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Socially Aware Motion Planning with Deep Reinforcement Learning

Yu Fan Chen, Michael Everett, Miao Liu, and Jonathan P. How

Abstract— For robotic vehicles to navigate safely and ef-
ficiently in pedestrian-rich environments, it is important to
model subtle human behaviors and navigation rules. However,
while instinctive to humans, socially compliant navigation is
still difficult to quantify due to the stochasticity in people’s
behaviors. Existing works are mostly focused on using feature-
matching techniques to describe and imitate human paths, but
often do not generalize well since the feature values can vary
from person to person, and even run to run. This work notes
that while it is challenging to directly specify the details of
what to do (precise mechanisms of human navigation), it is
straightforward to specify what not to do (violations of social
norms). Specifically, using deep reinforcement learning, this
work develops a time-efficient navigation policy that respects
common social norms. The proposed method is shown to enable
fully autonomous navigation of a robotic vehicle moving at
human walking speed in an environment with many pedestrians.

I. INTRODUCTION

Recent advances in sensing and computing technologies
have spurred greater interest in various applications of
autonomous ground vehicles. In particular, researchers have
explored using robots to provide personal mobility services
and luggage carrying support in complex, pedestrian-rich
environments (e.g., airports and shopping malls) [1]. These
tasks often require the robots to be capable of navigating
efficiently and safely in close proximity of people, which is
challenging because pedestrians tend to follow subtle social
norms that are difficult to quantify, and pedestrians’ intents
(i.e., goals) are usually not known [2].

A common approach treats pedestrians as dynamic obsta-
cles with simple kinematics, and employs specific reactive
rules for avoiding collision [3]–[6]. Since these methods
do not capture human behaviors, they sometimes generate
unsafe/unnatural movements, particularly when the robot
operates near human walking speed [2]. To address this
issue, more sophisticated motion models have been proposed,
which reason about the nearby pedestrians’ hidden intents
to generate a set of predicted paths [7], [8]. Subsequently,
classical path planning algorithms would be employed to
generate a collision-free path for the robot. Yet, separating
the navigation problem into disjoint prediction and planning
steps can lead to the freezing robot problem, in which the
robot fails to find any feasible action because the predicted
paths could mark a large portion of the space untraversable [9].
A key to resolving this problem is to account for cooperation,
that is, to model/anticipate the impact of the robot’s motion
on the nearby pedestrians.
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Fig. 1: A robotic vehicle navigating autonomously in a pedestrian-
rich environment. Accounting for social interactions is important
for operating such vehicles safely and smoothly.

Existing work on cooperative, socially compliant naviga-
tion can be broadly classified into two categories, namely
model-based and learning-based. Model-based approaches
are typically extensions of multiagent collision avoidance
algorithms, with additional parameters introduced to account
for social interactions [7], [10]–[13]. For instance, to distin-
guish between human–human and human–robot interactions,
the extended social forces model [11], [12] augments the
potential field algorithm with additional terms that specify
the repulsive forces (e.g, strength and range) governing each
type of interaction. Model-based methods are designed to be
computationally efficient as they often correspond to intuitive
geometric relations; yet, it is unclear whether humans do
follow such precise geometric rules. In particular, the force
parameters often need to be tuned individually, and can vary
significantly for different pedestrians [12]. Also, it has been
observed that model-based methods can lead to oscillatory
paths [2], [14].

In comparison, learning-based approaches aim to develop
a policy that emulates human behaviors by matching feature
statistics, such as the minimum distance to pedestrians. In
particular, Inverse Reinforcement Learning (IRL) [15] has
been applied to learn a cost function from human demon-
stration (teleoperation) [16], and a probability distribution
over the set of joint trajectories with nearby pedestrians [2],
[17]. Compared with model-based approaches, learning-based
methods have been shown to produce paths that more
closely resemble human behaviors, but often at a much
higher computational cost. For instance, computing/matching
trajectory features often requires anticipating the joint path
of all nearby pedestrians [2]. More importantly, since human
behaviors are inherently stochastic, the feature statistics
calculated on pedestrians’ paths can vary significantly from
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person to person, and even run to run for the same scenario [2],
[16]. This raises concerns over whether such feature-matching
methods are generalizable to different environments [13].

