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Subgrid-scale modeling and implicit numerical dissipation in
DG-based Large-Eddy Simulation

P. Fernandez∗, N.C. Nguyen†, J. Peraire ‡

Massachusetts Institute of Technology, Cambridge, MA 02139, United States

Over the past few years, high-order discontinuous Galerkin (DG) methods for Large-Eddy Simulation
(LES) have emerged as a promising approach to solve complex turbulent flows. However, despite the significant
research investment, the relation between the discretization scheme, the subgrid-scale (SGS) model and the
resulting LES solver remains unclear. This paper aims to shed some light on this matter. To that end,
we investigate the role of the Riemann solver, the SGS model, the time resolution, and the accuracy order
in the ability to predict a variety of flow regimes, including transition to turbulence, wall-free turbulence,
wall-bounded turbulence, and turbulence decay. The transitional flow over the Eppler 387 wing, the Taylor-
Green vortex problem and the turbulent channel flow are considered to this end. The focus is placed on
post-processing the LES results and providing with a rationale for the performance of the various approaches.

I. Introduction

Complete information about turbulent flows can be obtained by means of direct numerical simulation (DNS).
Despite the availability of powerful supercomputers, DNS remains intractable for most practical applications. Large-
Eddy Simulation (LES) is a viable alternative to DNS. The central premise of LES is that large-scale eddies dominate
the turbulent transport and energy budget, so that a numerical simulation will provide a realistic depiction of the flow
if it captures those scales explicitly and somehow accounts for the small scales that cannot be resolved. Strategies
for dealing with the small turbulent scales include explicit subgrid-scale (SGS) modeling and implicit numerical
dissipation.

In the classical (explicit) LES approach, the large-scale eddies of the flow field are resolved and the small scales
are modeled using an SGS model. It turns out, however, that the leading-order term of the truncation error introduced
by many numerical schemes is similar in form and magnitude to conventional SGS models. A natural alternative
to the classical LES approach is therefore to use the numerical dissipation of the discretization scheme to account
for the dissipation that takes place in the unresolved scales, leading to the so-called Implicit LES (ILES). The
ILES approach was first introduced in 1990 by Boris et al.4 and has been successfully applied with a number
of different schemes, including finite volume methods,13–15 standard18 and compact16, 41 finite difference methods,
spectral difference methods,45 spectral/hp element methods,21 flux reconstruction methods,30 and disconstinuous
Galerkin (DG) methods.11, 12, 26, 33, 44 ILES benefits from its easy implementation without an SGS model and currently
gains considerable attention from researchers in the computational fluid dynamics (CFD) community. This can be
partially attributed to the fact that research has failed to shown an advantage of sophisticated SGS models over the
same-cost LES with a simplistic model –or even with no model– and a slightly finer grid.37

In spite of the large effort on explicit and implicit SGS modeling in the last decades, it remains unclear how to
best account for the effect of the subgrid scales. The lack of understanding of the relationship between the numerical
scheme, the SGS model and the resulting LES solver is more evident for high-order DG methods; which are emerging
as a promising approach for LES due to their ability to successfully predict complex turbulent flows.11, 33, 39, 44 This
paper aims to shed some light on these questions and discuss the suitability and best practices for DG-based LES.
We investigate the role of the Riemann solver, the explicit SGS model (if any), the time resolution, and the accuracy
order in the resulting LES solver for a variety of flow regimes, including transition to turbulence, wall-free turbulence,
wall-bounded turbulence, and turbulence decay. The transitional flow over the Eppler 387 wing,23 the Taylor-Green
vortex problem38 and the turbulent channel flow20 are considered to this end.
∗PhD Student, Department of Aeronautics and Astronautics, MIT, AIAA Student Member.
†Principal Research Scientist, Department of Aeronautics and Astronautics, MIT, AIAA Member.
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The remainder of the paper is structured as follows. In Section II, we introduce the numerical discretization of
the Navier-Stokes equations. Section III presents theoretical results on numerical dissipation and entropy stability of
hybridized DG methods. In Section IV, we describe the subgrid-scale models and Riemann solvers considered in this
work. Numerical results for the Eppler 387 wing, the Taylor-Green vortex problem and the turbulent channel flow are
discussed in Sections V, VI and VII, respectively. Finally, we present some concluding remarks in Section VIII.

II. Numerical discretization

A. Governing equations

We consider the unsteady, compressible Navier-Stokes equations written in non-dimensional conservation form as

q −∇u = 0, in Ω× (0, T ),

∂u

∂t
+∇ · F (u, q) = 0, in Ω× (0, T ).

(1)

Here, Ω ⊆ Rd is a bounded physical domain with Lipschitz boundary ∂Ω, u = (ρ, ρvj , ρE) ∈ Σ ⊆ Rm, j = 1, ..., d
are the non-dimensional conserved quantities, and F (u, q) are the Navier-Stokes fluxes of dimension m× d,

F (u, q) = F I(u) + F V(u, q) =

 ρvj

ρvivj + δijp

vj(ρE + p)

−
 0

τij

viτij + fj

 , i, j = 1, ..., d. (2)

For a Newtonian, calorically perfect gas in thermodynamic equilibrium, the non-dimensional viscous stress tensor,
heat flux, and pressure are given by

τij =
1

Re

[( ∂vi
∂xj

+
∂vj
∂xi

)
− 2

3

∂vk
∂xk

δij

]
, fj = − γ

Re∞ Pr

∂T

∂xj
, p = (γ − 1) ρ

(
E − 1

2
vk vk

)
, (3)

respectively. Here, Re denotes the reference Reynolds number, Pr the Prandtl number, and γ the specific heat ratio.
In particular, Pr = 0.72 and γ = 1.4 for air. In explicit LES, the viscous stress tensor is augmented with the subgrid-
scale stress tensor, τij → τij + τSGSij ; which is modeled through an SGS model. From a physical perspective, τSGSij

accounts for the effect of the subgrid scales on the resolved scales. From a mathematical perspective, this is the extra-
term that appears in the filtered Navier-Stokes equations that the resolved scales satisfy. While compressible flows
also require modeling of the SGS heat transfer, SGS turbulent diffusion and SGS viscous diffusion, these additional
terms are omitted here for simplicity of exposition.

B. Numerical discretization

We consider high-order hybridized discontinuous Galerkin (DG) methods,11 which generalize the HDG7, 27, 31 and
the EDG7, 8, 32 methods, for the numerical simulation of turbulent flows. The hybridized DG discretization of the
compressible Navier-Stokes equations reads as follows: Find

(
qh(t),uh(t), ûh(t)

)
∈Qk

h × Vk
h ×Mk

h such that(
qh, rh

)
Th

+
(
uh,∇ · rh

)
Th
−
〈
ûh, rh · n

〉
∂Th

= 0, (4a)(∂uh
∂t

,wh

)
Th
−
(
F (uh, qh),∇wh

)
Th

+
〈
f̂h(ûh,uh, qh),wh

〉
∂Th

= 0, (4b)〈
f̂h(ûh,uh, qh),µ

〉
∂Th\∂Ω

+
〈
b̂h(ûh,uh, qh),µ

〉
∂Ω

= 0, (4c)

for all (rh,wh,µh) ∈Qk
h×Vk

h×Mk
h and all t ∈ (0, T ). The nomenclature, finite element spaces and inner products

above are described in Appendix A. The numerical flux f̂h in Eq. (4) is defined as

f̂h(ûh,uh, qh;n) = F I(ûh) · n+ F V(ûh, qh) · n+ σ(ûh,uh;n) · (uh − ûh). (5)

We note that this form of the numerical flux does not involve an explicit Riemann solver. Instead, it is the so-called
stabilization matrix σ(ûh,uh;n) that implicitly defines the Riemann solver in hybridized DG methods. The semi-
discrete system (4) is further discretized in time using L-stable, diagonally implicit Runge-Kutta (DIRK) schemes.1 A
description of the parallel iterative solver used for the resulting nonlinear system of equations can be found in.9–11
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III. Numerical dissipation and entropy stability analysis for hybridized DG methods

Hybridized DG methods are a new, promising approach for high-fidelity CFD, including large-eddy simulation,
due to the reduced number of globally coupled unknowns and memory footprint with respect to standard DG meth-
ods.11, 28 However, little is known about the Riemann flux, numerical dissipation and entropy stability in this family
of schemes. In this section, we present theoretical results for the discretization of the convective operator of the
Navier-Stokes equations; which apply more generally to hyperbolic systems of conservation laws.

