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Abstract

The edit distance (a.k.a. the Levenshtein distance) between two strings is defined as the
minimum number of insertions, deletions or substitutions of symbols needed to transform one
string into another. The problem of computing the edit distance between two strings is a
classical computational task, with a well-known algorithm based on dynamic programming.
Unfortunately, all known algorithms for this problem run in nearly quadratic time.

In this paper we provide evidence that the near-quadratic running time bounds known for
the problem of computing edit distance might be tight. Specifically, we show that, if the edit
distance can be computed in time O(n2−δ) for some constant δ > 0, then the satisfiability
of conjunctive normal form formulas with N variables and M clauses can be solved in time
MO(1)2(1−ǫ)N for a constant ǫ > 0. The latter result would violate the Strong Exponential Time
Hypothesis, which postulates that such algorithms do not exist.
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1 Introduction

The edit distance (a.k.a. the Levenshtein distance) between two strings is defined as the minimum
number of insertions, deletions or substitutions of symbols needed to transform one string into
another. The distance and its generalizations have many applications in computational biology,
natural language processing and information theory. The problem of computing the edit distance
between two strings is a classical computational task, with a well-known algorithm based on the
dynamic programming. Unfortunately, that algorithm runs in quadratic time, which is prohibitive
for long sequences1. A considerable effort has been invested into designing faster algorithms, either
by assuming that the edit distance is bounded, by considering the average case or by resorting to
approximation2. However, the fastest known exact algorithm, due to [MP80], has a running time
of O(n2/ log2 n) for sequences of length n, which is still nearly quadratic.

In this paper we provide evidence that the (near)-quadratic running time bounds known for this
problem might, in fact, be tight. Specifically, we show that if the edit distance can be computed
in time O(n2−δ) for some constant δ > 0, then the satisfiability of conjunctive normal form (CNF)
formulas with N variables and M clauses can be solved in time MO(1)2(1−ǫ)N for a constant ǫ >
0. The latter result would violate the Strong Exponential Time Hypothesis (SETH), introduced
in [IP01, IPZ01], which postulates that such algorithms do not exist3. The rationale behind this
hypothesis is that, despite decades of research on fast algorithms for satisfiability and related
problems, no algorithm was yet shown to run in time faster than 2N(1−o(1)). Because of this
state of affairs, SETH has served as the basis for proving conditional lower bounds for several
important computational problems, including k-Dominating Set [PW10], the diameter of sparse
graphs [RVW13], local alignment [AVWW14], dynamic connectivity problems [AVW14], and the
Frechet distance computation [Bri14]. Our paper builds on these works, identifying a new important
member of the class of “SETH-hard” problems.

Our techniques and related work This work has been stimulated by the recent result of
Karl Bringmann [Bri14], who showed an analogous hardness result for computing the Frechet
distance4, and listed SETH-hardness of edit distance as an open problem. There are notable
similarities between the edit distance and the Frechet distance. In particular, both can be computed
in quadratic time, via dynamic programming over an n × n table T where each entry T [i, j] holds
the distance between the first i elements of the first sequence and the first j elements of the second
sequence. Furthermore, in both cases each entry T [i, j] can be computed locally given T [i, j − 1],
T [i−1, j] and T [i−1, j−1]. The key difference between the two distances is that while the recursive
formula for the Frechet distance uses the max function, the formula for the edit distance involves
the sum. As a result, the Frechet distance is effectively determined by a single pair of sequence
elements, while the edit distance is determined by many pairs of elements. As we describe below,

1For example, the analysis given in [Fri08] estimates that aligning human and mouse genomes using this approach
would take about 95 years.

2There is a rather large body of work devoted to edit distance algorithms and we will not attempt to list all
relevant works here. Instead, we refer the reader to the survey [Nav01] for a detailed overview of known exact and
probabilistic algorithms, and to the recent paper [AKO10] for an overview of approximation algorithms.