In short, existing works are mostly focused on modeling
and replicating the detailed mechanisms of social compliance,
which remains difficult to quantify due to the stochasticity
in people’s behaviors. In comparison, humans can intuitively
evaluate whether a behavior is acceptable. In particular, human
navigation (or teleoperation) is time-efficient and generally
respects a set of simple social norms (e.g., “passing on
the right”) [2], [16], [18]. Building on a recent paper [14],
we characterize these properties in a reinforcement learning
framework, and show that human-like navigation conventions
emerge from solving a cooperative collision avoidance
problem.

The main contributions of this work are (i) introducing
Socially Aware Collision Avoidance with Deep Reinforcement
Learning (SA-CADRL) for explaining/inducing socially aware
behaviors in a RL framework, (ii) generalizing to multiagent
(n > 2) scenarios through developing a symmetrical neural
network structure, and (iii) demonstrating on robotic hard-
ware autonomous navigation at human walking speed in a
pedestrian-rich environment.

II. BACKGROUND

A. Collision Avoidance with Deep Reinforcement Learning

A multiagent collision avoidance problem can be for-
mulated as a sequential decision making problem in a
reinforcement learning framework [14]. Let st, ut denote an
agent’s state and action at time t, and let s̃t denote the state
of a nearby agent. To capture the uncertainty in nearby agents’
intents, the state vector is partitioned into observable and
unobservable parts, that is st = [sot , s

h
t ]. Let the observable

states be the agent’s position, velocity, and radius (size),
so = [px, py, vx, vy, r] ∈ R5; let the unobservable states
be the agent’s intended goal position, preferred speed, and
orientation, sh = [pgx, pgy, vpref , ψ] ∈ R4; and let the
action be the agent’s velocity, ut = vt. It will be explained in
Section IV that the observable states can be readily obtained
from sensor measurements. The objective is to develop a
policy, π : (st, s̃t

o) 7→ ut, that minimizes the expected time
to goal E[tg] while avoiding collision with nearby agents,

argmin
π(s, s̃o)

E [tg|s0, s̃
o
0, π] (1)

s.t. ||pt − p̃t||2 ≥ r + r̃ ∀t (2)
ptg = pg (3)
pt = pt−1 + ∆t · π(st−1, s̃

o
t−1)

p̃t = p̃t−1 + ∆t · π(s̃t−1, s
o
t−1), (4)

where (2) is the collision avoidance constraint, (3) is the goal
constraint, (4) is the agents’ kinematics, and the expectation
in (1) is with respect to the other agent’s unobservable states
(intents) and policy.

This problem can be formulated in a reinforcement learning
(RL) framework by considering the joint configuration of
the agent with its neighbor, sjn = [s, s̃o]. In particular, a

passing crossing overtaking

Fig. 2: Symmetries in multiagent collision avoidance. Left to right
show two equally time-efficient ways for the red agent to pass,
cross and overtake the blue agent. The top row is often called the
left-handed rules, and bottom row the right-handed rules.

reward function, Rcol(sjn,u), can be specified to reward
the agent for reaching its goal and penalize the agent for
colliding with others. The unknown state-transition model,
P (sjnt+1, s

jn
t |ut), takes into account the uncertainty in the

other agent’s motion due to its hidden intents (s̃h). Solving
the RL problem amounts to finding the optimal value function
that encodes an estimate of the expected time to goal,

V ∗(sjn0 ) = E

[
T∑
t=0

γt·vpref Rcol(s
jn
t , π

∗(sjnt )) | sjn0

]
, (5)

where γ ∈ [0, 1) is a discount factor. The optimal policy can
be retrieved from the value function, that is

π∗(sjnt+1) = argmax
u

Rcol(st,u)+

γ∆t·vpref
∫
sjnt+1

P (sjnt , s
jn
t+1|u)V ∗(sjnt+1)dsjnt+1. (6)