A. Riemann solver

The following result on the connection between the stabilization matrix σ and the resulting Riemann flux f̂h holds for
hyperbolic systems of conservation laws.

Proposition 1 Let F be a face in EIh ∩ EHh and let F I denote the flux of a hyperbolic system of conservation laws.
The numerical flux in hybridized DG methods, Eq. (5), implicitly defines a linearized Riemann solver between the left
u−h and right u+

h states of F whose numerical flux is given by

f̂±h =
1

2

(
F I(u−h ) + F I(u+

h )
)
· n± − 1

2
D(u∓h ,u

±
h ;n±) ·

(
u∓h − u

±
h

)
, (6)

where the dissipation matrix D ∈ Rm×m is of the form

D(u1,u2;n) = σ(û,u2;n) ·
(1

2

(
σ(û,u1;−n) + σ(û,u2;n)

))−1

· σ(û,u1;−n)

+ An(u1, û;n) ·
(
σ(û,u1;−n) + σ(û,u2;n)

)−1 · σ(û,u2;n)

−An(u2, û;n) ·
(
σ(û,u1;−n) + σ(û,u2;n)

)−1 · σ(û,u1;−n).

(7)

Here, An(u, û;n) =
∫ 1

0
An

(
ũ(θ;u, û);n

)
dθ, An =

(
∂F I/∂u

)
· n, ũ(θ;ua,ub) = ua + θ(ub − ua), and the

numerical trace ûh is implicitly given by

ûh =
(
σ(ûh,u

−
h ;n−) + σ(ûh,u

+
h ;n+)

)−1 ·
(
σ(ûh,u

−
h ;n−) · u−h + σ(ûh,u

+
h ;n+) · u+

h

)
. (8)

Equations (6), (7) and (8) hold in a weak sense 〈 · ,µ〉F for any µ ∈Mk
h|F .

The appearance of the second and third terms in the right-hand side of Eq. (7) is due to the definition of
the numerical flux in hybridized DG methods in terms of F I(ûh), as opposed to

(
F I(ûh) + F I(uh)

)
/2 as in

linearized Riemann solvers. Also, in the particular case of the compressible Euler equations, An(u1,u2;n) =
An(uRoe(u1,u2);n), where uRoe(u1,u2) denotes the Roe state.34

Corollary 1 If σ± are non-defective, share eigenvectors, and (σ− + σ+) is non-singular, then ûh is given by a
convex combination of u−h and u+

h in each eigenspace. In particular, this is the case if σ = σ̃(An(ûh)) is a
function of An(ûh), where σ̃ ∈ C0(Sp[An(ûh)]) is a continuous function on the spectrum of An(ûh). In this case,
the eigenvectors of σ± correspond to characteristic variables, where the conservative-to-characteristic change of
variables is that at the state ûh.

B. Entropy stability analysis

Let
(
H(u),FI(u)

)
denote a generalized entropy pair for the inviscid operator of the Navier-Stokes system, where

H(u) : Rm → R is a convex entropy function and FI(u) : Rm → Rd is the corresponding entropy flux that satisfies

∂FIi
∂uj

=
∂H

∂uk

∂F Iik
∂uj

, i = 1, ..., d, j, k = 1, ...,m. (9)

The following entropy stability results hold for entropy-variable-based formulations.
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Proposition 2 (Semi-discrete global entropy stability) The time evolution of generalized entropy in hybridized DG
methods is given by

d

dt

∫
Th
H(vh) +

∫
∂T I

h

(
vh − v̂h

)t · [σ(v̂h,vh;n)− 1

2
An(v̂h,vh;n)− Λ̃n(v̂h,vh;n)

]
·
(
vh − v̂h

)
+ BhDG∂Ω (v̂h,vh;v∂Ω) = 0,

(10)

where vh denotes entropy variables,

BhDG∂Ω (v̂h,vh;v∂Ω) =

∫
∂Ω

FIn(vh) +

∫
∂Ω

vth ·
(
f̂h(v̂h,vh)− F In (vh)

)
−
∫
∂Ω

v̂th · b̂h(v̂h,vh;v∂Ω)

is a boundary term whose precise form depends on the type of boundary conditions, v∂Ω is a boundary state with
support on ∂Ω,

Λ̃n(v1,v2;n) =
1

2

∫ 1

0

(1− θ)
(
Ãn

(
ṽ(θ;v1,v2);n

)
− Ãn

(
ṽ(θ;v2,v1);n

))
dθ

=
1

2

∫ 1

0

(1− 2θ) Ãn

(
ṽ(θ;v1,v2);n

)
dθ = −1

2

∫ 1

0

(1− 2θ) Ãn

(
ṽ(θ;v2,v1);n

)
dθ,

(11)

Ãn = AnÃ0, and Ã0 = ∂u/∂v.

Corollary 2 Any stabilization matrix satisfying

(vh − v̂h)t · σ(v̂h,vh;n) · (vh − v̂h) ≥ (vh − v̂h)t · σhDGMV (v̂h,vh;n) · (vh − v̂h), (12)

for all (v̂h,vh) ∈ Σ ⊗ Σ and |n| = 1, leads to an entropy-stable (continuous-time) hybridized DG discretization.
Here,

σhDGMV (v1,v2;n) =
1

2
An(v1,v2;n) +

1

2

∫ 1

0

(1− θ)
(∣∣Ãn

(
ṽ(θ;v1,v2);n

)∣∣
Ã0

+
∣∣Ãn

(
ṽ(θ;v2,v1);n

)∣∣
Ã0

)
dθ

=
1

2
An(v1,v2;n) +

1

2

∫ 1

0

∣∣Ãn

(
ṽ(θ;v1,v2);n

)∣∣
Ã0

dθ

=
1

2
An(v1,v2;n) +

1

2

∫ 1

0

∣∣Ãn

(
ṽ(θ;v2,v1);n

)∣∣
Ã0

dθ,

(13)

and
∣∣Ãn

∣∣
Ã0

:= Ã0

∣∣Ã−1
0 Ãn

∣∣ ≡ |An|Ã0 is the generalized absolute value operator with respect to the metric tensor

Ã0.

We recall that the time evolution of generalized entropy in a standard DG method with a linearized Riemann flux
reads as2

d

dt

∫
Th
H +

∫
EIh

(v+
h − v

−
h )t ·

(
D(v−h ,v

+
h ;n+)− Λ̃n(v−h ,v

+
h ;n+)

)
· (v+

h − v
−
h ) + BDG∂Ω (vh) = 0, (14)

where the boundary operator BDG∂Ω is similar in form to BhDG∂Ω . The entropy generation and thus numerical dissipation
due to inter-element jumps in hybridized DG methods is analogous in form to that in standard DG methods. As such,
most theoretical results on DG and Riemann solvers carry over to the hybridized framework.

