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CAUTION, DRIVERS! CHILDREN PRESENT: TRAFFIC, POLLUTION,
AND INFANT HEALTH

Christopher R. Knittel, Douglas L. Miller, and Nicholas J. Sanders*

Abstract—We investigate the effects of automobile congestion on ambi-
ent air pollution and local infant mortality rates using data from California
spanning 2002 to 2007. Constructing instrumental variables (IV) using the
relationship of traffic, weather conditions, and pollutants, we show that par-
ticulate matter, even at modern levels, has large marginal effects on weekly
infant mortality rates, especially for premature or low birthweight infants.
We also find suggestive evidence of large effects for carbon monoxide,
though results are imprecise. Finally, we check estimate sensitivity to non-
classical measurement error in local pollution and show that our IV results
are robust to such concerns.

I. Introduction

LOCAL air pollution levels decreased dramatically after
the passage of the Clean Air Act and its various amend-

ments, which placed strict limits on the concentrations of
criteria pollutants.1 The Clean Air Act Amendments of
1990 (CAAA) helped decrease the concentration of carbon
monoxide (CO) by 75% and particulate matter 10 micro-
meters or smaller (PM10) by 39% from 1990 to 2012.2
These reductions have been financially costly. The Environ-
mental Protection Agency (EPA) estimates the compliance
costs of the CAAA to be $19 billion annually in 2000,
increasing to $27 billion by 2010.3 Over half of these
costs are due to the CAAA’s National Ambient Air Qual-
ity Standards, regulating point and area sources. Regulation
of mobile sources accounts for an additional 30%.4

We study pollution from mobile sources, investigating the
relationship of traffic, pollution, and mortality rates among
infants in the state of California. In doing so, we provide the
first large-scale study of how road traffic affects local health,
with a focus on how regional traffic affects infant mortality
rates. We find that higher levels of automobile traffic increase
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1 The term criteria pollutants refers to six commonly found air pollutants
regulated by developing health-based or environmentally based criteria for
allowable levels. The pollutants are particular matter, ground-level ozone,
carbon monoxide, sulfur oxides, nitrogen oxides, and lead.

2 From http://www.epa.gov/air/airtrends/.
3 Benefits from air quality improvements are more difficult to measure.

Estimates often rely on correlations between pollution levels and health out-
comes that may not reflect causal relationships. The EPA (1999) estimates
a wide range for the potential benefits in 2000—from a low of $16 billion to
a high of $140 billion (available at http://www.epa.gov/air/sect812/). This
range reflects uncertainty with respect to how specific sources affect air
quality and how increasing air quality improves health outcomes.

4 Available at http://www.epa.gov/air/sect812/.

infant mortality and explore the heterogeneity of effects by
distance from sources, local weather conditions, and affected
subgroups. Effects of traffic on mortality are largely local
and, consistent with atmospheric chemistry, greater during
periods of lower temperature or higher humidity. We find
mortality effects are concentrated among more marginalized
infants: those who are premature or of low birthweight. We
then investigate the direct role of pollution on infant mortal-
ity, using interactions between mobile source emissions and
local weather conditions as a source of exogenous variation
in pollution in an instrumental variables (IV) setting.

As part of our analysis, we consider how local weather
conditions influence pollution levels that similar levels of
traffic generate. This interaction between traffic levels and
weather conditions is the basis for our instrumental variables
analysis of the effect of both PM10 and CO on weekly infant
mortality.5 We gain two valuable benefits of identification by
using interactions between weather and traffic as our over-
all drivers of shifts in local pollution. First, while long-term
traffic patterns may correlate with other health-related fac-
tors (e.g., economic development) in ways for which our
various fixed effects do not control, weekly weather condi-
tions are uncorrelated with these factors over time. Second,
we can simultaneously estimate the effects of both CO and
PM10 using changes in traffic, where different weather con-
ditions result in different pollution levels by pollutant. We
find PM10 has a statistically and economically significant
impact on weekly infant mortality—a 1 unit decrease in
PM10 saves roughly 10 lives per 100,000 live births, an
elasticity of approximately 1. We also find large (though
statistically insignificant) negative health effects of CO.

Our work builds on Currie and Neidell (2005, hereafter
CN), who examine how California’s reductions in carbon
monoxide, particulate matter, and ozone during the 1990s
reduced weekly infant mortality rates. As an extension, we
formally consider the potential role of nonclassical measure-
ment error in assigning local pollution levels and through a
Monte Carlo exercise show our IV estimates are robust to
such concerns. We also expand on Currie and Walker (2011),
who consider reductions in traffic from installation of high-
speed toll stations and decreased infant mortality close to
toll booths, though with little information on pollution or
geographic variation. A major benefit of our analysis is the
ability to more directly link traffic to mortality and pollu-
tion, as well as expanding the traffic–mortality relationship
beyond regions close to toll zones.

5 Knittel, Miller, and Sanders (2011) include ozone as an additional pollu-
tant. We find no consistently economically or statistically significant results.
As ozone is a secondary pollutant and not directly created by automobile
pollution, here we focus on CO and PM10.
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We contribute to the growing literature demonstrating the
use of applied microeconometric techniques in questions of
environmental quality and health. Recent examples of such
work include the effect of air pollution on infant mortal-
ity and birth outcomes (Chay & Greenstone, 2003a, 2003b;
Currie & Neidell, 2005; Currie, Neidell, & Schmieder, 2009;
Currie & Walker, 2011; Sanders & Stoecker, 2015); con-
temporaneous health factors (Chay, Dobkin, & Greenstone,
2003; Neidell, 2004; Currie et al., 2009; Lleras-Muney,
2010; Moretti & Neidell, 2011); and life cycle outcomes
(Sanders, 2012). Research on other pollution effects includes
climate change (Deschênes & Greenstone, 2007, 2011;
Deschênes, Greenstone, & Guryan, 2009; Stoecker, 2010),
environmental toxins (Reyes, 2007; Currie & Schmieder,
2009), and radiation (Almond, Edlund & Palme, 2009).
Ours is the first panel fixed-effects analysis of the effect
of traffic on both ambient pollution and health based on
weather conditions. Prior studies of the link between auto
emissions and pollution are in laboratory environments or
specific limited regions using small numbers of computer-
monitored automobiles or roadside emission sensors over a
limited driving range (see Bishop and Stedman, 1996; Tiao
& Hillmer, 1978).6 While such studies are informative, there
remain large gains to understanding the effects of traffic in
a real-world setting.

Section II describes our data sources and data set construc-
tion. Section III summarizes the chemistry of driving and air
pollution, the physiology of air pollution and infant health,
the relevant transportation literature on traffic measurement,
and the relevant economics literatures on traffic externali-
ties and air pollution’s impacts on infant health. Section IV
outlines our empirical methodology, section V presents our
main results, explores potentially nonclassical measurement
error in pollution assignment, and demonstrates the robust-
ness of our IV results to such concerns. Section VI offers
concluding remarks.

II. Data

We perform all analysis at the postal code–week level and
aggregate data from each source accordingly.7

A. Pollution and Weather Data

We obtain pollution data from the California Air
Resources Board (CARB) website.8 The data contain daily
pollution measures for carbon monoxide and particulate mat-
ter smaller than 10 micrometers. CO is a maximum daily
8-hour values, expressed in parts per million. PM10 data are
24-hour averages measured once every six days, expressed

6 Currie and Walker (2011) consider the impact of EZ-Pass toll booth
modification on health, however, they have little direct information on traffic
flows and pollution.

7 Ideally, we would like to use richer spatial data to identify mothers’
proximity to roadways, but the state of California does not provide infant
birth and mortality data with more specific geographic region information.

8 http://www.arb.ca.gov/aqd/aqdcd/aqdcddld.htm.

in micrograms per cubic meter of air. We calculate weekly
averages of daily values and, to obtain a postal code–level
measure, calculate the distance between the postal code geo-
graphic centroid and each monitor station based on latitude
and longitude location information. We then weight each sta-
tion by 1 over its distance from the centroid using monitors
within 20 miles of a centroid. This introduces a potential
source of measurement error in assignment of local pollu-
tion. We formally investigate this issue using simulation of
autocorrelated measurement error in section VF.

Weather data are from the National Climatic Data Cen-
ter Global Surface Summary of the Day. We use continuous
measures on inches of rainfall, maximum daily temperature,
average daily windspeed, and specific humidity and further
control for counts of days within the week in which there was
rain or fog.9 To calculate a postal code–level weather vari-
able, in the case of continuous variables we use the weighting
method discussed above, using weather stations within 20
miles of a postal code centroid.10 In the case of count data
of rainy or foggy days, we use the local maximum of nearby
monitors.