A major challenge in finding the optimal value function
is that the joint state sjn is a continuous, high-dimensional
vector, making it impractical to discretize and enumerate the
state space. Recent advances in reinforcement learning address
this issue by using deep neural networks to represent value
functions in high-dimensional spaces, and have demonstrated
human-level performance on various complex tasks [19]–
[21]. While several recent works have applied deep RL to
motion planning [22], [23], they are mainly focused on single
agent navigation in unknown static environments, and with
an emphasis on computing control inputs directly from raw
sensor data (e.g., camera images). In contrast, this work
extends the Collision Avoidance with Deep Reinforcement
Learning framework (CADRL) [14] to characterize and induce
socially aware behaviors in multiagent systems.

B. Characterization of Social Norms

It has been widely observed that humans tend to follow
simple navigation norms to avoid colliding with each other,
such as passing on the right and overtaking on the left [18].
Albeit intuitive, it remains difficult to quantify the precise
mechanisms of social norms, such as when to turn and
how much to turn when passing another pedestrian; and
the problem exacerbates as the number of nearby pedestrians
increases. This is largely due to the stochasticity in people’s



(a) nominal case (b) with 0.2m offset

(c) with 0.4m offset (d) with diff. radii and speeds

Fig. 3: Indications of a navigation convention from the CADRL
policy. Circles show each agent’s position at the labeled time, and
stars mark the goals. (a) CADRL shows a preference to the right
as two agents pass each other in a symmetrical test case (swapping
position). (b) This passing direction is robust to a small offset in
the initial condition. (c) The passing direction changes at a larger
offset (balancing with time to reach the goal). (d) The convention is
not consistent with human social norms, as two agents of different
sizes and velocities exhibit a preference to the left.

motion (e.g, speed, smoothness), which can vary significantly
among different individuals [2].

Rather than trying to quantify human behaviors directly, this
work notes that the complex normative motion patterns can
be a consequence of simple local interactions. For instance,
an intuitive pairwise collision avoidance rule [10] can cause
simulated agents moving in the same direction to form lanes in
long corridors. Similarly, rather than a set of precisely defined
procedural rules, social norms could be the result of a time-
efficient, reciprocal collision avoidance mechanism. Evidently,
pedestrian navigation conventions are not unique, as the
direction (e.g., left-handed vs. right-handed) and strength
(e.g., separation distance) vary in different countries [24], as
illustrated in Fig. 2.

Existing works have reported that human navigation (or
teleoperation of a robot) tend to be cooperative and time-
efficient [2], [16]. This work notes that these two properties
are encoded in the CADRL formulation through using the
min-time reward function and the reciprocity assumption
(π̃ = π). Furthermore, it was interesting to observe that
while no behavior rules (e.g., function forms) were imposed
in the problem formulation, CADRL policy exhibits certain
navigation conventions, as illustrated in Fig. 3. In particular,
Fig. 3a illustrates two CADRL agents passing on the right of
each other, showing signs of conforming to mutually agreed
rules. More importantly, this preference in passing direction is
robust to small deviations in the initial condition, as shown in
Fig. 3b. As the offset increases, the CADRL agents eventually
change passing direction in favor of shorter, smoother paths
(Fig. 3c). Recall no communication took place and each
agent’s intent (e.g., goal) is not known to the other.

However, the cooperative behaviors emerging from a
CADRL solution are not consistent with human interpretation.

Fig. 4: Norm inducing reward function (depiction of (10)-(12)). The
red agent is penalized if there is another agent in the blue, green
or gray shaded regions, corresponding to overtaking, passing and
crossing, respectively. This induces the right-handed rules as shown
in Fig. 2.

For instance, two CADRL agents with different sizes and
preferred speeds show a preference to pass on the left of each
other (Fig. 3d). This is because an agent’s state s is defined
to be the concatenation of its position, velocity, size and
goal, so a tie breaking navigation convention should not be
solely dependent on relative position (as human social norms).
Moreover, the cooperative behaviors of CADRL cannot be
controlled – they are largely dependent on the initialization of
the value network and set of randomly generated training test
cases. The next section will address this issue and present a
method to induce behaviors that respect human social norms.