IV. Riemann solvers and explicit SGS models

A. Riemann solvers

We consider the three following choices of stabilization matrix:

σ =
1

2

(
An(ûh) + |An(ûh)|

)
, σ = |An(ûh)|, σ = λmax(ûh) I, (15)
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where I is the m × m identity matrix and λmax denotes the maximum-magnitude eigenvalue of An. In practice,
( · + | · |)/2 and | · | are replaced by the smooth surrogates

1

2
(x+|x|) −→ (x− ε)

(
atan

(
b(x− ε)

)
π

+
1

2

)
− atan(b)

π
+

1

2
+ ε ≈ max

{1

2
(x+ |x|), ε

}
, b = 10, (16a)

|x| −→ 2

[
(x− ε)

(
atan

(
b(x− ε)

)
π

+
1

2

)
− atan(b)

π
+

1

2

]
− x+ ε ≈ max{|x|, ε}, b = 10, (16b)

respectively, in order to improve the robustness of the nonlinear solver. Also, 0 < ε (<< λmin) is used to
provide some stabilization in the outgoing characteristic fields and improve linear and nonlinear stability. This can be
interpreted as an entropy fix.

For linear hyperbolic systems of conservation laws, (An + |An|)/2 and |An| lead to upwinded numerical flux
and upwinded numerical trace, and upwinded numerical flux and centered numerical trace, respectively. Also, (An +
|An|)/2 and |An| result in the same numerical solution for linear problems. This is not the case, however, in the
nonlinear setting. In addition, the discrete systems obtained with both choices have different stability properties;
which may lead to significant differences in the performance of iterative solvers.

B. Subgrid-scale models

We consider the Smagorinsky,36 WALE29 and Vreman42 explicit subgrid-scale models. As eddy-viscosity models, the
deviatoric part of the (dimensional) SGS tensor is of the form

τSGSij − (1/3) τSGSkk δij = 2ρνe Sij , (17)

where νe is the so-called (kinematic) eddy viscosity and Sij = (Jij + Jji)/2 is the symmetric part of the resolved
velocity gradient tensor Jij = ∂vi/∂xj . The eddy viscosity in the Smagorinsky, WALE and Vreman models is given
by

Smagorinsky: νSe = (Cs∆)2 (2 SpqSpq)
1/2, (18a)

WALE: νWe = (Cw∆)2
(W d

ijW
d
ij)

3/2

(SpqSpq)5/2 + (W d
ijW

d
ij)

5/4
, (18b)

Vreman: νVe = (Cv∆)2

(
QG
JijJij

)1/2

. (18c)

Here, Cs = 0.16,17, 22 Cw = 0.5029 and Cv = 0.2642 are model constants, ∆ is a characteristic element length,
W d
ij denotes the deviatoric part of Wij = SikSkj + RikRkj , where Rij is the skew-symmetric part of Jij , and

QG = (G2
kk − GijGji)/2 is the second invariant of the tensor Gij = JikJjk. The length scale is defined as ∆ =

V
1/3
K /k, where VK is the element volume and k the polynomial order of the numerical approximation. Unlike in the

Smagorinsky model, the eddy viscosity in Vreman and (to a lessen extent) WALE vanishes for many laminar flow
types,42 including the viscous sublayer of a turbulent boundary layer.

In compressible turbulence, the isotropic part of the subgrid-scale stress tensor, as well as the SGS heat transfer,
SGS turbulent diffusion and SGS viscous diffusion, also need to be modeled. To that end, the Yoshizawa model43 is
used for the isotropic part of the SGS stress tensor, whereas the subgrid-scale heat transfer and turbulent diffusion are
modeled through an SGS eddy Prandtl number Pre = 0.7 approach and the model by Knight et al.,19 respectively.
The SGS viscous diffusion is neglected due to its small magnitude compared to the subgrid-scale heat transfer and
turbulent diffusion.

V. The Eppler 387 wing

A. Case description

First, we examine the ability of explicit and implicit LES approaches to resolve transition from laminar to turbulent
regime. To this end, we consider the Eppler 387 wing at Reynolds number of 300,000. The angle of attack is set to
α = 4.0◦, the Mach number to M∞ = 0.09, and the freestream turbulence intensity to I∞ = 0.0. As it happens,
the experimental data for the Eppler wing23 are arguably the most accurate and reliable in the literature of transitional
flows. This justifies the choice of this test case here.
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B. Details of the numerical discretization

The HDG method and the DIRK(3,3) scheme are used for the spatial and temporal discretization of the Navier-
Stokes equations, respectively. The stabilization matrix is σ = λmax and the polynomial degree of the numerical
approximation k = 4, hence yielding a scheme that is fifth-order accurate in space and third-order accurate in time. The
computational domain is partitioned using isoparametric tetrahedral elements. The extrusion length in the spanwise
direction is 0.1c and the computational domain extends about 10 chords away from the wing in the radial direction.
Due to the chaotic dynamics in LES, the simulation time is sufficiently large to ensure statistical convergence of the
transition location. In particular, the simulation is considered statistically converged to this end when the L2-norm
of the covariance field of the spanwise- and time-averaged pressure coefficient on the airfoil is below 2c · 0.01. The
variance of an LES estimator is computed from the instantaneous fields and the weak dependence version of the central
limit theorem.3

C. Grid convergence study

We perform a grid convergence study with ILES in order to estimate the resolution required to capture transition. To
this end, a sequence of finer and finer meshes are considered until the transition location and the pressure coefficient
are grid independent and thus grid converged. The simulation is considered grid converged for this purpose when
both the L2-norm of the difference of spanwise- and time-averaged pressure coefficient between consecutive meshes
is below 2c · 0.005, and the difference in the transition location is below 0.0025c. This leads to the three meshes and
non-dimensional time steps in Table 1; which correspond to uniform refinement in space and time.

The negative spanwise- and time-averaged pressure coefficients are shown in Figure 1. The ILES results agree very
well with the experimental data reported in,23 and display grid convergence as the mesh is refined. In particular, the
error in the transition location with respect to the experimental data is below 0.01c for all meshes and grid convergence
as defined above is achieved with mesh No. 2. This is therefore the resolution that will be used for the comparison
of explicit and implicit LES approaches in the section below. A 2D slice of this mesh is shown in Figure 2. We note

Mesh No. k No. Elements Element type ∆t U∞/c

1 4 64, 800 Tetrahedra 7.937 · 10−3

2 4 126, 360 Tetrahedra 6.300 · 10−3

3 4 254, 976 Tetrahedra 5.000 · 10−3

Table 1: Details of the computational meshes considered for the Eppler 387 wing.

Figure 1: ILES predictions of the transitional flow over the Eppler 387 wing: Pressure coefficient (left), instantaneous
spanwise velocity (top right), and iso-surface of the Q-criterion colored by pressure (bottom right).
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Figure 2: 2D slice of mesh No. 2 for the Eppler 387 wing. The tetrahedral mesh is created by subdividing each
hexahedron into 6 tetrahedra.

that the effective resolution of mesh No. 2 is equivalent to a cell-centered finite volume discretization with 1.3 million
elements; which is much below that typically needed to capture transition with low-order methods.

D. Explicit vs. implicit LES

Figure 3 shows the pressure coefficient predicted by ILES, Smagorinsky-LES and Vreman-LES. Also, Table 2 collects
the separation and reattachment locations on the suction side boundary layer (BL), and Figure 4 displays the spanwise-
and time-averaged velocity magnitude field. WALE-LES leaded to nonlinear instability and the breakdown of the
iterative solver; which is attributed to the stiffness of the problem due to both model nonlinearity and the high-order
discretization.

The Smagorinsky model provides a very poor description of the flow due to the eddy viscosity failing to vanish
near the wall, as discussed in Section IV. As a result, Smagorinsky-LES effectively solves a lower Reynolds number
flow. This leads to the large separation bubble on the suction side in Fig. 4 and the corresponding pressure plateau
in Fig. 3; which is characteristic of the Eppler 387 wing at lower Reynolds numbers.11, 23 Hence, the Smagorinsky
model, in its standard form, is not able to predict boundary layer transition and is thus not well suited for transitional
flows.

We further investigate the transition prediction capability of ILES and Vreman-LES by analyzing the boundary
layer structure and the transition mechanism in both simulations. The methodology for the BL analysis is presented
in Appendix B. Since the large separation in Smagorinsky-LES dramatically changes the potential flow around the
airfoil, and thus the pressure gradient felt by the boundary layer, no conclusions can be inferred on this model from
the BL analysis. Hence, the results are omitted here.

