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Single nucleus RNA sequencing (sNuc-seq) profiles RNA from tissues that are 

preserved or cannot be dissociated, but does not provide high throughput. Here, we 

develop DroNc-seq, massively parallel sNuc-Seq with droplet technology. We profile 

39,111 nuclei from mouse and human archived brain samples to demonstrate 

sensitive, efficient and unbiased classification of cell types, paving the way for 

systematic charting of cell atlases. 
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Single cell RNA-seq (scRNA-seq) has become instrumental for interrogating cell types, 

dynamic states and functional processes in complex tissues1,2. However, the current 

requirement for single cell suspensions to be prepared from fresh tissue is a major 

roadblock to assessing clinical samples, archived materials and tissues that cannot be 

readily dissociated. The harsh enzymatic dissociation needed for brain tissue is 

particularly problematic because it harms the integrity of neuronal RNA, biases recovered 

cell type proportions, and only works on samples from younger organisms, precluding, 

for example, those from deceased patients with neurodegenerative disorders. To address 

this challenge, we3 and others4-6 developed methods to analyze RNA in single nuclei from 

fresh, frozen or lightly fixed tissues. Methods such as sNuc-Seq3, Div-Seq3, and others4,5 

can handle minute samples of complex tissues that cannot be dissociated, providing 

access to archived samples. However, these methods rely on sorting nuclei by FACS into 

96- or 384-well plates3,5, or on C1 microfluidics4, neither of which scale to tens of 

thousands of nuclei (needed for human brain tissue) or large numbers of samples (e.g., 

tumor biopsies from patients). Conversely, massively parallel scRNA-seq methods, such 

as Drop-seq7 and related methods8-10 can be readily applied at scale11 in a cost-effective 

manner12, but require intact single cell suspension as input. 

 

Here, we develop DroNc-seq (Supplementary Fig. 1a), a massively parallel single 

nucleus RNA-seq method that combines the advantages of sNuc-Seq and Drop-seq to 

profile nuclei at low cost and high throughput. We modified Drop-seq7 to accommodate 

the lower amount of RNA in nuclei compared to cells, including a modified microfluidic 
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design and changes in the nuclei isolation protocol (Supplementary Fig. 1, 

Supplementary Table 1, Supplementary Data 1 and Online Methods).  

 

We used DroNc-seq to robustly generate high quality expression profiles of nuclei from a 

mouse cell line (3T3, 5,636 nuclei), adult frozen mouse brain tissue (19,561 nuclei) and 

archived frozen adult human post-mortem tissue (19,550 nuclei). DroNc-seq (for samples 

sequenced at 160,000 reads per nucleus, Online Methods) detected on average 3,295 

genes (4,643 transcripts) for 3T3 nuclei, 2,731 genes (3,653 transcripts) for mouse brain, 

and 1,683 genes (2,187 transcripts) for human brain (Supplementary Fig. 2). Using 

down-sampling, we estimate that 19,000-26,000 transcriptome-mapped reads per nucleus 

are required for saturation (Supplementary Fig. 2f,g). 

 

To assess throughput and sensitivity, we sequenced single 3T3 cells (with Drop-seq) and 

nuclei (with DroNc-seq) deeply to ~160,000 reads per nucleus/cell. Both methods yielded 

high-quality libraries, detecting an average of 5,134 and 3,295 genes for cells and nuclei, 

respectively (Supplementary Fig. 2b,c). DroNc-seq had similar throughput to Drop-seq 

with efficiencies of 78% (for 3T3 nuclei), 89% (mouse brain), and 95% (human brain) 

(1,003, 1,251 and 1,333 high-quality nuclei per library out of 1,400 expected nuclei, 

given our loading parameters, for cell lines, mouse and human brain, respectively), 

compared to 72% high-quality cells per library (1,444 nuclei out of 2,000 expected) 

(Online Methods). Notably, libraries were sampled from a pool of 20,000 STAMPs 

(Single Transcriptome Associated Micro Particles7), which can be re-sampled multiple 
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times if a user wishes to sequence additional nuclei from the same input (Online 

Methods).  

 

The average expression profile of single nuclei correlated well with that of single cells 

(Pearson r=0.87, Supplementary Fig. 2d). Those genes with significantly higher 

expression in nuclei (e.g., lncRNAs Malat1 and Meg3) or cells (mitochondrial genes Mt-

nd1/2/4) were consistent with known distinct enrichment in these compartments 

(Supplementary Table 2). In both methods over 84% of reads align to the genome (in a 

representative example), but in cells 75.2% of these genomic reads map to exons and 

9.1% map to introns, whereas in nuclei 46.2% of genomic reads map to exons and 41.8% 

to introns (Supplementary Fig. 2e), reflecting the enrichment of nascent transcripts in 

the nucleus3,13-16. To allow comparison with previous studies, we used only exonic reads 

subsequently, although intronic reads can be leveraged in future13. 

 

Clustering11 of 13,313 nuclei profiled from frozen adult mouse hippocampus (n=4 mice) 

and prefrontal cortex (PFC, n=4) (sequenced at low depth of >10,000 reads and >200 

genes detected per nucleus), with an average of 1,810 genes in neurons and 1,077 in non-

neuronal cells (Online Methods), revealed groups of nuclei corresponding to known cell 

types (e.g., GABAergic neurons) and to anatomically distinct brain regions or sub-

regions (e.g., CA1, CA3 within the hippocampus; Fig. 1a, Supplementary Fig. 3,4 and 

Supplementary Table 3). Each had a distinct expression signature (Fig. 1b, 

Supplementary Table 4) and was supported by nuclei from all mice (Supplementary 

Fig. 5a). GABAergic neurons of the same class but from different brain regions (and 
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different samples) group together, as do non-neuronal cells (Fig. 1b, Supplementary 

Fig. 3e and 5). Among non-neuronal cells, different glial cell-types, including astrocytes, 

microglia, oligodendrocytes and oligodendrocyte precursor cells (OPC), readily 

partitioned into separate clusters (Fig. 1a), despite their relatively low RNA levels and 

correspondingly lower numbers of detected genes (Supplementary Fig. 5c,d). Finally, 

despite the lower number of genes detected per nucleus in this setting, the cell types and 

their signatures from DroNc-seq are comparable to those obtained previously with sNuc-

Seq of mouse hippocampus3 and scRNA-seq of the visual cortex17 (Fig. 1c and Online 

Methods). 

 

We also captured finer distinctions between closely related cells, congruent with earlier, 

lower-throughput studies. For example, we distinguished eight sub-sets of GABAergic 

neurons (Fig. 1d, Supplementary Fig. 6a,b), each expressing a unique combination of 

canonical marker genes and signatures (Supplementary Fig. 6c,d, Supplementary 

Table 5). To determine the congruence between cell subtypes obtained from DroNc-seq 

and those in previous datasets, we trained a multi-class random forest classifier11 on the 

DroNc-seq GABAergic sub-clusters and used it to map GABAergic neuronal cells17 or 

nuclei3 from other datasets (Fig. 1e,f and Online Methods). Despite the different brain 

regions, experimental methods, and lower number of genes detected, the DroNc-seq sub-

clusters mapped nearly one-to-one with sub-clusters defined by sNuc-Seq3 in 

hippocampus, and matched satisfactorily to sets of fine-resolution sub-clusters defined by 

scRNA-seq of the visual cortex17 (Fig. 1e,f and Supplementary Fig. 6).	
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To demonstrate the utility of DroNc-seq on archived human tissue, we profiled seven 

frozen post-mortem samples of human hippocampus and PFC from five adults (40-65 

years old), archived for 3.5-5.5 years by the GTEx project18 (Supplementary Table 6). 