III. APPROACH

The following presents the socially aware multiagent
collision avoidance with deep reinforcement learning algo-
rithm (SA-CADRL). We first describe a strategy for shaping
normative behaviors for a two agent system in the RL
framework, and then generalize the method to multiagent
scenarios.

A. Inducing Social Norms

Recall the RL training process seeks to find the optimal
value function (5), which maps from the joint state of an
agent with its neighbor, sjn = [s, s̃o], to a scalar value that
encodes the expected time to goal. To reduce redundancy
(up to a rotation and translation), this work uses a local
coordinate frame with the x-axis pointing towards an agent’s
goal, as shown in Fig. 4. Specifically, each agent’s state is
parametrized as

s = [dg, vpref , vx, vy, ψ, r] (7)

s̃o = [p̃x, p̃y, ṽx, ṽy, r̃, d̃a, φ̃, b̃on] , (8)

where dg = ||pg − p||2 is the agent’s distance to goal, d̃a =
||p−p̃||2 is the distance to the other agent, φ̃ = tan−1(ṽy/ṽx)
is the other agent’s heading direction, and b̃on is a binary flag
indicating whether the other agent is real or virtual (details
will be provided in Section III-B).

This work notes that social norms are one of the many
ways to resolve a symmetrical collision avoidance scenario,
as illustrated in Fig. 2. To induce a particular norm, a
small bias can be introduced in the RL training process
in favor of one set of behaviors over others. For instance, to
encourage passing on the right, states (configurations) with
another agent approaching from the undesirable side can be
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Fig. 5: Network structure for multiagent scenarios. (a) illustrates the
weight matrix used in the first layer, where block partitions with the
same color are constrained to be the same. (b) shows the overall
network structure, with two symmetric layers, one max-pooling
layer, and two fully connected layers. The colored connections in
the first layer correspond to (a), where red are the weights associated
with the agent itself, and blue are that of the nearby agents.

penalized (green agent in Figure 4). The advantage of this
approach is that violations of a particular social norm are
usually easy to specify; and this specification need not be
precise. This is because the addition of a penalty breaks
the symmetry in the collision avoidance problem, thereby
favoring behaviors respecting the desired social norm. This
work uses the following specification of a reward function
Rnorm for inducing the right-handed rules (Fig. 4),

Rnorm(sjn,u) = qnI(sjn ∈ Snorm) (9)
s.t. Snorm = Spass ∪ Sovtk ∪ Scross

Spass = { sjn | dg > 3, 1 < p̃x < 4,

− 2 < p̃y < 0, |φ̃− ψ| > 3π/4 } (10)

Sovtk = { sjn | dg > 3, 0 < p̃x < 3, |v| > |ṽ|
0 < p̃y < 1, |φ̃− ψ| < π/4 } (11)

Scross = { sjn | dg > 3, d̃a < 2, φ̃rot > 0,

− 3π/4 < φ̃− ψ < −π/4 } , (12)

where qn is a scalar penalty, I(·) is the indicator function,
φ̃rot = tan−1((ṽx − vx)/(ṽy − vy)) is the relative rotation
angle between the two agents, and the angle difference φ̃−ψ
is wrapped between [−π, π]. An illustration of these three
penalty sets is provided in Fig. 4.

The parameters defining the penalty set Snorm affect
the rate of convergence. With (10)-(12), the SA-CADRL
policy converged within 700 episodes (exhibiting the desired
behaviors such as passing on the right on all validation
test cases). With a 30% smaller penalty set (i.e., shrinking
the shaded regions in Fig. 4), convergence occurred after
1250 episodes. Larger penalty sets, however, could lead to
instability or divergence. Also, as long as training converges,
the penalty sets’ size does not have a major effect on the
learned policy. This is expected because the desired behaviors
are not in the penalty set. Similarly, (9)-(12) can be modified
to induce left-handed rules. We trained two SA-CADRL
policies to learn left-handed and right-handed norms starting
from the same initialization, the results of which are shown