3Technically, our results relies on an even weaker conjecture. See Preliminaries for more details.
4Given two sequences of points P1 and P2, the Frechet distance between them is defined as the minimum, over

all monotone traversals of P1 and P2, of the largest distance between the corresponding points at any stage of the
traversal.
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this makes the reduction to edit distance much more subtle.5

Our result is obtained by a reduction from the Orthogonal Vectors Problem, which is defined as
follows. Given two sets A,B ⊆ {0, 1}d such that |A| = |B| = N , the goal is to determine whether
there exists x ∈ A and y ∈ B such that the dot product x · y =

∑d
j=1 xjyj (taken over reals) is

equal to 0. It is known [Wil05] that an O(dO(1) ·N2−δ)-time algorithm for the Orthogonal Vectors
Problem would imply that SETH is false (even in the setting d = ω(log n)). Therefore, in what
follows we focus on reducing the Orthogonal Vectors Problem to the Edit Distance problem.

The first step of our reduction mimics the approaches in [Bri14] (as well as [AVWW14]). In
particular, each x ∈ A and y ∈ B is assigned a “gadget” sequence. Then, the gadget sequences for
all a ∈ A are concatenated together to form the first input sequence, and the gadget sequences for
all b ∈ B are concatenated to form the second input sequence. The correctness of the reduction is
proven by showing that:

• If there is a pair of orthogonal vectors x ∈ A and y ∈ B, then one can traverse the two
sequences in a way that the gadgets assigned to x and y are aligned, which implies that the
distance induced by this traversal is “small”.

• If there is no orthogonal pair, then no such traversal exists, which implies that the distance
induced by any traversal is “large”.

The mechanics of this argument depends on the specific distance function. In the case of Frechet
distance, the output value is determined by the maximum distance between the aligned elements,
so it suffices to show that the distance between two vector gadgets is smaller than C if they are
orthogonal and at least C if they are not, for some value of C. In contrast, edit distance sums up
the distances between all aligned gadgets (as well as the costs of insertions and deletions used to
create the alignment), which imposes stronger requirements on the construction. Specifically, we
need to show that if two vectors x and y are not orthogonal, i.e., they have at least one overlapping
1, then the distance between their gadgets is equal to C, not just at least C. Since we need to
ensure that the distance between two gadgets cannot grow in the number of overlapping 1s, our
gadget design and analysis become more complex.

Fortunately, the edit distance is expressive enough to support this functionality. The basic idea
behind the gadget construction is to use that fact the edit distance between two gadget strings,
say V G1 (from the first sequence) and V G2 (from the second sequence), is the minimum cost over
all possible alignments between V G1 and V G2. Specifically, we construct gadgets that allow two
alignment options. The first option results in a cost that is linear in the number of overlapping
1s of the corresponding vectors (this is easily achieved by using substitutions only). On the other
hand, the second “fallback” option has a fixed cost (say C1) that is slightly higher than the cost of
the first option when no 1s are overlapping (say, C0). Thus, by taking the minimum of these two
options, the resulting cost is equal to C0 when the vectors are orthogonal and equal to C1 (> C0)
otherwise, which is what is needed. See Theorems 1 and 2 for the details of the construction.

Further developments Following this work, two recent publications showed multiple results
demonstrating conditional hardness of the edit distance, the longest common subsequence problem
(LCS), dynamic time warping problem and other similarity measures between sequences [ABVW15,

5This also means that our hardness argument does not extend to the approximate edit distance computation, in
contrast to the argument in [Bri14].
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BK15]. Among other results, [BK15] showed hardness of computing the edit distance over the bi-
nary alphabet, which improves over the alphabet size of 7 required for our reduction. In another
development, [AHVWW16] showed that the quadratic hardness of LCS and edit distance computa-
tion can be based on a weaker (and therefore more plausible) assumption than SETH, by replacing
CNF formulas with more general circuits.