Our analysis of 14,963 low-depth sequenced nuclei (>10,000 reads per nucleus, with an 

average of 1,238 genes in neurons and 607 in non-neuronal cells; Fig. 2a-d and 

Supplementary Fig. 7) revealed distinct clusters corresponding to known cell types (Fig. 

2a, Supplementary Fig. 7a and Supplementary Table 7). Although the human archived 

samples varied in quality, DroNc-seq yielded high-quality libraries of both neurons and 

glia cells from each sample (Supplementary Fig. 7c,d). By analyzing a large number of 

cells, we were able to recover rare cell types, such as cluster 14 (Fig. 2a), a cluster of 

hippocampal cells likely comprised of neural stem cells, based on marker gene 

expression (Supplementary Fig. 7f).  

The cell-type specific gene signatures we determined for each human cell-type cluster 

(Fig. 2d, Supplementary Table 8) agreed well with previously defined signatures in 

mouse hippocampus3 and cortex17 (Fig. 2e), and highlighted specific pathways 

(Supplementary Fig. 7e). Moreover, we captured finer distinctions between closely 

related cells, including subtypes of CA pyramidal neurons, reflecting anatomical 

distinctions within the hippocampus (Supplementary Fig. 8); subtypes of glutamatergic 

neurons in the PFC expressing unique cortical layer marker genes, such as RORB (layer 

4-54,17) (Supplementary Fig. 9, Supplementary Table 9); and subtypes of GABAergic 

neurons (Fig. 2f, Supplementary Fig. 10a-c), each associated with a distinct 

combination of canonical markers and signatures (Fig. 2g, Supplementary Fig. 10d-e, 

Supplementary Table 9), as previously reported3,4,17,19. Notably, we found good 
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congruence between our GABAergic sub-clusters and those previously defined3,4,17 in 

mouse and human using a classifier trained on one dataset and tested on the other (Online 

Methods). Human GABAergic sub-clusters mapped well to previously defined clusters in 

the mouse hippocampus3 (sNuc-Seq, Fig. 2h), mouse visual cortex17 (scRNA-seq, Fig. 2i) 

and human cortex4 (single nucleus RNA-seq, Supplementary Fig. 11), including the 

same assignment of canonical marker genes to each cluster (e.g. PVALB, SST, and VIP; 

Supplementary Table 9), despite the different species, experimental methods and brain 

regions used in each study, as well as the lower number of genes detected in DroNc-seq. 

 

DroNc-seq is a massively-parallel single nucleus RNA-seq method that is robust, cost-

effective and easy to use. Profiling of mouse and human frozen archived brain tissues 

successfully identified cell types and subtypes, rare cells, expression signatures and 

activated pathways. Classifications and signatures derived from DroNc-seq profiles were 

congruent with prior studies in human and mouse (despite the lower number of detected 

genes per nucleus), but were derived with significantly improved throughput and cost. 

Moreover, DroNc-seq readily identified rare cell types without the need for enrichment. 

Nuclei grouped primarily by cell type and not by individual, indicating that cell-type 

signatures are largely consistent across individuals. Future studies with larger numbers of 

individuals should assess inter-individual variations, which may increase with aging and 

pathological conditions20. DroNc-seq opens the way to systematic single nucleus analysis 

of complex tissues that are inherently challenging to dissociate or already archived, 

helping create vital atlases of human tissues and clinical samples. 
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Figure Legends 
 
Figure 1. DroNc-seq: Massively parallel single nucleus RNA-Seq. (a) DroNc-seq of 

adult frozen mouse hippocampus and prefrontal cortex. A tSNE plot of 13,133 DroNc-

seq nuclei profiles (>10,000 reads and >200 genes per nucleus) from hippocampus (hip; 4 

samples) and prefrontal cortex (PFC; 4 samples). Nuclei (dots) are colored by cluster 

membership and labelled post hoc by cell types and anatomical distinctions 

(exPFC=glutamatergic neurons from the PFC, exCA1/3=pyramidal neurons from the Hip 

CA region, GABA=GABAergic interneurons, exDG=granule neurons from the Hip 

dentate gyrus region, ASC=astrocytes, NSC=neuronal stem cells, MG=microglia, 

ODC=oligodendrocytes, OPC=oligodendrocyte precursor cells, NSC=neuronal stem 

cells, SMC=smooth muscle cells, END= endothelial cells). Clusters are grouped by cell 

types as in Supplementary Fig. 3a. Flagged clusters (Supplementary Fig. 3b and 
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Supplementary Table 3, Online Methods) were removed. (b) Cell type signatures. The 

average expression of differentially expressed signature genes (rows, Online Methods) in 

each DroNc-seq mouse brain cell subset (columns). (c) DroNc-seq cell-type expression 

signatures in the mouse brain agree with previous studies. Pairwise correlations of the 

average expression (Online Methods) for the genes in each cell-type signature defined by 

DroNc-seq and in cell-types defined by sNuc-Seq in the mouse hippocampus3 (left) and 

scRNA-seq in the visual cortex17 (right). (d) Sub-sets of mouse GABAergic neurons. 

tSNE embedding of 816 DroNc-seq nuclei profiles from the GABAergic neurons cluster 

(Clusters 10-11 in a; inset, blue), color coded by sub-cluster membership. (e,f) 

Congruence of GABAergic neurons sub-clusters defined here (from d) with subsets 

defined from nuclei profiles in the mouse hippocampus3 (e) and single cell profiles in the 

mouse visual cortex17 (f). Dot plot shows the proportion of cells in each cluster defined 

by the other two datasets that were classified to each DroNc-seq cluster using a multi-

class random forest classifier (as in11, Online Methods) trained on the DroNc-seq sub-

clusters.  
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Figure 2. DroNc-seq distinguishes cell types and signatures in adult post-mortem 

human brain tissue. (a) Cell-type clusters. tSNE embedding of 14,963 DroNc-seq nuclei 

profiles (each with >10,000 reads and >200 genes) from adult frozen human 

hippocampus (Hip, 4 samples) and prefrontal cortex (PFC, 3 samples) from five donors. 

