of functions of the
OLS value-added estimates, &;, lottery reduced forms, p,, and first stage coefficients, #¢;. For example, one
moment to be fit is the average &; across schools; another is the cross-school variance of the &;. Other
moments are means and variances of reduced form and first stage estimates across lotteries. Appendix B.2
lists the moments used for SMD estimation.

The fact that the moments in this context are complicated nonlinear functions of the hyperparameters
motivates a simulation approach. For example, the mean reduced form is Ep] = >_; E'[m;B;]. This is
the expectation of the product of a normally distributed random variable with a ratio involving correlated
log-normals (described by (12) and (13)), a moment for which no analytical expression is readily available.
Moments are therefore simulated by fixing a value of § and drawing a vector of school-level parameters
using equations (14) and (15). Likewise, the simulation draws a vector of the estimation errors in (11) from
the joint asymptotic distribution of the OLS, reduced form and first stage estimates. The parameter and

estimation draws are combined to generate a simulated vector of parameter estimates for the given value
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of 6. Finally, these are used to construct a set of model-based predicted moments. The SMD estimator
minimizes a quadratic form in the difference between predicted moments and the corresponding moments
observed in the data. As described in Appendix B.2, the SMD estimates reported here are generated by a

two-step procedure with an efficient weighting matrix in the second step.

5.3 Empirical Bayes Posteriors

Studies of teacher and school value-added typically employ EB strategies that shrink noisy teacher- and
school-specific value-added estimates towards the grand mean, reducing mean squared error (see, e.g., Kane
et al., 2008 and Jacob and Lefgren, 2008). In a conventional VAM model where OLS estimates are presumed

unbiased, the posterior mean value-added for school j is

Ela;la R S % 1
levilas] = o2 + Var(e}) Gt o2 + Var(e}) o, (16)

where ag and o2 are the mean and variance of the conventional OLS VAM parameters a;j. An EB posterior
mean plugs estimates of these hyperparameters into (16).

Our setup extends this idea to a scenario where the estimated &; may be biased but lotteries are available
to reduce this bias. The price for bias reduction is a loss of precision: because IV uses only the variation
generated by random assignment, lottery-based estimates are less precise than the corresponding OLS esti-
mates. Because some schools are undersubscribed, there are also fewer lottery instruments than schools and
a VAM is not identified using lotteries alone. Even so, in the spirit of the combination estimators discussed
by Judge and Mittlehammer (2004; 2005; 2007), our empirical Bayes approach trades off the advantages and
disadvantages of OLS and IV to construct minimum mean squared error (MMSE) estimates of value-added.

To see how this trade-off works, suppose the first stage parameters, my;, are known rather than estimated
(equivalently, eg; =0V, 7). Let II denote the L x J matrix of these parameters, and let 5, & and p denote
vectors collecting f;, &; and p;. Appendix B.3 shows that the posterior distribution for 8 in this case is

multivariate normal with mean:
E [B|&, p] = Wa(& —bot) + Wop + (I — Wy — W,II) S, (17)

where ¢ is a J X 1 vector of ones. Posterior mean value-added is a linear combination of OLS estimates
net of mean bias, (& — bot), lottery reduced form estimates, p, and mean value-added, Sot. The weighting
matrices, W, and W, are functions of the first stage parameters and the covariance matrix of estimation
error, value-added, and bias. Expressions for these matrices appear in Appendix B.3. As with conventional
EB posteriors, an empirical Bayes version of the posterior mean plugs first-step estimates of by, 8y, We, and
W, into equation (17).

Suppose that all schools are oversubscribed, so that L = J. In this case, the first stage matrix IT is

square; if it is also full rank, the parameters of equation (4) are identified using lotteries alone. Lottery-
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based value-added estimates may then be computed by indirect least squares as B =II"!p, and the posterior

mean in equation (17) becomes
E [B16, 8] = Wa(é — bot) + Wah + (I - Wa — Wp)Bor, (18)

for W5 = W,II. This expression reveals that when a lottery-based value-added model is identified, the
posterior mean for value-added is a matrix-weighted average of three quantities: quasi-experimental IV
estimates, conventional OLS estimates net of mean bias, and prior mean value-added, with weights (that
sum to the identity matrix) optimally chosen to minimize mean-squared error.

In the same spirit as our hybrid strategy, Chetty and Hendren (2015) combine noisy quasi-experimental
estimates of neighborhood effects based on movers with precise averages of permanent resident outcomes to
generate optimal forecasts of neighborhood causal effects. A further special case of equation (18) illuminates
the link between this approach and ours. Suppose the estimation error in OLS estimates is negligible
(Var(ef') = 0), and that IV estimation error eé is uncorrelated across schools. Appendix B.3 shows that

under these simplifying assumptions, the jth element of equation (18) becomes
~ 3 o2 (1—R?) 5 o3 (1—R?) ~
E {5j|04»5] = (W) B + (1 - W) (ra(@; —bo) + (1 —ra)po) (19)

where U[% is the variance of 3;, ro = Cov(B;, oj)/Var(a;) is the reliability ratio from a regression of causal
value-added on OLS value-added, and R? is the R-squared from this regression. This expression coincides
with equation (21) in Chetty and Hendren (2015) and can also be seen to be the same as the canonical
empirical Bayes shrinkage formula in equation (1.5) of Morris (1983).16

In practice, some schools are undersubscribed, so IV estimates of individual school value-added cannot be
computed. Nevertheless, equation (17) shows that predictions at schools without lotteries can be improved
using lottery information from other schools. Lottery reduced form parameters embed information for all
fallback schools, including those without lotteries. This is a consequence of the relationship described by
equation (11), which shows that the reduced form for any school with a lottery depends on the value-added
of all other schools that applicants to this school might attend. Specifically, as long as m;; # 0, the reduced
form for lottery £ contains information that can be used to improve the posterior prediction of 3;. The test
results in columns 2 and 3 of Table 5 shows that estimates of 7;; are significantly different from zero (at 5
percent) for 12 of the 22 undersubscribed schools in our sample. The ten schools not on this list have primary
entry grades other than sixth. In other words, oversubscribed sixth grade lotteries contribute information

on all schools with sixth grade entry.

16The connection with Morris can be made by observing that when &j = aj, the term 74(G&; — bo) + (1 — ra)fo is the
fitted value from the regression of 8; on a;. Chetty and Hendren (2015) normalize mean value-added and bias to o = bg = 0,
rearranging (19) to read:

E [Bjlay, B;] = rady + (W) (B = rad;) .

(P 2(1_R2
Va7(ej)+aB(1 R
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Finally, equation (17) also reveals how knowledge of conventional VAM bias can be used to improve
posterior predictions even for schools that are never lottery fallbacks. Appendix B.3 shows that the posterior
mean for 3; gives no weight to p when mp; = 0 and C’ov(ejo-‘,eZ) = 0 across all lotteries, £. In this case the

posterior mean for §; simplifies to
E[B51é, p] = ra (65 — bo) + (1 = 1a) Bo. (20)

Even without a lottery at school j, predictions based on equation (20) improve upon the conventional VAM
posterior given by equation (16). The improvement here comes from the fact that the schools with lotteries
provide information that can be used to determine the reliability of conventional VAM estimates.!”
Equations (17) through (20) are pedagogical formulas derived assuming first stage parameters are known.
With an estimated first stage, the posterior distribution for value-added does not have a closed form. Al-
though the posterior mean for the general case can be approximated using Markov Chain Monte Carlo
(MCMC) methods, with a high-dimensional random coefficient vector, MCMC may be sensitive to starting
values or other tuning parameters. We therefore report EB posterior modes (as in Chamberlain and Imbens
(2004); these are also known as maximum a posteriori estimates). The posterior mode is relatively easily cal-
culated, and coincides with the posterior mean when value-added is normally distributed as in the fixed first
stage case (see Appendix B.4 for details). As a practical matter, the posterior modes for value-added turn
out to be similar to the weighted averages generated by equation (17) under the fixed first stage assumption,

with a correlation across schools of 0.95 in the lagged score model (see Appendix Figure Al).

6 Parameter Estimates

6.1 Hyperparameters

The SMD procedure for estimating hyperparameters takes as input a set of lottery reduced form and first
stage estimates, along with conventional VAM estimates for each value-added model. The lottery estimates
come from regressions of test scores and school attendance indicators (the set of D;;) on lottery offer dum-
mies (Z;), with controls C; for randomization strata and the baseline covariates from the lagged score VAM
specification (strata controls are necessary for instrument validity, while baseline covariates increase preci-
sion). Combining the lottery estimates with OLS estimates of the «; generates hyperparameter estimates
for a particular value-added model.

As can be seen in columns 1-3 of Table 6, the hyperparameter estimates reveal substantial variation

in both causal value-added and selection bias across schools. The standard deviation of value-added, og,

17Using the fact that aj = B 4+ bj, equation (16) can be written to look more like equation (20):

2 2 2 2
os+o; +20 os+o7 420
E o |és B7%% Bb A BT%% Bb 3
[ ]‘ ]] Ta( G?ﬂ 9Bb )( J bo) (1 Ta ( 0/23 9Bb )) 0 bo,

This adds bias, bg, to a weighted average of bias-corrected OLS and global mean value-added.
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is similar across specifications, ranging from about 0.20c in the uncontrolled specification to 0.22¢ in the
lagged score and gains models. This stability is reassuring: the control variables that distinguish these models
should not change the underlying distribution of causal school effectiveness if our estimation procedure works
as we hope.

In contrast with the relatively stable estimates of o, the estimated standard deviation of bias, oy,
shrinks from 0.50c with no controls to under 0.2¢ in the lagged score and gains specifications. In other
words, controlling for observed student characteristics and past scores reduces bias in conventional value-
added estimates markedly. On the other hand, the estimated standard deviations of bias are statistically
significant for all models, implying that controls for demographic variables and baseline achievement are not
sufficient to produce unbiased comparisons. Columns 2 and 3 of Table 6 show that the standard deviations of
bias in the lagged score and gains models equal 0.180 and 0.170, slightly smaller than the standard deviation
of causal value-added.!®

Earlier work on school effectiveness explores differences between Boston’s charter, pilot, and traditional
public sectors (Abdulkadiroglu et al., 2011; Angrist et al., 2016a). These estimates show strong charter
school treatment effects in Boston, a finding that suggests accounting for sector differences may improve the
predictive accuracy of school value-added models. Columns 4 and 5 of Table 6 therefore report estimates
of lagged score and gains models in which the means of the random coefficients depend on school sector
(Appendix Table A3 reports the complete set of parameter estimates for the lagged score model). Consis-
tent with earlier findings, models with sector effects show that average charter school value-added exceeds
traditional public school value-added by roughly 0.4c0. Estimated differences in value-added between pilot
and traditional public schools are smaller and statistically insignificant. By contrast, bias seems unrelated
to sector, implying that conventional VAM models with demographic and lagged achievement controls accu-
rately reproduce lottery-based comparisons of the charter, pilot and traditional sectors (also consistent with
the findings of Abdulkadiroglu et al. (2011)). The estimates of og and o3, show that sector effects reduce
cross-school variation in both value-added and bias by about 20-25 percent. The large charter effect on value
added notwithstanding, most of the variation in middle school quality in Boston is within sectors rather than
between.