B. Traffic Data

Data on traffic come from the Freeway Performance Man-
agement System (PeMS), maintained by the University of
California, Berkeley Department of Electrical Engineering
and Computer Sciences.11 Using sensors (called “loops”)
buried beneath freeway lanes, the PeMS records data includ-
ing average speed and total flow of cars. Measurements occur
every 30 seconds, and the PeMS computer system aggre-
gates data to longer periods. Traffic data are available from
1999 onward, though many regions were not continuously
available until 2002, leading to our chosen time period of
analysis. We focus on regions of California for which there
is the greatest number of continuously monitored traffic data:
the Sacramento Valley, the Bay Area, and the Los Angeles
Basin area (regions 3, 4, 7, 11, and 12 in the PeMS data).

We construct our measure of traffic based on two PeMS
data items: total flow of cars and length of sensor region.
Our preferred metric for traffic approximates average traffic
per section of road. Total flow of cars is the count of all cars
that pass over a section of road within a time frame. Sen-
sors represent sections of road, and each sensor (or “loop”)
is assigned a “length” of relevant road about which it pro-
vides information. PeMS measures this length by (a) taking
the midpoint between a sensor and the next sensor after it,

9 We do not make spatial adjustments for the issue of wind direction, which
may introduce noise into our first stage. Assuming this noise is random
(i.e., wind direction is not associated with factors that drive traffic), the
error should not affect the consistency of our IV estimates. Schlenker and
Walker (2014) formally consider the role of wind direction in the dispersion
of CO pollution from airports.

10 The Global Surface Summary does not report specific humidity, which
is the most relevant for mortality. We calculate specific humidity using
dewpoint and air pressure as discussed in Barreca (2008).

11 https://pems.eecs.berkeley.edu.
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Table 1.—Means and Standard Deviations for Pollution and Weather Variables

Maximum Days Days
CO PM10 Rain Temperature Windspeed Humidity with Rain with Fog

2002 1.23 31.63 0.02 72.91 5.53 7.76 1.03 2.87
2003 1.16 29.32 0.03 73.81 5.27 8.25 1.32 2.57
2004 1.01 28.96 0.03 73.56 5.40 7.96 1.15 0.66
2005 0.94 26.09 0.05 73.20 5.21 7.90 1.50 2.90
2006 0.90 28.73 0.03 73.21 5.08 7.65 1.57 0.75
2007 0.81 28.93 0.02 72.99 5.11 7.19 1.12 0.62
Total 1.01 28.94 0.03 73.28 5.27 7.79 1.28 1.73
Overall SD 0.57 14.94 0.08 9.31 1.97 2.12 1.54 2.07
Within SD 0.52 12.89 0.08 8.80 1.36 2.03 1.53 1.96
Between SD 0.23 7.65 0.01 3.04 1.42 0.63 0.23 0.69

Cells report unweighted averages of each variable over postal code–week observations within each year. The geographic coverage is the 719 postal codes used in our full analysis, primarily covering the Sacramento
Valley and Southern California. Units for CO are parts per million, and units for PM10 are micrograms per cubic meter of air. Units for rainfall are average inches per day. Unit for wind is average wind speed in
miles per hour. Unit for humidity is (100 times) the ratio of water vapor to dry air in air space. Units for days with rain and days with fog range from 0 to 7 per week. “Overall SD” is standard deviation across all
postal code–week observations. “Within SD” is the standard deviation after absorbing postal code fixed effects. “Between SD” is the standard deviation of the postal code fixed effects. Authors’ calculations from EPA
and NOAA data. See section II for further details.

(b) taking the midpoint between a sensor and the last sen-
sor before it, and (c) measuring the distance between these
two midpoints. In the case of no additional sensors in one
(or both) direction(s), PeMS assigns a maximum distance of
2.5 miles per direction. We multiply by this length to get
the traffic density per section of road.12 Our preferred traffic
measure is effectively local car miles driven:

Carmiles = Total Flow per Sensor Length

× Sensor Length. (1)

As an example, consider a loop with a reading of 6,000
cars per hour, with a loop length of 2 miles. If the loop
“represents” 2 miles of road, we multiply those 6,000 cars
by 2 to illustrate that traffic was 6,000 cars driving for 2
miles. We do this to help continuity in traffic measures across
regions with more versus fewer sensors for the same length
of road. To obtain a weekly value, we sum hourly values
over the week.13

To calculate a postal code–level traffic measure, we use
traffic sensors up to 20 miles from a postal code centroid. We
first consider the role of traffic in both local health and pol-
lution, allowing different marginal impacts of traffic across
5-mile intervals.14 Based on observed relationships between
distance and the marginal effect of additional traffic, we
then simplify to a single traffic measure by weighting traffic
flows in terms of equivalent traffic flow directly at the postal
code centroid.15 We define an individual postal code traffic
measure using sensors s = 1, . . . , n in week w as

12 We use a balanced panel of available loops across time for consistently
of measurement. As PeMS brings more loops online, the “length” of an
older sensor loop can change. For consistency, we use the initial sensor
length in building our traffic variable.

13 Knittel et al. (2011) further control for average speed. However, aver-
age speed from single-loop detectors (the most commonly used) requires
estimation that is highly variable and, when compared to more accurate
double-loop detectors, often incorrect. As such, we now omit speed controls.
For details on the use of speed calculations in PeMS data, see http://robotics
.eecs.berkeley.edu/˜varaiya/papers_ps.dir/gfactoritsc.pdf.

14 Given our focus on the role of traffic in health, we omit regions with no
measured traffic activity (though results are robust to their inclusion).

15 Unlike weighting with pollution and weather, weights here do not reflect
a measure of accuracy. In the case of pollution and weather information,
sensors represent a sample of ambient conditions near a particular location,

Trafficz,w =
n∑

s=1

Carmiless,w × weight. (2)

We begin with an agnostic view on the distance weights
and use our distance analysis of the first stage to construct
a weighting scheme. Given the high traffic volumes in our
regions of study, our measure of numbers is large: the mean
level of unweighted carmiles within 20 miles is 83 million.
To make summary statistics and coefficients more easily
readable, we divide all weekly totals by 10 million. Table
1 shows means across time and standard deviations for all
weather, traffic, and pollution variables. Columns 1 through
4 of table 2 show means and standard deviations for traffic
variables with no distance weighting.

PeMS data and imputation. PeMS constantly checks
detector loops for problems with reported data, which could
mean either missing data or incorrectly reported data. Such
data problems are quite common. In any given 24-hour
period, a sensor could report a total of 2,880 samples, while
the actual daily sampling rate is often 50% to 90% of daily
potential.16 In the case of missing or faulty data, PeMS uses
imputation techniques to adjust for the missing information.

Imputation techniques vary based on the amount of
replacement needed. In the case of few missing data, PeMS
uses linear regression from nearby neighbor loops, such as
a loop in another lane on the same freeway, or upstream
or downstream of the current loop. If certain loop regions
require imputation for longer periods, PeMS uses predictions
from similar loops using regression models over a larger geo-
graphic area. When no nearby monitors are available, PeMS
uses temporal medians from past days at the same time to

and each additional reading is more information regarding the true level.
The closer the measurement is to that location, the more accurately we
expect it to reflect the true measure, and thus we apply greater weight to
that information. With traffic, more loop miles mean more traffic, not just
more information on the true traffic level.