Nuclei are color-coded by cluster membership and clusters are labeled post-hoc 

(abbreviations as in Fig. 1a). (b) Marker genes. Plots are as in (a) but with nuclei colored 

by the expression level of known cell-type marker genes. (SLC17A7 – excitatory neurons, 
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GAD1 – GABAergic neurons, PPFIA2 – exDG, SLC1A2 – ASC, MBP – ODC, PDGFRA 

– OPC). (c) Fraction of nuclei from each brain region associated with each cell type. Cell 

types are defined as in Supplementary Fig. 7a and sorted from left by types enriched in 

PFC vs. Hip. (d) Cell type expression signatures. The average expression of differentially 

expressed signature genes (Online Methods, rows) in each DroNc-seq human brain cell 

subset (columns; defined as in Supplementary Fig. 7a). (e) DroNc-seq cell-type 

expression signatures in the human brain agree with previous mouse datasets. Pairwise 

correlations of the average expression (Online Methods) for the genes in each cell-type 

signature defined by DroNc-seq (rows) and cell-types defined by sNuc-Seq in the mouse 

hippocampus3 (left, columns) and scRNA-seq in the visual cortex17 (right,  columns). (f-i) 

GABAergic neurons sub-clusters. (f) tSNE embedding of 1,500 DroNc-seq nuclei 

profiles from the GABAergic neurons cluster (clusters 5-6 in Fig. 2a; inset), color coded 

by sub-cluster membership. (g) Average expression of canonical GABAergic marker 

genes (rows) in each of the nuclei sub-clusters (columns) defined in (f). (h,i) Mapping of 

human GABAergic neurons sub-cluster defined here (columns, from f) to subsets defined 

from nuclei profiles in the mouse hippocampus3 (h) and single cell profiles in the mouse 

visual cortex17 (i) (rows). Dot plot shows the proportion of cells in each cluster defined by 

the other two datasets that were classified to each DroNc-seq cluster (as in Fig. 1e,f). 
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ONLINE METHODS 

See Protocol Exchange21 for a step-by-step protocol for DroNc-seq. 
 

EXPERIMENTAL PROCEDURES 

 

Microfluidic device design and fabrication 

Microfluidic devices were designed using AutoCAD (AutoDESK, USA), tested using 

COMSOL Multiphysics as well as empirically, and fabricated using soft lithographic 

techniques22 (Supplementary Data 1). The devices were tested on a Drop-seq setup, using 

bare beads (Tosoh, Japan, Cat # HW-65s) in Drop-Seq Lysis Buffer (DLB7; 10 ml stock 

consists of 4 ml of nuclease-free H2O, 3 ml 20% Ficoll PM-400 (Sigma, Cat # F5415-

50ML), 100 µl 20% Sarkosyl (Teknova, Cat # S3377), 400 µl 0.5M EDTA (Life 

Technologies), 2 ml 1M Tris pH 7.5 (Sigma), and 500 µl 1M DTT (Teknova, Cat # 

D9750), where the DTT is added fresh) and 1x PBS, to optimize flow and bead 

occupancy parameters in drops. Droplet generation was assessed under a microscope in 

real time using a fast camera (Photron, Model # SA5), and later by sampling the emulsion 

using a disposable hemocytometer (Life Technologies, Cat # 22-600-100) to check 

droplet integrity, size, and bead occupancy. The device design is provided as a 

Supplementary File 1 and Supplementary Fig. 1b. The unit in the CAD provided is 1 

unit = 1 µm; channel depth on device is 75 µm. 

 

Cell culture 

3T3 and HEK293 cells were prepared as described7. TF1 cells were cultured according to 

ATCC’s instructions. For DroNc-seq, cells were washed once with PBS, scraped with 2 
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ml nuclease- and protease-free Nuclei EZ lysis or EZ PREP buffer (Sigma, Cat # EZ 

PREP NUC-101) and processed as tissues, described below.  

 

Dissection of mouse hippocampus and pre-frontal cortex (PFC) 

Microdissections of mouse hippocampus and PFC were performed under 

stereomicroscope3. Dissected sub-regions were flash frozen on dry ice and stored at -

80°C until processed for nuclei isolation. To validate DroNc-seq for fixed tissue 

(Supplementary Fig. 1f), sub-regions were placed in ice-cold RNAlater (ThermoFisher 

Scientific, Cat # AM7020), stored at 4°C overnight, after which RNAlater was removed 

and samples were stored at -80°C until processing.  

 

Human hippocampus and PFC samples  

Human hippocampus and PFC samples were obtained from the Genotype-Tissue 

Expression (GTEx) project. Samples were originally collected from recently deceased, 

non-diseased donors18,23. For this study, we selected samples of frozen hippocampus and 

PFC from five male donors, aged 40-65 (including three samples of PFC and four 

samples of hippocampus). We used RNA quality from tissues as a proxy for tissue 

quality, and selected tissues with RNA Integrity Number (RIN) values of 6.9 or higher 

(average RIN was 7.3). Average post-mortem ischemic interval for tissues was 12.4 

hours (Supplementary Table 6).  

 

Nuclei isolation 

Nuclei were isolated with EZ PREP buffer (Sigma, Cat #NUC-101). Tissue samples cut 
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into pieces < 0.5 cm or cell pellets were homogenized using a glass dounce tissue grinder 

(Sigma, Cat #D8938) (25 times with pastel A, and 25 times with pastel B) in 2 ml of ice-

cold EZ PREP and incubated on ice for 5 minutes, with additional 2 ml ice-cold EZ 

PREP. Nuclei were centrifuged at 500 x g for 5 minutes at 4°C, washed with 4 ml ice-

cold EZ PREP and incubated on ice for 5 minutes. After centrifugation, the nuclei were 

washed in 4 ml Nuclei Suspension Buffer (NSB; consisting of 1x PBS, 0.01% BSA and 

0.1% RNAse inhibitor (Clontech, Cat #2313A)). Isolated nuclei were resuspended in 2 

ml NSB, filtered through a 35 μm cell strainer (Corning, Cat # 352235) and counted. A 

final concentration of 300,000 nuclei/ml was used for DroNc-seq experiments.  

 

For comparison experiments of nuclei isolation protocols (Supplementary Fig. 1d,e), 

nuclei were also isolated using the sucrose gradient centrifugation method described for 

sNuc-Seq3. The nuclei isolation protocol used here is more efficient than the gradient 

centrifugation based method and does not require ultra-centrifugation. This reduced 

processing time and minimized RNA degradation, facilitating processing of multiple 

samples.  

 

Co-encapsulation of nuclei and barcode beads 

10 µl of the single nuclei suspension in NSB (described above) was stained with DAPI 

(Fisher, Cat # D1306), loaded on a hemocytometer, and checked under microscope to 

ensure that nuclei were adequately isolated into singletons. The nuclei were suspended in 

NSB at ~300,000 nuclei/ml. Using ~75 um droplets, loading concentration of 300,000 
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nuclei/ml, and ~4.5 million drops/ml, amounts to a Poisson loading parameter, λ ~ 

300,000/4,500,000= 0.07). 

 

Barcoded beads (Chemgenes, Cat # Macosko-2011-10) were prepared as in Ref 7. 

Because the DroNc-seq microfluidic device has narrow channels (~70 µm), they are 

likely to clog from large beads, compared to Drop-seq. We therefore size-selected beads 

< 40 µm diameter using a strainer (PluriSelect, Cat # 43-50040-03); in our experience, 

these smaller beads comprise roughly 55% of the purchased bead pool. The barcoded 

beads were suspended in DLB (described above) and counted at 1:1 dilution in 20% PEG 

solution using a hemocytometer (VWR, Cat # 22-600-102)7, at concentrations between 

325,000 and 350,000 per ml. 