Algorithm 1: Deep V-learning for SA-CADRL

1 initialize and duplicate a value net with n agents
V (·; θ, n), V ′ ← V

2 initialize experience sets E ← ∅, Eb ← ∅
3 for episode=1, . . . , Neps do
4 for m times do
5 p ∼ Uniform(2, n)
6 s1

0, s
2
0, . . . , s

p
0 ← randomTestcase(p)

7 s1
0:tf

, s2
0:tf

, . . . , sp0:tf
← SA-CADRL(V )

8 with prob εf , mirror every traj si0:tf
in the x-axis

9 for every agent i do
10 yi0:T ← findValues

(
V ′, sjn,i0:tf

)
11 E, Eb ← assimilate

(
E, Eb, (yi, sjn,i)0:tf

)
12 e ← randSubset(E) ∪ randSubset(Eb)
13 θ ← RMSprop(e)
14 for every C episodes do
15 Evaluate(V ), V ′ ← V

16 return V

in Fig. 6. The learned policies exhibited similar qualitative
behaviors as shown in Fig. 2. Also note that training is
performed on randomly generated test cases, and not on the
validation test cases.

B. Training a Multiagent Value Network

The CADRL work [14] trained a two-agent network with
three fully connected hidden layers, and used a minimax
scheme for scaling up to multiagent (n > 2) scenarios. Since
training was solely performed on a two-agent system, it
was difficult to encode/induce higher order behaviors (i.e.,
accounting for the relations between nearby agents). This
work addresses this problem by developing a method that
allows for training on multiagent scenarios directly.

To capture the multiagent system’s symmetrical structure,
a neural network with weight-sharing and max-pooling layers
is employed, as shown in Fig. 5. In particular, for a four-agent
network shown in Fig. 5b, the three nearby agents’ observed
states can be swapped (blue input blocks) without affecting
the output value. This condition is enforced through weight-
sharing, as shown in Fig. 5a. Two of such symmetrical layers
are used, followed by a max-pooling layer for aggregating
features and two fully-connected layers for computing a scalar
value. This works uses the rectified linear unit (ReLu) as the
activation function in the hidden layers.

The input to the n-agent network is a generalization of
(7)-(8), that is, sjn = [s, s̃o,1, . . . s̃o,n−1], where the
superscripts enumerate the nearby agents. The norm-inducing
reward function is defined similarly as (9), where a penalty is
given if an agent’s joint configuration with the closest nearby
agent belongs to the penalty set Snorm. The overall reward
function is the sum of the original CADRL reward and the
norm-inducing reward, that is, R(·) = Rcol(·) +Rnorm(·).

The procedure for training a multiagent SA-CADRL policy



(a) left-handed rule

(b) right-handed rule

Fig. 6: SA-CADRL policies exhibiting socially aware behaviors. Circles show each agent’s position at the labeled time, and stars mark the
goals. (a) and (b) show the trajectories generated by SA-CADRL policies trained to learn left-handed and right-handed rules, respectively.
These behaviors are time-efficient and agree with the qualitative characterization of social norms shown in Fig. 2. Recall training is
performed using randomly generated test cases.

is outlined in Algorithm 1, which follows similarly as in [14],
[19]. A value network is first initialized by training on an
n-agent trajectory dataset through neural network regression
(line 1). Using this value network (6) and following an ε-
greedy policy, a set of trajectories can be generated on random
test cases (line 5-7). The trajectories are then turned into state-
value pairs and assimilated into the experience sets E, Eb
(line 10-11). A subset of state-value pairs is sampled from the
experience sets, and subsequently used to update the value
network through back-propagation (line 12-13). The process
repeats for a pre-specified number of episodes (line 3-4).