16 From PeMS Data Extraction Methodology and Execution Technical
Memorandum for the Southern California Association of Governments,
prepared June 2006 by Urban Crossroads, http://web.scag.ca.gov/modeling
/pdf/Pems_Technical_Memorandum_Final.pdf.
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Table 2.—Means and Standard Deviations for Traffic Variables

Weekly Car-Miles

0–5 Miles 5–10 Miles 10–15 Miles 15–20 Miles 0–15 Miles

2002 0.91 2.06 2.67 2.75 1.32
2003 0.90 2.04 2.66 2.74 1.31
2004 0.93 2.09 2.72 2.80 1.34
2005 0.91 2.04 2.66 2.73 1.31
2006 0.91 2.06 2.68 2.74 1.32
2007 0.92 2.07 2.70 2.76 1.33
Total 0.91 2.06 2.68 2.75 1.32
Overall SD 0.91 1.79 2.10 2.16 1.07
Within SD 0.05 0.10 0.12 0.40 0.06
Between SD 0.91 1.79 2.09 2.12 1.07

5 miles 10 miles 15 miles 20 miles
Avgerage loops in distance 22 52 69 71
Postal codes with traffic at distance 594 647 681 713

Cells report unweighted averages of each variable over postal code–week observations within each year. The geographic coverage is the 719 postal codes used in our full analysis, primarily covering the Sacramento
Valley and Southern California. Units for traffic are in total flow of cars (10 million) times length of loop and approximate car-miles traveled within the noted distance. “Overall SD” is standard deviation across all
postal code–week observations. “Within SD” is the standard deviation after absorbing postal code fixed effects. “Between SD” is the standard deviation of the postal code fixed effects. Authors’ calculations from PeMS
data. Average number of loops displays the average traffic loops within a particular distance from a postal code centroid. Postal codes with nonzero traffic shows how many postal codes have at least one loop within
the specified distance range. See section II for further details.

estimate expected data for the particular loop. Finally, in
the case of long-term failure of a monitor, PeMS may use
temporal medians from nearby loops.

How the PeMS imputation influences our estimates
depends on the nature of loop failures. If imputations result in
higher or lower than correct measures in a manner unchang-
ing with time or changing seasonally, regional month fixed
effects remove this source of bias (this would be the case,
for example, if a region had sensors that were continuously
imputed across our entire period). If failures and required
imputations are random, this introduces an additional source
of noise that will bias both reduced-form estimates and
first-stage estimates toward 0. Potentially problematic is if
failures correspond to unusual traffic events—for example,
higher or lower traffic flows than usual cause loops to provide
a higher percentage of incorrect readings. Even so, if which
loops have these problems is random, local imputation data
based on neighboring lanes and upstream or downstream
loops are likely good proxies for true traffic measurements,
especially when considering count data on the total num-
ber of cars (which is unlikely to vary drastically across
lanes).

Finally, extreme traffic events such as accidents or road
closures causing entire sections to result in faulty data
mean PeMS would use district-level measures to impute
larger sections of localized data. True zero traffic counts
viewed as errors means imputation using regional traffic
estimates would place nonzero counts. This would artifi-
cially decrease the variation in our traffic data. If a loop
cluster had unusually high counts that shut down loops or
PeMS replaced with regional data, imputation will again
mute the signal, making results we find underestimates of
true effects.

C. Birth Data

Birth data are from the California Department of Public
Health Birth Cohort files, where the department links birth

and death files if an infant dies within 52 weeks of birth. This
allows us to link any infant who dies within the first year of
life to his or her birth outcomes and maternal information.
We limit our sample to infants with a gestation period of at
least 26 weeks (the beginning of the third trimester), which
allows us to assign a trimester-level pollution exposure to
every infant for all three trimesters.17 We then convert all
birth and death dates to the weekly postal code level. Aside
from providing the time of birth and death and the birth
mother’s postal code of residence, the Birth Cohort files
also provide us with various controls to use in the analysis.
These include mother’s race, education, and age; potentially
confounding birth outcomes (low birthweight and prema-
ture birth); public insurance coverage; birth order; infant
sex; and, in the case of those who died, the age in weeks at
death. Table 3 shows means for variables of infants covered
in postal codes in our analysis.

III. The Relationships between Traffic, Weather, and
Ambient Pollution

A. Traffic and Pollution

Research ties both CO and PM10 to automobile traffic.
Up to 90% of all CO in the United States comes from
automobile fuel combustion, and automobiles increase PM
levels through multiple processes.18 Fuel combustion results
in tailpipe emissions of particulates (e.g., formation of nitro-
gen oxides, volatile organic compounds, and, in the case
of diesel engines, diesel soot), a large portion of which
are small scale and especially damaging to health. Traffic
also generates particulates through the physical act of fric-
tion resulting from wheel-to-road contact, brake, tire, and

17 We drop infants with gestation lengths greater than 42 weeks, as doc-
tors are likely to induce labor by this period and such values are probably
reporting or coding errors. Due to the use of traffic as our instrument for
pollution, we drop all deaths caused specifically by auto trauma.

18 http://www.epa.gov/oms/consumer/03-co.pdf.
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Table 3.—Means for Infant Data

Male 0.513
African American 0.059
Asian 0.101
Hispanic 0.492
Other race 0.070
Mother is HS graduate 0.722
Mother is college graduate 0.293
Twins 0.030
Triplets or more 0.002
Mother age 19–25 0.274
Mother age 26–30 0.269
Mother age 31–35 0.261
Mother age > 35 0.152
Medicaid 0.401
Care first trimester 0.903
Low birthweight 0.064
Premature 0.044

Year Annual Mortality Rates

2002 0.00282
(0.0530)

2003 0.00280
(0.0528)

2004 0.00276
(0.0525)

2005 0.00285
(0.0534)

2006 0.00281
(0.0530)

Total 0.00281
(0.0529)

Cells report unweighted averages of individual birth-level data. Death is an indicator variable, with
means reported as deaths per 1,000 births. All other variables are indicator variables with means reported
as proportions. These primarily cover the Sacramento Valley and Southern California. Authors’ calculations
from California linked Birth-Death Vital Statistics records. See section II for further details.

gear wear.19 Given the link between combustion engines and
the pollutants considered in this analysis, we anticipate that
automobile use and traffic levels affect ambient air pollu-
tion through three main channels. First and most obvious is
that a greater number of cars on the freeway at any given
time results in more fuel burned and more tires on the road.
Second, traffic congestion can increase the amount of pol-
lution each individual car creates. Efficiency of automobile
combustion is directly related to average travel speed and
continuity of driving (Davis & Diegel, 2007), and engines
have an optimal revolutions per minute (RPM) range in
which they obtain the maximum amount of power for any
given amount of fuel. Stop-and-go traffic means fluctuations
in the engine revolutions per minute and less time within
the optimal RPM range.20 This also means greater amounts
of PM10 generated through additional brake and gear wear.
Finally, traffic congestion can decrease the average speed
of each vehicle on the road. At a given RPM (and engine
efficiency), a slower speed implies more time on the road

19 Automobiles emit pollutants beyond those we observe here. For exam-
ple, automobile fuel combustion creates carbon dioxide, volatile organic
compounds (which contribute to both particulate matter and ozone for-
mation), nitrogen oxides (also related to ozone), and benzene. These
pollutants may impact mortality, and due to likely correlation with our
measured pollutants, effects may be picked up by one of the two pollu-
tions for which we control. We interpret our results with this caveat in
mind.

20 RPM variation is also a major factor determining the difference between
automobile fuel efficiency in freeway versus city driving.

to travel the same distance, and thus more fuel burned (and
emissions created) for each mile traveled.21

B. Pollution, Weather, and Mortality

As a source of identification, we take advantage of
the different impacts of traffic on pollution given local
weather conditions. For example, particulate matter and car-
bon monoxide levels are often higher under temperature
inversion, an atmospheric condition caused by differences
in upper- and ground-level air temperatures which Arceo-
Gomez, Hanna and Oliva (forthcoming) use as a shock to
local pollution levels.22 Inversion is particularly problematic
in valley areas, as surrounding mountains serve as contain-
ment for the inversion weather system, making it even harder
for the air to circulate; during the summer, daily inversions
are common in California. Humidity, wind, and rain also
influence pollution levels. CO has an oxidation rate that
changes with humidity (Lee et al., 1995), and high humid-
ity conditions favor some chemical reactions that create
particulate matter.23 Higher wind speeds can disperse pollu-
tants or increase atmospheric chemical reactions, while rain
can decrease both gaseous pollutants and particulate matter
through a combination of absorption and water entrapment
(for a theoretical analysis of this issue, as well as a discussion
of empirical findings, see Shukla et al., 2008) and some-
times increase particulate matter by placing particles onto
roadways to then be kicked up by automobile tires when
conditions dry up.

We control for a rich a set of weather variables in all
regressions, both independent and interacted with traffic con-
ditions. A benefit of such weather–pollution relationships
is that interactions between traffic and weather allow us to
better identify conditions that are more conducive to traf-
fic causing higher levels of specific pollutants. High traffic
levels during hot, windy weeks create different amounts of
different pollutants than high traffic levels during cold weeks
with stagnant air. Including weather interaction variables
allows for simultaneous instrumentation for both pollutants
of interest despite only one traffic measure. In addition, it
provides an additional source of exogenous variation to our
estimates. In cases where our fixed effects are insufficient
to control for all “bad” variation, weather conditions remain
unlikely to correlate with omitted variables of concern.