2 Preliminaries

Edit distance For any two sequences x and y over an alphabet Σ, the edit distance EDIT(x, y)
is equal to the minimum number of symbol insertions, symbol deletions or symbol substitutions
needed to transform x into y. It is well known that the EDIT function induces a metric; in
particular, it is symmetric and satisfies the triangle inequality.

In the remainder of this paper we will use use an equivalent definition of EDIT that will make
the analysis of our reductions more convenient.

Observation 1. For any two sequences x, y, EDIT(x, y) is equal to the minimum, over all sequences
z, of the number of deletions and substitutions needed to transform x into z and y into z.

Proof. It follows directly from the metric properties of the edit distance that EDIT(x, y) is equal to
the minimum, over all sequences z, of the number of insertions, deletions and substitutions needed
to transform x into z and y into z. Furthermore, observe that if, while transforming x, we insert a
symbol that is later aligned with some symbol of y, we can instead delete the corresponding symbol
in y. Thus, it suffices to allow deletions and substitutions only.

Definition 1. We define the following similarity distance between sequences P1 and P2 and we call
it the pattern matching distance between P1 and P2.

PATTERN(P1, P2) = min
x is a contiguous
subsequence of P2

EDIT(P1, x).

For a symbol a and an integer i we use ai to denote symbol a repeated i times.

Orthogonal Vectors Problem The Orthogonal Vectors Problem is defined as follows: given two
sets A,B ⊆ {0, 1}d such that |A| = |B| = N , determine whether there exists x ∈ A and y ∈ B such
that the dot product x · y =

∑d
j=1 xjyj (taken over reals) is equal to 0. An alternative formulation

of this problem is: given two collections of N sets each, determine if there is a set in the first
collection that does not intersect a set from the second collection.6

The Orthogonal Vectors Problem has an easy O(N2d)-time solution. However, it is known
that any algorithm for this problem with strongly sub-quadratic7 running time would also yield a
more efficient algorithm for CNF-SAT, breaking SETH [Wil05]. Thus, in what follows, we focus
on reducing the Orthogonal Vectors Problem to EDIT.

6Equivalently, after complementing sets from the second collection, determine if there is a set in the first collection
that is contained in a set from the second collection.

7“Strongly sub-quadratic” means dO(1) ·N2−δ for some constant δ > 0.
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Simplifying assumption We assume that in the Orthogonal Vectors Problem, for all vectors
b ∈ B, b1 = 1, that is, the first coordinate of any vector b ∈ B is equal to 1. We can make this
assumption w.l.o.g. because we can always add a 1 beginning of each b ∈ B, and add a 0 the
beginning of each a ∈ A.

3 Reductions

3.1 Vector gadgets

We now describe vector gadgets as well as provide some intuition behind the construction.
We will construct sequences over an alphabet Σ = {0, 1, 2, 3, 4}.
We start by defining an integer parameter l0 = 1000 · d, where d is the dimensionality of the

vectors in the Orthogonal Vectors Problem. We then define coordinate gadget sequences CG1 and
CG2 as follows. For integer x ∈ {0, 1} we define

CG1(x) :=

{

2l0 0 1 1 1 2l0 if x = 0;

2l0 0 0 0 1 2l0 if x = 1,

CG2(x) :=

{

2l0 0 0 1 1 2l0 if x = 0;

2l0 1 1 1 1 2l0 if x = 1.

The coordinate gadgets were designed so that they have the following properties. For any two
integers x1, x2 ∈ {0, 1},

EDIT(CG1(x1),CG2(x2)) =

{

1 if x1 · x2 = 0;

3 if x1 · x2 = 1.

Further, we define another parameter l1 = (1000 · d)2. We use Σ-style notation to denote the
concatenation of sequences. For example, given d sequences s1, . . . , sd, we denote the concatenation
s1 . . . sd by ©i∈[d]si. For vectors a, a

′, b ∈ {0, 1}d, we define the vector gadget sequences as

VG1(a, a
′) = Z1L(a)V0R(a′)Z2 and VG2(b) = V1D(b)V2,

where
V1 = V2 = V0 = 3l1 , Z1 = Z2 = 4l1 ,

L(a) = ©i∈[d]CG1(ai), R(a′) = ©i∈[d]CG1(a
′
i), D(b) = ©i∈[d]CG2(bi).