  

The nuclei and barcoded bead suspension were loaded7 and flown at 1.5 ml/hr each, 

along with carrier oil (BioRad Sciences, Cat # 186-4006) at 16 ml/hr, to co-encapsulate 

single nuclei and beads in ~75 µm drops (vol. ~ 200 pl) at 4,500 drops/sec and double 

Poisson loading concentrations. The smaller droplet volume in DroNc-seq results in 

higher mRNA concentration in drops (> 5x) compared to 125 µm drops in Drop-seq. 

  

The theoretical Poisson loading concentration at 1/10 bead and nuclei occupancy for 

devices with channels 70 µm wide and 75 µm deep is ~520,000/ml, and 100 µm depth 

(also tested) is 340,000/ml. We tested bead and cell loading at this and other 

concentrations using species-mixing experiments7 (e.g., Supplementary Fig. 1g and 

Supplementary Table 1) and ease of bead flow as metrics and found that beads at 
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350,000/ml and nuclei at 300,000/ml concentrations performed best, in terms of low 

human-mouse doublet rate and fewer clogging events during droplet generation. At the 

nuclei loading concentrations used, the occurrence of one or more nuclei in a drop 

follows a Poisson distribution, P(x) = λx e-λ/x!, where λ = Poisson parameter, and x=2 for 

doublet estimation. As a theoretical lower bound, increasing nuclei concentration will 

increase doublet rate as λ2 e-λ/2; e.g., if nuclei loading is increased by 10%, the 

probability of getting two nuclei in a drop will increase from 0.21% to 0.25%. However, 

the probability of getting two or more nuclei in a drop, i.e., doublets, triplets, etc., all of 

which would be indistinguishable in species-mixing experiments, is P(x ≥ 2; λ = 0.07) = 

0.5%. In practice, nuclei that stick together or cellular debris could also contribute to 

doublets or doublet-like phenomena. Empirical doublet rates in experiments ranged from 

~1% (mouse tissue; clustering analysis) to ~5% (species-mixing).  

 

For nuclei experiments on human and mouse tissue, 75 µm DroNc-seq devices were 

used, except for where 125 µm Drop-seq device was used for comparison 

(Supplementary Fig. 1c). Note that for 3T3 nuclei, both 125 µm Drop-seq and 75 µm 

DroNc-seq devices yielded similar results, while 3T3 cells profiled by Drop-seq had 

better efficiency and complexity. 

 

Droplet breaking, washes, and reverse transcription (RT) 

Microfluidic emulsion was collected into 50 ml Falcon tubes for ~22 min each, and left at 

room temperature for up to 45 min before breaking drops7 and performing RT7.  
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Post RT wash, exonuclease I treatment, PCR, and library preparation 

Post RT, each barcoded bead had cDNA barcoded with the bead’s unique barcode (BC) 

bound onto it, also referred to as a STAMP7. STAMPs from multiple collections of a 

given sample were pooled at this point, resuspended in 1 mL H2O, and a 10 µl aliquot of 

the suspension was mixed with 10 µl of 20% PEG solution and counted. Aliquots of 

5,000 beads were amplified7 using the following PCR steps: 95oC for 3 min; then 4 cycles 

of: 98oC for 20 sec, 65oC for 45 sec, 72oC for 3 min; then X cycles of: 98oC for 20 sec, 

67oC for 20 sec, 72oC for 3 min; and finally, 72oC for 5 min, where X was adjusted 

according to sample quality. STAMPs from mouse tissue were amplified for X=10 cycles 

and PCR products were pooled in batches of 4 wells or 16 wells. STAMPS from human 

tissue were amplified for X=10 or 12 cycles. Human PCR products were pooled in 

batches of 4 wells (X=12) or 16 wells (X=10). Supernatants from each well were 

combined in a 1.5 ml Eppendorf tube and cleaned with 0.6X SPRI beads (Ampure XP, 

Beckman Coulter, Cat # A63881).  

 

Notably, the number of PCR wells from a DroNc-seq run depends on the number of 

STAMPs obtained. A user may access the STAMPs in different ways, depending on the 

number of nuclei they wish to sequence. One would either access the pool one time or 

more, each time taking only a portion of the STAMPs to generate a library, and repeating 

the process if more is desired. For mouse and human brain, it was optimal to use 5,000 

STAMPs in each PCR reaction and then pool 4 PCR wells together for library 

preparation, which is expected to yield 1,400 nuclei profiles based on our loading and 

flow parameters. Depending on the desired number of reads per nucleus and sequencing 
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yield, one can pool higher numbers of PCR wells in a single Illumina NexteraTM library, 

as demonstrated here using 16-32 wells for libraries used in the clustering analysis of 

mouse and human brain tissue. 

  

Purified cDNA was quantified7 and 550 pg of each sample was fragmented, tagged, and 

amplified in each Nextera reaction7. 

 

Sequencing 

The libraries were sequenced at 2.2 pM (mouse, 16 wells pool), 2.7 pM (mouse, 4 wells 

pool), and 2.3 pM (human) on an Illumina NextSeq 500. We used NextSeq 75 cycle v3 

kits to sequence 20bp and 64bp paired-end reads, with Custom Read1 primer7. The 

sequencing cluster density and percent passing filter number from different experiments 

varied according to the quality of nuclei samples used, but were optimized around cluster 

density of 220 and 90% passing filter. 

 

COMPUTATIONAL DATA ANALYSIS 

Preprocessing of DroNc-seq data 

Read filtering and alignment. Paired-end sequence reads were processed mostly as 

previously described7,11. Briefly, the left read was used to infer both the cell of origin, 

based on the first 12 bases (the Nucleus Barcode or NB), and the molecule of origin, 

based on the next 8 bases (Unique Molecular Index or UMI). Reads were first filtered by 

quality score, and the right mate of each read pair was trimmed and aligned to the 

genome (mouse mm10 UCSC, human hg19 UCSC) using STAR v2.4.0a24. Reads 
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mapping to exonic regions of genes as per the mouse UCSC genome (version mm10) or 

the human UCSC genome (version hg19) were recorded.  

Digital gene expression. Nucleus (cell) barcodes that represent genuine nuclei RNA 

libraries rather than technical and sequencing errors were distinguished as previously 

described7,11 as true or “core” nucleus barcodes. Briefly, barcodes were first filtered based 

on a minimum number of transcripts associated with them and then barcodes were 

checked for synthesis errors and collapsed to core barcodes if they were within an edit 

distance of 1. To account for amplification bias, gene counts were collapsed within each 

sample, using UMI sequences (within an edit distance of 1, substitutions only), as 

previously described7,11. The expression count (or number of transcripts) for a given gene 

in a given nucleus was determined by counting unique UMIs, and compiled into a digital 

gene expression (DGE) matrix. The DGE matrix was scaled by total UMI counts, 

multiplied by the mean number of transcripts (calculated for each dataset separately) and 

the values were log transformed. To reduce the effects of library quality and complexity 

on cluster identity, a linear model was used to regress out effects of the number of 

transcripts and genes detected per nucleus (using the ‘RegressOut’ function in the Seurat 

software package).  