Weather controls are also important for mortality anal-
ysis. Previous work finds a relationship between weather

21 We note that despite a known scientific relationship between traffic
and pollution, correlations in reality are more complicated. Most cars are
more efficient at RPMs corresponding to speeds of 45 to 60 mph (Davis &
Diegel, 2007). If unhindered traffic flow is moving at speeds above the range
of highest efficiency, mild amounts of traffic that slightly lower traveling
speeds can increase engine efficiency and decrease emissions.

22 Temperature inversion results when a layer of warmer air settles over a
layer of colder air. Such atmospheric conditions often correlate with move-
ments of air pressure systems. The warm air layer prevents ground-level
air from circulating, and the stagnant air creates a buildup of ground-level
pollution.

23 See http://uk-air.defra.gov.uk/assets/documents/reports/aqeg/ch2.pdf.



CAUTION, DRIVERS! CHILDREN PRESENT 355

and heightened mortality rates. For example, Deschênes and
Greenstone (2011) find that increased temperatures corre-
late with higher levels of infant mortality. Barreca (2008)
finds similar evidence suggesting that both temperature and
humidity can have adverse health effects. Failing to control
for weather conditions can bias the estimated relationship
between ambient pollution and mortality, as extreme pol-
lution events are often strongly correlated with extreme
weather events (Samet et al., 1998).24

IV. Empirical Methodology

Our model uses an infant week of life as the unit of obser-
vation, and the key parameter of interest is the effect of local
traffic pollution on the hazard rate of death. We control for
a rich set of geographic and time fixed effects, as well as
(somewhat aggregated) individual-level controls.

A. Mortality Hazards, LPMs, and Fixed Effects Models

Our main specification is a discrete-time hazard, with the
unit of observation being a person-week. The outcome of
interest is whether said person died in a given week. Time
since birth is the key hazard time element determining mor-
tality risk. This closely follows the model used in CN. We
control for the baseline hazard by including a flexible spline
in age in weeks (with knots at 1, 2, 4, 8, 12, 20, and 32 weeks)
and implementing a linear probability model (LPM).25

Given the large number of births that survive 52 weeks
before leaving the sample, this gives a computationally tax-
ing number of observations. Extensive controls and fixed
effects compound this problem. We adopt a simplification
that enables us to use information from all observations by
collapsing birth data into cells prior to expanding into the
person–week frame.26 We first collapse all observations to
mother postal-code-by-birth week-by-total weeks survived
cells. For example, one collapsed cell would be all births
in postal code z born in week w that lived 52 weeks. We
calculate the cell mean for all mother–child covariates, and
then expand observations to the cell–week of life level. In
all regressions, we use weighting to approximate the uncol-
lapsed model. This loses little variation, as pollution, traffic
and weather are all common at the mother postal-code-by-
week level, and greatly reduces the computational burden for
estimation. In our preferred estimates, the number of obser-
vations decreases from over 75 million to approximately 9

24 Knittel et al. (2011) investigates the importance of weather controls of
higher orders.

25 We prefer the LPM to a logit or probit model as it aids with com-
putational implementation (caused by a large number of time and region
fixed effects), as well as eases implementation of the instrumental variables
specification.

26 The case-control methodology outlined in CN yields qualitatively sim-
ilar results. Our preferred method uses all of the data and avoids a problem
with case control estimates, which can be sensitive to changes in the size
of the control sample chosen.

million, covering just over 1.4 million births in 719 postal
codes.27

We include geographic fixed effects (at the postal code
level) and flexible time effects allowing each month in time
a different baseline impact (e.g., January 2004 is allowed to
vary from January 2005). More specifically, in our preferred
specification, we include postal-code-by-month of year fixed
effects to flexibly control for monthly shifts within each
postal code (e.g., seasonal effects), as well as general month-
by-year fixed effects to control for state-level changes over
time.28 Given use of the discrete-time hazard model, there
are multiple possible definitions of both month and year.
The postal code–specific time fixed effect could refer to
the time of birth, which is fixed across event weeks, or
could refer to time of observation, which allows it to vary
across event weeks. Our specification uses the month and
year of the event week to generate the fixed effects. This
best fits our first stage, where such fixed effects help better
identify the effects of weekly traffic variation on both pol-
lution and mortality. However, to allow for seasonality in
birth outcomes, we also control for quarter of birth. In all
regressions, we include rich controls for weather (cubic func-
tions of maximum temperature, rainfall, humidity, and wind
speed, and linear counts of days with rain and days with fog),
as well as individual-level controls (collapsed to cell level
means as described above) for child’s sex, indicator variables
for low birthweight and premature birth, and maternal age,
education, and race, and public insurance status for deliv-
ery. To control for the possible neonatal impacts of mother
pollution exposure, we include average trimester pollution
exposure.29 Note that we do not attempt to instrument for
prenatal pollution exposure levels.

Our baseline OLS equation is

Mortc,z,a,m,y,w = αz,m,y + βPollutionz,w + φTrimesterc

+ δXc + γZz,w + φm,y + splinea

+ εc,z,a,m,y,w, (3)

where c indicates collapsed child-cell, z is postal code, a is
age in weeks, m is month (January–December), y is year, and
w is the current week (running from 1 to 260 in our sam-
ple, representing weeks since December 31, 2001). αz,m is
the postal-code-by-month of year fixed effect, φm,y are gen-
eral month-by-year effects, Xc are individual-level controls
(which do not vary by week of life), and Zz,w are postal code–
week level weather controls. Trimester is a vector of average
pollution levels for the first, second, and third trimesters of
gestation individually. Although we present this as if there

27 We obtain similar results using the full individual-level data.
28 Collapsing data to the week level means month fixed effects are more

complicated—some weeks span multiple calendar months. To simplify, we
substitute four-week period effects for month effects, resulting in thirteen
“months” per year that each contain exactly four weeks.

29 Trimester pollution exposure is approximated by averaging postal
code–level pollution in weeks 1 to 12 before birth, 13 to 24 before birth,
and 25 to 36 before birth for trimesters 1, 2, and 3, respectively.
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were just one type of pollution, we allow both types to enter
simultaneously in our larger models.

B. Potential Confounders to OLS and the Use
of Instrumental Variables

Our use of an IV helps with a number of identification
concerns in the fixed effects model. First, mothers may self-
select into geographic regions, and if mothers with higher
values for clean air choose to live in cleaner areas and are
wealthier or have access to better health care, this will bias
OLS estimates upward (Currie, 2011). Second, changes in
local economic activity may correlate with both pollution
and infant health. Regional growth will increase pollution
levels but also correlate with increases in income levels or
health care access. This would bias OLS estimates down-
ward. Third, pollution assignment leads to potential bias in
the form of measurement error. The majority of papers in
the air pollution and health literature, including this one,
assign pollution levels to a particular person, living in a par-
ticular geographic area (e.g., postal code or county), based
on pollution readings from pollution sensors in or near this
geographic area. The researcher may not know the person’s
exact residence (two recent exceptions to this limitation are
Currie et al., 2009, and Currie & Walker, 2011), and it is
unlikely that the person is stationary over the time period
analyzed. In addition, unless one knows the exact model of
spatial dispersion of the pollutant in specific conditions, even
if the person lived in the assigned location and never moved
from this space, one would measure individual pollution
with error. Insofar as this measurement error is “classical,”
OLS estimates will be biased toward 0. If the measurement
error correlates with pollution levels, bias may be in either
direction. In section VF, we formally consider the role of
nonclassical measurement error in our IV estimates. Finally,
individuals engage in avoidance behavior when confronted
with environmental bads (Neidell, 2009; Moretti & Neidell,
2011; Schlenker & Walker, 2014; Graff Zivin & Neidell,
2009; Graff Zivin, Neidell, & Schlenker, 2011). Such avoid-
ance behavior can mute the estimated true effect of pollution
on health.

Shocks to traffic and interactions with weather conditions
provide instruments for reducing all such sources of bias.
If individuals sort based on average levels of pollution and
traffic but not on traffic and weather shocks, our instrument
strategy satisfies the exclusion restriction; similarly, weekly
variation in such shocks (after conditioning on geographic
and time fixed effects) is likely uncorrelated with economic
growth.30 Conditional on a valid instrument, an IV approach
helps with measurement error. Assuming individuals do not
systematically modify their actions based on random and

30 Economic growth may lead to additional traffic shocks. For example,
economic development may increase the number of cars on the road at any
given time, thus increasing the probability of an accident. To some degree,
time fixed effects capture this variation.

potentially unobservable traffic shocks, IV estimates help
alleviate the potential bias of avoidance behavior.