In what follows we skip the arguments of L, R and D. We denote the length of L, R and D by
l = |L| = |R| = |D| = d(4 + 2l0).

We visualize the defined vector gadgets in Figure 1.

Intuition behind the construction Before going into the analysis of the gadgets in Section
3.1.1, we will first provide some intuition behind the construction. Given three vectors a, a′, b ∈
{0, 1}d, we want that EDIT(VG1(a, a

′),VG2(b)) grows linearly in the minimum of a · b and a′ · b.
More precisely, we want that

EDIT(VG1(a, a
′),VG2(b)) = C + t ·min(a · b, a′ · b), (1)
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Z1 = 4l1

L = ©i∈[d]CG1(ai)

V0 = 3l1

R = ©i∈[d]CG1(a
′
i)

Z2 = 4l1

V1 = 3l1 V2 = 3l1

D = ©i∈[d]CG2(bi)

VG1(a, a
′)

VG2(b)

Figure 1: A visualisation of the vector gadgets. A black rectangle denotes a run of 3s, while a white rectangle denotes
a run of 4s. A gray rectangle denotes a sequence that contains 0s, 1s and 2s. A short rectangle denotes a sequence
of length l, while a long one denotes a sequence of length l1.

where integers C, t > 0 are functions of d only. In fact, we will have that t = 2. To realize this,
we construct our vector gadgets VG1 and VG2 such that there are only two possibilities to achieve
small edit distance. In the first case, the edit distance grows linearly in a · b. In the second case,
the edit distance grows linearly in a′ · b. Because the edit distance is equal to the minimum over all
possible alignments, we take the minimum of the two inner products. After taking the minimum,
the edit distance will satisfy the properties stated in (1). More precisely, we achieve the minimum
edit distance cost between VG1 and VG2 by following one of the following two possible sequences
of operations:

• Case 1: Delete Z1 and L. Substitute Z2 with V2. This costs C
′ := l1+d·(2l0+4)+l1. Transform

R and D into the same sequence by transforming the corresponding coordinate gadgets into
the same sequences. By the construction of the coordinate gadgets, the cost of this step is
d+2·(a′·b). Therefore, this case corresponds to edit distance cost C ′+d+2·(a′·b) = C+2·(a′·b).

• Case 2: Delete R and Z2. Substitute Z1 with V1. This costs C
′. Transform L and D into the

same sequence by transforming the corresponding coordinate gadgets. Similarly as before,
the cost of this step is d + 2 · (a · b). Therefore, this case corresponds to edit distance cost
C ′ + d+ 2 · (a · b) = C + 2 · (a · b).

Taking the minimum of these two cases yields the desired formula (1).
In the reduction given in Section 3.2, we ensure that the dot product a′ · b is always equal to 1.

As a result we have that EDIT(VG1(a),VG2(b)) is small (equal to C0) if the vectors a and b are
orthogonal, and is large (equal to C1) otherwise. That is:

EDIT(VG1(a),VG2(b)) =

{

C0 if a · b = 0

C1 otherwise
(2)

for C1 > C0. This property is crucial for our construction, as it guarantees that the sum of several
terms EDIT(VG1(a),VG2(b)) is smaller than some threshold if and only if a · b = 0 for at least
one pair of vectors a and b. This enables us to detect whether such a pair exists. In contrast, this
property would not hold if EDIT(VG1(a),VG2(b)) depended linearly on the value of a · b.
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3.1.1 Properties of the vector gadgets

Theorem 1. For any vectors a, a′, b ∈ {0, 1}d,

EDIT(VG1(a, a
′),VG2(b)) = 2l1 + l + d+ 2 ·min

(

a · b, a′ · b
)

.