 

Gene detection and quality controls 

Additional filtering of the expression matrix. Nuclei with less than 200 detected genes 

and less than 10,000 usable reads were filtered out. We note that, as for scRNA-seq, 

depending on the cell-type in question; the cut-off may need to be set on a case-by-case 

basis, based on the characteristic RNA content of the cell type. A gene is considered 
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detected in a cell if it has at least two unique UMIs (transcripts) associated with it. For 

each analysis, genes were removed that were detected in less than 10 nuclei. After 

filtering, the number of cells and nuclei were as follows: (1) 1,710 cells from the 3T3 

single cell libraries (collected by Drop-seq) across two replicates; (2) 5,636 3T3 nuclei 

across 6 replicates; (3) 19,561 nuclei from the mouse brain (4 PFC samples and 4 

hippocampus samples from 4 mice used for cell type analysis, and an additional 8 cortical 

samples from 4 mice used for quality control experiments); and (4) 19,550 nuclei from 

the human brain (3 PFC samples and 4 hippocampus samples from 5 donors). Clusters 

and cell-type classification were robust for different gene detection thresholds. The above 

threshold was used in all the clustering analyses. For the quality control experiments 

(specifically, testing the performance with RNALater, different nuclei isolation protocols, 

different microfluidic devices; Supplementary Fig. 1), at least 20,000 usable reads per 

nucleus were required (the number of reads at which we estimated sample saturation; 

Supplementary Fig. 2f,g). For the assessment of the complexity and sensitivity of 

DroNc-seq at least 80,000 usable reads per nucleus were required; this analysis was 

performed only with the samples sequenced deeply to an average of 160,000 reads per 

nucleus, as required for saturation analysis.  

 

QC metrics. A list of quality metrics was obtained for all DroNc-seq datasets using 

Samtools (http://samtools.sourceforge.net/), Picard Tools 

(http://broadinstitute.github.io/picard/), and in-house scripts. For each single-nucleus 

profile, we calculated the total number of reads mapped to coding regions and UTRs, 

number of genes detected per nucleus, and the percentage of the total number of reads 
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assigned to nucleus barcode that were from: (1) coding regions, (2) UTRs, (3) intronic 

regions, (4) intergenic regions, (5) ribosomal RNA (rRNA), and (6) transcripts derived 

from the mitochondrial genome. 

 

Comparison of Drop-Seq (cells) and DroNc-seq (nuclei) 

We compared DroNc-seq (nuclei) and Drop-seq (cells) using several measures. (1) We 

compared the capture rate efficiency of DroNc-seq and Drop-seq in libraries derived from 

pooling four PCR wells, followed by sequencing to an average depth of 160,000 usable 

reads per nucleus/cell. The efficiency is defined as the percent of nuclei actually observed 

out of the proportion expected per library, given the Poisson loading of 0.07 for DroNc-

seq and 0.1 for Drop-seq. For example, at 100% efficiency, a DroNc-seq pool of 20,000 

beads is expected to contain 1,400 nuclei (2,000 cells in Drop-seq). On average, we 

observed 87% efficiency for DroNc-seq (78%, 89%, and 95% efficiency for cell lines, 

mouse brain, and human brain tissue, respectively) and 72% for Drop-seq on cell lines. 

(2) We compared the means and the distributions of the number of genes and transcripts 

detected for all cells and nuclei that pass our quality filter (Supplementary Fig. 2b,c). 

(3) We compared the expression profiles of nuclei and cells (3T3 cell line) by computing 

the average expression for each gene (average log transformed UMI counts) in each 

replicate, and then the Pearson correlation coefficients between technical replicates of 

cells or nuclei (all have r=0.99+/-stdev=0.0023), and between nuclei and cells (r=0.81+/-

stdev= 0.0024). (Supplementary Fig. 2d) (4) We tested for genes differentially 

expressed between cells and nuclei (3T3 cell lines) after pooling technical replicates. We 

defined differentially expressed genes using Student’s t-test, requiring FDR < 0.001, log-
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ratio > 1 and an average expression across all nuclei or cell samples log(UMI count) > 3. 

We found only two genes up-regulated in the nuclei (lincRNAs Malat1 and Meg3), and 

57 genes up regulated in cells, including many mitochondrial RNAs and ribosomal 

protein RNAs (known to be stable and thus enriched in cells compared to nuclei13,14) 

(Supplementary Table 2). (5) We compared the fraction of the total number of reads 

that were mapped to (1) coding regions, (2) UTRs, (3) intronic regions, (4) intergenic 

regions, and (5) ribosomal RNA (as described above) (Supplementary Fig. 2e). 

 

PCA, clustering, and tSNE visualization 

Finding variable genes. To select highly variable genes, we fit a relationship between 

mean counts and coefficient of variation using a Gamma distribution on the data from all 

the genes19,25, and ranked genes by the extent of excess variation as a function of their 

mean expression (using a threshold of at least 0.2 difference in the coefficient of variation 

between the empirical and the expected and a minimal mean transcript count of 0.005). 

 

Dimensionality reduction using PCA. We used a DGE matrix consisting only of variable 

genes as defined above, scaled and log transformed, and then reduced its dimensions with 

principal components analysis (PCA). We used the fast ‘rpca’ function in R (package 

‘rsvd’), and chose the most significant principal components (or PCs) based on the largest 

eigen value gap3 (separately for each dataset) to use as input in downstream analysis.  

 

Graph clustering. We partitioned the profiles into clusters of transcriptionally similar 

nuclei using the top significant PCs as an input to a graph based clustering algorithm, as 
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previously described11. Briefly, in the first step, we compute a k-nearest neighbor (k-NN) 

graph, connected each nucleus to its k-nearest neighbors (based on Euclidean distance, 

using the ‘nng’ function of the ‘igraph’ package in R). We next used the k-NN graph as 

an input to the Infomap algorithm26, which decomposes an input graph into modules 

using the ‘cluster_infomap’ function in R). The clustering results were visualized by 

coloring a tSNE27 2D map post hoc (below). We used k=100 for clustering of each full 

dataset, and k=80 for the human brain subset clustering (Fig. 2f, Supplementary Fig. 8-

9). 

 

Sub-clustering. To identify subtypes of cells, the same analyses were performed as 

described above but on a specific subset of nuclei (one or few of the major clusters; as 

described in the main text) to partition it to sub-clusters.  

 

tSNE visualization. We generated a two-dimensional (2D) non-linear embedding of the 

nuclei profiles using tSNE. The scores along the top significant PCs estimated above 

were used as input to the algorithm (using the ‘Rtsne’ package, with a maximum of 2,000 

iterations, disabling the initial PCA step and setting the perplexity parameter to 100 for 

detection of the major clusters and 60 for sub-clusters). Since tSNE can produce different 

visualizations in different runs, we used these coordinates only for visualization and not 

to identify cell clusters. Interestingly, we can associate nuclei with a distinct known cell 

type even for those nuclei with as few as 100 genes detected, suggesting that the cell-type 

identity in the brain can be encoded by a small set of genes, easily detected with shallow 

sequencing, as previously observed in other systems11.  
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To visualize the expression of known marker genes (e.g., subtypes of GABAergic 

neurons in the hippocampus and cortex3,19) or genes found to be up-regulated, we 

visualized the average expression of the markers across each cluster or cell type as violin 

plots, and visualized the distribution of the expression across cells in the tSNE space by 

color coding the dots based on expression levels. 