From a qualitative perspective, the structure of the boundary layer is the same (and consistent with the experimental
data) both in ILES and Vreman-LES. On the pressure side, the boundary layer remains attached all the way until the
trailing edge. In particular, the design of the Eppler 387 wing is such that the adverse pressure gradient on the lower

xs/c xr/c

ILES 0.458 0.553
Smagorinsky-LES 0.329 0.560

Vreman-LES 0.466 0.568

Table 2: Separation and reattachment location on the suction side in ILES, Smagorinsky-LES and Vreman-LES for
the Eppler 387 wing.
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x/c
0 0.2 0.4 0.6 0.8 1

-C
p

-1

-0.5

0

0.5

1

ILES
Smagorinsky
Vreman
Experimental data (McGhee et al., 1988)

Figure 3: Spanwise- and time-averaged pressure coefficient in ILES, Smagorinsky-LES and Vreman-LES for the
Eppler 387 wing.

side takes place only in a very small region near the leading edge, where the momentum thickness is small and the
boundary layer therefore very resistant to separation. The greater stability of the attached BL translates into a fully
laminar flow along the pressure side despite the relatively large value of the Reynolds number. On the suction side,
however, the flow separates due to the adverse pressure gradient. This produces a laminar separation bubble (LSB) and
strongly destabilizes the boundary layer; which rapidly transitions to turbulence. After transition, the turbulent mixing
leads to the reattachment of the boundary layer and the end of the separation bubble. The turbulent BL then remains

Figure 4: Spanwise- and time-averaged velocity magnitude field computed in ILES (top), Smagorinsky-LES (middle)
and Vreman-LES (bottom) for the Eppler 387 wing.
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Figure 5: ILES and Vreman-LES predictions of streamwise displacement and momentum thickness (left) and shape
parameter (right) along the suction side of the Eppler 387 wing.

attached all the way until the trailing edge thanks to the resistance to separation provided by the turbulent mixing. The
LSB translates into a small pressure plateau, followed by a rapid pressure rise after transition, as illustrated in Fig. 3.
This plateau is a consequence of the nearly-still fluid inside the laminar part of the bubble being unable to sustain any
significant pressure gradients. The turbulent mixing in the turbulent portion of the bubble, however, can support the
subsequent strong adverse pressure gradient. Also, BL separation leads to an increase in the displacement thickness
and thus the shape parameter, as illustrated in Fig. 5. The increase in the shape parameter is (indirectly) responsible for
the rapid growth of instabilities along the bubble, as discussed below. The large value of the displacement thickness
along the adverse pressure gradient in the turbulent portion of the bubble is responsible for the so-called bubble drag.
Once the LSB ends, the shape parameter reduces back to attached regime values. The adverse pressure gradient from
the reattachment location to the trailing edge leads to the final increase in the displacement and momentum thickness
in Figure 5.

Due to the lack of bypass and forced transition mechanisms and the quasi-2D nature of the flow, natural transition
through two-dimensional unstable modes is expected. This is numerically confirmed both by the ILES and Vreman-
LES results. The two-dimensional nature of transition is illustrated in Fig. 6 through the much larger amplitude of the
streamwise instabilities compared to the cross-flow instabilities. The growth rate of the BL instabilities is exponential,
as shown on Fig. 6 and predicted by linear stability theory. In particular, Tollmien-Schlichting (TS) waves form before
the boundary layer separates, and Kelvin-Helmholtz (KH) instabilities are ultimately responsible for transition after
separation. Turbulence constitutes a new, “stable” flow regime that prevents instabilities to keep growing exponentially
in space and time.

From a quantitative perspective, ILES and Vreman-LES also predict a similar evolution of the boundary layer
before separation; which occurs at xs/c = 0.458 and 0.466, respectively. The Vreman model, however, slightly
underpredicts the growth rate of KH modes in the separated region, as shown in Fig. 6, and leads to delayed transition
and reattachment compared to ILES and the experimental data. As a result, the displacement thickness and the shape
parameter evolve differently after xs/c, as illustrated in Fig. 5. While the ILES and Vreman-LES results are overall
in good agreement, the small discrepancies in the shape parameter and the size of the separation bubble may have
important consequences in practice and lead to inaccurate drag predictions.

In short, the numerical results for the Eppler 387 wing indicate that ILES is better suited than explicit LES to
simulate transitional flows. This is justified by the following observation: While some dissipation is required to
account for the unresolved scales in a turbulent flow, this is not the case along the laminar portion of the boundary
layer in which the transition process takes place. As such, directly removing spurious diffusion coming from an SGS
model, as in ILES, turns out to be a better approach.
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Figure 6: ILES and Vreman-LES predictions of the amplitude of streamwise (left) and cross-flow (right) instabilities
along the suction side of the Eppler 387 wing.

VI. The Taylor-Green vortex problem

A. Case description

The Taylor-Green vortex38 (TGV) is a canonical problem to study vortex dynamics, turbulence transition and tur-
bulence decay. It contains several flow regimes in a single construct and is therefore an excellent test case for our
purpose. In particular, the TGV problem describes the evolution of the flow in a cubic domain Ω = [−Lπ,Lπ)3 with
triple periodic boundaries, starting from the smooth initial condition:

u = U0 sin
( x
L

)
cos
( y
L

)
cos
( z
L

)
,

v = −U0 cos
( x
L

)
sin
( y
L

)
cos
( z
L

)
,

w = 0,

p = p0 +
ρU2

0

16

(
cos
(2x

L

)
+ cos

(2y

L

)) (
cos
(2z

L

)
+ 2

)
,

T = T0.

(19)

The large-scale eddy in the initial condition (19) leads to smaller and smaller structures through vortex stretching.
Near t ≈ 7 L/U0, the vortical structures undergo structural changes, and around t ≈ 9 L/U0 they break down and the
flow transitions to turbulence. Since there is no external forcing to sustain turbulence, the smallest turbulent structures
and thus the maximum dissipation rate of kinetic energy occur at this time. After t ≈ 9 L/U0, the turbulent motion
dissipates all the kinetic energy until the flow eventually comes to rest. This decay phase is similar to that in decaying
homogeneous isotropic turbulence, yet not isotropic here.

In this paper, we consider the TGV problem at Reynolds numberRe = U0L/ν = 1600. In order to render the flow
nearly incompressible and enable comparison with DNS data,40 the Mach number is set to M = U0/a0 = 0.1, where
a0 denotes the speed of sound at the temperature T0. Results for the effect of the Riemann solver, the SGS model and
the time-step size are reported.

B. Details of the numerical discretization

Third-order IEDG and DIRK(3,3) schemes are used for the spatial and temporal discretization, respectively. The
computational domain is partitioned using a uniform linear grid with 64 × 64 × 64 hexahedra; which corresponds to
128 × 128 × 128 unique grid points (i.e. counting duplicated DG nodes only once) and 192 × 192 × 192 total grid
points (i.e. including duplication). The computation is performed from t = 0 to t = 15 L/U0 with a baseline time-step
size ∆t = 3.682 · 10−2 L/U0 corresponding to a CFL number U0 ∆t/∆x = 0.375.
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C. Effect of the Riemann solver

No explicit SGS model is used in this section in order to investigate the effect of the Riemann solver only. Since
the main effect of the subgrid scales in a turbulent flow is dissipation, algorithms with small numerical dissipation
have been argued to be preferred for LES. This way, it is only the SGS model that introduces dissipation and is
responsible for replicating the effects of the sugbrid scale turbulence. This motivates us to investigate the Riemann
solvers from the perspective of numerical dissipation. The methodology and nomenclature used for the analysis is
presented in Appendix C. Due to the symmetries in the incompressible Navier-Stokes equations, the convective and
viscous operators preserve and dissipate kinetic energy, respectively. For this reason, the numerical dissipation in
incompressible solvers is usually defined in terms of kinetic energy. In the compressible setting, however, it is entropy,
instead of kinetic energy, that is preserved and generated by the convective and viscous operators, respectively; and it
is only in the low Mach number limit that conservation of entropy leads to conservation of kinetic energy.