Proof. Follows from lemmas 1 and 2 below.

Lemma 1. For any vectors a, a′, b ∈ {0, 1}d,

EDIT(VG1(a, a
′),VG2(b)) ≤ 2l1 + l + d+ 2 ·min

(

a · b, a′ · b
)

.

Proof. W.l.o.g., a · b ≤ a′ · b. We delete R and Z2 from VG1(a, a
′). This costs l1 + l. We transform

Z1LV0 into V1DV2 by using substitutions only. This costs l1 + d + 2 · (a · b). We get the upper
bound on the EDIT cost and this finishes the proof.

Lemma 2. For any vectors a, a′, b ∈ {0, 1}d,

EDIT(VG1(a, a
′),VG2(b)) ≥ 2l1 + l + d+ 2 ·min

(

a · b, a′ · b
)

=: X.

Proof. Consider an optimal transformation of VG1(a, a
′) and VG2(b) into the same sequence. Every

symbol (say s) in the first sequence is either substituted, preserved or deleted in the process. If
a symbol is not deleted but instead is preserved or substituted by another symbol (say t), we say
that s is aligned with t, or that s and t have an alignment.

We state the following fact without a proof.

Fact 1. Suppose we have two sequences x and y of symbols. Let i1 < j1 and i2 < j2 be four positive
integers. If xi1 is aligned with yj2, then xj1 cannot be aligned with yi2 .

From now on we proceed by considering three cases.
Case 1. The subsequence D has alignments with both Z1L and RZ2. In this case, the cost

induced by symbols from Z1 and Z2, and V0 is l1 for each one of these sequences because the
symbols must be deleted or substituted. This implies that EDIT(VG1(a),VG2(b)) ≥ 3l1, which
contradicts an easy upper bound. We have an upper bound EDIT(VG1(a),VG2(b)) ≤ 2l1 + 3l,
which is obtained by deleting L, R, D, Z1 and replacing Z2 with V2 symbol by symbol. Remember
that l0 = 1000 · d and l1 = (1000 · d)2, and l = d(4 + l0). Thus, l1 ≥ 3l and the lower bounds
contradicts the upper bound. Therefore, this case cannot occur.

Case 2. D does not have any alignments with Z1L. We will show that, if this case happens,
then

EDIT(VG1(a, a
′),VG2(b)) ≥ 2l1 + l + d+ 2 ·

(

a′ · b
)

.

We start by introducing the following notion. Let v and z be two sequences that decompose
as v = xV and z = yZ. Consider two sequences T and R of deletions and substitutions that
transform v into u and z into u, respectively. An operation in T or R is called internal to V and
Z if it is either a (1) deletion of a symbol in V or Z, or (2) a substitution of a symbol in V so that
it aligns with a symbol in Z, or vice versa. All other operations, including substitutions that align
with symbols in V (Z, resp.) to those outside of Z (V , resp.) are called external to V and Z.

We state the following fact without a proof.
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Fact 2. Let xV and yZ be sequences such that V = 4t, Z = 3t and x and y are arbitrary sequences
over an arbitrary alphabet not including 3 or 4. Consider EDIT(xV, yZ) and the corresponding
operations minimizing the distance. Among those operations, the number of operations that are
internal to V and Z is at least t.

Given that |Z2| = |V2| = l1 and Z2 consists only of 4s and V2 consists of only 3s, Fact 2 implies
that the number of operations that are internal to Z2 and V2 is at least S1 := l1.

Because D does not have any alignments with Z1L, we must have that every symbol in Z1L gets
deleted or substituted. Thus, the total contribution from symbols in Z1L to an optimal alignment
is S2 := |Z1L| = l1 + l. Now we will lower bound the contribution to an optimal alignment from
symbols in sequences R and D. First, observe that both R and D have d runs of 1s. We consider
the following two sub-cases.