 

Testing for batch and technical effects. To rule out the possibility that the resulting 

clusters are driven by batch or other technical effects, we examined the distribution of 

samples within each cluster and the distribution of the number of genes detected across 

clusters (as a measure of nuclei quality). Overall, the nuclei separated into distinct point 

clouds in tSNE space that were not driven by batch; each cluster/cloud was an admixture 

of cells from all technical and biological replicates, with variable numbers of genes. 

Related to the number of genes, we note that there is a distinct biological difference in 

cell size (and expected RNA content) between neuronal and glial cells in the brain. 

 

Transcript and gene saturation analysis 

To assess the extent of saturation and required read depth of the DroNc-seq libraries, we 

used nuclei libraries from a mouse cell line (3T3), mouse brain tissue, and human brain 

tissue (cortex) each sequenced to an average read depth of 160,000 reads per nucleus. We 

removed nuclei with less than either 200 genes detected or 10,000 reads. We performed 

saturation analyses for transcripts (UMI) and genes for each nucleus separately by sub-

sampling reads with replacement across the range of reads for that nucleus (from 0.02 to 
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0.98 of the total read counts within a given nucleus or cell, in 0.02 increments). For each 

subsampling, we calculated the number of reads and transcripts detected. This sampling 

procedure was repeated 10 times and the mean values were reported. Saturation limits for 

UMI/genes were estimated by nonlinear fitting of the following saturation function to all 

points generated by the sampling procedure: 

𝑦 = 	
𝑎𝑥
𝑏 + 𝑥 + 𝑐 

 

Cluster annotation, filtering, differential expression, and pathway analysis 

Major cell-type clusters were identified by using a set of known cell-type marker genes 

from the literature, as previously described3,19. In addition, we identified signatures of up-

regulated genes for each cluster (Supplementary Tables 4,5,8 and 9), which we used to 

further validate the identity of the cluster by matching these signatures with canonical 

cell-type marker genes and by testing for enriched pathways. Differentially expressed 

signatures were calculated using a binomial likelihood ratio test28 to find genes that are 

up-regulated within each cluster compared to the rest of the nuclei in the dataset, with 

FDR 0.01 and requiring that these genes are expressed in at least 20% of nuclei in the 

given cluster and have a minimum difference of 20% in the fraction of nuclei in which 

they are detected. The differential expression signatures were tested for enriched 

pathways and gene sets using a hypergeometric test (FDR < 0.01). Pathways were taken 

from the MSigDB/GSEA resource (combining data from Hallmark pathways, 

REACTOME, KEGG, GO and BIOCARTA)29.  
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We flagged problematic clusters to be disregarded in downstream analysis by any one of 

three criteria: (1) clusters that had dubious quality of nuclei, in which the nuclei 

associated mainly with one sample did not associate with specific cell type markers. (2) 

clusters with nuclei expressing both overlapping markers of two different cell types and 

having a relatively higher number of transcripts, indicating they might be nuclei doublets; 

or (3) clusters expressing markers of neighboring brain regions that might be a result of 

non-specific tissue dissection (such as genes enriched in the choroid plexus, 

Supplementary Fig. 3b). Several small clusters in the human and mouse brain were 

discarded from downstream analysis (as annotated in Supplementary Tables 3 and 7, 

and in Supplementary Fig. 3b).  

 

Cell types were defined by combining clusters of all subtypes (e.g. the GABAergic sub-

clusters were combined into one group of GABAergic neurons), which was used in the 

downstream analysis for testing the number of genes and transcripts in each cell type, 

defining cell-type specific expression signatures, sub-clustering, and comparing cell-type 

signatures to previous datasets. 

 

Comparison of DroNc-seq data to previous datasets 

Comparison of cell-type signatures. Cell-type specific expression patterns were compared 

to signatures previously defined in several relevant datasets by calculating the pairwise 

Pearson correlations coefficients between each pair of cell types in the other dataset and 

DroNc-seq datasets for the same set of genes. First, we compared to average cell-type 

specific signatures from sNuc-Seq analysis in the mouse hippocampus3 (Supplementary 
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Tables in Ref. 3). Second, we compared to the single cell RNA-seq dataset of the mouse 

visual cortex (Tasic et al.17), using the previously defined cell-type annotations and 

expression values per cell (from GEO dataset GSE71585 and Ref. 17). Average log 

transformed TPM counts, FPKM counts, or scaled UMI counts were used to generate the 

mouse hippocampus3, mouse visual cortex17, and DroNc-seq signatures, respectively.  

 

Comparison of mouse and human GABAergic sub-clusters to previously defined sub-

clusters in mouse brain. To determine the congruence of cell subtypes between the 

DroNc-seq analyses to other neural datasets, we adopted an approach which we 

previously described in an analysis of retinal neurons11. Briefly, we trained a multi-class 

random forest classifier30 on the clusters defined on the DroNc-seq data separately for 

human and mouse GABAergic neurons. In each case, we used the most variable genes 

(approximately 700-2,000 genes across datasets, as described above) to build a classifier 

on 60% of the data (training set). For each dataset, the classifier was tested on the 

remaining 40% of the data that was not used for training (test set) to obtain an estimate of 

the classification accuracy. Nuclei in the test set mapped to their correct classes at a rate 

of 93% for the human GABAergic neurons and 91% for the mouse GABAergic neurons 

(expected accuracy based on random assignment was 12.5%). These classifiers were then 

used to map cells or nuclei in other datasets including single nucleus RNA-seq in the 

mouse hippocampus brain region3 and single cell RNA-seq in the mouse visual cortex17. 

 

Comparison of human GABAergic sub-clusters to previously defined sub-clusters in 

human brain. To determine the congruence of neuron subtypes between DroNc-Seq 
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analysis of hippocampus and PFC and previous analyses of human visual cortex (Lake et 

al.4), we used the classifier previously defined in Lake et al.4 that includes a set of 

signature genes at each point along a decision tree leading to the classification of eight 

GABAergic subtypes. To classify the DroNc-seq nuclei profiles, at each branch point in 

the tree, we scored each nucleus profile using the left and right gene signatures, by the 

average expression level of all signature genes per nucleus (log transformed UMI counts 

centered around the mean value), and assigned the tested nucleus by the higher score. 

 

RNA in situ hybridization data. RNA in situ hybridization (ISH) images for marker genes 

was taken from the Allen Institute Brain Atlas31. 

 

Data Availability 
 
Raw human sequencing data is available at dbGaP, under accession phs000424.v8.p1, 
and expression tables are available at http://www.gtexportal.org/home/datasets. Raw and 
processed mouse sequencing data is available at 
https://portals.broadinstitute.org/single_cell and at the Gene Expression Omnibus (GEO) 
database. 
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Editor’s	Summary	
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Supplementary Figure 1: DroNc-seq benchmarking experiments. (a) Overview of 

DroNc-seq. (b) CAD scheme of DroNc-seq microfluidic device. (c) Comparison of 

library complexity from experiments with different microfluidic device parameters. 