Figure 7 shows the time evolution of kinetic energy dissipation rate −dEk/dt (left) and entropy-based numerical
dissipation ΠS (right) for the three stabilization matrices considered. From these figures, the following remarks follow.
First, despite under-resolution, no major differences are observed between Riemann solvers. Second, numerical
dissipation is an increasing function of the kinetic energy contained in the subgrid scales. This shows that DG methods
have a built-in implicit LES capability: Inter-element jumps act as a self-stabilization mechanism and account for the
effect of the subgrid scales in a similar manner as explicit SGS models do. Third, all Riemann solvers slightly
underestimate the peak dissipation with respect to the DNS data.40 Thus, the numerical dissipation is smaller than the
true SGS dissipation (only) when the smallest turbulent structures appear. In particular, the numerical dissipation of
kinetic energy is Πi

Ek
≈ 1.6 · 10−3 ρ0U

3
0L

2 at t = 8.50 L/U0; which is about 10−3 ρ0U
3
0L

2 smaller than necessary
to match the DNS data. (Only) under these conditions, ILES may need to be further equipped with an explicit SGS
model.

Table 3 collects the average absolute-value jump across elements on the periodic plane x = −Lπ, defined as∫
EIh
|Juh,jK|∫

EIh
|〈uh,j〉|

,

for each conserved quantity j = 1, ..., 5 at time t = 8.50 L/U0. Here, Juh,jK = u+
h,j − u

−
h,j and 〈uh,j〉 = (u+

h,j +

u−h,j)/2 denote the face jump and face average operators, respectively, and EIh is the set of interior faces, as described in
Appendix A. Again, inter-element jumps act as a self-stabilization mechanism and provide an implicit LES capability.
From this table, the stabilization matrix σ = λmax yields much smaller jumps in the momentum fields than the other
two stabilization matrices. This is due to the over-upwinding for the momentum equations in this Riemann flux and
shows that DG methods have an auto-correction mechanism (namely, adjusting the magnitude of the inter-element
jumps, that is, the Riemann problem itself) to compensate for overshoots in the Riemann solver.

Figure 7: Time evolution of kinetic energy dissipation rate (left) and entropy-based numerical dissipation (right) for
the Riemann solvers considered.
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Figure 8: Numerical dissipation as computed from the incompressible (left) and compressible (right) kinetic energy
equations.

Finally, Figure 8 shows the kinetic-energy-based numerical dissipation Πi
Ek

and Πc
Ek

, defined from the incom-
pressible and compressible kinetic energy equations, respectively. From this figure, Πc

Ek
may yield fallacious results

even at this low Mach number, and it is the incompressible kinetic energy equation that provides a more realistic
description of the true numerical dissipation. From a theoretical perspective, this is attributed to the fact that it is the
symmetries in the incompressible kinetic energy equation that are closer to remain in the compressible setting. Also,
numerical dissipation of kinetic energy is only non-zero after (dynamic) subgrid-scale structures appear in the flow at
t ≈ 4 L/U0. Unlike explicit SGS models in the section below, the built-in implicit LES capability in DG methods
succeeds to detect the presence of subgrid scales and add numerical dissipation only under those conditions. The
non-zero numerical entropy generation ΠS at t < 3 L/U0 in Figure 7 is due subgrid-scale acoustic modes.

D. Effect of the SGS model

Figure 9 shows the dissipation rate of kinetic energy predicted by ILES, Smagorinky-LES, WALE-LES and Vreman-
LES. The stabilization matrix is σ = (An + |An|)/2 in all cases. The three SGS models fail to vanish in the laminar

ρ ρv1 ρv2 ρv3 ρE

Study of Riemann solver
(An + |An|)/2 8.8654E− 5 3.2592E− 1 3.3158E− 3 6.2183E− 3 1.1643E− 4

|An| 8.7554E− 5 4.4186E− 1 2.9354E− 3 5.3456E− 3 1.1563E− 4

λmax 9.0452E− 5 1.5166E− 1 9.0681E− 4 1.6674E− 3 1.2649E− 4

Study of SGS model
ILES 8.8654E− 5 3.2592E− 1 3.3158E− 3 6.2183E− 3 1.1643E− 4

Smagorinsky-LES 4.7599E− 5 1.8550E− 1 1.8706E− 3 3.3527E− 3 6.2188E− 5

Vreman-LES 4.9323E− 5 5.2481E− 2 2.0054E− 3 3.5868E− 3 6.4739E− 5

Study of time-step size
CFL = 1.5000 8.4671E− 5 3.6338E− 1 3.2513E− 3 6.6477E− 3 1.1061E− 4

CFL = 0.7500 8.7919E− 5 9.3606E− 2 3.3199E− 3 6.1912E− 3 1.1541E− 4

CFL = 0.3750 8.8654E− 5 3.2592E− 1 3.3158E− 3 6.2183E− 3 1.1643E− 4

CFL = 0.1875 8.7530E− 5 1.1877E− 1 3.3171E− 3 6.1517E− 3 1.1483E− 4

Table 3: Average absolute-value jump across elements on the periodic plane x = −Lπ of the Taylor-Green vortex at
t = 8.50 L/U0.

12 of 23

American Institute of Aeronautics and Astronautics



Figure 9: Time evolution of dissipation rate of kinetic energy in ILES, Smagorinsky-LES, WALE-LES and Vreman-
LES.

regime, i.e. before t < 7 ∼ 9 L/U0, and produce unphysical dissipation during this phase. This shows again the
limitations of explicit SGS modeling to simulate transitional flows. As in the Eppler 387 wing, the built-in self-
stabilization in DG methods provides a more accurate mechanism to detect the presence of SGS scales and add
numerical dissipation only under those conditions than any of the SGS models considered. Also, Table 3 collects
the average absolute-value jump across elements and Figure 10 shows a snapshot of the vorticity norm on the periodic
plane x = −Lπ at t = 8 L/U0 for ILES (left), Smagorinsky-LES (center) and Vreman-LES (right). While the jumps
in the numerical solution are smaller and the vorticity norm field is smoother with an SGS model due to the non-zero
eddy viscosity, ILES actually provides a more accurate representation of the flowfield.

The larger dissipation in explicit LES at short times corresponds to effectively solving a smaller Reynolds number
flow. The maximum dissipation rate actually occurs at an earlier time compared to DNS data;40 which is characteristic
of the Taylor-Green vortex at lower Reynolds numbers.5 WALE-LES again failed to converge at t ≈ 4.59 L/U0. This
lack of robustness limits the practical applicability of this model for high-order LES with implicit time integrators.
Unlike for wall-bounded flows, such as in the Eppler wing in Section V and the turbulent channel flow in Section
VII, no major differences are observed between the Smagorinsky and the Vreman SGS models here. As expected,
this points directly to the incapability of the Smagorinsky model to vanish near the wall as one the main limitation
of this model. Due to the unphysical dissipation of explicit LES at short times, the spectral distribution of kinetic
energy evolves differently compared to that in ILES and DNS, and no meaningful conclusions can be inferred on the
performance of the SGS models in the turbulent regime.