The key exclusion restriction for our traffic instrument
is that (week-to-week) fluctuations in traffic and its inter-
action with local weather conditions do not directly affect
infant mortality through vectors other than pollution. Since
IV models continue to control for the fixed effects of the
OLS specification, we believe this is a plausible assumption.
An additional concern related to the exclusion restriction
comes with our use of weather. Stormy weather, for exam-
ple, can slow down traffic and also directly affects mortality
and ambient pollution (see section III). For this reason,
we include all weather variables we interact with traffic
independently in all regressions.

Our primary instrument is postal code–level car-miles
flow interacted with each of our weather variables, based
on chemical interactions between automobile emissions and
weather discussed in section III. Specifically, we interact
our traffic measure with all the weather variables within the
model. This captures, for example, the fact that emissions
are less likely to stay concentrated in the atmosphere when
there is strong wind or rain. We construct estimated standard
errors allowing for clustering at the postal code level.

V. Results

In all regressions, the term observations refers to the num-
ber of expanded hazard weeks, using the weighted model
section IV describes. We list the number of births used in
each case in relevant table notes.

A. Traffic, Mortality, and Pollution by Distance

We begin with an investigation of the reduced-form
relationship between traffic and weekly infant mortality:

Mortc,z,a,m,y,w = αz,m,y + βcarmilesz,w + Σ14
i=1πicarmilesz,w

× weatheri,z,m,y,w + φTrimesterc + δXc

+ γZz,w + φm,y + splinea + εc,z,a,m,y,w.
(4)

Here Σ14
i=1πicarmilesz,w ·weatheri,z,m,y,w is a series of fourteen

total weather interactions with traffic: cubics for tempera-
ture, humidity, rainfall, and wind speed and linear functions
for days with rain and days with fog. The use of interac-
tions between traffic levels and ambient weather conditions
complicates the interpretation of any one traffic coefficient
within the model. Instead, we present the reduced form by
calculating the derivative of weekly mortality with respect to
traffic across the distribution of all interacted weather vari-
ables, which provides a point estimate and standard error for
the marginal effect of traffic.31

Column 1 of table 4 shows the derivative of mortality with
respect to car-miles, in 10 millions. We split traffic exposure

31 We accomplish this using the Stata “margins” command after estimating
our regressions.
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Table 4.—Effect of Traffic on Pollution and Mortality by Distance

from Postal Code Centroid

(1) (2) (3)
Mortality CO PM10

Cars within 0–5 miles (10 million) 0.0484∗∗ 0.0199 2.7958∗∗∗
(0.0240) (0.0332) (0.7753)

β × Std. Dev Traffic
Std. Dev Outcome 0.006 0.032 0.170

Cars within 5–10 miles (10 million) −0.0104 0.0164 1.1785∗∗
(0.0164) (0.0199) (0.4602)

β × Std. Dev Traffic
Std. Dev Outcome −0.003 0.051 0.140

Cars within 10–15 miles (10 million) −0.0014 0.0183 1.6105∗∗∗
(0.0126) (0.0188) (0.4113)

β × Std. Dev Traffic
Std. Dev Outcome 0.000 0.067 0.225

Cars within 15–20 miles (10 million) 0.0013 0.0067 0.4076∗∗
(0.0049) (0.0080) (0.2032)

β × Std. Dev Traffic
Std. Dev Outcome 0.000 0.025 0.058

We use a starting sample of 1,434,613 births covering 719 postal codes, expanded to 75,777,503
observations in a discrete-time hazard model as described in section IV. All regressions control for month-
by-year fixed effects, quarter-of-birth fixed effects, and mother postal-code-by-month fixed effects, as well
as all weather and birth controls described in section II. Traffic variables show the calculated marginal effect
of an additional 10 million weekly cars (adjusted for length of road coverage as we discuss in section
IV) within each distance region from a postal code centroid, with no distance weighting. Regressions
include interactions between each traffic measure and all weather variables, as we describe in section
IV. We calculate marginal effects postregression and show the mean marginal effect across the entire
distribution of weather variables with the corresponding calculated standard error. Column 1 shows the
effect of each traffic flow measure on weekly hazard rate probability of death, with coefficients multiplied
by 1,000 for ease of reading. Column 2 shows the effect of each traffic flow measure on ambient weekly
CO levels in parts per million. Column 3 shows the effect of each traffic flow measure on ambient
weekly PM10 levels in micrograms per cubic meter. We cluster standard errors at the mother–postal
code level.

into 5-mile distance gradients to explore how effects vary by
geographic proximity: 0 to 5 miles, 5 to 10 miles, 10 to 15
miles, and 15 to 20 miles. The marginal estimate is the raw
effect of an additional 10 million car-miles per week within
each distance bin. We find a statistically significant relation-
ship between traffic levels and mortality, but only for traffic
within 5 miles of a postal code centroid. For traffic close
by, an additional within–postal code standard deviation in
car-miles increases the probability of weekly mortality by
0.2% of the mortality rate standard deviation. For all dis-
tances beyond 5 miles, the marginal effects are statistically
and economically 0.

Columns 2 and 3 of table 4 follow the design of reduced-
form effects in column 1 but use ambient pollution as the
outcome of interest. This is the analog of our first stage
by individual pollutants and allows us to best construct an
appropriate distance cutoff and weighting metric for our first
stage in the IV analysis, along with developing a better
understanding of how localized traffic must be to influ-
ence ambient pollution levels. Column 2 suggests some
distance trends for CO, where effects for shorter distances
are economically significant, though standard errors are large
enough that we fail to reject 0 effects for all distance groups.
An additional within–postal code standard deviation in car-
miles within 5 miles increases ambient CO levels by 0.15%
of a pollution standard deviation, though the effect is noisy
at this distance and we cannot reject substantially higher
values. A standard deviation increase in car-miles within 5
to 10 miles has a positive effect of 0.84% of a pollution
standard deviation, followed by a smaller effect of 0.535 10
to 15 miles away. By 15 to 20 miles, the effect is closer
to 0.

Column 3 shows more persistent effects for PM10. An
additional standard deviation increase in car-miles within 5
miles increases ambient PM10 levels by 0.9% of a standard
deviation. The effect is about half that size for cars within
5 to 10 miles, where it holds for 10 to 15 miles as well. By
15 to 20 miles, the link is no longer statistically significant
at conventional levels but remains positive.

Based on our findings for effects by distance, we focus
our IV analysis on traffic within 15 miles of a postal code
centroid (and thus on postal codes with at least one traf-
fic monitor within 15 miles). To simplify analysis, we sum
all traffic within 15 miles rather than using the nonparamet-
ric methods discussed above. Both PM10 and CO exhibit
correlations that suggest the marginal effect of traffic has
some level of decay with distance. As our primary met-
ric, we weight traffic by 1 − √

distance/15.32 This function
places higher weight on cars close to the postal code, with
a relatively rapid decrease, followed by close to constant
weights for distances farther out. For example, we assign a
car directly on the postal code centroid a value of 1 (e.g.,
1 − √

0), a car 5 miles away a value of approximately 0.4
(e.g., 1 − √

5), and a car 15 miles away a value of approx-
imately 0.25. Column 5 of table 2 shows the average and
standard deviations for our weighted traffic measure.

B. Reduced-Form Effects of Traffic on Mortality by Weather
Conditions and Subgroups

We expand on our reduced-form analysis using two mea-
sures of traffic. Based on our finding that reduced-form
effects are largely local, we first consider differences by
weather conditions and different subgroup populations for
postal codes within 5 miles of a traffic sensor. We then repeat
the same process but expand out to our 15-mile cutoff and
use the single distance-weighted measure of traffic.

Panel A of table 5 shows results for the restricted sam-
ple of postal codes within 5 miles of at least one sensor
and how they vary by weather conditions. Results from col-
umn 1 suggest a standard deviation increase in weighted
car-miles increases mortality by approximately 0.2% of a
standard deviation. Figure 1 shows the distribution of mar-
ginal effects across all weather conditions, with a dashed
line indicating the mean, regression-estimated/effects. For
effectively the entire mass of the data, there is a positive
correlation between higher traffic levels and increased infant
mortality. To calculate overall mortality effects, we translate
our marginal effects by multiplying the estimated impact on
the hazard rate by 52 to gather the full exposure probability
in the first year of life. That is, if the additional hazard in
any given week (after controlling for age effects and all other
covariates) is β, the total additional hazard for an infant who
lives 52 weeks is 52 × β. This gives the marginal effect on
the probability of death in the first year of life.