Case 2.1. There exist i, j ∈ [d] with i 6= j such that the ith run in D has alignments with the
jth run in R. The number of symbols of type 2 to the right of the ith run in D and the number
of symbols of type 2 to the right of the jth run in R differ by at least 2l0. Therefore, the induced
EDIT cost of symbols of type 2 in R and D is at least 2l0 ≥ d + 2 · (a′ · b) =: S3, from which we
conclude that

EDIT(VG1(a, a
′),VG2(b)) ≥ S1 + S2 + S3

= l1 + (l1 + l) +
(

d+ 2 ·
(

a′ · b
))

= X.

In the inequality we used the fact that the contributions from S1, S2 and S3 are disjoint. This
follows from the definitions of the quantities. More precisely, contribution from S1 comes from
operations that are internal to V2 and Z2. Thus, it remains to show that the contributions from S2

and S3 are disjoint. This follows from the fact that the contribution from S2 comes from symbols
Z1L and the assumption that D does not have any alignments with Z1L.

Case 2.2. (The complement of Case 2.1.) Consider any i ∈ [d]. If a symbol of type 1 from the
ith run in D is aligned with a symbol of type 1 in R, then the symbol of type 1 comes from the ith
run in R. Define the set P as the set of all numbers i ∈ [d] such that the ith run of 1s in D has
alignment with the ith run of 1s in R.

For all i ∈ P , the ith run in R aligns with the ith run in D. By the construction of coordinate
gadgets, the ith run in R and D incur EDIT cost ≥ 1 + 2a′ibi.

For all i 6∈ P , the ith run in D incurs EDIT cost at least 2 (since there are at least two symbols
of type 1). Similarly, the ith run in R incurs EDIT cost at least 1 (since there is at least one symbol
of type 1). Therefore, for every i 6∈ P , the ith run in R and D incur EDIT cost ≥ 1+2 ≥ 1+2a′ibi.

We get that the total contribution to the EDIT cost from the d runs in D and the d runs in R
is

∑

i∈P

(

1 + 2a′ibi
)

+
∑

i∈[d]\P

3 ≥
d

∑

i=1

(

1 + 2a′ibi
)

= d+ 2 ·
(

a′ · b
)

=: S4.

We conclude:

EDIT(VG1(a, a
′),VG2(b)) ≥ S1 + S2 + S4

= l1 + (l1 + l) +
(

d+ 2 ·
(

a′ · b
))

= X.

We used the fact that the contributions from S1, S2 and S4 are disjoint. The argument is
analogous as in the previous case.
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Case 3. The symbols of D are not aligned with any symbols in RZ2. If this case happens, then

EDIT(VG1(a, a
′),VG2(b)) ≥ 2l1 + l + d+ 2 · (a · b) .

The analysis of this case is analogous to the analysis of Case 2. More concretely, for any sequence
x, define reverse(x) to be the sequence y of length |x| such that yi = x|x|+1−i for all i = 1, 2, . . . , |x|.
Now we repeat the proof in Case 2 but for

EDIT(reverse(VG1(a, a
′)), reverse(VG2(b))).

This yields exactly the lower bound that we need.
The proof of the lemma follows. We showed that Case 1 cannot happen. By combining lower

bounds corresponding to Cases 2 and 3, we get the lower bound stated in the lemma.

We set a′ := 1 0d−1, that is, a′ is a binary vector of length d such that a′1 = 1 and a′i = 0 for
i = 2, . . . , d. We define

V G1(a) := V G1(a, a
′).

Theorem 2. Let a ∈ {0, 1}d be any binary vector and b ∈ {0, 1}d be any binary vector that starts
with 1, that is, b1 = 1. Then,

EDIT(VG1(a),VG2(b)) =

{

Es := 2l1 + l + d if a · b = 0;

Eu := 2l1 + l + d+ 2 if a · b ≥ 1.