Distribution of number of transcripts (y-axis) detected across nuclei, ranked in decreasing 

order (x-axis) in each of two representatives of three independent replicates (left and 

right) performed with nuclei from the mouse cortex and mid-brain regions, each using 

DroNc-seq 75μm microfluidics device (dark blue, Methods) and the Drop-seq7 125μm 

device (light blue). (d,e) Comparison between nuclei isolation protocols. (d) Distribution 
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of number of transcripts detected per nucleus (x axis), for samples from mouse Lateral 

Cortex (LC) or Prefrontal Cortex (PFC) processed using either sucrose gradient 

centrifugation method as in sNuc-Seq3 (sucrose gradient) or the EZ-PREP based isolation 

method used in DroNc-seq (EZ PREP) (Methods). (e) Bar plot showing the number of 

nuclei per library (y axis) with at least 20,000 reads and 200 genes detected per nucleus 

(Methods) on the same samples as in (d), using either sNuc-Seq3 (Gradient) or DroNc-

seq (EZ) nuclei isolation protocols. (f) Comparison of library complexity between frozen 

and RNAlater-fixed brain samples. Distribution of number of transcripts detected per 

nucleus (x-axis, nuclei with at least 20,000 reads and 200 genes detected), for nuclei from 

mouse cortex and mid-brain tissues that were either fresh-frozen or lightly fixed with 

RNAlater (Methods); two independent experiments for each isolation method are shown. 

(g) Single nucleus specificity in DroNc-seq. Scatter plot showing the number of 

transcripts associated with human (HEK293 cells, x-axis) or mouse (3T3 cells, y-axis) 

transcripts for each nucleus barcode (dot). 2.5% (27/1,064) of nuclei are human-mouse 

doublets, reflected by barcodes associated with a high number of both human and mouse 

transcripts (purple). We estimate a 5% expected doublet rate at our current loading and 

flow parameters. Four replicate species mixing experiments are in Supplementary Table 

1. 

 

 



	 36	

 
 
Supplementary Figure 2: Quality and complexity estimates of DroNc-seq libraries. 

(a) Bioanalyzer traces of DroNc-seq libraries showing the length of the cDNA library 

fragments of (from left): 3T3 cells, 3T3 nuclei, human brain nuclei, and mouse brain 

nuclei. (b,c) Distribution of number of transcripts (b) and genes (c) detected in DroNc-

seq from nuclei isolated from: Left- 3T3 cells, mouse frozen brain tissue, and human 

frozen archived brain tissue; Right- 3T3 cells by Drop-seq or nuclei by DroNc-seq. (d) 

Scatter plot comparing average expression levels detected in single 3T3 nuclei (DroNc-

seq, y-axis) and cells (Drop-seq, x-axis). Red dots mark outlier genes highly expressed in 

one but not the other experiment. (e) Percent reads mapped to the mouse genome (out of 

the total reads, left, y-axis), and percent mapped to exons, introns, intergenic regions, and 



	 37	

rRNA loci (out of the genomic-mapped reads, right, y-axis), for 3T3 cells (dark bars) and 

nuclei (light bars). (f-g) Saturation analysis. (f) Saturation curves of the number of 

transcripts (y-axis) at different number of sequenced reads (x-axis), estimated by 

subsampling of reads in each nucleus (Methods). Circles are the observed subsampling 

values averaged across 10 replicates of 3T3 cells (top) or nuclei (bottom). The blue line 

indicates the nonlinear fit of a saturation function to all observations. The grey line is the 

extrapolated trend given the estimated fit parameters. (g) Shown for each cell or nucleus 

(grey dot) in each sample (as in f) is the estimated number of reads (y-axis) needed to 

achieve 80% saturation of transcripts (left) followed by the total number of usable reads 

per cell or nucleus (right). Red lines indicate the population mean, pink regions indicate 

95% C.I. of the mean.  
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Supplementary Figure 3: DroNc-seq identifies cell types in the mouse brain. (a) Cell 

type classification. tSNE plot of DroNc-seq libraries from adult frozen mouse 

hippocampus (Hip) and prefrontal cortex (PFC) brain regions, as in Fig. 1a, but with 

clusters color coded by cell type annotations and anatomical distinctions 
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(exPFC=pyramidal neurons from the PFC, exCA=pyramidal neurons from the Hip CA 

region, GABA=GABAergic interneurons, exDG=granule neurons from the Hip dentate 

gyrus region, ASC=astrocytes, MG=microglia, ODC=oligodendrocytes, 

OPC=oligodendrocyte precursor cells, SMC=smooth muscle cells, END=endothelial 

cells). (b) Cell filtering. tSNE plot as in (a), but marking clusters of nuclei (black) that 

were identified as either doublets or as contaminating cells from adjacent brain regions 

(ChP = Choroid plexus, Methods) and thus removed from subsequent analyses. (c) Cell 

quality. tSNE plot showing a 2D embedding of DroNc-seq nuclei as in (a) with additional 

lower complexity nuclei, marking (turquoise) nuclei with either less than 400 (left) or 300 

(right) genes. (d) Distribution of number of transcripts detected in each cluster. Violin 

plots show the distribution of the number of transcripts in each cluster (x-axis; as in Fig. 

1a). (e) Fraction of nuclei from each brain region associated with each cell type. Cell 

types are defined as in (a) and sorted from left by types enriched in PFC vs. Hip. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



	 40	

 

 

Supplementary Figure 4: Sub-clusters of mouse pyramidal neurons from the CA 

region in the hippocampus. a) Marker gene expression. tSNE embedding of DroNc-seq 

nuclei from mouse hippocampus and PFC (as in Fig. 1a), colour coded by expression 

levels (scaled log(transcripts)) of selected genes with distinct expression across the 

anatomical sub-regions of the hippocampus: Neurod6 in CA regions, Golm1 in CA3 and 

dentate gyrus regions, Pex5l in CA1 and subiculum regions, and Prox1 in dentate gyrus 

region. (b) RNA in situ hybridization (ISH) images from the Allen Brain Atlas30 showing 
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expression patterns of marker genes (from a) in the mouse hippocampus (sagittal 

sections, scale = 839	µm). 
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Supplementary Figure 5: DroNc-seq data quality in the mouse brain. (a) Number of 

nuclei from each sample (colour code: PFC=blue; Hip=yellow) associated with each 

cluster (as defined in Fig. 1a). In the legend, numbers denote different samples, and 

letters denote technical replicates from the same sample. (b) Number of high quality 

nuclei (with at least 10,000 reads and 200 genes detected, Methods) in each mouse brain 
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sample (as in a). (c,d) Complexity. (c) Distribution of number of genes (left) and 

transcripts (right) in the nuclei in each subset (as in Supplementary Fig. 3a). 

exPFC=glutamatergic neurons from the PFC region, GABA=GABAergic interneurons, 

exCA=pyramidal neurons from the Hip CA region, exDG=granule neurons from the Hip 

dentate gyrus region, ASC=astrocytes, NSC=neuronal stem cells, 

ODC=oligodendrocytes, OPC=oligodendrocyte precursor cells, SMC=smooth muscle 

cells, END=endothelial cells, MG=microglia. (d) Distribution of number of genes in the 

cells in each subset from the scRNA-seq mouse brain study of Tasic et al.17 

(Glut=glutamatergic neurons). 
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Supplementary Figure 6: Sub-clusters of GABAergic neurons in the mouse brain. 