32 Alternate weighting methods, including 1−(distance/15) and 1
1+distance

yield similar overall results.
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Table 5.—Variation of the Reduced-Form Impact of Traffic on Weekly Mortality Hazard by Weather Conditions

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)
Temperature Humidity Wind Speed Rainfall Foggy Days

Overall 25th 75th 25th 75th 25th 75th 25th 75th 0 3

Unweighted weekly traffic within 5 miles (10 million cars) on weekly mortality hazard
Car-miles 0.0423∗∗ 0.0434∗∗ 0.0394∗ 0.0399∗∗ 0.0449∗∗ 0.0427∗∗ 0.0394∗ 0.0435∗∗ 0.0428∗∗ 0.0418∗∗ 0.0426∗∗

(0.0201) (0.0198) (0.0203) (0.0203) (0.0201) (0.0202) (0.0201) (0.0201) (0.0201) (0.0202) (0.0201)

p-value of difference 0.297 0.191 0.381 0.551 0.686
Distance weighted weekly traffic within 15 miles (10 million cars) on weekly mortality hazard

Car-miles 0.0253 0.0268 0.0217 0.0259 0.0258 0.0254 0.0242 0.0268 0.0257 0.0239 0.0262
(0.0192) (0.0189) (0.0193) (0.0193) (0.0192) (0.0191) (0.0193) (0.0192) (0.0192) (0.0191) (0.0192)

p-value of difference 0.080 0.976 0.718 0.193 0.118

We restrict analysis to postal codes with at least one traffic sensor within 5 miles (panel A) or 15 miles (panel B), and expand to a discrete-time hazard model as described in section IV. This results in 66,870,281
observations covering 594 postal codes and 1,265,678 births for the 5 mile model and 73,109,698 observations covering 684 postal codes and 1,383,941 births for the 15 mile model. All regressions control for
month-by-year fixed effects, quarter-of-birth fixed effects, and mother postal-code-by-month fixed effects, as well as all weather and birth controls described in section II. Outcome is the effect of each traffic flow
measure on weekly hazard rate probability of death, with coefficients multiplied by 1,000 for ease of reading. Traffic variables show the calculated marginal effect of an additional 10 million weekly cars (adjusted

for length of road coverage as we discuss in section IV) within each distance region from a postal code centroid. Panel A uses no distance weighting. Panel B weights by 1 −
√

distance
15 as we describe in section V.

Regressions include interactions between each traffic measure and all weather variables, as we describe in section IV. We calculate marginal effects postregression and show the mean marginal effect across the entire
distribution of weather variables with the corresponding calculated standard error. Each column shows our evaluated marginal effect over either all data (column 1) or at specific values of interacted weather conditions
(columns 2–11). We cluster standard errors at the mother–postal code level.

Figure 1.—Density of Reduced-Form Impacts:

Weighted Car-Miles within 15 Miles

Kernel density of reduced-form effect of traffic on infant mortality, based on a model from column 1
of table 5. Each observation in the reduced-form impact of traffic on mortality, based on the particular
conditions for that observation. The histogram is the distribution of these impacts. “Car-miles” refers to
our unit of traffic intensity—the sum of weekly car-mile counts on each sensor loop times the length of
road that loop represents (in 10 millions of car-miles). We weight traffic giving higher weight to more local

traffic, where weight = 1 −
√

distance
15 .

Columns 2 to 9 show how this effect varies by weather
conditions, where we evaluate the marginal effect at the
25th and 75th percentiles of maximum temperature, humid-
ity, wind speed, and rainfall. We also consider the effect by
weeks with 0 foggy days versus 3 foggy days, which cor-
responds approximately to the 25th and 75th percentiles of
weekly fog rates. While we find suggestive evidence that
certain conditions are more prone to result in higher mortal-
ity rates, none result in effects that are statistically different
from each other at conventional levels. In general, it appears
that colder weeks and more humid weeks result in larger rela-
tionships between traffic and mortality, though we note here
that the 25th percentile of maximum weekly temperature
in California is approximately 67 degrees, not situations of
extreme cold.

Panel B repeats this process expanded out to farther
postal codes and using our weighted distance metric of

traffic within 15 miles. Introducing larger distances makes all
reduced-form estimates statistically insignificant at conven-
tional levels, though the average effect suggests an additional
standard deviation in distance-weighted cars correlates with
a 0.16% of a standard deviation increase in mortality. At the
larger distances, the relationship between traffic and weather
follows a similar pattern as our earlier local effects, though
we now find suggestive differences by rainfall.

We next check impacts of traffic across subgroups. To do
so, we collapse data by subgroup cells and interact indica-
tors for each group with all weather and traffic variables. This
allows us to estimate the effect of traffic for each subgroup,
while additional interactions with all weather variables help
estimate differences in responses to traffic rather than inter-
acted traffic–weather. We consider effects for several groups
traditionally sensitive to health shocks: African Americans,
Hispanics, births covered by Medicaid, births to non–high
school graduates, premature births, and children of low
birthweight. As with results by weather, we show results
restricted to postal codes within 5 miles of a traffic sensor
(panel A) and for distance-weighted traffic within 15 miles
of a postal code (panel B).

Table 6 shows results by subgroup. We find no consistent
detectable differences by race, educational status, or births
covered by Medicaid, though for the majority of subgroups,
differences are in the anticipated direction: the negative
effects of pollution are larger for Hispanics, lower-education
mothers, and mothers on Medicaid. Only the estimate for
African Americans has an unexpected direction: the mar-
ginal effect of traffic is lower for the traditionally more
sensitive group. We note, however, that African Ameri-
cans represent a very small portion of births in California,
and the two estimates are essentially the same. The most
drastic differences occur for premature infants and infants
of low birthweight. The mortality effect is almost entirely
localized in these more sensitive infants, and the effect for
premature births is the only result statistically significant at
conventional levels for the distance of 15 miles. The direct
effects of traffic are much larger in more health-sensitive
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subgroups: 2.0 to 2.6 times larger for premature infants and
1.7 to 1.8 larger for infants of low birthweight.

C. Variation in Pollution Effects by Weather

Using our distance-weighted metric of traffic within 15
miles of a postal code, we next consider variations in our
first stage under different weather conditions. Column 1
of Table 7 shows the marginal effect of an additional 10
million distance weighted car-miles. For both pollutants,
we find an economically and statistically significant rela-
tionship between local traffic levels and ambient pollution
on average. An additional standard deviation in car-miles
increases ambient CO levels by 1% of a standard deviation,
and PM by 3% percent of a standard deviation. Columns
2 through 11 of table 7 explore how the marginal effect of
traffic on ambient pollution varies under different weather
conditions. As with the reduced form, we evaluate the mar-
ginal effect of traffic at the 25th and 75th percentiles of the
weather variable of interest. Given the high level of statistical
precision in our estimates, almost all cross-weather compar-
isons are statistically different from each other. Interestingly,
different weather conditions affect each pollutant differently.
Columns 2 and 3 show that traffic on hotter weeks creates
relatively more CO and relatively less PM10: higher temper-
atures in the summer can favor inversions, raising CO, while
lower temperatures favor formation of certain atmospheric
particles, raising PM10. Humidity shows the opposite effect:
higher humidity means the same traffic conditions gener-
ate more PM10 and less CO. Effects for both pollutants
are smaller on windier weeks and rainier weeks. Finally,
while higher fog has little impact on PM10 creation, higher
amounts of fog mean greater generation of CO. These var-
ied effects are what allow us to separately identify both CO
and PM10 in our upcoming IV regressions—the same traffic
levels in varied weather conditions influence each pollutant
differently.

As further evidence of the varied relationship of traffic,
weather, and pollution, we next plot the estimated marginal
effect of weighted traffic in different weather conditions for
different pollutants. To do so, we calculate the estimated
marginal effect of an additional 10 million car-miles (approx-
imately 1 standard deviation) at every point in our data, and
then plot the kernel density of estimated effects. Figure 2
shows the marginal effect distribution for CO across weather
conditions for all continuous higher-order variables: temper-
ature, humidity, wind speed, and rainfall. Figure 3 repeats
the process for PM10. In figures 4 and 5, we plot two densi-
ties for each weather variable: one for all values at or below
the 25th percentile of the relevant variable and one for all
values at or above the 75th percentile.