Estimated covariances between 3; and b;, denoted ogy, are negative and mostly statistically significant,
a result that can be seen in the third row of Table 6. A negative covariance between value-added and
bias suggests that conditional on demographics and past achievement, students with higher ability tend to
enroll in schools with lower value-added. Conventional VAMs therefore overestimate the effectiveness of
low-quality schools and underestimate the effectiveness of high-quality schools. Estimates of f¢, the lottery
school value-added shifter, are close to zero in models without sector effects, and positive but small when
sector effects are included. The estimate of 5¢ for the lagged score model is statistically significant, implying

that schools with lotteries are slightly more effective than undersubscribed schools in the same sector.

18Rothstein (2009) tests for bias in teacher VAMs using granger-type causality tests that regress lagged test scores on future
teacher dummies. Like our random coefficients model, these tests generate estimates of the standard deviation of bias in VAM
estimates.
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Studies of teacher value-added emphasize the reliability ratio ro = Cov(c;, ;)/Var(a;) as a summary
measure of the predictive value of VAM estimates (Chetty et al., 2014a; Rothstein, 2015).19 The fourth row
of Table 6 reports model-based estimates of this parameter. The estimated reliability of the uncontrolled
specification equals 0.08 with a standard error of 0.20, implying that school average test scores are only
weakly related to school effectiveness. Reliability ratios in the lagged score and gains models equal 0.64
and 0.75 in models without sector effects, and 0.69 and 0.78 in models with sector effects. Consistent with
the test results in Section 4, these estimates show that conventional VAM estimates are strongly, but not

perfectly, linked to causal school quality.

6.2 School Characteristics, Value-added, and Bias

The individual school value-added posterior modes generated by our hybrid estimation strategy are positively
correlated with conventional posterior means that ignore bias in OLS value-added estimates. This is evident
in Figure 4, which plots hybrid modes against posterior means from conventional value-added models. Rank
correlations in the lagged score and gains models are 0.79 and 0.74. Although hybrid and conventional
posteriors are strongly correlated, hybrid estimation changes some schools’ ranks, so accountability decisions
may be improved using the hybrid estimates.

Hybrid estimation generates posterior modes for bias as well as value-added. The value-added and bias
posteriors therefore permit an exploration of the association between school characteristics, causal value-
added and bias. Table 7 reports coefficients from regressions of posterior modes for bias and value-added
on school characteristics, with and without controls for sector. As can be seen in columns 1 and 3, students
that appear more advantaged (based on baseline scores and special education status, for example) tend
to enroll in schools with higher value-added, but this pattern is largely explained by the higher likelihood
that these students enroll in charter schools. By contrast, column 4 shows that VAM bias is more positive
for schools with more advantaged students, including those with higher average baseline test scores, fewer
black students, fewer special education students, and fewer students eligible for subsidized lunches. The
correlation of bias with baseline scores is especially noteworthy: although we see positive selection into the
Boston charter sector, the popular impression that good schools have good peers is driven mostly by selection
bias.

A key assumption underlying the hybrid approach is that the distribution of bias in conventional VAM
estimates is unrelated to lottery over-subscription. This assumption restricts the relationship between student
ability and school enrollment patterns. For example, it requires that students who enroll in more and less
popular schools have similar ability conditional on demographic variables and lagged scores scores. Evidence
in support of this assumption comes from the relationships between oversubscription rates, posterior bias

estimates, and baseline scores.

19Chetty et al. (2014a) use this parameter to define “forecast bias,” equal to 1 — 7. We use “reliability” here to distinguish
between rq and the forecast coefficient ¢, which captures a different weighted average across schools. Appendix B.5 discusses
the relationship between ¢ and 7.
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As can be seen in Panel A of Figure 5, posterior bias estimates are uncorrelated with the extent of
oversubscription among lottery schools. Specifically, a regression of predicted bias from the lagged score
model on the log of the oversubscription rate yields a slope coefficient of -0.02 with a standard error of
0.06.2° The weak relationship between bias and the degree of oversubscription apparent in the figure is
consistent with the hypothesis that bias distributions are similar for schools where lottery information is and
is not available. Note also that this finding is not a mechanical consequence of assumptions imposed by the
hybrid model, since the model ignores the degree of oversubscription within the lottery sample.

Recall that Table 2 shows that baseline scores and other observed characteristics are similar for students
enrolled at schools with and without lotteries. Panel B of Figure 5 explores this pattern further by show-
ing that oversubscription rates are uncorrelated with average baseline scores at oversubscribed schools. A
regression of average baseline scores on log oversubscription produces a coefficient of -0.03 with a standard
error of 0.10. This finding, which does not rely on estimates from the model, shows that observed ability
of enrolled students is unrelated to lottery oversubscription within the lottery sample. We might therefore
expect unobserved ability to be unrelated to oversubscription as well. Both panels of Figure 5 support the

assumption postulating similar bias distributions for schools that are more and less heavily over-subscribed.?!

7 Policy Simulations

We use a Monte Carlo simulation to gauge the accuracy and value of VAM estimates for decision-making.
The simulation draws values of causal value-added, bias, and lottery first stage parameters from the esti-
mated hyperparameter distributions underlying Table 6.2? Estimation errors are also drawn from their joint
asymptotic distribution and are combined with parameter draws to construct simulated OLS, reduced form
and first stage estimates. These simulated estimates are then used to re-estimate the random coefficients
model and construct conventional and hybrid EB posterior predictions. Each simulation therefore replicates
the information available to a policymaker or parent, armed with both conventional and hybrid estimates,

in a world calibrated to our model.

7.1 Mean Squared Error

Our first statistic for model assessment is root-mean-squared error (RMSE). Conventional VAMs generate
value added estimates of school quality with an RMSE far below that of a naive uncontrolled benchmark.
This can be seen in Figure 6, which compares RMSE across specifications and estimation procedures. RMSE

in the uncontrolled model is about 0.50, falling to around 0.18¢ and 0.17¢ in the lagged score and gains

20The oversubscription rate is defined as the ratio of the annual average number of lottery applicants to the average number
of seats for charter schools, and the ratio of the average number of first-choice applicants to the average number of seats for
traditional and pilot schools.

21 Appendix C investigates the sensitivity of policy simulation results to violations of this assumption. These results show
that hybrid estimation generates substantial gains even when the difference in mean bias between lottery and non-lottery schools
is on the order of 0.20.

22Simulation results for seventh and eighth grade, reported in Appendix Tables A4 and A5, yield conclusions similar to those
for sixth grade. These and other supplementary simulation results are discussed in Appendix C.
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VAMs. Adjustments for past scores and other student demographics eliminate a good portion of the bias in
uncontrolled estimates.

The RMSE of hybrid estimates is impressively stable across specifications, starting at 0.170 in an un-
controlled benchmark model and falling to 0.140 in the lagged score and gains models. With sector effects
included, hybrid estimation reduces RMSE from 0.15¢ to about 0.120 in the lagged score model and from
0.140 to about 0.100 in the gains model. The relatively stable hybrid RMSE shows how the hybrid esti-
mator manages to reduce bias even when non-lottery estimates are badly biased. Although the largest bias
mitigation seen in the figure comes from controlling for covariates, hybrid estimation reduces RMSE by a
further 20-30 percent.

Not surprisingly, the RMSE reduction yielded by the hybrid estimator reflects reduced bias at the cost

of increased sampling variance. This can be seen by writing the mean squared error of an estimator, 57, as

E[(8; - 8,)°] = B [Var (8]18;)] + 2.,

where crg* =F [(E [ﬂj*\ Bj] — @)2} is average bias squared and the expectation treats the value-added
parameters, 3, as random. Blue and red shading in Figure 6 shows the proportions of MSE due to bias
and variance. OLS VAMs are precisely estimated: sampling variance contributes only a small part of their
overall MSE. Hybrid estimation reduces MSE, while also increasing the proportion of error due to sampling
variance to around 30 percent. This reflects the core tradeoff motivating the hybrid approach: hybrid
posteriors leverage lottery estimates to reduce bias in exchange for increased sampling variance relative to

conventional VAMs.23

7.2 Consequences of School Closure

Massachusetts’ school accountability framework uses value-added measures to guide decisions about school
closures, school restructuring and turnarounds, and charter school expansion. A stylized description of these
decisions is that they replace weak schools with those judged to be stronger on the basis of value-added
estimates. We therefore simulate the achievement consequences of closing the lowest-ranked district school
(traditional or pilot) and sending its students to schools with average or better estimated value-added.
This analysis ignores possible transition effects such as disruption due to school closure, peer effects
from changes in school composition, and other factors that might inhibit replication of successful schools.
The results should nevertheless provide a rough guide to the potential consequences of VAM-based policy
decisions. Quasi-experimental analyses of charter takeovers and other school reconstitution efforts in Boston,
New Orleans, and Houston have shown large gains when low-performing schools are replaced by schools

operating according to pedagogical principles seen to be effective elsewhere (Fryer, 2014; Abdulkadiroglu

23 Appendix Table A6 shows hybrid estimates generate forecast coefficients close to one in both the lagged score and gains
specifications, with or without charter lotteries. The hybrid estimates also pass the overidentification and omnibus specification
tests.
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et al., 2016). This suggests transitional consequences are dominated by longer-run determinants of school
quality, at least for modest policy interventions of the sort considered here.

The potential for VAMs to guide decision-making is highlighted by the first row of Table 8, which shows
the score gains produced by decisions based on true value added. Closing the worst school and replacing it
with an average school boosts achievement by 0.37¢, while more targeted replacement policies generate even
larger gains. Consistent with the high RMSE of uncontrolled estimates, however, Table 8 also shows that
policies based on uncontrolled test score levels generate only small gains. For example, replacing the lowest-
scoring district school with an average school is predicted to increase scores for affected students by 0.060
on average. Likewise, a policy that replaces the lowest-ranked school with an average top quintile school
generates a gain of 0.10c. These small effects reflect the large variation in bias evident for the uncontrolled
model in Table 6: closure decisions based on average test scores target schools with many low achievers
rather than low value-added. The bias in uncontrolled VAM estimates also leads to a wide dispersion of
simulated closure effects, with a cross-simulation standard deviation (reported in brackets) of around 0.2¢.

In contrast, closure and replacement decisions based on conventional lagged score and gains models yield
substantial achievement gains. For instance, replacing the lowest-ranked school with an average school boosts
scores by an average of 0.240 when rankings are based on the gains specification. This is 65 percent of the
corresponding benefit generated by a policy that ranks schools by true value-added. Hybrid estimation
increases these gains to 0.320, an improvement of over 30 percent relative to the conventional model. This
incremental effect closes roughly half the gap between conventional estimates and the maximum possible
impact.

The effects of VAM-based policies and the incremental benefits of using lotteries grow when value-
added predictions are used to choose expansion schools in addition to closures. In the gains specification,
for example, replacing the lowest-ranked school with a typical top-quintile school generates an average
improvement of 0.390 when conventional posteriors are used to estimate VAM and an improvement of 0.53¢
when rankings are based on hybrid predictions. The hybrid approach also modestly reduces the uncertainty
associated with VAM-based policies by doing a better job of finding reliably good replacement schools.