(a) Reproducibility. tSNE embedding (as in Fig. 1d) of 816 DroNc-seq nuclei profiles 

from mouse GABAergic neuron clusters (clusters 10-11 in Fig. 1a), color coded by 

sample of origin. Technical replicates are marked as separate samples. (b) Complexity. 

Violin plots show the distribution of the number of transcripts in the nuclei in each mouse 

GABAergic sub-cluster. (c,d) Each cluster is characterized by a unique combination of 

expressed marker genes. (c) tSNE embedding as in (a), color coded by the expression 
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level of marker genes (marked on top). (d) Violin plots of the distribution of expression 

levels (scaled log(transcripts)) of markers genes (marked on top) in the nuclei (dots) in 

each of the mouse GABAergic sub-clusters (defined as in Fig. 1d). 
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Supplementary Figure 7: DroNc-seq distinguishes cell types in the human brain. (a) 

tSNE plot of DroNc-seq profiles from adult human hippocampus (Hip) and prefrontal 

cortex (PFC), as in Fig. 2a, but with clusters grouped by cell type annotations and 

anatomical distinctions. exPFC=pyramidal neurons from the PFC, 

exCA1/exCA3=pyramidal neurons from the Hip CA regions, GABA=GABAergic 
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interneurons, exDG=granule neurons from the Hip dentate gyrus region, ASC=astrocytes, 

ODC=oligodendrocytes, OPC=oligodendrocyte precursor cells, MG=microglia, 

NSC=neuronal stem cells, END=endothelial cells. (b) Complexity. Violin plots show the 

distribution of the number of transcripts detected in the nuclei of each cluster (clusters as 

in Fig. 2a). (c) Quality. Number of nuclei passing quality filter (Methods; at least 10,000 

reads and 200 genes detected per nucleus) in each sample. Numbers denote different 

samples, and letters denote technical replicates from the same sample. (d) Each cluster is 

supported by multiple samples. Number of nuclei from each human sample (color code; 

blue=PFC; yellow=Hip; samples and technical replicates marked as in c) that are 

associated with each cluster (x-axis, defined as in Fig. 2a). (e) Interferon signalling and 

MHC I genes in single endothelial cells. Shown is the expression of a sub-set of genes 

(rows) up-regulated (Methods) in the endothelial nuclei Cluster 11 (in a) across the 

nuclei (columns) in the cluster. Right: membership of the genes in two enriched pathways 

(hypergeometric p-value FDR < 0.01, Methods). (f) Violin plots of the distribution of 

expression levels (scaled log(transcripts)) of neuronal stem cell marker genes (marked on 

top) in nuclei (dots) in each of the human clusters (defined as in Fig. 2a). 
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Supplementary Figure 8: Sub-clusters of CA neurons in the human brain. (a) Sub-

clusters. tSNE embedding of DroNc-seq nuclei profiles from 1,116 nuclei of human 

pyramidal neurons in the CA region of the hippocampus (CA3, CA1 and subiculum; 

clusters 3-4 in Fig. 2a), colour coded by cluster membership (legend). (b) Each sub-
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cluster is supported by multiple samples. tSNE embedding as in a, colour coded by the 

sample of origin. Technical replicates are marked as separate samples. (c) Complexity. 

Violin plots of the distribution of number of transcripts in nuclei (dots) from each exCA 

sub-cluster. (d-e) Marker gene expression. (d) tSNE embedding as in a, but with nuclei 

colored by the expression levels of genes up-regulated in specific clusters (SPOCK1 – 

cluster 5, RASL10A – cluster 4, PEX5L – cluster 1-4, FCHO2 – cluster 3, CCSER1 – 

cluster 2, FN1 – cluster 1). (e) ISH images from the mouse Allen Brain Atlas30 of three 

markers genes from (d) with distinct anatomical expression patterns in the hippocampus 

(Spock1 in CA3, Fn1 in subiculum, and Pex5l in CA1 and subiculum).  
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Supplementary Figure 9: Sub-clusters of PFC neurons in human brain. (a) Sub-

clusters. tSNE embedding of 2,501 DroNc-seq nuclei profiles of human glutamatergic 

neurons in the prefrontal cortex (PFC) (clusters 1 and 2 in Fig. 2a), color coded by cluster 

membership. (b) Each sub-cluster is supported by multiple samples. tSNE embedding as 
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in a, color coded by the sample of origin. Technical replicates are marked as separate 

samples. (c) Complexity. Violin plots show the distribution of number of transcripts in 

the nuclei in each exPFC sub-cluster. (d-f) Each sub-cluster is characterized by a unique 

combination of expressed marker genes. (d) Violin plots show the distribution of 

expression levels (scaled log(transcripts)) of known cortical layer marker genes or genes 

differentially expressed between exPFC sub-clusters, in nuclei (dots) from each of the 

sub-clusters. (e) tSNE embedding as in (a), but color coded by expression level of genes, 

showing unique combinatorial expression patterns across sub-clusters. (f) ISH images 

from the mouse Allen Brain Atlas30 of markers genes (from d-e) that have a unique 

expression pattern in specific cortical layers: Rorb (cortical layer 4-54,17), Pcp4 (cortical 

layer 54,17), Tle4 (cortical layer 64,17),), and Cux2 (cortical layer 2-44,17),). Scale: 1678	µm. 
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Supplementary Figure 10: Sub-clusters of GABAergic neurons in the human brain. 

(a,b) Each cluster is supported by multiple samples and most by multiple brain regions. 

tSNE embedding (as in Fig. 2f) of 1,500 DroNc-seq nuclei profiles of human GABAergic 

neurons (clusters 5 and 6 in Fig. 2a), color coded by the sample of origin (a) or by brain 

region (b, PFC=blue, Hip=yellow). Each cluster has nuclei from both brain regions, 

except clusters 4 and 7, which are hippocampus-specific. (c) Fraction of nuclei from each 

brain region associated with each GABAergic sub-cluster defined in (f). (d,e) Each 
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cluster is characterized by a unique combination of expressed marker genes. (d) tSNE 

embedding as in Fig. 2f with each nucleus colored by the expression level (scaled 

log(transcripts)) of canonical GABAergic marker genes. (e) Violin plots of the 

distribution of expression levels (scaled log(transcripts)) of each GABAergic marker 

gene in the nuclei (dots) in each human GABAergic sub-cluster (as in Fig. 2f). 
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Supplementary Figure 11: Comparison of DroNc-seq human GABAergic sub-

clusters to previously defined sub-clusters of human cells. Mapping of GABAergic 

nuclei sub-clusters defined in Fig. 2f to subsets defined from nuclei profiles in the human 

cortex in Lake et. al.4. Dot plot shows the proportion of cells in each cluster defined by 
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DroNc-seq (rows) that were classified to each of the Lake et. al. clusters (columns) using 

a decision tree classifier defined in the previous study4 (Methods).  

 