The densities largely align with our marginal estimates,
with the exception of the impact of traffic on CO at different
levels of humidity and PM10 at different temperatures. Our
table finds substantially lower levels of CO on humid days,
but graphs show that the densities almost entirely overlap.
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Figure 2.—First Stage for Carbon Monoxide

Kernel density of estimated impact of traffic on CO based on the first-stage model from table 7. Each
observation in the first stage has a predicted impact of traffic on pollution based on the particular weather
conditions for that observation. This histogram is the distribution of these impacts.

Figure 3.—First Stage for Particulate Matter

Kernel density of estimated impact of traffic on PM10, based on the first-stage model from table 7. Each
observation in the first stage has a predicted impact of traffic on pollution based on the particular weather
conditions for that observation. This histogram is the distribution of these impacts.

We also find PM10 is higher on colder days, but densities
suggest higher effects in higher temperature. Note, however,
that this exercise differs slightly from our analysis in table
7. The table evaluates the marginal effect of traffic holding
the given weather variable fixed at the indicated level. The
figures show the estimated marginal effect for all observa-
tions falling in the range of the indicated variable cutoffs.
Thus, in the table case, we have the “all else held constant”
result, while in the density case, we cannot observe the effect
of any one weather variable in isolation. Comparing PM10
graphs across temperature and humidity suggests this might
explain some differences: high-humidity days are also high-
temperature days, making the separation of the two effects
in our densities difficult.

D. Pollution and Infant Mortality: OLS and IV Results

We begin with OLS estimates similar to those of CN, but
with a focus on CO and PM10 in the 2002–2007 time period
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Figure 4.—The Varied Impact of Traffic on Pollution by Weather Conditions: CO

Kernel densities of first-stage impacts based on subsets of data from figure 2. Distributions include observations with weather values above the 75th percentile (for high) and below the 25th percentile (for low) of all
higher-order weather in the primary analysis. See sections II and VC.

used for our traffic analysis (for an extensive replication of
the earlier CN results as well as in-depth discussion of the
crosswalk from their model to our preferred estimates, see
Knittel et al., 2011). The first column of table 8 includes fixed
effects for the month-by-year of event time and mother’s
postal code-by-month fixed effects; all weather controls; a
spline in the child’s age; cell-level averages of indicators
for child’s sex, mother’s age, race, and education; the cell-
level variable for whether public insurance was used for the
delivery; the cell-level average for being of low birthweight
(below 2500 grams); and the cell-level average for being
classified as premature (more than three weeks early). We
multiply all coefficients by 1,000 for ease of reading.33

In the 2002–2007 period, CO levels are 40% below those
from 1989 to 2000, and average levels of PM10 are 5%
lower. Despite these decreases, our estimates are consistent
with those from the earlier period, but with greater noise and
no statistically significant effects. The point estimates imply
conclusions similar to those found in CN–CO correlates

33 To calculate total mortality effects, we again translate the marginal effect
of increased mortality in a given week into an increase in the probability
of mortality in the first year of life. Multiplying this probability by 100,000
gives the approximate number of additional deaths similar to those in CN.

positively with infant mortality. A 1-unit decrease in CO
saves 13 infant lives, an estimate surprisingly close to the
CN result given the substantially lower CO levels in our
time period. Our finding for PM10 is effectively 0.

E. Instrumental Variables Estimation

Table 8 reports our main IV results. We include first-stage
F statistics below reported coefficients (calculated using the
Angrist-Pischke F-test for multiple instruments when rel-
evant) along with calculated marginal effects.34 While we
find positive effects for both pollutants, only PM10 is sta-
tistically significant, and it remains so when including both
pollutants simultaneously. In the joint pollutant model, a 1-
unit decrease in CO results in 82 fewer deaths per 100,000
live births, while a within–postal code standard deviation
decrease in CO correlates with 42.94 fewer deaths. We
find a 1-unit decrease in PM10 means 10 fewer deaths per

34 We run all IV regressions using the user-generated Stata command
xtivreg2 (Shaffer, 2010). As a robustness check, we further adjust our stan-
dard errors for two-way clustering across both location (mother postal code)
and time (event month-by-year). This decreases our first-stage F-statistics,
to around 10 for CO and 3 for PM10. However, the second-stage coefficient
remains statistically significant at 10%.
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Figure 5.—The Varied Impact of Traffic on Pollution by Weather Conditions: PM10

Kernel densities of first-stage impacts based on subsets of data from figure 3. Distributions include observations with weather values above the 75th percentile (for high) and below the 25th percentile (for low) of all
higher-order weather in the primary analysis. See sections II and VC.

100,000 live births, with a within-postal code standard devi-
ation decrease correlating to 78 fewer deaths per 100,000
live births.

In considering the magnitude of these effects, it is helpful
to refer to prior findings on pollution and infant mortality
rates. Both CN and Currie et al. (2009) find an effect of
approximately 17 avoided deaths (per 100,000 births) per
unit of CO in the United States, while Arceo-Gomez et
al. (forthcoming) find much larger effects around 166 per
100,000 live births in Mexico. Our results, while noisy, fall
between these two. Our more precise PM10 estimates align
quite well with prior findings. For example, Chay and Green-
stone (2003b) find that a 1 unit drop in total suspended
particulates (TSPs) resulted in a drop of 4 to 8 infant deaths
per 100,000 live births, while Chay and Greenstone (2003a)
found an effect of around 7 to 13 infant deaths per unit.
Both used TSPs, which contain both PM10 and larger par-
ticulates not included in the PM10 specification. While no
direct conversion metric exists, the the World Bank Group
(1999) notes a commonly used conversion metric between
the two measures is PM10 = 0.55 · TSP. Using that conver-
sion metric, the Chay and Greenstone (2003a) results suggest
marginal impacts of 7 to 15 and 13 to 23 additional deaths

per unit increase of PM10. While CN find no statistically
significant effect for PM10, Arceo-Gomez et al. (forthcom-
ing) find around 9 deaths per 100,000 live births per unit,
though only in their single pollutant models.

F. The Role of Weather Interactions and Nonclassical
Measurement Error

A benefit of using interactions between weather and traf-
fic as instrumental variables is the ability to jointly identify
the impacts of separate pollutants despite having only one
measure of traffic. However, the use of multiple instruments
raises the concern of the true source of identification. Are
results a product of using enough instruments to get a sta-
tistically significant result or by the inclusion of a particular
weather effect alone? Both of these issues are of concern.
To address this, we repeat our main IV analysis but vary the
weather interactions included in the first stage. Table 9 shows
the results. Becasuse we begin with fewer than three instru-
ments, we cannot estimate the simultaneous pollutant model,
so we instead conduct all analysis in a single-pollutant
framework for PM10 where we find statistically significant
results in our main model.



CAUTION, DRIVERS! CHILDREN PRESENT 363

Table 8.—OLS and IV Estimates of Pollution on Infant Mortality

(1) (2) (3) (4)
OLS IV IV IV

Carbon monoxide 0.0025 0.0237 0.0158
(0.0058) (0.0249) (0.0262)

Particulate matter −0.0001 0.0019∗∗ 0.0019∗∗
(0.0001) (0.0009) (0.0009)

First-stage F-statistic
Carbon monoxide — 57.02 — 60.11
Particulate matter — — 80.51 85.98

Deaths per unit
Carbon monoxide 13.08 123.43 — 82
Particulate matter −0.35 — 10 10.14

Deaths per within-postal-code SD
Carbon monoxide 6.85 64.63 — 42.92
Particulate matter −4.53 — 128.85 130.68

Deaths per between-postal-code SD
Carbon monoxide 3.04 28.72 — 19.07
Particulate matter −2.7 — 76.45 77.58

Regressions use a starting sample of 1,383,941 births, expanded to a discrete-time hazard model for
73,109,698 observations covering 684 postal codes. Column 1 presents OLS results. Columns 2 to 4
present IV results. The instrumental variables are car-miles and car-miles interacted with all included
weather variables, as we describe in section V. Columns 2 and 3 include pollution variables individually,
and column 4 includes them simultaneously. F-statistics test the hypothesis that the instruments have
no predictive power in the first stage. F-statistics on multiple-pollutant regressions are Angrist-Pischke
F-statistics for joint significance.