Proof. Follows from Theorem 1 by setting a′ = 10d−1 and observing that a′ · b = 1 because
b1 = 1.

3.2 Reducing the Orthogonal Vectors Problem to PATTERN

We proceed by concatenating vector gadgets into sequences.
We note that the length of the vector gadgets produced by VG1 depends on the dimensionality

d of the vectors but not on the entries of the vectors. The same is true about VG2. We set t
to be the maximum of the two lengths. Furthermore, we set T = 1000d · t = Θ(d3). We define
VG′

k(a) = 5TVGk(a)5
T for k ∈ {1, 2}. Let f = 1d be a vector consisting of d entries equal to 1.

Let A and B be sets from the Orthogonal Vectors instance. We assume that |A| = |B|.
We define sequences

P1 = ©a∈AVG
′
1(a),

P2 =
(

©
|A|−1
i=1 VG′

2(f)
)

(

©b∈BVG
′
2(b)

)

(

©
|A|−1
i=1 VG′

2(f)
)

.

Theorem 3. Let X := |A| ·Eu. If there are two orthogonal vectors, one from set A, another from
set B, then PATTERN(P1, P2) ≤ X − (Eu − Es); otherwise we have PATTERN(P1, P2) = X.

Proof. Follows from Lemmas 3 and 4 below.

Lemma 3. If there are two orthogonal vectors, one from A, another from B, then

PATTERN(P1, P2) ≤ X − (Eu − Es) = X − 2.

8



Proof. Let a ∈ A and b ∈ B be vectors such that a · b = 0.
We can choose a contiguous subsequence s of P2 consisting of a sequence of |A| vector gadgets

VG′
2 such that s has the following property: transforming the vector gadgets VG′

1 from P1 and
their corresponding vector gadgets VG′

2 from s into the same sequence one by one as per Theorem
2, we achieve a cost smaller than the upper bound. We use the fact that at least one transformation
is cheap because a · b = 0 and we choose s so that VG′

1(a) and VG′
2(b) get transformed into the

same sequence.

Lemma 4. If there are no two orthogonal vectors, one from A, another from B, then

PATTERN(P1, P2) = X.

Proof. Consider a graph (X1 ∪X2, E) with vertices x1(a) ∈ X1, a ∈ A, x2(b) ∈ X2, b ∈ B. We also
add 2|A|−2 copies of x2(f) to set X2 corresponding to 2|A|−2 vectors f in sequence P2. Consider
an optimal transformation of P1 and a subsequence of P2 into the same sequence according to
Definition 1. We connect two vertices x1(a) and x2(b) if and only if VG1(a) and VG2(b) have an
alignment in the transformation.

We want to claim that every vector gadget VG1(a) from P1 contributes a cost of at least
Eu to the final cost of PATTERN(P1, P2). This will give PATTERN(P1, P2) ≥ X. We consider
the connected components of the graph. We will show that a connected component that has
r ≥ 1 vertices from X1, contributes ≥ r · Eu to the final cost of PATTERN(P1, P2). From the
case analysis below we will see that these contributions for different connected components are
separate. Therefore, by summing up the contributions for all the connected components, we get
PATTERN(P1, P2) ≥ |A| ·Eu = X.

Consider a connected component of the graph with at least one vertex from X1. We examine
several cases.

Case 1. The connected component has only one vertex from X1. Let x1(a) be the vertex.
Case 1.1. x1(a) is connected to more than one vertex. In this case, VG1(a) induces a cost of

at least 2T > Eu (this cost is induced by symbols of type 5).
Case 1.2. x1(a) (corresponding to vector gadget VG1(a)) is connected to only one vertex x2(b)

(corresponding to vector gadget VG2(b)). Let x be a contiguous substring of P2 that achieves the
minimum of EDIT(P1, x) (see Definition 1).