The largest gains seen in Table 8 result from a policy that replaces the lowest-ranking traditional or pilot
school with a charter school. This mirrors Boston’s ongoing in-district charter conversion policy experiment
(Abdulkadiroglu et al., 2016). Reflecting the large difference in mean value-added between charter and
district schools, charter conversion is predicted to generate significant gains regardless of how value-added is
estimated. Accurate value-added estimation increases the efficacy of charter conversion, however: selecting
schools for conversion based on the lagged score value-added model rather than the uncontrolled model
boosts the effect of charter expansion from 0.28¢ to 0.58c, while use of the hyrid estimator pulls this up to
0.670, close to the maximum possible gain of 0.710.

The results in Table 8 show that, even when VAM estimates are imperfect, they predict causal value-

added well enough to be useful for policy. For example, causal value-added is more than 0.20 below-average
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for schools ranked at the bottom by the conventional lagged score and gains specifications. As can be seen
in Table 6, this represents roughly a full standard deviation in the distribution of true school quality. Value-
added for low-ranked schools is even more negative when rankings are based on hybrid estimates. Schools
selected for replacement may not be the very worst schools in the district. At the same time, these schools
are likely to be much worse than average, so policies that replace them with schools predicted to do better

generate large gains.?4

8 Conclusions and Next Steps

School districts increasingly rely on regression-based value-added models to gauge and report on school
quality. This paper leverages admissions lotteries to test and improve conventional VAM estimates of school
value-added. An application of our approach to data from Boston suggests that conventional value-added
estimates for Boston’s schools are biased. Nevertheless, policy simulations show that accountability decisions
based on estimated VAM are likely to boost achievement. A hybrid estimation procedure that combines
conventional and lottery-based estimates generates predictions that, while still biased, achieve lower mean-
squared error and improved policy targeting relative to conventional VAMs.

Hybrid school value-added estimation requires some kind of lottery-based admissions scheme, such as
those increasingly used for student assignment in many of America’s large urban districts. As our analysis
of charter schools shows, however, admissions need not be centralized for lotteries to be of value. The utility
of hybrid estimation in other cities will vary with the extent of lottery coverage, but results for Boston show
hybrid estimation remains useful even when lottery data are missing for many schools. Our approach also
rules out effect heterogeneity linked to school choices, which may be less appropriate in settings with more
specialized schools and very heterogeneous student populations.

The methods developed here may be useful for combining quasi-experimental and non-experimental
estimators in other contexts. Candidates for this extension include the quantification of teacher, doctor,
hospital, firm, or neighborhood effects. Assignment lotteries in these settings are rare, but our hybrid
estimation strategy may be extended to exploit other sources of quasi-experimental variation. A hybrid
approach to testing and estimation is likely to be fruitful in any context where a set of credible quasi-

experiments is available to discipline a larger set of non-experimental comparisons.

24The simulations in Table 8 predict the consequences of decisions based on the eight years of data in our sample. Districts
often estimate value-added over shorter time periods. To gauge the effects of using four years of data, Appendix Table A7
reports simulation results that double sampling variance. This produces results which are qualitatively similar to those from
the full sample, with slightly smaller closure effects. Appendix Table A8 reports estimates from a model (described in Appendix
C) that allows value-added and bias to vary by year. These estimates suggest a limited role for idiosyncratic temporal variation
in VAM hyperparameters.
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Figure 1: Standard deviations of school effects from OLS value-added models

Std. dev. of OLS value-added

Total Within sector

I uncontrolled [ Laggedscore [ Gains

Notes: This figure displays standard deviations of school effects from OLS value-added
models. See notes to Table 3 for a description of the controls included in the lagged
score and gains models; the uncontrolled model includes only year effects. The variance
of OLS value-added is obtained by subtracting the average squared standard error from
the sample variance of value-added estimates, then taking the square root. Within-sector
variances are obtained by first regressing value-added estimates on charter and pilot
dummies, then subtracting the average squared standard error from the sample variance
of residuals and taking the square root.



Figure 2: Visual instrumental variables tests for bias
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Notes: This figure plots lottery reduced form effects against value-added first stages
from each of 28 school admission lotteries. See the notes for Table 3 for a description
of the value-added models and lottery specification. Filled markers indicate estimates
that are significant at the 10% level. Slopes of solid lines correspond to the forecast
coefficients from Table 3, while dashed lines indicate the 45-degree line.



Figure 3: Comparisons of conventional value-added by lottery compliance
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Notes: This figure compares OLS estimates of average value-added for admission lottery compliers
to estimates for always- and never-takers in each of 28 school lotteries. OLS estimates comes from a
lagged-score VAM that allows school effects to differ across the subgroups used in column 6 of
Table 4, estimated in the lottery sample. Complier, always-taker, and never-taker means are estimated
by the method proposed by Abadie (2003) using a saturated model of lottery strata indicators for
E[Z|C]. P -values are for the joint tests that complier and always-taker or never-taker means are
equal in every lottery and are based on 500 Bayesian bootstrap replications. The joint p-value for
both panels is 0.289.



Figure 4: Empirical Bayes posterior predictions of school value-added
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Notes: This figure plots empirical Bayes posterior mode predictions of value-added from the
random coefficients model against posterior means based on OLS value-added. Posterior modes
are computed by maximizing the sum of the log-likelihood of the OLS, reduced form, and first
stage estimates conditional on all school-specific parameters plus the log-likelihood of these

parameters given the estimated random coefficient distribution. Conventional posteriors

shrink

OLS estimates towards the mean in proportion to one minus the signal-to-noise ratio. Dashes

indicate OLS regression lines.



Figure 5: Relationship between oversubscription and bias measures for lottery schoools

A. Bias posteriors
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Notes: Panel A of this figure plots posterior mode predictions of bias in sixth grade math VAMSs
against oversubscription rates for schools with admission lotteries. The oversubscription rate is
defined as the log of the ratio of the average number of first-choice applicants (for traditional and
pilot schools) or the average number of total applicants (for charters) to the average number of
available seats for each admission grade. Bias modes come from the lagged score model with
sector effects. Panel B plots school average baseline math and ELA scores against oversubscription
rates. Points in the figure are constructed by first regressing bias modes, mean baseline scores and
oversubscription rates on pilot and charter indicators, then computing residuals from these
regressions. Dashes indicate OLS regression lines.



Figure 6: Root-mean-squared error for value-added posterior predictions

Root mean squared error

Conv. Hybrid Conv. Hybrid Conv. Hybrid Conv. Hybrid Conv. Hybrid

Uncontrolled Lagged score Gains Lagged score Gains
(sector effects) (sector effects)

B Variance

B Bias

Notes: This figure plots root-mean-squared error for posterior predictions of sixth grade math value-added.
Conventional predictions are posterior means constructed from OLS value-added estimates. Hybrid
predictions are posterior modes constructed from OLS and lottery estimates. The total height of each bar
indicates root mean squared error (RMSE). Blue bars display shares of mean squared error due to bias, and
red bars display shares due to variance. RMSE is calculated from 500 simulated samples drawn from the data
generating processes implied by the estimates in Table 6. The random coefficients model is re-estimated in
each simulated sample.



Table 1: Boston students and schools

Total enrollment Total enrollment
OLS Lottery  6th grade Lottery OLS Lottery  6th grade Lottery
sample sample entry?  school? sample sample entry?  school?
@) ) (©) (4) ) (6) (@) (8)
A. Traditional publics (25) B. Pilots (9)
1,095 79 Y Y 538 310 Y Y
1,025 445 Y Y 1,260 433 Y Y
1,713 1,084 Y Y 585 296 Y Y
547 218 Y Y 78 5 Y
217 46 Y 453 46 Y Y
1,354 581 Y Y 380 67 Y Y
263 44 Y 242 179 Y Y
1,637 492 Y Y 558 73 Y Y
472 104 Y 18 12
1,238 591 Y Y C. Charters (17)
537 11 738 406 Y Y
331 35 Y Y 361 23
335 82 Y 357 215 Y
952 232 Y Y 393 332 Y Y
294 71 Y Y 338 16
333 90 Y 511 115 Y Y
766 243 Y Y 71 8
372 47 Y Y 300 23
137 14 Y 389 342 Y Y
1,091 225 Y Y 654 34
1,086 127 Y Y 45 3
577 104 Y Y 53 2
622 61 Y 415 305 Y Y
906 270 Y Y 70 6
267 19 104 23
701 92
85 37

Notes: This table counts the students included in each school in the OLS value-added and lottery samples.
The sample covers cohorts attending sixth grade in Boston between the 2006-2007 and 2013-2014 school
years. Columns 3 and 7 indicate schools for which sixth grade is the primary entry grade; columns 4 and
8 indicate whether the school has enough students subject to conditionally-random admission variation to
be included in the lottery sample. Total numbers of schools in each sector are included in parentheses in
the column headings.



Table 2: Descriptive statistics

Means
OLS sample Lottery sample Lottery offer balance
Lottery school Lottery school
All students students All students students All lotteries  Traditional Pilot Charter
Baseline covariate (1) (2) (3) (4) (5) (6) (7) (8)

Hispanic 0.345 0.342 0.354 0.361 -0.017 -0.007 0.003 -0.006
(0.013) (0.017) (0.033) (0.018)

Black 0.410 0.394 0.485 0.468 -0.011 -0.005 -0.052 -0.009
(0.014) (0.018) (0.034) (0.020)

White 0.122 0.125 0.072 0.078 0.010 0.006 0.005 0.009
(0.007) (0.008) (0.015) (0.010)

Female 0.490 0.487 0.504 0.502 0.017 0.034* -0.013 -0.025
(0.014) (0.019) (0.037) (0.020)

Subsidized lunch 0.806 0.811 0.830 0.831 0.020* 0.020 0.006 -0.005
(0.010) (0.013) (0.026) (0.016)

Special education 0.208 0.214 0.195 0.196 0.006 -0.003 -0.022 0.015
(0.011) (0.013) (0.030) (0.016)

English-language learner 0.205 0.224 0.206 0.214 0.006 -0.001 0.018 0.004
(0.011) (0.014) (0.027) (0.016)

Suspensions 0.093 0.073 0.076 0.070 -0.025 -0.025 0.009 -0.016
(0.016) (0.023) (0.025) (0.017)

Absences 1.710 1.567 1.534 1.466 -0.087 -0.138* -0.092 0.110
(0.095) (0.080) (0.260) (0.167)

Math score 0.058 0.053 0.004 0.016 0.022 -0.026 0.080 0.036
(0.024) (0.030) (0.061) (0.035)

ELA score 0.030 0.006 0.013 0.016 0.035 0.045 0.060 0.013
(0.025) (0.030) (0.061) (0.036)

N 27,864 21,446 8,718 7,748 8,718 4,849 1,303 3,655

Notes: This table reports sample mean characteristics and investigates balance of random lottery offers. Column 1 shows mean characteristics for all Boston
sixth graders enrolled between the 2006-2007 and 2013-2014 school years, and column 2 shows means for students enrolled at schools that have randomized
entrance lotteries in at least one year. Columns 3 and 4 report mean characteristics for students subject to random lottery assignment. Columns 5-8 report
coefficients from regressions of baseline characteristics on lottery offers, controlling for lottery strata. Robust standard errors are reported in parenthenses.
*significant at 10%; **significant at 5%; ***significant at 1%



Table 3: Tests for bias in conventional value-added models

All lotteries Excluding charter lotteries

Lagged score Gains Lagged score Gains

1) (2) (©) (4)