Figure 10: Snapshot of vorticity norm |ω|L/U0 on the periodic plane x = −Lπ at t = 8 L/U0 for ILES (left),
Smagorinsky-LES (center) and Vreman-LES (right). WALE-LES leaded to nonlinear instability and the breakdown
of the iterative solver at t U0/L ≈ 4.59.
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E. Effect of the time resolution

We consider the time-step sizes ∆t = (14.7262, 7.3631, 3.6816, 1.8408) · 10−2 L/U0; which correspond to CFL
numbers U0 ∆t/∆x = 1.50, 0.75, 0.375, and 0.1875, respectively. ILES with σ = (An+ |An|)/2 is used in all cases.
Figure 11 shows the time evolution of kinetic energy dissipation rate (left) and entropy-based numerical dissipation
(right) for these time-step sizes. Both −dEk/dt and ΠS converge to an asymptotic solution as the time step is refined;
which corresponds to the continuous-in-time solution of the semi-discrete system in Eq. (4). From this figure, minor
differences are observed for the four time steps considered. This is due to the fact that the vorticity and entropy modes
that are captured by (4) can be accurately resolved with CFL . 1, and these are the most important features in the
dynamics of low Mach number turbulent flows. Further refining in time below CFL ∼ 1 allows to resolve acoustics
modes as well, as illustrated in Fig. 11 through the oscillations in ΠS . These oscillations correspond to pressure waves
and are particularly intense at early times due to the acoustic imbalance in the initial condition.

We note that the space discretization error (responsible for the mismatch between the CFL = 0.1875 case and
the DNS data) vastly dominates the time discretization error even at CFL = 1.50. Optimal LES implementations, in
which space and time discretization errors are properly balanced, may therefore be achieved with local CFL numbers
significantly larger than one. In addition, the asymptotic solution as the time step is refined ∆t ↓ 0 in wall-bounded
flows could be achieved with much larger global CFL numbers than in the TGV problem, since the smallest element
size is usually located in a laminar region of the flow, e.g. in the viscous sublayer or near the leading edge before the
flow transitions to turbulence. This shows promise for implicit time integration in high-order DG-based LES due to
the severe CFL restrictions of explicit schemes in the high-order setting.

Figure 11: Time evolution of kinetic energy dissipation rate (left) and entropy-based numerical dissipation (right) for
the time-step sizes considered.

VII. Turbulent channel flow

A. Case description

Finally, we investigate the performance of the LES approaches for wall-bounded turbulence. Results for the effect of
the Riemann solver, SGS model and accuracy order are reported. To this end, we consider the turbulent channel flow20

atReτ = 182 and 544, whereReτ = uτδ/ν denotes the Reynolds number based on the friction velocity uτ =
√
τw/ρ

and the channel half-width δ. The bulk Mach number is Mb = ub/a = 0.2, where ub =
∫ 2δ

0
u(y) dy / 2δ is the bulk

velocity and a is the speed of sound. A homogeneous, time-dependent volumetric force is imposed in the streamwise
direction to compensate the friction at the walls and ensure the mass flow remains constant in the channel. In particular,
the mass flow is that required to achieve the desired Reτ according to DNS results.20 As a consequence, the Reτ
computed in LES (denoted by ReLESτ hereinafter) may not agree with the target Reτ (denoted by Retargetτ ) if the
resolution is not sufficiently fine. This will be shown to be the case at Retargetτ = 544.
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B. Details of the numerical discretization

Third-order IEDG and DIRK(3,3) schemes are used for the baseline spatial and temporal discretization, respectively.
The channel size is 4πδ× 2δ× 2πδ and the number of elements 48× 32× 40 (i.e. 144× 96× 120 unique grid points)
in the streamwise, wall-normal and spanwise directions, respectively. The same mesh is used for both Reynolds
numbers in order to obtain different resolutions in wall units and provide insight on the mesh requirements to resolve
wall-bounded turbulent flows. The velocity, length and time scales for wall unit non-dimensionalization are uτ , ν/uτ
and ν/u2

τ , respectively. The average spacing between high-order nodes (∆x+
avg,∆y

+
avg,∆z

+
avg), near-wall resolution

∆y+
w and time-step size ∆t+ are summarized in Table 4. The high-order nodes in the wall-normal direction y are

distributed uniformly in a mapped coordinate ξ that is related to y through

y

δ
=

sin(ξπ/2)

sin(π/2)
+ 1, −1 ≤ ξ ≤ 1.

A run-up time t+1 = 2000 is used to ensure the flow achieves its steady-state distribution on the chaotic attractor. Then,
the statistics are collected over a time span of t+2 = 1000 to ensure the statistical convergence of the mean velocity
and Reynolds stresses across the channel.

Retargetτ = 182 Retargetτ = 544

∆x+
avg 23.8 71.2

∆y+
avg 5.69 17.0

∆z+
avg 14.3 42.7

∆y+
w 0.44 1.31

∆t+ 0.29 0.74

Table 4: Average spacing between high-order nodes, near-wall resolution and time-step size for LES of turbulent
channel flow.

C. Effect of the Riemann solver

Figure 12 shows the mean velocity profile at Retargetτ = 182 and 544 for the three stabilization matrices considered.
The predicted values of ReLESτ are collected in Table 5. Since no significant differences are observed between the
three stabilization matrices in terms of wall friction, mean velocity and Reynolds stresses, the analysis of the ILES
results is deferred to the comparison between ILES and explicit SGS models below.
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Figure 12: ILES predictions of mean velocity profile for channel flow atRetargetτ = 182 (left) and 544 (right). ReLESτ

is used for non-dimensionalization.
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Retargetτ = 182 Retargetτ = 544

Study of Riemann solver
(An + |An|)/2 180.8 478.7

|An| 181.0 479.1

λmax 181.1 477.7

Study of SGS model
ILES 180.8 478.7

Smagorinsky-LES 191.5 658.1

WALE-LES 173.3 452.6

Vreman-LES 170.1 468.4

Study of accuracy order
Third-order 180.8 478.7

Fifth-order − 523.9

Table 5: Values of ReLESτ computed in LES.

D. Effect of the SGS model

Figures 13 and 14 show the mean velocity profile at Retargetτ = 182 and 544, respectively, for ILES, Smagorinsky-
LES, WALE-LES and Vreman-LES. The stabilization matrix is σ = (An + |An|)/2 in all cases. Two different types
of non-dimensionalization are used on the left and right images of these figures. On the left images, the velocity and
length scales at the wall are computed from τLESw . This will be the adequate non-dimensionalization to investigate
if the viscous and log layers are properly resolved, as we shall see below. On the right images, the target τw is used
for non-dimensionalization. This way, the data from the different simulations are non-dimensionalized with respect
to the same reference quantities, so that the scaling factor between dimensional and non-dimensional data is the same
in all cases. As a result, the dimensional velocity profiles can be directly compared from these figures. This type of
non-dimensionalization will be useful to understand the reasons for the mismatch between LES and DNS. Also, Figure
15 shows the Reynolds stresses at Retargetτ = 182 and Table 5 collects the predicted values of ReLESτ . The results in
these figures can be interpreted as follows:
Viscous sublayer (y+ . 10): Theoretical results show that τxy(y) ≈ τw and that molecular transport dominates over
turbulent transport in this region. This yields the well-known result U+ = y+. From the left images in Figures 13
and 14, the viscous sublayer is accurately resolved at both Reynolds numbers by ILES, WALE-LES and Vreman-LES.
Provided enough resolution is available to capture the mean flow and no eddy viscosity is added by the SGS model (if
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Figure 13: ILES and explicit LES predictions of mean velocity profile for channel flow at Retargetτ = 182. ReLESτ

and Retargetτ are used for non-dimensionalization on the left and right images, respectively.