Case 1.2.1. The vector gadget VG2(b) is fully contained in the substring x. We claim that the
contribution from symbols in the sequences VG1(a) and VG2(b) is at least EDIT(VG1(a),VG2(b)).
This is sufficient because we know that EDIT(VG1(a),VG2(b)) ≥ Eu from Theorem 2. If no
symbol in VG1(a) or VG2(b) is aligned with a symbol of type 5, the claim follows directly by
applying Theorem 2. Otherwise, every symbol that is aligned with a symbol of type 5 contributes
cost 1 to the final cost. The contribution from symbols in the sequences VG1(a) and VG2(b) is at
least EDIT(VG1(a),VG2(b)) because we can transform the sequences VG1(a) and VG2(b) into the
same sequence by first deleting the symbols that are aligned with symbols of type 5 (every such
alignment contributes cost 1) and then transforming the remainders of the sequences VG1(a) and
VG2(b) into the same sequence.

Case 1.2.2. The complement of Case 1.2.1. We need to consider this case because of the
following reason. We could potentially achieve a contribution of VG1(a) to PATTERN(P1, P2) that
is smaller than Eu by transforming VG1(a) and a contiguous substring of VG2(b) into the same
string (instead of transforming VG1(a) and VG2(b) into the same string). In the next paragraph
we show that his cannot happen.
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VG2(b) shares symbols with x and is not fully contained in x. VG2(b) must be the left-most
(right-most, resp.) vector gadget in x but then T left-most (right-most, resp.) symbols of type 5
of VG′

1(a) induce a cost of at least T > Eu since the symbols of type 5 cannot be preserved and
must be substituted or deleted.

Case 1.3. x1(a) is connected to no vertex. We get that VG1(a) induces cost of at least
|VG1(a)| > Eu.

Case 2. The connected component has r > 1 vertices x1(a) from X1. In this case, the cost
induced by the vector gadgets VG1(a) corresponding to the vertices from X1 in the connected
component is at least (r − 1) · 2T > r · Eu (this cost is induced by symbols of type 2).

This finishes the argument that PATTERN(P1, P2) ≥ X.
It remains to argue that we can achieve cost X (to show that PATTERN(P1, P2) ≤ X) and it

can be done as in Lemma 3.

3.3 Reducing PATTERN to EDIT

We set P ′
2 := P2 and P ′

1 := 6|P
′
2|P16

|P ′
2|. Remember that |A| = |B|.

Theorem 4. Let Y := 2·|P ′
2|+|A|·Eu. If there are no two orthogonal vectors, then EDIT(P ′

1, P
′
2) =

Y ; otherwise EDIT(P ′
1, P

′
2) ≤ Y − (Eu −Es) = Y − 2.

Proof. Follows from Lemmas 5 and 6 below.

Lemma 5. If there are two orthogonal vectors, then

EDIT(P ′
1, P

′
2) ≤ Y − (Eu − Es) = Y − 2.

Proof. We transform P1 and a subsequence of P ′
2 into the same sequence as in Lemma 3. We replace

the remaining prefix and suffix of P ′
2 with symbols of type 6 and delete the excess of symbols of

type 6 from P ′
1.

Lemma 6. If there are no two orthogonal vectors, then

EDIT(P ′
1, P

′
2) = Y.

Proof. We can easily check that EDIT(P ′
1, P

′
2) ≤ Y as in Lemma 5. It remains to prove the opposite

inequality.
P ′
1 contains 2|P ′

2| symbols of type 6. Those will incur a cost of at least 2|P ′
2|. P ′

1 has the
remaining subsequence P1, which will incur cost at least PATTERN(P1, P

′
2). Using Lemma 4, we

finish the proof.

As a result, we get the following theorem.

Theorem 5. If EDIT can be computed in time O(n2−δ) for some δ > 0 on two sequences of
length n over an alphabet of size 7, then the Orthogonal Vectors Problem with |A| = |B| = N and
A,B ⊆ {0, 1}d can be solved in time dO(1) ·N2−δ.

Proof. The proof follows immediately from Theorem 4.
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