Compared with CADRL [14], two important modifications
are introduced in the training process. First, two experience
sets, E, Eb, are used to distinguish between trajectories
that reached the goals and those that ended in a collision
(line 2, 11). This is because a vast majority (≥ 90%) of the
random generated test cases were fairly simple, requiring
an agent to travel mostly straight towards its goal. The bad
experience set Eb improves the rate of learning by focusing
on the scenarios that fared poorly for the current policy.
Second, during the training process, trajectories generated
by SA-CADRL are reflected in the x-axis with probability
εf (line 8). By inspection of Fig. 2, this operation flips the
paths’ topology (left-handedness vs right-handedness). Since
a trajectory can be a few hundred steps long according to (6),
it could take a long time for an ε-greedy policy to explore
the state space and find an alternative topology. In particular,
empirical results show that, without this procedure, policies
can still exhibit the wrong passing side after 2000 training
episodes. This procedure exploits symmetry in the problem
to explore different topologies more efficiently.

Furthermore, an n-agent network can be used to generate

trajectories for scenarios with fewer agents (line 5). In
particular, when there are p ≤ n agents, the inputs in Fig. 5b
corresponding to the non-existent agents1 can be filled by
adding virtual agents – replicating the states of the closest
nearby agent and set the binary bit b̃on to zero (8). The use
of this parametrization avoids the need for training many
different networks. A left-handed and a right-handed four-
agent SA-CADRL policies are trained using the network
structure shown in Fig. 5. Sample trajectories generated by
these policies are shown in Fig. 7, which demonstrate the
preferred behaviors of each respective set of social norms.

IV. RESULTS

A. Computational Details

The size and connections in the multiagent network shown
in Fig. 5 are tuned to obtain good performance (ensure
convergence and produce time-efficient paths) while achieving
real-time performance. In particular, on a computer with an
i7-5820K CPU, a Python implementation of a four-agent
SA-CADRL policy takes on average 8.7ms for each query of
the value network (finding an action). Furthermore, offline
training (Algorithm 1) took approximately nine hours to
complete 3,000 episodes. In comparison, a two-agent network
took approximately two hours for 1,000 training episodes.
The four-agent system took much longer to train because
its state space is much larger (higher dimensional) than that
of the two-agent system. The training process was repeated
multiple times and all runs converged to a similar policy
– exhibiting the respective desired social norms on all test
cases in an evaluation set. Furthermore, this work generated

1Consider an agent with two nearby agents using a four-agent network.



(a) left-handed rule

(b) right-handed rule

Fig. 7: SA-CADRL policies generalized to multiagent scenarios
using the network structure in Fig. 5. Circles show each agent’s
position at the labeled time, and stars mark the goals. (a) and (b)
show trajectories corresponding to the left-handed and right-handed
rules, respectively.

random test cases with sizes and velocities similar to that
of normal pedestrians [25], such that r ∈ [0.2, 0.5]m, and
vpref ∈ [0.3, 1.8]m/s. Also, a desired minimum separation
of 0.2m is specified through the collision reward Rcol, which
penalizes an agent for getting too close to its neighbors.

B. Simulation Results

Three copies of four-agent SA-CADRL policies were
trained, one without the norm inducing reward Rnorm,
one with the left-handed Rnorm, and the other with the
right-handed Rnorm. On perfectly symmetrical test cases,
such as those shown in Figs. 3 and 6, the left and right-
handed SA-CADRL policies always select the correct passing
side according to the respective norm. To demonstrate SA-
CADRL can balance between finding time-efficient paths and
respecting social norms, these policies are further evaluated
on randomly generated test cases. In particular, we compute
the average extra time to reach the goals2, the minimum
separation distance, and the relative preference between
left-handedness and right-handedness. Norm preference is
calculated by counting the proportion of trajectories that
violate the left-handed or the right-handed version of (10)-(12)
for more than 0.5 second. To ensure the test set is left-right
balanced, each random test case is duplicated and reflected
in the x-axis. Evidently, the optimal reciprocal collision
avoidance (ORCA) [6] algorithm – a reactive, rule-based
method that computes a velocity vector based on an agent’s

2 t̄e = 1
n

∑n
i=1[tig − ||pi

0 − pi
g ||2 / vipref ], where tig is the ith agent’s

time to reach its goal, and the second term is a lower bound of tig (straight
toward goal at the preferred speed).

joint geometry with its neighbors – attains nearly 50-50
left/right-handedness on these test sets (first row of Table I).