16 of 23

American Institute of Aeronautics and Astronautics



y+
10

-1
10

0
10

1
10

2
10

3

U
+

0

5

10

15

20

25

ILES
Smagorinsky
WALE
Vreman
DNS data (Lee and Moser, 2015)

y+
10

-1
10

0
10

1
10

2
10

3

U
+

0

5

10

15

20

25

ILES
Smagorinsky
WALE
Vreman
DNS data (Lee and Moser, 2015)

Figure 14: ILES and explicit LES predictions of mean velocity profile for channel flow at Retargetτ = 544. ReLESτ

and Retargetτ are used for non-dimensionalization on the left and right images, respectively.

any), this is expected due to the laminar nature of the flow in this region. However, as in the Eppler 387 wing, the eddy
viscosity fails to vanish near the wall in Smagorisnky-LES and this leads to inaccurate skin friction and mean velocity
predictions, even at the low Retargetτ = 182. In particular, the average eddy viscosity at the wall in Smagorinsky-LES
is νSe |w = 0.934 ν and 0.248 ν at Retargetτ = 182 and 544, respectively.
Log layer (y+ & 40): In this layer, τxy(y) ≈ τw and turbulent transport dominates over molecular transport. This,
combined with the mixing-length hypothesis ` = κ dw, where ` is the mixing length, κ is the von Kármán constant and
dw is the distance to the wall, leads to U+ = (1/κ) log y+ +B. DNS data20 suggest κ = 0.384±0.004 andB = 4.27.
The left images in Figures 13 and 14 show that all simulations succeed to predict this logarithmic dependence with the
correct mixing length ` = κLES dw, where κLES ≈ 0.38. The matching velocity between the buffer and log layers,
however, does not agree in general with the DNS data. This implies that BLES 6= 4.27 and is likely due to insufficient
resolution in the buffer layer and, to a lessen extent, in the log layer. The incorrect outer velocity seen by the viscous
sublayer is responsible for the misprediction of the wall shear stress in Table 5.
Buffer layer (10 . y+ . 40): At Retargetτ = 182, the buffer layer is only properly resolved by ILES. At Retargetτ =
544, none of the simulations succeeds to resolve this layer with the available resolution. ILES, however, is again closer
to the DNS data than any of the simulations with an explicit SGS model. We note that all the simulations over-transport
momentum in the buffer layer and therefore d2u/dy2 is less negative than the true value to compensate, as illustrated
in Figure 14. This yields a larger velocity at the end of the buffer layer, and translates into LES underpredicting
the skin friction at the wall for a given mass flow. Hence, the velocity jump across the buffer layer is an increasing
function of momentum transport, either numerical or from an SGS model; which is consistent with Figures 9 and 11
in.26 We note that, while over-transportive, the turbulent kinetic energy in LES is larger than in DNS (see Fig. 15).
This indicates that the dissipation of resolved kinetic energy due to numerical and SGS modeled viscosity is smaller
than the actual subgrid scale dissipation. A ratio momentum transport-to-dissipation larger than the true SGS value
is postulated to be due to the different time scales of the resolved and unresolved fields. In particular, transport and
dissipation depend differently on the time scales of the SGS stress tensor. This illustrates some challenges to accurately
model SGS transport and dissipation simultaneously if the time scales in τSGS –either from an SGS model or from
the discretization error– are those of the largest resolved scales.

E. Effect of the accuracy order

For a fixed number of degrees of freedom, high-order methods are known to outperform low-order methods in
terms of accuracy in well-resolved simulations, such as DNS of turbulent flows, due to their faster convergence rate
as the element size tends to zero. In the case of under-resolved simulations, such as (by definition) in LES, the
order of convergence loses relevance, and it is the dissipative and dispersive errors for under-resolved wavelengths
that dominate the approximation quality.24, 25 Whether improved predictability is also achieved for under-resolved
turbulence simulations is therefore less clear. In order to gain insight into this question, we consider a fifth-order ILES
discretization of the channel flow at Retargetτ = 544. The DOF count and time-step size are the same as those in the
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Figure 15: ILES and explicit LES predictions of Reynolds stresses for channel flow at Retargetτ = 182. ReLESτ is
used for non-dimensionalization. The color legend is shown in Figures 13 and 14.

previous sections, and the stabilization matrix is set to σ = (An + |An|)/2.
Despite under-resolution, the fifth-order discretization provides a more accurate description of the mean flow, as

shown in Fig. 16, as well as of the Reynolds stresses (not shown here). Also, ReLESτ = 523.9 for fifth-order ILES,
as opposed to ReLESτ = 478.7 in the third-order solution. The improved performance of the fifth-order scheme is
justified as follows: Accurately resolving as many of the scales that can be theoretically captured with the available
resolution (Shannon theorem) plays a more important role for these flow conditions than that of the subgrid scales,
and this is better achieved with the fifth-order discretization. Whether this also holds as the range of subgrid scales
increases, that is, for larger Reynolds number flows, is the subject of ongoing research.

VIII. Conclusions

We investigated the relation between numerical discretization, subgrid-scale modeling and the resulting LES solver
in the framework of high-order DG methods. The role of the Riemann solver, SGS model, time resolution, and
accuracy order were examined for a variety of flow regimes, including transition to turbulence, wall-free turbulence,
wall-bounded turbulence, and turbulence decay. The transitional flow over the Eppler 387 wing, the Taylor-Green
vortex problem and the turbulent channel flow were considered to this end. The main findings and contributions of
this paper are summarized as follows:

• Theoretical contributions: We derived the connection between the stabilization matrix in hybridized DG
methods and the resulting Riemann solver; which is important to accurately resolve high Reynolds number
turbulent flows. Also, we presented an entropy stability analysis for hybridized DG methods. The analogies in
the entropy equalities for hybridized and standard DG methods imply that most well-known results on DG and
Riemann solvers carry over to the hybridized framework.
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Figure 16: Third- and fifth-order ILES predictions of mean velocity profile for channel flow at Retargetτ = 544.
ReLESτ is used for non-dimensionalization.

• Suitability of high-order DG methods for LES: The number of degrees of freedom to accurately resolve
transition from laminar to turbulent regime can be significantly reduced by using a high-order approach. In
particular, simulating transitional flows is challenging mostly due to the small magnitude of the instabilities
involved, rather than their length and time scales. Hence, low-order schemes may kill the small instabilities
because of high numerical dissipation even when the mesh size and time-step size are sufficiently small to
represent the length and time scales of the instabilities.

The LES predictions of the turbulent channel flow also significantly improved by increasing the accuracy order
of the discretization scheme. This illustrates that accurately resolving the large scales in a turbulent flow by
using a high-order method may play a more important role than that of the subgrid scales.

Finally, numerical results showed that DG methods have a built-in implicit LES capability and add numerical
dissipation in under-resolved turbulence simulations. This is supported by the theoretical results in Section III.

• Role of the Riemann solver in DG-based LES: No significant differences were observed between Riemann
solvers for transition prediction, wall-free turbulence, wall-bounded turbulence and turbulence decay, even in
the presence of significant under-resolution. Numerical results showed that DG methods have an auto-correction
mechanism to partially compensate for overshoots in the Riemann solver (namely, adjusting the magnitude of
the inter-element jumps as necessary); which justifies this observation.

• Implicit vs. explicit subgrid-scale modeling: First, implicit LES is better suited than explicit SGS modeling
for transitional flows. In particular, the built-in implicit LES capability in DG methods provides a more accurate
mechanism to detect the presence of subgrid scales and add numerical dissipation only under those conditions
than explicit SGS models. Second, implicit LES was also shown to outperform explicit models for the wall-free
and wall-bounded turbulent flows considered. Whether this continues to hold as the range of subgrid scales
increases, i.e. for larger Reynolds number flows, is the subject of ongoing research. Third, the ratio momentum
transport-to-dissipation due to discretization errors and explicit SGS models were shown to be larger than the
true SGS value; which is attributed to the different time scales in the resolved and unresolved turbulent fields.
This illustrates the challenges to accurately model subgrid-scale transport and dissipation simultaneously if the
time scales in τSGS –either from an SGS model or from the discretization error– are those of the largest resolved
scales.