A. Sixth grade

Forecast coefficient (¢) 0.864 0.950 0.549 0.677
(0.075) (0.084) (0.164) (0.193)

First stage F -statistic 29.6 26.6 11.2 9.3

p -values:

Forecast bias 0.071 0.554 0.006 0.095
Overidentification 0.003 0.006 0.043 0.052
Omnibus test y statistic (d.f.) 77.7 (28) 72.1 (28) 48.0 (23) 41.7 (23)
p-value <0.001 <0.001 <0.001 0.010

N 8,718 6,162
B. All middle school grades
Forecast coefficient (¢) 0.880 0.924 0.683 0.726
(0.055) (0.060) (0.124) (0.133)
First stage F -statistic 14.7 15.0 7.6 7.8
p-values:

Forecast bias 0.028 0.204 0.011 0.039
Overidentification 0.011 0.011 0.062 0.065
Omnibus test y statistic (d.f.) 172.8 (75) 167.0 (75) 111.6 (60) 107.9 (60)
p-value <0.001 <0.001 <0.001 <0.001

N 20,935 15,027

Notes: This table reports the results of tests for bias in conventional value-added models (VAMs) for sixth through
eighth grade math scores. The lagged score VAM includes cubic polynomials in baseline math and ELA scores,
along with indicators for application year, sex, race, subsidized lunch, special education, limited-English
proficiency, and counts of baseline absences and suspensions. The gains VAM drops the lagged score controls and
uses score growth from baseline as the outcome. Seventh and eighth grade VAMs measure exposure to each
school using total years of enrollment since the lottery. Forecast coefficients are from instrumental variables
regressions of test scores on fitted values from conventional VAMs, instrumenting fitted values with lottery offer
indicators. IV models are estimated via an asymptotically efficient GMM procedure and control for lottery strata
fixed effects, demographic variables, and lagged scores. The forecast bias test checks whether the coefficient from
this model equals one, and the overidentificiation test checks the model's overidentifying restrictions. The
omnibus test combines forecast bias and overidentifying restrictions. Panel A uses sixth grade math scores, while
Panel B stacks math score outcomes and VAM fitted values from sixth through eighth grade. Standard errors and
test statistics in Panel B cluster on student. Columns 3 and 4 exclude charter school lotteries.



Table 4: Robustness of sixth grade bias tests to effect heterogeneity

VAM estimated by subgroup

Baseline VAM Baseline Subsidized Special Baseline Interacted
Value-added specification year lunch education  score tercile groups
model 1) (2) 3) 4) (5) (6)
A. VAM estimated on the OLS sample

Lagged score Forecast coefficient (¢) 0.864 0.916 0.849 0.863 0.866 0.930
(0.075) (0.072) (0.075) (0.074) (0.075) (0.061)

Omnibus test X2(28) statistic 77.7 68.2 82.8 79.0 83.3 73.4
p -value <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

Gains Forecast coefficient (¢) 0.950 1.016 0.944 0.955 0.891 0.953
(0.084) (0.082) (0.083) (0.083) (0.079) (0.065)

Omnibus test x*(28) statistic 72.1 65.7 74.4 72.4 80.9 66.6
p -value <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

B. VAM estimated on the lottery sample

Lagged score Forecast coefficient (¢) 0.868 0.962 0.851 0.872 0.873 0.934
(0.070) (0.068) (0.069) (0.070) (0.070) (0.052)

Omnibus test X2(28) statistic 62.3 51.8 67.9 63.5 65.9 56.3

p -value <0.001 0.004 <0.001 <0.001 <0.001 0.001

Gains Forecast coefficient (¢) 0.926 1.035 0.912 0.937 0.890 0.941
(0.077) (0.077) (0.076) (0.077) (0.073) (0.055)

Omnibus test x*(28) statistic 57.8 50.2 60.1 58.4 61.1 42.2

p -value <0.001 0.006 <0.001 <0.001 <0.001 0.041

Notes: This table reports lottery-based tests for bias in school value-added models that allow for effect heterogeneity by baseline characteristics. See the
notes to Table 3 for a description of the lagged score and gains models and test procedure. Panel A estimates value-added in the full OLS sample, while
Panel B restricts estimation to the lottery subsample. Column 1 repeats estimates that do not allow effect heterogeneity, while columns 2-6 allow value-
added to differ across groups defined by the covariates in the column headings. The covariates used to define groups in column 6 are race, gender,
subsidized lunch, special education, English language learner status, and baseline score terciles based on average fifth grade math and ELA test scores in
the OLS sample.



Table 5: Fallback status of schools without sixth grade lotteries

Lotj[ery students p-value: nota  Sixth grade Lotj[ery students p-value: nota  Sixth grade
with fallback lottery fallback entry? with fallback lottery fallback entry?
enrollment enrollment
@) (2) 3 4 ®) (6)
A. Traditional publics C. Charters
39 0.013 Y 320 <0.001 Y
36 0.018 Y 11 0.080
113 <0.001 Y 16 0.427
79 <0.001 Y 16 0.204
94 <0.001 Y 24 0.724
21 0.045 Y 42 0.145
60 0.006 Y 3 0.111
12 0.016 2 0.390
B. Pilots 10 0.257
5 0.033 Y 33 0.010
15 0.169 112 <0.001
34 0.378

Notes: This table reports p -values for tests of whether each non-lottery school in the OLS sample serves as a fallback
for one of the 28 lottery schools. Columns 1 and 4 count the number of students in the lottery sample who are
observed enrolling in the undersubscribed school when not given a offer. Columns 2 and 5 test jointly whether the
undersubscribed school's first stage coefficients are zero in all lotteries with such students. Columns 3 and 6 indicate
whether sixth grade is a school's primary entry point. First stage regressions control for lottery strata indicators,
demographic variables, and lagged test scores.



Table 6: Joint distribution of causal value-added and VAM bias for sixth grade math scores

Models without sector effects Models with sector effects
Uncontrolled  Lagged score Gains Lagged score Gains
1) (2) 3) (4) (5)

oy Std. dev. of causal VA 0.195 0.220 0.222 0.171 0.170
(0.024) (0.021) (0.023) (0.028) (0.023)

oy Std. dev. of VAM bias 0.501 0.182 0.166 0.148 0.133
(0.061) (0.048) (0.048) (0.029) (0.030)

T Covariance of -0.018 -0.014 -0.017 -0.016 -0.013
VA and bias (0.010) (0.003) (0.004) (0.006) (0.003)

re Regression of VA 0.078 0.644 0.753 0.694 0.783
on OLS (reliability ratio) (0.204) (0.066) (0.072) (0.152) (0.122)

VA shifters Charter 0.426 0.396
(0.104) (0.106)

Pilot 0.130 0.111

(0.129) (0.129)

Lottery school (8q) 0.040 -0.024 -0.033 0.104 0.066

(0.127) (0.061) (0.054) (0.042) (0.041)

Bias shifters Charter -0.005 -0.063
(0.103) (0.099)

Pilot -0.121 -0.089

(0.124) (0.121)
o statistic (d.f.): 10.9 (7) 10.8 (7) 9.1(7) 9.0 (13) 6.0 (13)

Overid. p- value: 0.145 0.147 0.247 0.773 0.946

Notes: This table reports simulated minimum distance estimates of parameters of the joint distribution of causal school value-added
and OLS bias. The moments used in estimation are functions of OLS value-added, lottery reduced form, and first stage estimates, as
described in Appendix B. Uncontrolled estimates come from an OLS regression that controls only for year effects. See notes to Table
3 for a description of the control variables included in the lagged score and gains value-added models. Simulated moments are
computed from 500 samples constructed by drawing school-specific parameters from the random coefficient distribution along with
estimation errors based on the asymptotic covariance matrix of the estimates. Columns 4 and 5 allow the means of the random
coefficients distribution to depend on school sector. Moments are weighted by an estimate of the inverse covariance matrix of the
moment conditions, calculated from a first-step estimate using an identity weighting matrix. The weighting matrix is produced using
1,000 simulations, drawn independently from the samples used to simulate the moments.



Table 7: Correlates of posterior value-added and VAM bias

Overall Within-sector
Value-added Bias Value-added Bias
School characteristic (1) (2) (3) (4)
Fraction black 0.158 -0.208*** -0.050 -0.217%**
(0.143) (0.075) (0.083) (0.073)
Fraction hispanic 0.065 0.031 0.268** 0.048
(0.201) (0.105) (0.127) (0.112)
Fraction subsidized lunch -0.132 -0.452** 0.085 -0.474%**
(0.306) (0.181) (0.203) (0.164)
Fraction special education -0.977***  -0.501*** 0.009 -0.508**
(0.330) (0.157) (0.316) (0.217)
Fraction English-language learne  -0.542** -0.135 0.297 -0.092
(0.247) (0.221) (0.243) (0.254)
Mean baseline math score 0.157* 0.143*** 0.012 0.145%**
(0.088) (0.051) (0.070) (0.047)
Mean baseline ELA score 0.201** 0.135** 0.039 0.138**
(0.085) (0.060) (0.074) (0.060)
Charter and pilot controls? Y Y

Notes: This table reports coefficients from regressions of empirical Bayes posterior modes for causal
value-added and VAM bias on school characteristics. Columns 1 and 2 show coefficients from
bivariate regressions, while columns 3 and 4 show coefficients from regressions controlling for
charter and pilot indicators. Posterior modes come from the lagged score model with sector effects for
sixth grade math scores. Robust standard errors are reported in parentheses.

*significant at 10%; **significant at 5%; ***significant at 1%



Table 8: Consequences of closing the lowest-ranked district school for affected children

Replacement school

Average district  Average above-  Average top-  Average charter

school median school  quintile school school
Model Posterior method (1) (2) (3) (4)
- True value-added 0.370 0.507 0.610 0.711
[0.080] [0.089] [0.094] [0.094]
Uncontrolled Conventional 0.056 0.078 0.095 0.280
[0.191] [0.197] [0.204] [0.198]
Hybrid 0.153 0.223 0.259 0.377
[0.143] [0.156] [0.169] [0.151]
Lagged score Conventional 0.226 0.307 0.367 0.577
[0.159] [0.168] [0.176] [0.165]
Hybrid 0.315 0.437 0.529 0.665
[0.131] [0.141] [0.147] [0.145]
Gains Conventional 0.240 0.327 0.391 0.580
[0.148] [0.156] [0.163] [0.153]
Hybrid 0.316 0.434 0.525 0.657
[0.115] [0.126] [0.136] [0.128]

Notes: This table reports simulated test score impacts of closing the lowest-ranked BPS district school based on value-
added predictions. The reported impacts are average effects on test scores for students at the closed school. Standard
deviations of these effects across simulations appear in brackets. Column 1 replaces the lowest-ranked district school with
an average district school. Column 2 replaces the lowest-ranked school with an average above-median district school, and
column 3 uses an average top-quintile district school. Column 4 replaces the lowest-ranked district school with an average
charter school. See notes to Table 3 for a description of the controls included in each value-added model. Conventional
empirical Bayes posteriors are means conditional on OLS estimates only, while hybrid posteriors are modes conditional
on OLS and lottery estimates. All models include sector effects. Statistics are based on 500 simulated samples, and the
random coefficients model is re-estimated in each sample.
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Appendix A: Data

The administrative data used for this project come from student demographic and attendance information in
the Massachusetts Student Information Management System (SIMS), standardized student test scores from
the Massachusetts Comprehensive Assessment System (MCAS) database, Boston charter school admission
lottery records, and information from the centralized BPS student assignment system. We describe each
data source and our cleaning and matching process in detail below; the construction of our main analysis

file closely follows that of previous studies, in particular Abdulkadiroglu et al. (2011).