The same four-agent SA-CADRL policies are used to
generate trajectories for both the two-agent and the four-
agent test sets. On the two-agent test-set, all RL-based
methods produced more time-efficient paths than ORCA3.
CADRL exhibited a slight preference to the right (40-60 split).
The four-agent SA-CADRL (none) policy, in comparison,
exhibited a stronger preference than ORCA and CADRL
in each of the passing, crossing, and overtaking scenarios
(third row in Table I). This observation suggests that (i)
certain navigation conventions could emerge as a means of
resolving symmetrical collision avoidance scenarios, and (ii)
the conventions don’t always correspond to human social
norms. For instance, SA-CADRL (none) prefers passing on
the right but also overtaking on the right, which is a mix
between right-handed and left-handed rules. In contrast, the
SA-CADRL policies trained with Rnorm exhibited a strong
preference (85-15 split) of the respective social norm. Recall
that this ratio is not 1 because there is a tradeoff between
time-optimality and social compliance, as illustrated in Fig. 3.
This tradeoff can be controlled by tuning qn in (9). Evidently,
SA-CADRL (lh/rh) achieves better social compliance at a
cost of an approximately 20% larger t̄e, because satisfying
the norms often requires traveling a longer path.

Similarly, the bottom rows of Table I show that in the four-
agent test set, all RL-based methods outperformed ORCA, and
SA-CADRL (lh/rh) exhibited behaviors that respect the social
norms. CADRL produced paths that are closer to time-optimal
than the other algorithms, but sometimes came very close
(within 0.1m) to other agents. This close proximity occurred
because CADRL was trained on a two-agent system, so its
action choice is dominated by the single closest neighbor;
possibly leading CADRL to select an action that avoids the
closest neighbor but drives towards a third agent. In contrast,
all SA-CADRL policies were trained on four-agent systems
and they all maintained a larger average separation distance.

C. Hardware Experiment

The SA-CADRL policy is implemented on a robotic vehicle
for autonomous navigation in an indoor environment with
many pedestrians, as shown in Fig. 1. The differential-drive
vehicle is outfitted with a Lidar for localization, three Intel
Realsenses for obstacle detection, and four webcams for
pedestrian detection. Pedestrian detection and tracking is
performed by combining Lidar’s pointcloud data with camera
images [26]. The speed, velocity, and size (radius) of a
pedestrian are estimated by clustering the pointcloud data [27].
The estimated radius includes a buffer (comfort) zone as
reported in [2], [16]. Obstacles within a 10 x 10m square
(perception range) centered at vehicle are detected and used
to populate an occupancy map, shown as the white box in
Fig. 8a.

3ORCA specifies a reactive, geometric rule for computing a collision-free
velocity vector, but it does not anticipate the evolution of an agent’s state
with respect to other agents nearby. Thus, ORCA can generate shortsighted
actions and oscillatory paths (see [14] for a detailed explanation).



TABLE I: SA-CADRL’s performance statistics on randomly generated test cases. SA-CADRL policies were trained (i) without the norm
inducing reward Rnorm, (ii) with left-handed Rnorm, and (iii) right-handed Rnorm, which are abbreviated as none, lh, rh, respectively.
Results show that SA-CADRL policies produced time-efficient paths and exhibited behaviors that respect the corresponding social norm.

Number of Method Extra time to goal t̄e(s) Min separation dist. (m) Norm preference (%) [left-handed / right-handed]
agents [Avg / 75th / 90th pctl] [10th pctl / avg] passing crossing overtaking

2

ORCA [6] 0.46 / 0.49 / 0.82 0.108 / 0.131 45 / 55 51 / 49 50 / 50
CADRL [14] 0.25 / 0.30 / 0.47 0.153 / 0.189 37 / 63 38 / 62 43 / 57

SA-CADRL(none) 0.27 / 0.28 / 0.54 0.169 / 0.189 10 / 90 32 / 68 63 / 37
SA-CADRL(lh) 0.30 / 0.36 / 0.67 0.163 / 0.192 98 / 2 85 / 15 86 / 14
SA-CADRL(rh) 0.31 / 0.38 / 0.69 0.168 / 0.199 2 / 98 15 / 85 17 / 83