Column 1 shows results using only traffic as an instru-
ment with no additional weather interactions. Column 2 adds
an interaction with temperature, column 3 adds an addi-
tional interaction with humidity, and so on. The lower panel
indicates which weather interactions are included for each
column. By column 5, the regressions are equivalent to col-
umn 2 in table 8. Effects for PM10 are always positive. And
while the estimates using only traffic as an instrument are
not statistically significant, they are within a single standard
error of the results in the most saturated model. Looking
across all specifications, it does not appear that the addition
of any single pollutant explains the size or magnitude of our
results. Results become much more precisely estimated with
the addition of humidity to the interaction set, suggesting
there may be a strong link among ambient humidity, traffic,
and pollution.

We next formally consider the potential bias caused by
error in local assignment of pollution. A motivation for our
IV approach is that estimating postal code–week level pol-
lution may result in errors in measurement, which would
bias standard fixed effects model estimates of the effects of
pollution on health. IV removes the issue if the measure-
ment error is classical. However, this may not hold with our
measure of pollution. Errors may correlate with the actual
value of the underlying pollution measure, and the variance
of the measurement error might vary with distance from pol-
lution monitors (Lleras-Muney, 2010). In this case, bias may
remain in the IV.

To investigate the potential effects of nonclassical mea-
surement error in our setting, we perform a Monte Carlo
analysis where we model likely error in pollution measure-
ment and examine how such error might alter our findings.
We first examine how measurement error in pollution relates
to the true pollution level and the distance from nearby
pollution measurement stations. We generate an “error” at

each actual pollution monitor by first estimating pollution at
that monitor using other nearby monitors in a fashion iden-
tical to what we do for postal code centroids (using all other
monitors within 20 miles, weighted inversely by distance).
We then compare the estimated level with the correct level
recorded at the monitor. We interpret the measurement at
the monitor level as the “truth” and discrepancies in the esti-
mated level from this as the “error.” To compare how the
expected level of this error (bias) and its variance depend
on true pollution level and distance to closest monitor, we
regress the error on location and month-by-year fixed effects
and take the residuals of this as the object to be explained.
We then estimate a linear regression model where the resid-
ual error is a function of a spline in true levels of pollution
and distance to nearest monitor:35

Residual Error

= [Spline in Actual Pollution Measure]
+ [Spline in Distance to Nearest Monitor]. (5)

Examination of the spline in “true pollution” suggests
the unexplained pollution error is small in magnitude over
most of the support of true pollution levels but correlates
with true pollution levels for larger-than-average levels of
pollution. Examination of the spline in “distance to near-
est monitor” suggests no relationship between the bias or
variance in mis-measurement and the distance to the near-
est monitor (similar results hold when controlling only for
distance to closest monitor or only for observed pollution
levels). As a whole, we find modest violation of the clas-
sical measurement error model along one metric: pollution
measurement error correlates with true pollution level. This
error is small over most of the range of the data. Panel A of
figure 6 shows average true pollution levels (horizontal axis)
versus unexplained error (vertical axis), with vertical lines
marking the mean (dashed line) and mean plus 2 standard
deviations (dotted line) in the data. Panel B shows a similar
average by distance from nearest monitor. We conclude that
measurement error in estimated pollution data deviates from
the classical i.i.d. assumptions, raising the question whether
IV estimates will still have the desirable properties of the
classical case

We next perform a Monte Carlo simulation that tests for
potential bias in the IV estimates. We first construct a data
generation process based on the postal-code-by-week data in
our sample. We generate the bias and variance of expected
errors in pollution assignment from models based on splines
in true pollution and distance to the closest monitor, and
the lagged error as a predictor. We call this a predicted
error. Treating our main estimates as the true parameters and
our best estimates of pollution as true pollution levels, for
each iteration of the simulation, we create pseudo-pollution

35 We use linear splines with knot points at mile distances of 3, 6, 9, 12, and
15 miles and pollution points of 150, 300, 450, 600, and 750 micrograms
per cubic meter of air.
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Table 9.—Impact of Adding Weather Interactions as Additional Instruments

(1) (2) (3) (4) (5) (6) (7)

PM10 0.003 0.0008 0.0017∗ 0.0018∗ 0.0020∗∗ 0.0019∗∗ 0.0019∗∗
(0.0022) (0.0015) (0.0009) (0.0009) (0.0009) (0.0009) (0.0009)

First-stage F-statistics 330.24 115.95 106.64 85.12 87.77 81.96 80.51
Max temperature X X X X X X
Humidity X X X X X
Wind speed X X X X
Rainfall X X X
Days with rain X X
Days with fog X

Each row cell is a separate IV regression. Column 7 presents results corresponding to column 2 of table 8. Columns 1 to 6 present results based on more parsimonious instrument sets. Each column varies which
weather variables we interact with our measure of traffic to create instrumental variables. All columns control for all weather variables.

Figure 6.—Error in Assigned Pollution by True Pollution Level and

Distance to Closest Monitor

“Error” variable represents the difference between an observed pollution monitor level and the predicted
level using our distance weighting estimation technique, after adjusting for mother postal code and month-
by-year fixed effects. Dashed line indicates the mean of true pollution observations, with the dotted line
representing 2 standard deviations above the mean. Panel A shows the mean error by size of observed
pollution level. Panel B shows the mean error by distance to closest pollution monitor. See section VF for
details.

measures. These pseudo-pollution measures are the true pol-
lution levels plus the predicted error and an additional error
component that allows for autocorrelation in errors across
time within postal code. Specifically, the pseudo-pollution
level in postal code z and period t would be

Pseudo-Pollutionz,t

= True Pollutionz,t + Predicted Mean Errorz,t

+ δ × predicted errorz,t−1 + Φ(0, 1)

×
√(

predicted error variance + γ × predicted error2
z,t−1

)
,

(6)

with Φ(0, 1) being a draw from the standard normal dis-
tribution. After generating the pseudo-pollution values, we
then estimate our models using IV and save the result-
ing coefficients. We perform 100 simulations where we
replace our “true” pollution with the pseudo-values and com-
pare the distribution of estimated coefficients to our main
estimate.

The simulation results indicate that measurement error
may have a nonzero but modest effect on our estimates. The
estimate for the impact of PM10 with no measurement error
is 0.0019 (SE, 0.0009). In 100 Monte Carlo replications
with measurement error, the mean estimated coefficient is
0.00186, with a standard deviation of 0.0002 and a range
of 0.0014 to 0.0024. This suggests that pollution measure-
ment error slightly increases the noise of our estimates (on
the order of 23% of our estimated standard error), but that
the bias it might induce is fairly small (about 1% of the
true coefficient). Figure 7 shows the density of our simu-
lated estimates, with the vertical line indicating our main
results. This small bias appears to be in the direction of
attenuation and so is unlikely to lead to spurious findings of
effects.

VI. Conclusion

We analyze the impact of local traffic levels on mortal-
ity and ambient levels of carbon monoxide and particulate
matter. We find a statistically and economically significant
link between local traffic levels and infant mortality, where
a standard deviation increase in traffic results in a 0.2%
of a standard deviation increase in infant deaths. Effects
are largest for premature and low birthweight infants. We
also consider how effects vary by local weather condi-
tions and find that the largest direct link between traffic
and mortality occurs in colder weeks and weeks of greater
humidity.
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Figure 7.—Monte Carlo Results—Density of Observed Betas and

First-Stage F-Statistics
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Kernel density shows distribution of results from 100 Monte Carlo simulations of the main effect in
column 3 of table 8. Each simulation involves the addition of a random, nonclassical autocorrelated error
to the estimated mother postal code–level pollution measure, as section VF describes. Panel A shows the
distribution of observed second-stage estimates. Panel B shows the distribution of observed first-stage
F-statistics, where we cluster standard errors at the mother postal code. The vertical line on panel A
indicates our main result from column 3 of table 8.

Using the relationship between local traffic and regional
weather conditions, we next build an instrumental variables
model to better understand the direct impact of local pol-
lution on infant mortality. We find suggestive evidence that
carbon monoxide contributes to infant deaths even at today’s
lower levels, though results are noisy and not statistically
significant. We also find PM10 has a large and statistically
significant effect on infant mortality. In our preferred specifi-
cation, a 1-unit decrease in PM10 (around 8% of a standard
deviation) saves roughly 10 lives per 100,000 births. This
represents a decrease in the weekly mortality rate of around
4%. This is consistent with the findings of prior research on
ambient particulate matter and suggests that even at today’s
lower levels, reducing both ambient pollution and traffic con-
gestion has substantial opportunity for health gains. Finally,
we explore the role of nonclassical measurement error in
our IV estimates using a Monte Carlo simulation where we
model potentially autocorrelated error in pollution assign-
ment and show that our main findings are robust to such
concerns.
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