A.1 Student enrollment, demographics, and test scores

The Massachusetts SIMS contains snapshots of all students in a public school in Massachusetts in October
and at the end of each school year. These records contain demographic information on students, their current
schools, their residence, and their attendance. We work with SIMS files for the 2005-2006 through the 2013-
2014 school years and limit the sample to students enrolled in a Boston school over this period. Schools
are classified as charters by the Massachusetts Department of Elementary and Secondary Education website
(http://www.profiles.doe.mass.edu), and as pilots by the Boston pilot school network website (http:
//www.ccebos.org/pilotschools/schools.html). All remaining Boston schools are considered traditional
public schools for the purposes of this study.

Enrollment in the SIMS is grade-specific. When a student repeats grades, we retain the first school a
student attended in that grade. We then record students attending multiple schools in a given school year
as enrolled in the school for which the attendance duration is longest, with duration ties broken randomly.
This results in a unique student panel across grades; for the purposes of this study we restrict focus to
sixth grade students enrolled from 2006-2007 to 2013-2014, using their fifth grade information for baseline
controls. These controls include indicators for student race (Hispanic, black, white, Asian, and other race),
sex, free- or reduced-price lunch eligibility, special education status, and English-language learner status, as
well as counts of the number of days a student was suspended or truant over the school year. Suspension
data are unavailable in the SIMS starting in the 2012-2013 school year; we include an indicator for students
missing this baseline information whenever suspensions are used.

Our primary outcome for measuring school value-added are sixth grade standardized test scores from
the Massachusetts Comprehensive Assessment System (MCAS) database. We normalize MCAS math and
ELA scores by grade and year to be mean-zero and have standard deviation one within a combined BPS
and Boston charter school reference population. MCAS scores are merged to SIMS data via a state-assigned
unique student identifier. We also merge baseline (fifth grade) math and ELA test scores for each student

in our sample (fifth grade MCAS information is available starting in the 2005-2006 school year).
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A.2 Charter school lotteries

We use annual lottery records for five of the six Boston middle school charters with sixth grade admission for
the 2006-2007 through the 2013-2014 academic year. These schools are Academy of the Pacific Rim, Boston
Preparatory, MATCH Charter Public Middle School, Roxbury Preparatory, and UP Academy Boston. The
remaining school, Smith Leadership Academy, has declined to participate in our studies. For each school
and each oversubscribed year we obtain a list of names of students eligible for entry by lottery, as well as
information on whether each student was offered a seat on lottery night. Students are marked as ineligible if
they submit an incomplete or late application; we also exclude students with a sibling currently enrolled in
the school, as they are guaranteed admission. For UP Boston, which is an in-district charter school, students
applying from outside of BPS are placed in a lower lottery priority group.

A student is coded as receiving a charter admission offer if she is offered a seat on lottery night. These
offers are randomly assigned within strata defined by school, application year, and, in the case of UP Boston,
BPS priority group. Students are retained the first year they apply to a charter school. We match the set
of charter offers and randomization strata to state data by student name, grade, and application year; 97%

of charter lottery applicants are successfully matched.

A.3 The BPS mechanism

We obtain a complete record of student-submitted preferences, school priorities, random tie-breaking se-
quence numbers, and assignments from the BPS deferred-acceptance mechanism, 2006-2013. For each year,
we identify groups of students subject to the same priorities (given by whether a student has an enrolled
sibling and whether she resides in a school’s walk-zone, a 1.5 mile radius) at schools that they rank first. In
forming these groups we exclude students that are guaranteed admission by virtue of current enrollment, as
well as certain other students with guaranteed or nonstandard priorities (see Abdulkadiroglu et al. (2006) for
a complete description of priorities in BPS). We construct indicators for whether an applying student was
offered a seat, with such offers are randomly assigned within strata defined by school, application year, and
priority group. We drop all schools with fewer than 50 students subject to conditionally-random admission,
and match offers and randomization strata to state data via a BPS unique student identifier. Students are

retained the first year they enter the BPS mechanism for sixth grade entry.

A.4 Sample Selection

We restrict attention to Boston public schools with at least 25 sixth grade students enrolled in each year
of operation from 2006-2007 to 2013-2014. In our merged analysis file this leaves 51 schools (see Table 1).
Students enrolled at these schools are retained if they were enrolled in Boston in both fifth and sixth grade, if
their baseline demographic, attendance, and test score information is available, and if we observe their sixth

grade MCAS test scores. These restrictions leave a total of 27,864 Boston students, summarized in detail in
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Table 2. Of these, 8,718 students are subject to quasi-experimental variation in sixth grade admission at 28

schools, either from a charter school lottery or from assignment by the BPS mechanism.
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Appendix B: Econometric Methods

B.1 Comparison of Compliance Groups

Figure 3 compares average predicted value-added for lottery compliers, always-takers and never-takers. Pre-
dicted value-added comes from a version of equation (5) that interacts the school dummies D;; with race,
gender, subsidized lunch, special education, English language learner status, and baseline score terciles. For
a student with covariates X;, this interacted VAM yields an estimate of a covariate-specific value-added
parameter a;(X;) for each school j.

The arguments in Abadie (2003) imply that Efa;(X;)r;]/E[kg;] equals the average value-added of school
J for always-takers in lottery j, where x§; = D;;(1—Z;;)/(1— E[Z;;|Cyj]). Averages of value-added for never-
taker and compliers are similarly given by Ela;(X;)k{]/E[kg;] and Elo;(X;)(1 -k — &75)]/E[1 — k¢ — k7],
for k% = (1 — Di;)Zi;/E[Zi;|Cij]. We construct points in Figure 3 based on the sample analogues of these
quantities, using a saturated model for lottery strata to estimate E[Z;;|C;;].

To adjust for first-step error in the estimation of «o;(X;), inference in Figure 3 uses a Bayesian bootstrap
procedure (Rubin, 1981). The Bayesian bootstrap smooths bootstrap samples by reweighting rather than
resampling observations, preventing the omission of small lottery strata that would occasionally be dropped
in a standard nonparametric bootstrap. The Bayesian bootstrap used here is implemented by drawing vectors
of Dirichlet(1, ..., 1) weights, then re-estimating the interacted VAM and recomputing predicted value-added
for compliers, alway-takers and never-takers, weighting all moments with the Dirichlet weights. Inference
for differences in means between compliance groups are based on the bootstrap covariance matrix of these

differences across trials.

B.2 Simulated Minimum Distance

We estimate Bayesian hyperparameters via simulated minimum distance (SMD). The vector of parameters

to be estimated is

0= (a0aﬁ07ﬁQ7 607507 E? 0-1%)/'

These parameters are estimated by fitting means, variances, and covariances of OLS value-added, lottery

reduced form, and first stage estimates. The complete vector of observed estimates is
A A A A A~ ~ ~ ~ I
Q= (0417 ey Ty PLy ooy PLyT1Ly ooy TLLy oony WLJ) .

Let Q = (a1, ..., m1.7)" denote the probability limits of these estimates. Assume that the sampling distribution

of () is well approximated by asymptotic theory, so that

A

Q~ N (Q, V),
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where V. is a covariance matrix derived from conventional asymptotics. This requires within-school and
within-lottery samples to be large enough for asymptotic approximations to be accurate. Under this as-
sumption and the distributional assumptions in equations (12) through (15), values of Q and Q can be
simulated for any value of §. We use this procedure to generate simulated data sets, and estimate 6 by
minimizing the distance between simulated and observed moments.

Our estimation procedure targets the following first moments:

-qQ; QJ Dz T

T2
A 1 TTej
s = = 20 T QJZ#eTZ’

o =1 X [Z(ﬂffrik) } ' ﬁ)
my is the mean OLS coefficient, which provides information about By + by, the sum of mean value-
added and mean bias. My is the mean OLS coefficient among lottery schools, which helps to identify g,
the difference in value-added between lottery and non-lottery schools. 73 and 4 are the mean reduced
form and IV coefficients, which provide information about y. 75 is the mean of a “pseudo-reduced form”
prediction that uses OLS value-added estimates, given by z/A)g =3 j fejGj. Mg is the mean first stage across
lotteries, which can be used to estimate dy. 77 is the average fallback probability across lotteries, and mg is
the average ratio of this probability to the first stage, which gives the share of compliers drawn from included
schools. These two moments help to estimate £y, the mean fallback utility for included schools relative to
the omitted school. 7hg is the average ratio of the lottery reduced form to the pseudo-reduced form (the
forecast coefficient). We weight this average by the squared lottery first stage to avoid unstable ratios caused
by small first stages. This moment yields information about the variance of b;, the bias in conventional

value-added estimates, along with the correlation between 3; and b;.

The next seven moments are variances of parameter estimates:
~ 1 A~ —\2
i = 5 >2; (&5 — @),
A 1 A —\2
it =1 >, (pe —p)°,
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le = %ZZ(/@Z - 1/;)27

’ﬁ’ng = % Zg (’er - ﬁown)Za

2
mig = %Z] [(L%Q] Zl;&j 7?réj) - 77’0ther} )
A 1 1 Tej = 2
mis = 5 Zj [(L_iQ] Zg;,éj Tu) - sother] )

~ 1 A — \2
mi6 = Jz=0) Zj Zé;éj (e — )"

Here & indicates the sample average of the «;, and similarly for other variables. ;¢ is the variance of
conventional value-added estimates across schools, which depends on the variances of value-added and bias
as well as their covariance. mq; and 7o are variances of the lottery reduced form and predicted reduced
form, which contain additional information about the joint distribution of value-added and bias. 73 is
the variance of the first stage across lotteries, which helps to identify the variance of ;. M4 computes the
mean share of students drawn from each school across lotteries, then takes the variance of this mean share
across schools. This is the between-school variance in fallback probabilities. 7115 is the variance of the mean
share of compliers drawn from a particular school; Sy¢per is the mean of this variable. These two moments
yield information about the variances of ; and Vf, which govern heterogeneity in fallback probabilities. 14
computes the variance of fallback shares across lotteries at every school, then averages across schools. This
is the average within-school variance in fallback probabilities. This moment helps to separate the variance
of &, the school-specific mean fallback utility, from o2, the variance of idiosyncratic school-by-lottery utility
shocks.

Finally, we match six covariances:
iz = 1 3, (e — p) (Ge — @),
s = + 3 (e = p) (e = ),
mie = 1 >0 (Pe — P) (Fee — Town)
oo = 1 20 (& — @) (Fee = Town),
mo1 =+ >, (pe — p) [(ﬁ > ke ﬁkz) - ﬁothcr}a
Mge = 5 >, (65 — @) KL%QJ D0t ﬁe;’) - ﬁother:|;
Mos =+ 3, (For — Town) [(ﬁ Dkt ﬁ'kf) - ﬁothar]~

my7 and Mm1g are covariances of the reduced form with conventional value-added and the pseudo-reduced
form, which help to identify variation in bias, as well as the covariance between bias and value-added. 19
is the covariance between reduced forms and first stages, which is informative about the covariance between

B; and §;. Mgg is the covariance of conventional value-added and the first stage, which helps to identify the

48



covariance between b; and J;. 7ho; is the covariance of the reduced form and average fallback probability,
which helps to identify the covariance of 5; and §;. 792 is the covariance of OLS value-added with the
average fallback probability, which depends on the covariance between b; and ;. g3 is the covariance of a
school’s first stage and average fallback probability, which provides information about the covariance of ¢;
and ¢;.