4

ORCA [6] 0.86 / 1.14 / 1.80 0.106 / 0.125 46 / 54 50 / 50 48 / 52
CADRL(minimax) [14] 0.41 / 0.54 / 0.76 0.096 / 0.173 31 / 69 41 / 59 46 / 54

SA-CADRL(none) 0.44 / 0.63 / 0.85 0.162 / 0.183 33 / 67 33 / 67 62 / 38
SA-CADRL(lh) 0.49 / 0.69 / 1.00 0.155 / 0.178 83 / 17 67 / 33 73 / 27
SA-CADRL(rh) 0.46 / 1.63 / 1.02 0.155 / 0.180 12 / 88 29 / 71 30 / 70

(a) passing on the right (b) overtaking on the left

Fig. 8: Visualization of a ground vehicle’s sensor data. The vehicle
(yellow box) uses the right-handed SA-CADRL policy to navigate
autonomously in an indoor environment at a nominal speed of 1.2m/s.
(a) shows the vehicle passing a pedestrian on the right, where the
person in the front camera image is detected and shown as the
blue cylinder in the rviz view. (b) shows the vehicle overtaking a
pedestrian on the left, where the person in the right camera image
corresponds to the teal cylinder in the rviz view.

Motion planning uses an integration of a diffusion map [28]
for finding global paths and SA-CADRL for local collision
avoidance. In particular, the diffusion map algorithm considers
static obstacles in the environment and computes a subgoal
within 5m (static planning horizon) of the vehicle, and a
set of feasible directions (heading and range). The subgoal
is shown at the end of the green line in Fig. 8a, and the
feasible directions are visualized as the blue lines emanating
from the vehicle. SA-CADRL takes in the set of detected
pedestrians, and chooses an action (velocity vector) from the
feasible directions to move the vehicle toward the subgoal.
SA-CADRL’s decision is shown as the blue arrow in Fig. 8a,
which does not necessarily line up with the subgoal. Note that
pedestrians can be detected beyond the 5m static planning
horizon, thus allowing socially aware interaction at a longer
range. This whole sense-plan-execute cycle is fast enough to
operate in real-time at 10Hz on a Gigabyte Brix computer
onboard the vehicle.

Using this motion planning strategy, the vehicle was able to
navigate fully autonomously in a dynamic indoor environment.

In particular, the vehicle is issued randomly generated goals
ten times, with an average distance between successive goals
of more than 50 meters. During the experiment, an average
of 10.2 persons came within 2m of the vehicle each minute,
and all encountered pedestrians are part of the regular daily
traffic4 in a public building. At a nominal speed of 1.2m/s,
which is approximately the average human walking pace [25],
the vehicle maintained safe distance to the pedestrians and
generally respected social norms. While a safety driver was
walking approximately five meters behind vehicle, he never
had to intervene or take over control at any time during the
ten runs. Since people in North America follow the right-
handed rule, the SA-CADRL policy with right-handed norms
is used for the hardware experiment, which causes the vehicle
to generally pass pedestrians on the right and overtake on
the left. For examples, snippets of the experiment are shown
in Fig. 8. A hardware demonstration video can be found at
https://youtu.be/PMTnUJWeEsA.

V. CONCLUSION

This work presented SA-CADRL, a multiagent collision
avoidance algorithm that considers and exhibits socially
compliant behaviors. In particular, in a reinforcement learning
framework, a pair of simulated agents navigate around each
other to learn a policy that respect human navigation norms,
such as passing on the right and overtaking on the left in a
right-handed system. This approach is further generalized
to multiagent (n > 2) scenarios through the use of a
symmetrical neural network structure. Moreover, SA-CADRL
is implemented on robotic hardware, which enabled fully
autonomous navigation at human walking speed in a dynamic
environment with many pedestrians. Future work will consider
the relationships between nearby pedestrians, such as a group
of people who walk together.
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