• Role of the time-step size: Optimal LES implementations, in which space and time discretization errors are
properly balanced, may be achieved with local CFL numbers significantly larger than one. For wall-bounded
turbulent flows, this may result in a global CFL number much larger than one and shows promise for implicit
time integration for high-order DG-based LES.
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A. Notation used for the hybridized DG discretization

Finite element mesh

Let Ω ⊆ Rd with d = 3 be a bounded physical domain with Lipschitz boundary ∂Ω. We denote by Th a collection of
disjoint, regular, p-th degree curved elements K that partition Ω, and set ∂Th := {∂K : K ∈ Th} to be the collection
of the boundaries of the elements in Th. For an element K of the collection Th, F = ∂K ∩ ∂Ω is a boundary face
if its d − 1 Lebesgue measure is nonzero. For two elements K+ and K− of Th, F = ∂K+ ∩ ∂K− is the interior
face between K+ and K− if its d− 1 Lebesgue measure is nonzero. We denote by EIh and EBh the set of interior and
boundary faces, respectively, and we define Eh := EIh ∪EBh as the union of interior and boundary faces. ∂T Bh and ∂T Ih
are defined in an analogous manner. Note that, by definition, ∂Th and Eh are different. More precisely, an interior face
is counted twice in ∂Th but only once in Eh, whereas a boundary face is counted once both in ∂Th and Eh.

Finite element spaces

Let Pk(D) denote the space of real polynomials of degree k on some Lebesgue measurable set D ⊂ Rn, let L2(D)
be the space of Lebesgue square-integrable functions on D, and let ψpK denote the p-th degree parametric mapping
from the reference element Kref to some element K ∈ Th in the physical domain. We then introduce the following
discontinuous finite element spaces:

Qk
h =

{
rh ∈ [L2(Th)]m×d : (rh ◦ψpK)|K ∈ [Pk(Kref )]m×d ∀K ∈ Th

}
, (20a)

Vk
h =

{
wh ∈ [L2(Th)]m : (wh ◦ψpK)|K ∈ [Pk(Kref )]m ∀K ∈ Th

}
, (20b)

where m denotes the number of equations of the conservation law, i.e. m = d + 2 for the Navier-Stokes system. In
addition, let us denote the p-th degree parametric mapping from the reference face Fref to some physical face F by
φpF . We then introduce the following traced finite element space on the mesh skeleton Eh:

Mk
h =

{
µh ∈ [L2(Eh)]m : (µh ◦ φpF )|F ∈ [Pk(Fref )]m ∀F ∈ Eh, and µh|EEh ∈ [C0(EE

h )]m
}
, (21)

where EE
h is a subset of Eh. Note that Mk

h consists of functions which are continuous on EE
h and discontinuous on

EH
h := Eh\EE

h . Different choices of EE
h lead to different discretization methods that have different properties in terms

of accuracy, stability, and number of globally coupled unknowns.11 In particular, the HDG, EDG and IEDG methods
are obtained by setting EE

h = ∅, EE
h = Eh and EE

h = EIh , respectively.
We finally define several inner products associated with these finite element spaces. In particular, given wh,vh ∈

Vk
h,Wh,Vh ∈Qk

h and ηh, ζh ∈Mk
h, we write

(wh,vh)Th =
∑
K∈Th

(wh,vh)K =
∑
K∈Th

∫
K

wh · vh, (22a)

(Wh,Vh)Th =
∑
K∈Th

(Wh,Vh)K =
∑
K∈Th

∫
K

Wh : Vh, (22b)

〈ηh, ζh〉∂Th =
∑
K∈Th

〈ηh, ζh〉∂K =
∑
K∈Th

∫
∂K

ηh · ζh, (22c)

where : denotes the Frobenius inner product.

B. Boundary layer post-processing for the Eppler 387 wing

This appendix introduces the nomenclature and methodology used for the boundary layer (BL) post-processing in
Section V. The BL analysis is based on the pseudo-velocity

v∗(s, n) :=

∫ n

0

(ω × n̂) dn′, (23)

20 of 23

American Institute of Aeronautics and Astronautics



where ω denotes vorticity, and (s, n) is the set of curvilinear coordinates associated to the airfoil surface. In particular,
s = (s1, s2) and n are the coordinates along the streamwise, cross-flow, and outward normal to the airfoil directions,
respectively. Also, the unit vectors associated to these coordinates are denoted by ŝ1, ŝ2 and n̂, respectively. Unlike the
actual velocity, this pseudo-velocity asymptotes to a constant outside the boundary layer, even with strong curvature,
thus making the edge of the boundary layer a well-defined location. In particular, the BL edge ne is defined as the first
location along n-direction simultaneously satisfying

|ω̄|n ≤ ε1 |v̄∗| ,
∣∣∣∣∂ω̄∂n

∣∣∣∣n2 ≤ ε2 |v̄∗| , (24)

where ε1 = 0.01 and ε2 = 0.1 are some properly tuned constants for a systematic and robust detection of the BL edge,
and the overbar denotes temporal and cross-flow averaging, i.e.,

ω̄(s1, n) :=
1

T ·∆s2

∫ T

0

∫ ∆s2

0

ω(s, n, t) ds2 dt. (25)

Cross-flow averaging corresponds to ensemble averaging due to the quasi-2D nature of the geometry and boundary
conditions in the Eppler 387 wing, and is therefore used to accelerate statistical output convergence.

The local streamwise and cross-flow unit vectors above are defined as

ŝ1(s1) := v̄e/v̄e, ŝ2(s1) := ŝ1 × n̂, (26)

where v̄e = v∗(ne) is the pseudo-velocity at the edge of the boundary layer and v̄e = |v̄e| is its magnitude. Also, the
average v̄1 and fluctuating v′1 streamwise velocities are given by

v̄1(s1, n) = v̄∗(s1, n) · ŝ1(s1, n), v′1(s, n, t) := v1(s, n, t)− v̄1(s1, n), (27)

whereas the streamwise displacement thickness, momentum thickness, and shape parameter read as

δ∗(s1) :=

∫ ne

0

(
1− v̄1

v̄e

)
dn, θ(s1) :=

∫ ne

0

(
1− v̄1

v̄e

) v̄1

v̄e
dn, H(s1) :=

δ∗

θ
. (28)

The amplitude A1 and amplification factor N1 of streamwise perturbations at the boundary layer location s1 are given
by

A1(s1) =
1

v̄e
√
ne

√∫ ne

0

v′1
2 dn, N1(s1) := ln

(
A1(s1)

A1,0

)
, (29)

where A1,0 is some reference amplitude. We note that A1,0 shifts N1(s1) by a constant factor but it does not affect its
growth rate. The cross-flow version of the previous quantities are defined in an analogous manner.

C. Kinetic energy, entropy and numerical dissipation in the TGV problem

The dissipation rate of integrated kinetic energy in the TGV problem, Ek =
∫

Ω
ρ |v|2/2, is given by

−dEk
dt

= ε1 + ε2, (30)

where
ε1 =

∫
Ω

Φ =

∫
Ω

∇v : τ , ε2 = −
∫

Ω

p
(
∇ · v

)
, (31)

are the viscous dissipation and pressure dilatation terms, respectively, and where : denotes the Frobenius inner product.
For a Newtonian fluid,

ε1 =

∫
Ω

µ |w|2 +

∫
Ω

(λ+ 2µ)
(
∇ · v

)2
= ε1,a + ε1,b, (32)

where λ denotes the second coefficient of viscosity. In the incompressible limit,∇ · v = 0 and thus

−dEk
dt

= ε1,a = 2
µ

ρ
E ≥ 0, (33)
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where E =
∫

Ω
ρ |w|2/2 is the integrated enstrophy. Also, the time evolution of integrated entropy in the TGV problem,

S =
∫

Ω
ρs, is given by

dS

dt
= ε3 + ε4, (34)

where

ε3 =

∫
Ω

k
|∇T |2

T 2
≥ 0, ε4 =

∫
Ω

Φ

T
≥ 0. (35)

We then define the numerical dissipation of the discretization scheme based on the compressible kinetic energy
equation, the incompressible kinetic energy equation and the entropy equation as

Πc
Ek

:= −dEk
dt
− ε1 − ε2, Πi

Ek
:= −dEk

dt
− ε1,a, ΠS :=

dS

dt
− ε3 − ε4, (36)

respectively. All the time derivatives in this appendix are to be computed with the same time integration scheme as
that used in LES.
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