There are 16 elements of # and 23 moments, so the model has seven overidentifying restrictions. Models
that include charter and pilot school effects add sector-specific values of My, ms, My, M5, Mg, M7 and Mmsg,
yielding 24 parameters and 37 moments. Let 72 be the vector of all observed moments, and let m(0) be the
corresponding vector of simulated predictions. The simulated minimum distance estimator with weighting

matrix A is
Osnp(A) = arg mein J (7 —1m(0)) A (i — m(6)).

The set of simulation draws used to construct /m(6) is held constant throughout the optimization. For each
evaluation of the objective function the vector # is used to transform these draws to have the appropriate
distributions.

We produce a first-step estimate of # with an identity weighting matrix, then use this estimate to compute
a model-based covariance matrix by simulation. Altonji and Segal (1996) show that estimation error in the
weighting matrix can generate finite-sample bias in two-step optimal minimum distance estimates. This bias
is caused by correlation between the observations used to compute the moment conditions and those used
to construct the weighting matrix. We therefore compute the model-based weighting matrix using a second
set of simulation draws independent of the draws used to compute the moments. The weighting matrix is

given by

1

A= {J. R > (mr (éSMD(I)> - ﬁl) (mr <éSMD(I)) - m)l] _1a

where r indexes a second independent set of R = 1,000 simulation draws and m is the mean of the simulated
moments. An efficient two-step estimate is given by Osrp (/1)
Under standard regularity conditions the minimized SMD criterion function follows a x? distribution

(Sargan, 1958; Hansen, 1982):
J (m —m (éSMD(A))>IA (ﬁl —m (éSMD(A))) ~ Xz,

where ¢ is the difference between the number of moments and the number of parameters to be estimated.

Table 6 reports this J-statistic.

B.3 Empirical Bayes Posteriors with a Known First Stage

We next derive expressions for hybrid empirical Bayes posterior predictions of school value-added that

condition on lottery and OLS estimates. Begin by assuming that the first stage matrix, I, is known. In this
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case the posterior distribution for 3; and b; can be derived analytically. In matrix form the model can be

written
d=p+b+e,,
p=1p5+ep,
(e €p)[B,b~ N(0,Ve),
(8,0) ~ N ((Bo, 'bo)", Vo),

where we have set Sg = 0 for simplicity. The posterior density for the random coefficients © = (5,b)

conditional on the observed estimates () = (&,

p-) is given by
. faje (2200) fo (6:0)
forn (O150) = =5 ( ) : (21)
(07
The estimation errors and random coefficients are normally distributed, so we can write
N R R Vaa Vo a—p—>
~210g forq (O10:0) = (@ = B-0)', (p—mB))" | % )
vap UPP p— Hﬁ
F(= g o=ty | P70 e
U,Bb Ubb b— boL

where vVaa, Vap and v,, are blocks of Ve_l; vgg, Ugp and vy, are blocks of V(gl; and (1 is a constant that
does not depend on O.

Rearranging this expression yields

| VBs Ve p-p

+ 027 (22)
vZ’b v b—b*

~210g fyq (016) = (8- ), (0 ¥")

where C is another constant. The parameters of this expression are
Vg = Vaa + H’v('lp + VapIT + I, 1T 4+ v,
V3 = Vaa + H’v(;p + vgp,
Vpp = Vaa + Ubbs
and
B* =Wo(& —bot) + Wyp+ (I — Wy —W,II)Boe
with

Wo = B~ H(Vaa + vop) (Vaa + 'y, + vgp) " (Vae + M'vg,,) = Vaa),
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W, = B~ ((vaa + vsb)(Vaa + Hl”zlxp + Uﬁb)_l(vap +1'vpp) = Vap)s

B = (Voo + Vbp) (Voo + H’v,’lp +vgp) " (Vaa + H’v;p + VIl + IT'0,, 1T 4+ v35) — (Vaa + Vapll + vbb).

Equation (22) implies that the posterior for (3,b) is normal:
(8 0)|a, p~ N ((87,6™)", V"),

with
-1
Ve | U8 U
Vg, Vg
An empirical Bayes version of the posterior mean 5* is formed by plugging és Mmp and an estimate of V. into
the expressions for W, and W,.

Section 5.3 gives three special cases of the posterior mean. The first is when II is invertible. Equation
(18) is obtained by defining W5 = W,II and substituting WII~! for W, in (17). The second special case
adds the conditions that Var(e,) = 0 (a; is known with certainty) and Var(eg) = I~ 'War(e,)II7V is
diagonal (sampling errors in IV estimates are independent across schools). In this case the only information
in the sample about §3; comes from («;, BJ) since §; is uncorrelated with Br and ay, for k # j. The vector
(Bj,B; + b5,8; + 6? ) is jointly normally distributed, so the posterior mean for 8; is the prediction from a

linear regression of 3; on «; and Bj, given by:
ﬂj = Ko -+ naaj -+ lﬁ)ﬁBj -+ ’Uj.

Standard multivariate regression algebra implies the coefficients in this regression are

_ Var(Bj)Cov(aj,ﬁj) — Cov(3j7aj)00v(6j,3j)
Var(o;)Var(B;) — Cov(ay, B;)?

(03 Y

_ Var(aj)Cov(Bj,ﬁj) — Cov(ﬁj,aj)Cov(Bj,aj)
Var(a;)Var(B;) — Cov(ay, B;)?

)

ko = B[] — 1aE|a;] — T3E W

Simplifying these expressions yields

_ Covlay, 5)) Var(e}) ., Var(ej)
a = 3.2 T« ’
Var(a;) " Vap(eg) + o3 — Soiond) Var(e]) + o3(1 - R?)
Cov(B;,04)*
o — 0'%3 - ?;arZao;J) o U%‘(l - RQ)
B8 = B2 ’
Var(eg) + 03 — Sl Vor(e)) +o5(1 —R2)

ko = (1 — ko — kg)Bo — Kabo = (1 — kg)(1 —14)Bo — (1 — K)Tabo,
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where r, = Cov(aj, 3;)/Var(a;) and R? = Cov(ay, 8;)?/(Var(a;)Var(B;)). These are the coefficients in
equation (19).

The third special case is when lotteries provide no information about §; (so Cov(pe, 5;) = 0 V¢) and
conventional VAM sampling errors are uncorrelated (so Cov(ef,ef) = 0 Vk # j). In this case the posterior

mean is simply the regression of 3; on &;:
ﬁj = Ko + RaQij + V5,

which has coefficients

_ CO’U(,Bj,dj)
“ Var(a))

ko = E[Bj] — R E [ay].

Simplifying these yields

s Cov(B;, Bj + bj + €f) B U%+O’5b
“ Var(B; +b; +€3) 0%+ 0p 4 206, + Var(eq)’

ko = (1 — Ra)Bo — Rabo,

which are the coefficients in (20).

B.4 Empirical Bayes Posterior Modes

In practice the first stage matrix II is unknown and must be estimated. The vector of unknown school-specific

parameters is then

6 = (ﬂlabluélvglv ""75]7&]75.]75‘]71]117 "'7VLJ)/~

Up to a scaling constant, the posterior density for © conditional on the observed estimates QO (which now

include the estimated ﬁf) and the prior parameters 6 can be expressed

Tora (01050) < 6 (0= Q(O): V) 61 (6 — O(0):T(9)) (23)
where

6(9) = (BO + /BQv b07 507 507 "'1607 bOa 50a 607 07 ""O)l7
¢m(x;v) is the multivariate normal density function with mean zero and covariance matrix v, and

I;% 0
rey ="’ ,
0 JEILJ

where I; and Iy ; are identity matrices of dimension J and L x J. Note that the probability limit of the
vector of observed estimates, {2, is a function of ©, so we write Q(0).
As before we form an empirical Bayes posterior density by plugging Osnp into (23). The empirical Bayes

posterior mean is
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Ofcan = | Ofcir (1% bsain ) dO.

Since the first stage parameters wf are nonlinear functions of ¢ and &, the density in (23) will not generally

be normal. As a result the integral for the posterior mean does not have a closed form and it is not possible
to sample directly from the posterior distribution. To avoid integration we instead work with the posterior

mode:
OF ie = arg max logd,, (Q - Q(O); Ve) + log ¢ (@ —ye) (HASMD) T (éSMD)).

The posterior mode coincides with the posterior mean in the fixed first stage case where the posterior
distribution is normal. The mode is computationally convenient in the estimated first stage case, as it
simply requires solving a regularized maximum likelihood problem.

We compare posterior modes for the 3; with conventional empirical Bayes posterior means based on OLS

estimates of value-added. The conventional predictions are given by

* 7&3 A 1 763 (i 24
.= 52 + Var(e?) &+ h 62 + Var(e?‘) Has (24)

where

Models with sector effects replace fi,, in equation (24) with the regression predictions
~ -1 N
faj = 55 [5 T SeSi] " [7 2u Skau]

where S; is a vector including a constant and charter and pilot school indicators.

B.5 Relationship Between Forecast Coefficient and VAM Reliability

This Appendix derives the relationship between the probability limit of the IV forecast coefficient, ¢, and
the VAM reliability ratio, 7o, = Cov(8;,a;)/Var(a;). The IV model that generates ¢ is

Vi = Ao+ CIA A+ oY + G
The corresponding reduced form is
Yi=m +C£Tc + Zz{p+uia

while the first stage is

1

Yi =70+ Cife + ZjY) + s
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When C; is a set of mutually exclusive and exhaustive indicator variables for participation in L lotteries, The-

orem 4.5.1 in Angrist and Pischke (2009) implies that 2SLS estimation of this system yields the probability

() (5)
=1 ZWWZ’ (o ’

where p; and 1, are the elements of p and ¢ corresponding to Z;4, and

limit

we = Pr[Ci = 1| Var(Zi|Cie = 1) (¢¢)*.

This equation shows that the forecast coefficient generated by an overidentified instrumental variables model
equals a particular weighted average of lottery-specific forecast coeflicients.

The equation for the forecast coefficient can be rewritten

. i (Zizk) pey
£ (5o )

where &y = Pr[Ciy = 1] Var (Z;¢|Cie = 1). This expression shows that ¢ may be written as the coefficient

)

from a weighted least squares regression through the origin of reduced form effects on test scores, pg, on
first-stage effects on predicted value-added, .

In the notation of the random coefficients model, these reduced form and first stage effects are given by

J
pe = E e 55,
j=1

J
’l/)g: E ﬂ'gjOéj.
j=1

In a scenario with FE [¢)¢] = 0, we can then write

7 J
Cov \/@72 i B \/UTZZ Tej

Jj=1 Jj=1

(p:

J
Var \/L:)gg T O
j=1

This expression shows that the forecast coefficient ¢ is a weighted regression of linear combinations of the
B;’s on the same linear combinations of the a;’s. The weights depend on the size of each lottery and the offer
rate, while the first stage coefficients that form the linear combinations depend on offer takeup rates and the
distribution of fallback schools for lottery applicants. Although both ¢ and r, measure the correlation of
OLS and causal value-added, and coincide when the expectation of 3; given «; is linear and the first stage

parameters 7; are non-stochastic, in general these summary statistics should be expected to differ.
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Appendix C: Supplementary Results

C.1 Results for Seventh and Eighth Grade

Consistent with the bias tests reported in Table 3, we model school effects on seventh and eighth grade test
scores as linear in the number of years spent in each school. The random coefficients framework of Section
5.1 is adapted to data from seventh grade by modifying the lottery first stage estimand as follows:

exp(dy)
1+ eXp((Sg) '

e = 2 X
The remaining equations describing the random coefficients model are unchanged. This specification guar-
antees that the effects of lottery offers on time spent in each school are less than two years in absolute value,
which is the maximum potential attendance through seventh grade. Likewise, the model for eighth grade
uses three years of potential attendance. The value-added and bias parameters, §; and b;, may then be
interpreted as causal effects and VAM bias associated with one additional year of attendance at school j.

Appendix Table A4 reports math hyperparameter estimates separately by grade. The results for seventh
and eighth grade are qualitatively similar to those for sixth. Standard deviations of causal value-added in
each grade are somewhat larger than the corresponding bias standard deviations, and covariances between
value-added and bias are uniformly negative. Standard deviations of annual school effects are smaller for the
higher grades, which suggests there is some concavity in the relationship between achievement and years of
exposure to a particular school. Similarly, differences in value-added between lottery and non-lottery schools
and between charter and traditional schools are positive for seventh and eighth grade but smaller than these
differences for sixth grade.

Appendix Table A5 displays policy simulation results for school closure decisions based on seventh and
eighth grade outcomes. The reported impacts are effects of one extra year spent at the replacement school
rather than the closed school. Like the sixth grade results from Table 8, the simulations for higher grades
show large gains associated with using conventional value-added models for accountability decisions. For
example, replacing the lowest-performing district school according to the lagged score model with a typical
top quintile school is predicted to generate an impact of 0.240 per year on eighth grade scores, 63 percent
of the gain attainable with knowledge of true value-added (0.38¢). Hybrid estimation boosts this effect to

0.290, a 22 percent improvement over the conventional model.

C.2 Models with Time-varying Value-added

The hyperparameter estimates reported in Table 6 are estimated under the assumption that causal school
quality and bias are stable over time. Chetty et al. (2014a) document temporal instability in conventional
teacher VAM estimates; a model that presumes constant school quality may be inappropriate if school
value-added is similarly unstable.

To probe the stability of school value-added, we report estimates from a model allowing school effects to

vary by year, fit to year-specific OLS and lottery estimates. This model is based on the specification
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Bit = Bj + Bit,
bjt = bj + bt

where (3;,b;) are joint normal as in equation (14), and Bjt and l;jt are 7id uncorrelated normal shocks with
mean zero and standard deviations o5 and 0. The first stage mean utility parameters ¢; and §; are assumed
stable over time, so changes in the first stage are captured by the idiosyncratic shocks uft. The simulated
minimum distance procedure uses time averages of the moments listed in Appendix B.2, and is augmented
with variances of the year to year changes in &, 77 and pg in order to estimate the standard deviations of
the idiosyncratic value-added and bias shocks.

Minimum distance estimates from the model with time-varying value-added appear in Appendix Table
A8. These estimates suggest that the permanent component of value-added and bias are more important
than the idiosyncratic components. Estimated standard deviations of the permanent component of value-
added are between 0.170 and 0.220 across models, roughly similar to the corresponding estimates from
Table 6. Estimated standard deviations of the idiosyncratic component are around 0.lc in each model.
Likewise, estimated standard deviations of the permanent component of bias equal 0.410, 0.21¢ and 0.200,
compared to 0.050, 0.070 and 0.060. We cannot reject the null hypothesis that bias is constant over time at
conventional levels. These results suggest that school value-added and bias are reasonably stable across years,

so our preferred specifications use the more parsimonious model that abstracts away from time variation.

C.3 Misclassification Results

Like many states and school districts, the Massachusetts Department of Elementary and Secondary Education
implements an accountability scheme based on standardized tests. Massachusetts’ Framework for School
Accountability and Assistance places schools into five “levels” based on four-year histories of test score levels
and changes. Schools in the bottom quintile of this measure are designated level 3 or higher. A subset of
these schools are classified in levels 4 and 5, a designation that puts them at risk of restructuring or closure.?
Appendix Table A9 uses the simulations described in Section 7 to calculate the frequency of classification
errors in accountability schemes of this sort.

Uncontrolled value-added estimates produce highly inaccurate school rankings. As can be seen in the
second row of Table A9, uncontrolled VAM misclassifies 86 percent of lowest decile schools, 71 percent of
lowest quintile schools, and 59 percent of lowest tercile schools. These rates are not much better than
the error rates for a policy that simply ranks schools randomly (90, 80 and 67 percent, shown in the first
row). Hybrid posterior modes that combine uncontrolled OLS and lottery estimates misclassify 73, 45 and
36 percent of lowest decile, quintile and tercile schools. Although still high, these error rates represent a

marked improvement on the rates produced by the conventional posterior mean from an uncontrolled model.

25The Massachusetts accountability system also uses information on graduation, dropout rates and from site visits to classify
schools; see http://www.doe.mass.edu/apa/sss/turnaround/level5/schools/FAQ.html for details.
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Adding controls for demographics and previous achievement reduces misclassification rates based on both
conventional and hybrid estimates. Conventional misclassification rates for lowest decile, quintile and tercile
schools are 59, 47 and 38 percent when rankings are based on estimates from the gains specification. In this
model, hybrid estimation reduces classification error in the lowest decile from 59 to 41 percent, 31 percent
fewer mistakes. The hybrid advantages in classifying lowest quintile and lowest tercile schools equal 38 and
39 percent in the gains specification. The pattern of classification improvement from the lagged score and
gains specifications are broadly similar. For both the lagged score and gains models, hybrid estimation cuts
mistakes in classifying upper and lower tercile schools to under one third.

The relationship between school rankings based on true and estimated value-added summarizes the
predictive value of VAM estimates. Column 7 of Table A9 reports coefficients from regressions of a school’s
rank in the causal value-added distribution on its rank in each estimated distribution. This rank coefficient
increases from 0.15 in the uncontrolled conventional model to 0.61 in the conventional gains specification.
Hybrid estimation boosts the rank coefficient for gains to 0.84. In other words, sufficiently controlled VAM
estimates strongly predict relative value-added: a one-position increase in a school’s VAM rank translates

into an average increase of roughly 0.8 positions in the distribution of true school quality.

C.4 Sensitivity Analysis for Bias Assumption

As noted in Section 5, a key assumption underlying the hybrid approach is that bias distributions are the
same for lottery and non-lottery schools. It is worth documenting the sensitivity of our results to violations
of this assumption. To this end, we simulate versions of the model in which mean bias for lottery schools is
either 0.20 above or 0.20 below mean bias for non-lottery schools. As shown in Table 6, these differences
are roughly one standard deviation in the distribution of causal school quality, and more than one standard
deviation in the distribution of bias. Policymakers in these simulations continue to presume that there is no
difference in bias between these groups.

As can be seen in Appendix Table A10, differences in bias between lottery and non-lottery schools slightly
reduce the accuracy of hybrid estimates and the effects of VAM-based policies. Root mean squared error
for hybrid gains estimates grows from 0.100 to 0.140 when bias for lottery schools is 0.20 above or below
bias for undersubscribed schools. A closure decision that replaces the lowest-ranked school with an average
school generates a benefit of 0.31c when the bias assumption is satisfied, and 0.28¢ when mean bias for
lottery schools is 0.20 above or below average. This analysis shows that hybrid estimation is likely to be of

value as long as differences in mean bias between lottery and non-lottery schools are modest.
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Figure Al: Posterior predictions from treating the first stage as estimated vs. known
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Notes: This figure displays the correlation between posterior predictions of value-added and bias
when the lottery first stage is treated as known vs. estimated. Estimates come from the lagged score
value-added model with sector effects for sixth grade math scores. The horizontal axis in each
panel displays posterior means computed under the assumption that there is no sampling error in
the first stage coefficients. The vertical axis in each panel displays posterior modes accounting for
estimation error in the first stage. Dashes show OLS lines of best fit.



Table Al: Lottery attrition

Offer balance

Mean All lotteries  Traditional Pilot Charter
(@) 2 3 4 ®)
In lottery sample 0.813 0.028*** 0.036*** -0.003 0.010
(0.010) (0.011) (0.023) (0.015)
N 10,718 10,718 5,589 1,512 4,867

Notes: This table reports the followup rate for the lottery sample and investigates differential attrition
by lottery offer status. Column 1 shows the fraction of randomized lottery applicants that appear in
the Boston sixth grade sample. Columns 2-5 report coefficients from regressions of an indicator for
followup on lottery offers, controlling for lottery strata. Robust standard errors are reported in
parenthenses.

*significant at 10%; **significant at 5%; ***significant at 1%



Table A2: Tests for bias in ELA value-added models

All lotteries Excluding charter lotteries

Lagged score Gains Lagged score Gains

1) ) (©) (4)

A. Sixth grade

Forecast coefficient (¢) 0.864 0.722 0.423 0.133
(0.167) (0.172) (0.310) (0.308)

First stage F -statistic 26.8 29.4 14.0 131

p -values:

Forecast bias 0.416 0.105 0.063 0.005
Overidentification 0.039 0.007 0.157 0.127
Omnibus test y statistic (d.f.) 46.0 (28) 56.8 (28) 36.1 (23) 43.2 (23)
p -value 0.018 0.001 0.040 0.007

N 8,718 6,162
B. All middle school grades
Forecast coefficient (¢) 0.969 0.924 0.699 0.550
(0.101) (0.107) (0.193) (0.191)
First stage F -statistic 11.3 12.3 6.7 6.6
p -values:

Forecast bias 0.759 0.481 0.118 0.019
Overidentification 0.062 0.014 0.122 0.081
Omnibus test ¥ statistic (d.f.) 119.0 (75) 137.1 (75) 80.7 (60) 92.9 (60)
p -value <0.001 <0.001 0.039 0.004

N 20,935 15,027

Notes: This table reports the results of tests for bias in conventional value-added models for sixth through
eighth grade ELA scores. See the notes to Table 3 for a description of the value-added models and test
procedure. Standard errors, clustered by student, are reported in parentheses.



Table A3: Joint distribution of value-added, bias and lottery compliance

Bi b; 9 <
1) ) ©) (4)
Standard deviation 0.171 0.148 0.764 0.864
(0.028) (0.029) (0.131) (0.584)
Covariance w/b -0.016
(0.006)
Covariance w/d; 0.009 0.043
(0.018) (0.032)
Covariance w/¢; 0.077 -0.102 -0.491
(0.029) (0.056) (0.151)
Charter effect 0.426 -0.005 0.241 -1.934
(0.104) (0.103) (0.387) (0.425)
Pilot effect 0.130 -0.121 0.074 -0.479
(0.129) (0.124) (0.312) (0.434)
Std. dev. of vj; 1.566
(0.152)

Notes: This table reports simulated minimum distance estimates of parameters
governing the distribution of value-added, bias, and lottery compliance probabilities
for the lagged score value-added model fit to sixth grade school attendance and math
scores. See the notes to Table 6 for a description of the estimation procedure.



Table A4: Minimum distance estimates by grade

Sixth grade Seventh grade Eighth grade

Lagged score Gains Lagged score Gains Lagged score Gains

1) (2) 3) (4) (5) (6)
oy Std. dev. of causal VA 0.171 0.170 0.137 0.120 0.109 0.101
(0.028) (0.023) (0.022) (0.021) (0.019) (0.018)
Oy Std. dev. of OLS bias 0.148 0.133 0.119 0.094 0.079 0.078
(0.029) (0.030) (0.040) (0.032) (0.025) (0.025)
T Covariance of -0.016 -0.013 -0.007 -0.006 -0.004 -0.005
VA and bias (0.006) (0.003) (0.002) (0.001) (0.001) (0.001)
r, Regression of VA 0.694 0.783 0.625 0.747 0.771 0.798
on OLS (reliability ratio) (0.152) (0.122) (0.084) (0.096) (0.108) (0.105)
VA shifters Charter 0.426 0.396 0.210 0.192 0.145 0.133
(0.104) (0.106) (0.091) (0.081) (0.075) (0.073)
Pilot 0.130 0.111 -0.039 -0.019 0.004 0.008
(0.129) (0.129) (0.110) (0.101) (0.085) (0.082)
Lottery school (8q) 0.104 0.066 0.003 0.034 0.047 0.056
(0.042) (0.041) (0.042) (0.033) (0.027) (0.027)
Bias shifters Charter -0.005 -0.063 0.010 0.030 0.049 0.039
(0.103) (0.099) (0.088) (0.077) (0.070) (0.073)
Pilot -0.121 -0.089 0.009 0.062 -0.036 0.011
(0.124) (0.121) (0.107) (0.097) (0.078) (0.077)

¥(13) statistic: 9.0 6.0 9.2 45 6.4 8.8
Overid. p-value: 0.773 0.946 0.759 0.985 0.932 0.785

Notes: This table reports minimum distance estimates of parameters of the joint distribution of causal school value-added and OLS bias for
each middle school grade. School exposure for seventh and eighth grade is measured as the number of years spent in each school. See the
notes to Table 6 for a description of the estimation procedure.



Table A5: Per-year effects of closing the lowest-ranked district school for affected children, by grade

Replacement school:

Average above-

Average top-

Average charter

Average school median school quintile school school
Grade Model Posterior method (1) (2) (3) (4)
Seventh - True value-added 0.284 0.389 0.468 0.500
[0.059] [0.067] [0.073] [0.076]
Lagged score Conventional 0.187 0.253 0.299 0.403
[0.108] [0.116] [0.119] [0.116]
Hybrid 0.225 0.301 0.356 0.441
[0.101] [0.108] [0.113] [0.112]
Gains Conventional 0.157 0.215 0.259 0.344
[0.094] [0.101] [0.103] [0.101]
Hybrid 0.190 0.257 0.311 0.377
[0.088] [0.096] [0.103] [0.097]
Eighth - True value-added 0.229 0.316 0.384 0.369
[0.049] [0.055] [0.059] [0.062]
Lagged score Conventional 0.162 0.226 0.273 0.302
[0.083] [0.088] [0.092] [0.092]
Hybrid 0.193 0.267 0.325 0.333
[0.071] [0.078] [0.083] [0.079]
Gains Conventional 0.142 0.199 0.241 0.268
[0.080] [0.084] [0.088] [0.087]
Hybrid 0.171 0.238 0.293 0.297
[0.079] [0.088] [0.093] [0.087]

Notes: This table reports simulated test score impacts of closing the lowest-ranked BPS district school based on value-added predictions
for seventh and eighth grade. The reported effects are average impacts of one year of attendance at the replacement school rather than the
closed school. Standard deviations of these effects across simulations appear in brackets. See the notes to Table 8 for a description of the

simulation procedure.



Table A6: Tests for bias in hybrid value-added posteriors

All lotteries Excluding charter lotteries
Lagged score Gains Lagged score Gains
(@) 2 3) 4
Forecast coefficient (¢) 1.040 1.001 1.143 1.086
(0.130) (0.129) (0.316) (0.308)
First stage F -statistic 24.0 23.6 7.5 7.3
p -values:

Forecast bias 0.760 0.994 0.651 0.780
Overidentification 0.849 0.710 0.808 0.783
Omnibus test XZ statistic (d.f.) 0.7 (28) 0.8 (28) 0.8 (23) 0.8 (23)
p -value 0.841 0.701 0.795 0.775

N 8,718 6,162

Notes: This table reports the results of tests for bias in posterior value-added predictions for sixth grade
math scores. Empirical Bayes posterior modes come from random coefficient models with sector effects.
See the notes to Table 3 for a description of the value-added models and test procedure. Robust standard

errors are reported in parentheses.



Table A7: Consequences of closing the lowest-ranked district school based on four years of data

Replacement school

Average above-

Average top-

Average charter

Average school median school  quintile school school
Model Posterior method (1) (2) (3) (4)
- True value-added 0.370 0.507 0.610 0.711
[0.080] [0.089] [0.094] [0.094]
Uncontrolled Conventional 0.051 0.071 0.087 0.274
[0.193] [0.200] [0.206] [0.199]
Hybrid 0.148 0.217 0.256 0.371
[0.143] [0.154] [0.168] [0.151]
Lagged score Conventional 0.223 0.305 0.364 0.575
[0.152] [0.162] [0.172] [0.158]
Hybrid 0.302 0.420 0.511 0.651
[0.134] [0.146] [0.154] [0.146]
Gains Conventional 0.229 0.315 0.380 0.570
[0.144] [0.153] [0.162] [0.149]
Hybrid 0.302 0.417 0.506 0.641
[0.122] [0.133] [0.141] [0.133]

Notes: This table reports simulated test score impacts of closing the lowest-ranked BPS district school based on value-added

predictions computed from four years of data. These effects are computed by scaling up the covariance matrix of sampling
errors underlying the simulations in Table 8 by a factor of two. See the notes to Table 8 for a description of the simulation

procedure.



Table A8: Models with time-varying value-added and bias

Uncontrolled  Lagged score Gains
) ) ©)

op Std. dev. of causal VA 0.168 0.215 0.193
(permanent) (0.034) (0.027) (0.024)

Std. dev. of causal VA 0.103 0.084 0.091
(transitory) (0.050) (0.043) (0.040)

oy Std. dev. of OLS bias 0.414 0.214 0.199
(permanent) (0.018) (0.025) (0.023)

Std. dev. of OLS bias 0.046 0.066 0.066
(transitory) (0.164) (0.062) (0.064)
O po Covariance of -0.034 -0.037 -0.029
VA and bias (0.008) (0.007) (0.005)

ry Regression of VA -0.041 0.510 0.431
on OLS (reliability ratio) (0.189) (0.182) (0.147)

VA shifters Charter 0.263 0.487 0.354
(0.129) (0.153) (0.134)

Pilot -0.024 0.078 0.091
(0.145) (0.170) (0.140)

Lottery school (84) 0.178 0.133 0.127
(0.136) (0.061) (0.053)

Bias shifters Charter 0.324 -0.043 0.020
(0.179) (0.151) (0.138)
Pilot -0.151 -0.157 -0.117
(0.204) (0.170) (0.139)

¥(14) statistic: 15.5 12.1 15.5

Overid. p-value: 0.347 0.597 0.343

Notes: This table reports simulated minimum distance estimates of parameters of the joint
distribution of causal school value-added and OLS bias for sixth grade math scores from a model that
allows school effects to vary by year. School value-added and bias are assumed to consist of a
permanent component plus an independent and identically distributed transitory shock each year. See
the notes to Table 6 for a description of the estimation procedure.



Table A9: Error rates for classification decisions among district schools

Low-performing schools High-performing schools
Value-added Posterior method Lowest decile Lowest quintile Lowest tercile  Highest decile Highest quintile Highest tercile  Rank coefficient
model 1) (2) 3) 4) 5) (6) )
- Random 0.900 0.800 0.667 0.900 0.800 0.667 0.000
[0.161] [0.139] [0.118] [0.161] [0.139] [0.118] [0.177]
Uncontrolled  Conventional 0.857 0.710 0.593 0.863 0.733 0.608 0.146
[0.190] [0.150] [0.122] [0.182] [0.151] [0.122] [0.171]
Hybrid 0.726 0.449 0.359 0.781 0.606 0.491 0.502
[0.246] [0.176] [0.126] [0.226] [0.161] [0.126] [0.171]
Lagged score  Conventional 0.639 0.501 0.411 0.670 0.523 0.422 0.542
[0.256] [0.155] [0.121] [0.246] [0.154] [0.113] [0.134]
Hybrid 0.438 0.316 0.249 0.382 0.305 0.234 0.825
[0.252] [0.141] [0.106] [0.231] [0.146] [0.105] [0.087]
Gains Conventional 0.594 0.469 0.379 0.611 0.483 0.393 0.606
[0.260] [0.152] [0.115] [0.483] [0.152] [0.112] [0.123]
Hybrid 0.411 0.293 0.232 0.350 0.286 0.225 0.841
[0.237] [0.137] [0.103] [0.243] [0.147] [0.108] [0.096]

Notes: This table reports simulated misclassification rates for policies based on empirical Bayes posterior predictions of value-added. The first row shows results for a
system that ranks schools at random. Column 1 shows the fraction of district schools in the lowest decile of true sixth grade math value-added that are not classified in
the lowest decile of estimated value-added for each model. Columns 2 and 3 report corresponding misclassification rates for the lowest quintile and tercile. Columns 4-
6 report misclassification rates for schools in the highest decile, quintile and tercile of true value-added. Column 7 reports the coefficient from a regression of a school's
rank in the true value-added distribution on its rank in the estimated distribution. Standard deviations of misclassification rates and rank coefficients across simulations

appear in brackets.



Table A10: Sensitivity of hybrid posteriors to difference in bias between lottery and non-lottery schools

Closure effects

Average above-  Average top- Average
RMSE Average school median school quintile school charter school
Difference in bias Model (1 (2) (3) (4) (5)
Oo Lagged score 0.116 0.315 0.437 0.529 0.665
[0.131] [0.141] [0.147] [0.145]
Gains 0.100 0.316 0.434 0.525 0.657
[0.115] [0.126] [0.136] [0.128]
0.20 Lagged score 0.146 0.295 0.408 0.511 0.647
[0.135] [0.151] [0.157] [0.143]
Gains 0.140 0.283 0.391 0.493 0.626
[0.124] [0.136] [0.138] [0.133]
-0.20 Lagged score 0.152 0.263 0.365 0.454 0.615
[0.131] [0.144] [0.152] [0.144]
Gains 0.143 0.277 0.373 0.446 0.619
[0.122] [0.138] [0.155] [0.134]

Notes: This table explores the sensitivity of simulated effects of closing the lowest-ranked district school to violations of the
assumption that bias distributions are the same for lottery and non-lottery schools. The difference in bias gives the mean difference in
conventional VAM bias between schools with and without lotteries. Policymakers are assumed to make closure decisions based on
hybrid posterior modes constructed under the incorrect assumption that there is no difference between these groups. See the notes to

Table 8 for a description of the simulation procedure.



